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ABSTRACT

The function of a protein depends on its three-dimensional structure.
Current approaches based on homology for predicting a given
protein’s function do not work well at scale. In this work, we
propose a scalable and generalizable representation of proteins
that explicitly encodes secondary and tertiary structure into fix-
sized images. In addition, we present a neural network architecture
that exploits our data representation to perform protein function
prediction. We validate the effectiveness of our encoding method
and the strength of our neural network architecture through a 5-
fold cross validation over roughly 63 thousand images, achieving
an accuracy of 80% across 8 distinct functional classes. Our novel
approach of encoding and classifying proteins enables real-time
processing during folding or other trajectory experiments, leading
to high-throughput analysis.
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1 INTRODUCTION

Proteins are macromolecules in charge of a wide variety of bio-
logical functions. They are composed of sequences of amino acids
(also called residues) that form a chain of chemical bonds. Proteins
interact with their environment and fold into a three-dimensional
structure depending on their amino acid sequence. It is in this
folded shape that proteins are able to interact with other proteins

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACM-BCB’18, Washington, D.C. USA

© 2018 ACM. 978-x-xxxx-xxxx-x/YY/MM...$15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

Jeremy Benson
University of New Mexico
jeremybenson@cs.unm.edu

Michel A. Cuendet
Weill Cornell Medical College,
Cornell University
mac2109@med.cornell.edu

Hector Carrillo-Cabada
University of New Mexico
hcarrillo@cs.unm.edu

Harel Weinstein
Weill Cornell Medical College,
Cornell University
haw2002@med.cornell.edu

Michela Taufer

University of Tennessee at Knoxville
taufer@utk.edu

and molecules to perform their functions. Identifying the function
of a given protein is not a trivial operation. Homology methods are
among the more common techniques to predict protein functions.
These methods require measuring the similitude of a protein with
respect to a large database of known amino acid sequences and
structures. The key idea supporting the use of homology methods is
that proteins with similar sequences have similar functions. On the
other hand, the main weakness of homology methods is that they
do not scale with the number of proteins to be compared. Multiple
sequence alignment is NP-complete [10], and structural alignment
is an instance of the traditional three-dimensional graph matching
problem, which is known to be NP-hard [13] (i.e., there is no known
algorithm that can solve these problems in polynomial time O(n°),
where c is a constant and 7 is the size of the input, which in this case
is the number of proteins and their size). As the number of proteins
increases over time (e.g., with the advancing of crystallography and
NMR techniques), more scalable analysis techniques are needed
to fully take advantage of the information embedded in new and
existing proteins.

In an effort to find scalable methods for the identification of
protein functions, we shall look at machine learning (ML) methods
such as convolutional neural networks (CNNs) and deep learning
(DL) [38] that are revolutionizing the way in which data is ana-
lyzed and processed in real time. In particular, these methods are
becoming the de-facto techniques in computer vision and image
processing, and they are solving previously open problems such
as object recognition [35] with very high accuracy. As their popu-
larity increases, deep learning methods are starting to be used for
scientific applications, and structural biology is not the exception.
However, as the function of a protein directly depends on its three-
dimensional structure [32], computational approaches for protein
function prediction, and more generally protein analysis based on
ML are limited by the way in which proteins are represented. In-
herent differences between proteins, such as length, location of
structural motifs, and different folding conformations, are some
of the challenges for representing proteins in a way that can be
adequately handled by machine learning techniques.
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Having the ability to represent heterogeneous macromolecules
such as proteins in a way that (1) exposes their structure (i.e., sec-
ondary and tertiary characteristics) and (2) can be processed effi-
ciently, has the potential to disrupt the scale at which molecular
analysis is done today. In this paper we propose such an encoding.
Our approach is to represent structural and conformational infor-
mation of macromolecules into a codified image that is to say, an
encoded protein. We propose to transform the problem of protein
analysis (i.e., function prediction and partial structural matching)
into a more computationally tractable image pattern recognition
problem. Specifically, our proposed approach encodes structural
information embedded into a protein without the demand for inter-
protein alignment required in homology-based studies. As such,
we are able to exploit the advantages of structural representations
and perform operations totally in parallel. Figure 1 shows a vi-
sual comparison between three structural protein representations
described in Section 2 (i.e., 3D Cartesian atoms, multi-fold, and sur-
face) against our proposed graphic encoding. Our resulting encod-
ing opens the door for structural biologists to use powerful image
processing and ML techniques to analyze very large macromolec-
ular databases in an efficient, high-throughput way. Large scale
analyses of this magnitude can be used to identify inter-molecular
patterns that may signal function, interaction, and homology in a
broader sense.

For this body of research, we develop our study as a proof of
concept: first we design an image-processing methodology to graph-
ically encode proteins and then we test the method to classify a
large dataset of proteins into 8 functional classes. One important
advantage of our approach is that once our classifier is trained,
it can be used for both function prediction and trajectory analy-
sis in large-scale molecular dynamics simulation. Specifically, our
contributions in this paper are the following:

(1) A generalizable representation of macromolecules that ex-
plicitly encodes secondary structural motifs and their spa-
tial characteristics within the molecule. This representa-
tion exposes inter- and intra-molecular structural patterns
without having to perform protein alignments.

(2) Animage processing system based on convolutional neural
networks that is able to use our graphic structural repre-
sentation and predict protein function with an average of
80.6% accuracy.

The remainder of the paper is organized as follows: Section 2
discusses related work. Section 3 introduces our novel macromolec-
ular representation. Section 4 discuses and evaluates a system for
protein function prediction that serves as a proof of concept to
highlight the power of our encoding. Section 5 concludes the paper
and presents future research directions.

2 BACKGROUND AND STATE OF THE
PRACTICE

Proteins can be represented by a variety of ways, each with their
own advantages and disadvantages with respect to preserving or
exposing information for specific purposes. In this section, we
present a brief summary of some standard formats and focus on
their applicability to protein function prediction.

Estrada et al.

2.1 Sequence Representation

DNA, RNA, or proteins can be represented by their amino acid
residues sequences: a succession of letters using letters GACT for
DNA, GACU for RNA, and the one-letter codes for the 20 natural
amino acids for proteins. A common technique to identify func-
tional or structural relationships among proteins depends on align-
ing their sequences to find global or local shared motifs. Aligned
sequences are usually represented through matrices, where each se-
quence corresponds to a row. Alignments can include gaps between
columns to allow for local dissimilarities. Pairwise sequence align-
ment is usually performed using dynamic programming (e.g., Smith-
Waterman algorithm [37], Needleman-Wunsch algorithm [2, 28]
both with a time complexity of O(nm) [25], where n and m are
sequence length for a pair sequence alignment).

Even with very large sequences, it is relatively cheap to align
millions of proteins using modern parallel methods [19]. Using
sequence alignment for protein function prediction is based on
the idea that proteins with similar sequences (homologous) share
similar functions. However, this is not always true, and it has been
argued [41] that sequence alone is not enough for predicting protein
functions and requires knowledge on the folding patterns of the
protein’s three-dimensional structure.

2.2 Structure Representations

Structural representations involve expressing, in a variety of ways,
the three-dimensional arrangement of atoms in a protein. A 3D
representation consists of the spatial coordinates of each of the
(non-hydrogen) atoms in a Cartesian coordinate system. Alterna-
tively, an angular representation expresses the protein’s backbone
conformation through its dihedral angles and their bond lengths
(i.e., angles between planes of two sets of three atoms). With this
representation, folds of proteins are expressed through the planes
formed by four consecutive alpha Carbon atoms. Due to the degrees
of freedom of both of these protein representations, their space
complexity grows exponentially with the number of residues in the
protein.

To deal with this complexity, the multi-fold representation is
based on the observation that a protein’s structure can be expressed
through the combination of small structural units, called folding
motifs, [5, 16, 17]. This representation takes advantage of collections
of motifs that occur frequently and uses them as a meta-dictionary
to express the entire protein’s complexity in a condensed way. The
most common representation of this kind uses folding motifs known
as secondary structure motifs (e.g., helix, turn, and sheet). Methods
for protein structure determination include X-ray crystallography,
NMR spectroscopy, and electron microscopy [4].

Structural comparison and alignment of proteins is a critical
aspect of multiple research problems, including protein annota-
tion, and protein structure prediction. Structure-based function
prediction often outperforms sequence-based methods because
structural homologues contain similar folding patterns, even af-
ter evolution leads to their sequence similarity being completely
undetectable [41].

Structural alignment combines sequence information with the
secondary and tertiary structure of the protein or RNA molecule,
and it is considered as the standard practice for homology-based
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Figure 1: Visual depiction of multiple representations for the human alpha-lactalbumin protein (PDBid: 1A4V).

structure and function prediction [41]. But thoroughly comparing
protein structures, whose size range from tens to several thousand
amino acids, is computationally expensive, as three-dimensional
matching is an NP-hard problem [13]. Moreover, for high-throughput
analysis and identification of homologous structures, the alignment
and comparison has to be done for multiple macromolecules at
a time. As the alignment has to be done in a pair-wise manner
and optimized globally, this process has limited opportunities for
exploiting parallelism.

2.3 Other Protein Representations

There is a wide variety of other possible representations that are be-
ing used to describe proteins, their components, or binding pockets
for example [27]. One such representation expresses only the molec-
ular surface [26] as a set of functions (e.g., triangulations, polygons,
distance distributions and landmark theory) on a unit sphere. This
particular representation makes multiple protein comparison rel-
atively easy [11, 18, 40], but it does not account for the internal
structure of the protein, which is still crucial for determining the
protein’s functions.

Another representation treats the residues in a protein as if they
were vectors in a 20-dimensional space [30]. In this case, a protein
is represented as a random walk and proteins can be compared
to each other through their vectorized profile. Ultimately, though,
this representation loses its ability to express global folds or even
protein domains in a way that can be used to characterize protein
functions. The multipolar representation [14] offers a hierarchi-
cal parametric approach to characterizing the shape of a molecule.
This representation uses multipoles (i.e., mathematical series that
describe functions in terms of spherical harmonics) associated with
coordinates of the Alpha Carbon of each residue as shape descrip-
tors. The multipolar model reduces a protein to a vectorized format;
calculating distances between proteins can be done through vector
operations, rather than detailed alignment and spatial superimposi-
tion.

2.4 Deep Learning in Structural Biology

Machine learning and more recently deep learning have been used
extensively in structural biology [7, 33, 42]. One of the main uses
is in the prediction of secondary and tertiary structure of macro-
molecules. For example Li et al. [22] use a convolutional neural

network with different kernel sizes to extract multi-scale features
and predict secondary structure from protein sequences. Wang
et al. [39] use two deep residual neural networks to perform con-
tact prediction from protein sequences in order to improve folding
accuracy.

Examples of more specific prediction problems include Hou et
al. [15] using a deep convolution neural network (DeepSF) to clas-
sify a protein sequence into known folds, Nguyen et al.[29] propos-
ing an ensemble of classifiers such as nearest neighbors, deep con-
volutional neural networks, and residual neural networks to predict
a variety of angular and structural information with the final goal
to predict loops, and Li et al. [21] compare the effectiveness of a
deep neural network, a deep restricted Boltzmann machine, a deep
recurrent neural network, and a deep recurrent restricted Boltz-
mann machine to predict phi and psi torsion angles of proteins’
backbone.

More closely related to our work, deep learning has also been
used for a variety of protein function prediction problems. Kul-
manov et al. [20] propose DeepGO, a deep learning architecture
used to learn features from protein sequences to predict function in
the form of the Gene Ontology hierarchy. Similarly Liu et al. [24]
use a recurrent neural network to predict four types of functions
from protein sequences. In both cases, the neural network archi-
tecture is employed to form low-level feature representations from
a simple input format as is the protein sequence. Cao et al. [6]
propose ProLanGO, a deep recurrent neural network that deals
with protein function prediction as if it was an analogous problem
to language translation. This approach maps the protein sequence
to a sequence of functions defined in the Gene Ontology.

Our work differs from all of the described related work in that
we propose an encoding mechanism that captures secondary and
tertiary information of proteins into an easy-to-analyze format.
Our contribution is in the generalizable and homogeneous data
representation, which can be used for multiple purposes, including
for example in-situ analysis and indexing of folding trajectories,
and protein function prediction is just one of such use cases. Note
that this data representation is completely agnostic to the number
of protein chains to be represented and the only change would be
in the resolution of the image (i.e., the more residues are involved,
the lower the resolution of the resulting image).
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3 STRUCTURAL ENCODING OF
MACROMOLECULES

In this section, we present our scalable graphic encoding of sec-
ondary and tertiary structure of proteins, while providing three
key advantages over other structural representations:

e It is invariant to the protein size (i.e., number of amino
acids). Proteins vary in size from tens to several thousand
amino acids, still our graphic encoding can represent all of
them using a standardized squared matrix.

o It exposes structural domains and folding motifs as patterns
in an image.

e It can be built and queried in a fully parallel way.

Our encoding mechanism translates the complex structural and
conformational information in three-dimensional proteins into a
much simpler-to-analyze format: a three color channel image using
a Red-Green-Blue (RGB) color model. The implicit advantage of
this translation is in the ability of leveraging state-of-the-art im-
age processing and ML mechanisms that currently cannot be used
effectively with the canonical 3D or sequence representations of
proteins. For our encoding technique, our final goal is to seamlessly
expose local and global patterns from the protein’s structural in-
formation without the need of pairwise structural alignments and
homology calculations. The encoding process consists of four steps,
also depicted in Figure 2 and explained in detail in the following
subsections:

(1) Extracting secondary structural information using the Ra-
machandran plot.

(2) Expressing tertiary structural information via the distance
matrix.

(3) Encoding secondary and tertiary information into multiple
codified channels.

(4) Formatting the image (or tensor) into a fixed-size final
encoding.

3.1 Extracting Secondary Structures with the
Ramachandran Plot

The first step is to identify the basic molecular structures form-
ing the protein. One way of doing this is through the analysis of
backbone dihedral angles (angles between two intersecting planes
that have two atoms in common) of the amino acid residues in
the macromolecular structure. The Ramachandran [34] plot, orig-
inally developed by G. N. Ramachandran, C. Ramakrishnan, and
V. Sasisekharan in 1963, determines the energetically allowable
regions for the torsion angle phi, ¢, (angle between the C-N-CA-C
atoms) versus the torsion angle psi, ¥, (angle between the N-CA-
C-N atoms), and omega « (usually restricted to be 180 deg for the
typical trans case or 0 deg for the rare cis case), for each residue of a
protein sequence. Based on the constraints of the torsion angles (¢,
¥, and w) as described by the Ramachandran, we can associate each
amino acid residue in the protein with one of six types of secondary
structures: a-helix, §-strand, Polyproline PII-helix, y’-turn, y-turn,
and cis-peptide bonds.

Estrada et al.

3.2 Expressing Tertiary Structure through
Distances

The second step seeks to establish a spatial correlation between the
different secondary structures in the protein. In this step, we use
the protein’s distance matrix [31], which has been for example used
as an aid to perform enzyme structural analysis and modeling [23].
For a protein with M Alpha Carbon atoms (Ca), its distance matrix
is a squared matrix D of size M X M, where the element in D(i, j)
corresponds to the distance between Car; and Ce;. Thus, making
this a symmetric matrix. Note that the matrix is not restricted to a
particular distance metric and we could use any metric or correla-
tion coefficient for this purpose (e.g., Euclidean, squared Euclidean,
Minkowsky, Chevychev, cosine, spearman, and hamming). For our
experiments we choose to use the Euclidean distance between alpha
carbon atoms in the backbone.

3.3 Encoding Secondary Structures to Multiple
Color Channels

The third step combines the extracted secondary structures and
distance matrix to represent the protein into a tensor. For practical
purposes, and to take advantage of pre-built models for image
processing, we decided to use a tensor of dimensions M X M X 3,
where M is again the number of amino acid residues in the protein,
and 3 indicates the Red-Green-Blue channels in an image. Thus, we
use color to encode secondary structures, and intensity, or color
saturation, to proportionally represent distances. Recall that in Step
1, amino acid residues were classified according to their dihedral
angles into one of six secondary structures. Then, we can use the
RGB model and six arbitrary colors to differentiate each structure as
follows: a-helix, red; f-strand, blue; Polyproline PII-helix, magenta;
y’-turn, yellow; y-turn, cyan; and cis-peptide bonds, green. If the
structure could not be characterized by any of these six possibilities
we use black. To encode a protein into its image representation,
we define a function sd(i, j), where sd(i, j) is a normalized distance
function that returns a value between 0 and 1 proportional to the
distance between Alpha Carbon atoms i and j in the protein.

For a three channel image, and a particular residue identified as
one of the seven possibilities (six secondary structures plus uniden-
tified) we determine the color saturation of each channel according
to the intended color assigned to that particular type of secondary
structure. For example, for a red a-helix in position i, the satura-
tion for channels red, green, and blue is [1, sd(i, j), sd(i, j)] Vj € D.
In the same way, the saturations for the other six structures in
blue, magenta, yellow, cyan, green, and black are [sd(i, j), sd(i, j), 1],
(1,sd(i, j), 11, [1, 1, sd(i, )], [sd(i, j), 1, 1], [sd(i, j), 1, sd(i, j)], [0, 0, 0]
respectively. This process is depicted in Figure 2. Note that even
though we are building images, the number of channels that can be
used are not restricted by three, besides of structure and distances,
other information such as charge, and physical properties (e.g.,
hydrophobicity) could also be encoded into additional channels.

3.4 Formatting and Resizing

The final step consists of performing an image resizing (e.g., ap-
plying a bi-cubic interpolation) to produce an output of consistent
dimensions across proteins regardless of their original length. As-
suming a new size N the output is a N X N X C tensor, where N is
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Figure 2: Example of encoding procedure for the gene V protein (PDBid: 1AE2).

the new size and could be smaller or larger than the original M, C
is the number of channels used in the encoding (e.g., 3 channels).
The output image, or tensor, either encodes more than one residue
per pixel, or uses multiple pixels to encode one residue. The size
of N can be chosen differently to optimize different performance
metrics. For example, N can be equal to the number of amino acid
residues in the longest protein in a dataset to optimize fidelity of the
encoding; it can be the average number of residues in the dataset
to keep a trade off between fidelity and efficiency; or it can be set
to an arbitrary small size to maximize efficiency.

As our method provides a structural representation of proteins
that is different from other formats, its analysis mechanisms are
also different. Identifying structural motifs across a large database
or performing protein modeling for function prediction does not
require alignment and/or superimposition; thus, breaking a perfor-
mance barrier for high throughput analysis. Figure 3 shows exam-
ples of some very different macromolecules in a three-dimensional
representation and our graphic encoding. By looking at these im-
ages it is easy to distinguish how our encoding exposes patterns
at different granularities in the image. Our representation trans-
forms traditional structural biology problems into image pattern
recognition, and it enables a straightforward use of sophisticated
image processing and machine learning techniques for analysis and
prediction.

4 PROTEIN FUNCTION PREDICTION BASED
ON IMAGES
Proteins contain a wide variety of structural motifs, which can also

constitute functional microdomains that support the protein’s func-
tions. In this section we test the ability of our graphic encoding to

expose local and global structural information necessary to perform
basic protein function prediction.

4.1 Dataset Description

Our dataset consists of 62,991 proteins from the Protein Data Bank [3].
The protein data bank format (pdb) provides a standard representa-
tion for macromolecular structure data derived from X-ray diffrac-
tion and NMR studies. The file encodes a protein as a sequence of
atoms, their type, and their three-dimensional coordinates. This
representation can be easily converted to our encoding as explained
in Section 3. Proteins in the dataset range in size from less than 100
non—hydrogen atoms to more than 50,000. The mean size is 6508
atoms with a standard deviation of 19495. Their mean resolution
is 2.2 Angstroms, with a 1.7 standard deviation. The main source
organism in this dataset is the Homo Sapiens, but the collection also
includes Escherichia coli, Mus musculus, Saccharomyces cerevisiae,
Rattus norvegicus, and Mycobacterium tuberculosis among others.
Figure 3 depicts multiple examples of proteins in our dataset that
were transformed from a three-dimensional structure to our graphic
encoding.

To perform function prediction in this dataset, we obtain GO
terms through the RCSB Protein Data Bank [4] and their biological
details report. GO terms are established by the Gene Ontology Con-
sortium [1, 8, 9] (GOC). GOC provides a standardized and consistent
way of describing and documenting gene products across databases.
The GO project comprises three structured ontologies with a well
defined vocabulary to express gene product properties over three
domains: cellular component, molecular function, and biological
process in a species-independent manner. Terms in the cellular
component describe the parts of a cell or its extracellular environ-
ment, for example a ribosome. Terms in the molecular function
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describe activities that are performed by individual gene products or
assembled complexes. Examples of such activities include binding
or catalysis. Finally, terms identifying biological processes encom-
pass series of events carried out by molecular function with a well
defined beginning and end.

To label our dataset with specific functions, we use a biological
process taxonomy provided by RCSB-PDB [4]. From this taxonomy
we selected eight biological processes with the most number of pro-
teins (i.e., more than 5,000) and use these groups as our classification
targets. Table 1 describes this classification.

Table 1: Dataset breakdown in classes

Label Function GO-term Number

GO:0065007 5,241

Any process that modulates a measurable attribute of any biological
process, quality or function.”

0 Biological regulation

G0:0002376 5,235
Any process involved in the development or functioning of the
immune system, an organismal system for calibrated responses to
potential internal or invasive threats.”

1 Immune system process

GO:0023052 7,242
The entirety of a process in which information is transmitted within
a biological system. This process begins with an active signal and
ends when a cellular response has been triggered.”

2 Signaling

3 Multi-organism process G0:0051704 7,059

A biological process which involves another organism of the same
or different species.”

GO:0009056 8,686
The chemical reactions and pathways resulting in the breakdown
of substances, including the breakdown of carbon compounds with
the liberation of energy for use by the cell or organism.”

4 Catabolic process

GO:0051179 5,727

Any process in which a cell, a substance, or a cellular entity, such
as a protein complex or organelle, is transported, tethered to or oth-
erwise maintained in a specific location. In the case of substances,
localization may also be achieved via selective degradation.*

5 Localization

6  Oxidation-reduction process GO:0055114 11,026
A metabolic process that results in the removal or addition of one
or more electrons to or from a substance, with or without the
concomitant removal or addition of a proton or protons.*

7 Biosynthetic process G0:0009058 12,775
The chemical reactions and pathways resulting in the formation
of substances; typically the energy-requiring part of metabolism
in which simpler substances are transformed into more complex
ones.”

* Description source http://amigo.geneontology.org

The protein function classification is as follows: Label 0 contains
proteins involved in biological regulation, this class is characterized
by GO: 0065007 and contains 5,241 proteins. Label 1 is character-
ized by GO: 0002376, indicative of immune system processes with
5,235 proteins. Label 2 is characterized by GO: 0023052 for signaling
with 7,242 proteins. Label 3 is characterized by GO:0051704 and
represents multi-organism processes with 7,059 proteins. Label 4

ACM-BCB’18, August 2018, Washington, D.C. USA

contains 8,686 proteins involved in catabolic processes and is char-
acterized by GO:0009056. Label 5 is characterized by GO: 0051179
for localization and contains 5,727 proteins. Label 6 is characterized
by GO:0055114 indicative of oxidation-reduction processes with
11,026 proteins. Finally, label 7 contains 12,775 proteins involved
in biosynthetic processes characterized by GO: 0009058.

4.2 Image classification

In recent years, increased computation power provided by general
purpose graphic processing units (GPUs), the abundance of data,
and better techniques to train and converge neural networks (e.g.,
activation and cost functions) have all given rise to Deep Learning
solutions in every field, including structural biology [7, 33, 42].
Given enough computing power and data, deep neural architectures
can build abstract representations capable of solving a wide variety
of tasks in an end-to-end manner (i.e., without human intervention),
replacing the traditional approach of carefully handcrafting features
and algorithms. In particular, convolutional neural networks are
becoming the state-of-the-art technique for classification, image
processing, and computer vision.

4.2.1 Convolutional Neural Networks. A convolutional neural
network, also known as a CNN, is a mathematical construction
that trains complex non-linear functions out of linear compositions.
CNNs handle matrix-oriented input, usually ingesting images, and
produce a classification output. Convolutions are employed to
preserve spatial relationships between pixels and learn important
image features, such as edges, flattened areas, or other patterned
shapes. A CNN is usually composed of a variety of convolutions
(i.e., a filter kernel is convolved with an input), pooling (i.e., some
input is down-sampled via some maximum or averaging over a
neighborhood of pixels), and dense layers (i.e., a fully connected
perception). Activation functions like sigmoid or rectified linear
units help to remove noise, or smooth the data between layers.
By representing secondary and tertiary structural information of
proteins as 3D tensors, we seek to take advantage of CNN’s superior
capability in identifying spatial relationships, which in this context
translates to finding structural patterns.

For one experiment in this work, we train a small version of
VGG-net [36] from scratch. Shown to be successful for a variety
of image classification tasks the VGG-net used here consists of 8
convolution and 3 fully connected layers, with very small receptive
fields of 3 X 3 in layers that increase in width by a factor of two,
starting from 64. The network also includes maxpooling layers
right after each convolution layer.

4.2.2  Transfer Learning. Transfer Learning is the process of
taking an existing neural network that has been trained on some
dataset and re-purposing it for a new classification task. Specifically,
the final layer of these networks are updated to handle new classes,
but the convolutional filters learned from the initial training phase
are kept, as they have learned to distinguish a vast feature space,
finding notable differences like edges or unique patterns inherent
to particular types of images.

Google’s Inception-v3 [38] network is a general-purpose image
recognition system trained for the ImageNet [35] large visual recog-
nition challenge to discriminate entire images into 1,000 classes.
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Figure 4: Our split-input resonant Graphic Encoding of
Macromolecules Network used for classification, GEM-net

The architecture of the inception network is a series of inception
modules, which are simply sets of convolutional filters that are con-
catenated together in order to capture information at varying kernel
sizes (which is to say that, at each layer, the input is convolved
with multiple kernels that vary in width and height; ultimately,
the results of these convolutions are grouped together and sent to
the next layer). To build a deep network of these characteristics
with the hopes of it converging to a state that is practical for pre-
diction typically requires a very large number of labeled images
(i.e., the original Inception network for ImageNet was trained on
1.2 million images, with 50,000 images for validation and 100,000
images for testing [35]). The length of time the training phase takes
is highly dependent on the compute capabilities of the machine.
However, once these types of networks are trained, it is possible to
take advantage of them in order to identify salient features from
new classes; the network can be updated for a different classifi-
cation task. This transfer learning harps on previous knowledge
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for a new task, without starting completely from scratch. Another
pre-trained network available for retraining is MobileNet [12], a
streamlined deep architecture designed for mobile and embedded
systems.

In our preliminary experiments, we leveraged transfer learning
by using both Inception-v3 and MobileNet. Although the images
used to train these networks are significantly different from our pro-
tein dataset, the resulting classifiers are able to group images with
reasonable accuracy (see Table 2: Results). These initial results indi-
cate that our encoding method highlights the diverse features of the
set, allowing these pre-trained networks to quickly and effectively
triage the data. And while this first step showed encouraging class
separation, it was clear that there was even room for improvement.

4.2.3 GEM-net: Graphic Encoding of Macromolecules Network.
Noting that our encoding method proved useful for input into
general purpose and pre-trained neural networks, we opted to
develop an architecture that was specific for our tasks, in hopes
that we would up performance. VGG-net and and the networks
used in transfer learning all intake a 3-color channel image and
apply convolutions and other operations directly. This immediate
convolution means that the input channels are handled together,
and in a sense, mashed together. However, in our encoding method,
we particularly aim to maintain different pieces of information in
the different color channels. It follows, then, that we should treat
each channel independently, and also keep these inputs throughout
the architecture (i.e., instead of perturbing the input and losing it,
we could include it with subsequent layers).

Our Graphic Encoding of Macromolecules Network, or GEM-
net, is a split-input resonant architecture designed to extract the
most information from each channel, independently, and group the
information thereafter. Figure 4 depicts the general architecture
of GEM-net, in which we use a setup that first treats each color
channel and then sends the combined tensor onward through a
series of convolutional and fully connected layers. Batch normal-
ization between layers serves to denoise the intermediate output
tensors and help with both convergence time and final classification
accuracy.

4.3 Evaluation

Using the neural network architectures described in the previous
section, we evaluate over two encoding methods: the distance ma-
trix of the protein (i.e, only information regarding tertiary structure
encoded in one channel), and our proposed encoding mechanism
consisting of three-channel images, where color represents sec-
ondary structures and saturation represents tertiary structure. Ex-
plicitly, to summarize, we train a VGG convolutional neural network
from scratch, apply transfer learning to Inception and MobileNet,
and work with our proposed architecture, GEM-net. For all of our
tests we perform 5-fold cross validation, which splits the dataset
into 5 disjoint partitions, each worth about 20% of the data. Then,
training is done with 4 out of 5 partitions (i.e., 80%) and testing is
done with the unseen partition. The process is repeated for a total
of 5 times, using each time a different set of partitions for training
and testing. Through this process, every protein in the dataset is
used for training four times and for testing once. We use a learning
rate of 0.005, which is standard for smaller size datasets. Batch
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size of 100, and cross-entropy as our loss-function. The number of
epochs we used varied per architecture.

The pretrained networks needed longer training periods because
they only change weights in the last layer and use features they
learned from general image classification in the other layers. The
networks we trained from scratch converged quite quickly (within
10 epochs), further training steps only increased overfitting. Both
data representations are square images of size 224. The hardware
used for building our models is an Intel Xeon 8 core E5-1620 v4
at 3.50GHz and a GPU Tesla K80. A summary of our results is
presented in Table 2, which presents performance metrics, including
mean accuracy and training times in minutes.

We form the final class assignments based on their protein’s GO
term classification, as explained above. We note that none of this
information is provided to our classifier. Like many convolutional
architectures, the network relies solely on the images to learn
distinguishing characteristics from the groups and perform a final
classification.

Our results in Table 2 indicate that several of these image clas-
sifiers are able to discriminate among the eight classes of protein
functions. The first thing to notice from the results is the added
benefit of utilizing three channels of information (i.e., our proposed
encoding) as opposed of just one (i.e., the distance matrix), as accu-
racy is consistently better.

Table 2: Results

Encoding: distance matrix

Architecture Epochs  Accuracy Training time
MobileNet 100 21.01% 19 min.
Inception 100 33.45% 238 min.
MobileNet 500 36.82% 83 min.
Inception 500 39.00% 381 min.
VGG-net 10 18.26% 128 min.
GEM-net 10 69.73% 97min.

Encoding: proposed graphic representation

Architecture Epochs  Accuracy Training time
MobileNet 100 24.11% 20 min.
Inception 100 36.28% 261 min.
MobileNet 500 44.15% 84 min.
Inception 500 47.54% 392 min.
VGG-net 10 21.02% 142 min.
GEM-net 10 80.66% 112 min.

Figure 5 shows a normalized confusion matrix for the prediction
of eight classes using GEM-net and our graphic encoding. The
matrix is a special instance of a contingency table that describes
the performance of our classifier. Every row i represents instances
whose correct classification is i. Every column j represents in-
stances that were predicted as being of Class j. Cells in the diagonal
indicate correct predictions. Every other cell indicates mistakes in
the classification.

It is worth noting in our results that using our proposed encoding
with GEM-net and only 10 epochs, prediction accuracy reaches
above 85% for two of the classes (labels 6 and 7) and below 75% for
only two of the classes (labels 0 and 5). One of the future directions
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Figure 5: Confusion matrix for our protein classification.

for this work is to perform more focused function prediction (i.e.,
finer grained). A better-defined function is likely to be associated
more tightly with one or several particular structural motifs. We
expect that by looking at a narrower scope and a better defined
biological function, the classifier will be able to achieve even better
accuracy.

5 CONCLUSIONS AND FUTURE WORK

In this body of work, we present a generalizable and scalable ap-
proach to encode proteins that significantly boosts the capabilities
of scientists seeking high-throughput techniques for the analytics
of their ever-increasing molecular datasets. We also introduce a
neural network architecture specifically geared towards analyzing
proteins in this encoded format. The network relies on the idea
of treating each color channel independently prior to grouping.
This approach goes in line with our data representation, where
each channel holds specific secondary structure information. Our
approach does not rely on homology calculations and we can cre-
ate these images in parallel, in addition to performing predictions
concurrently. Our method can process a protein structure in few
seconds, providing nearly instant feedback in, for example, in-situ
analyses.

Ongoing work revolves around the idea of improving our clas-
sification by means of fine-tuning explicit operations (e.g., kernel
strides and padding), as well as by taking an even closer look at the
confidence of our prediction method (stored as probabilistic out-
comes per class) through uncertainty quantification. For the future,
we plan on integrating our preprocessing encoding method and
classification models into protein folding simulations to analyze
conformational changes at runtime on supercomputers.
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