KeyBin2: Distributed Clustering for Scalable and In-Situ
Analysis

Xinyu Chen
University of New Mexico
xychen@cs.unm.edu

Michela Taufer

University of Tennessee
taufer@utk.edu

ABSTRACT

We present KeyBin2, a key-based clustering method that is able
to learn from distributed data in parallel. KeyBin2 uses random
projections and discrete optimizations to efficiently clustering very
high dimensional data. Because it is based on keys computed in-
dependently per dimension and per data point, KeyBin2 can scale
linearly. We perform accuracy and scalability tests to evaluate our
algorithm’s performance using synthetic and real datasets. The
experiments show that KeyBin2 outperforms other parallel cluster-
ing methods for problems with increased complexity. Finally, we
present an application of KeyBin2 for in-situ clustering of protein
folding trajectories.

CCS CONCEPTS

« Theory of computation — Random projections and metric
embeddings; Unsupervised learning and clustering; MapRe-
duce algorithms; Numeric approximation algorithms;

KEYWORDS

Clustering, Random Projection, Map-Reduce, Privacy Preserving

ACM Reference Format:

Xinyu Chen, Matt Peterson, Jeremy Benson, Michela Taufer, and Trilce
Estrada. 2018. KeyBin2: Distributed Clustering for Scalable and In-Situ
Analysis. In Proceedings of 47th International Conference on Parallel Pro-
cessing (ICPP 2018), Jennifer B. Sartor, Theo D’Hondt, and Wolfgang De
Meuter (Eds.). ACM, New York, NY, USA, Article 4, 10 pages. https://doi.
org/10.475/123_4

1 INTRODUCTION

State of the art, high-throughput scientific simulations enable bet-
ter understanding of natural phenomena. And while many meth-
ods are able to divide a large problem into small tasks and take
full advantage of distributed resources to perform partial process-
ing [28, 31, 38, 46], they lack when it comes to performing global
analyses, as they rely on expensive data movement. In domains

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPP 2018, Aug 13-16, 2018, Eugene, OR, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06...$15.00

https://doi.org/10.475/123_4

Matt Peterson
University of New Mexico
mpeterson@unm.edu

Jeremy Benson
University of New Mexico
jeremybenson@cs.unm.edu

Trilce Estrada
University of New Mexico
estrada@cs.unm.edu

where data volume is continuously growing (e.g., climate simula-
tions - 32 PB [44], astronomy - 200 GB/day [54] to 30 TB/day [37],
and high-energy physics - 500 EB/day [12]), data movement repre-
sents a performance bottleneck that increases resource pressure to
storage, bandwidth, memory, and CPU [56]. Coupling simulations
with data analysis yields promising performance gains [6, 19, 56, 60].
Some algorithmic approaches have been successfully used to de-
centralize data analysis in specific domains and provide in-situ
analytics (i.e, executing analysis tasks alongside simulations or data
acquisition tasks) [5, 21, 23, 30, 35, 41, 51]. However, deficiencies,
in terms of scalability, accuracy, or generality, are still present. In
order to scale analysis at the same rate as simulations, there is a
need for improved techniques for efficient dimensionality reduc-
tion, clustering, pattern recognition, and anomaly detection, all
considering and constraining data movement.

In this work, we deal specifically with clustering, or the process
of identifying groups of data points that are related in a particu-
lar space. Clustering techniques often employ a distance metric
to evaluate whether two points are close in space or not. When
dealing with very large data volumes or data that is distributed,
distance calculations are a major bottleneck for scalability in clus-
tering algorithms. Our goal is to design an algorithm that extracts
knowledge in a way that is embarrassingly parallel (i.e., there are no
data dependencies and parallelism is effortless), data agnostic (i.e.,
data specifics are irrelevant), and can deal with batch processing
and streams.

In previous work, we presented KeyBin [13] which is a clustering
method based on distributed key calculations and binning to pro-
duce clusters from distributed data. The underlying idea in KeyBin
is to assign each point a hierarchical key in space. This key can be
computed independently based only on the point’s features and
does not need additional knowledge of other data points. Keys are
assigned to bins per every dimension (i.e., feature) in the dataset.
These computations are parallel and can be performed efficiently
in distributed environments. To perform a final clustering assign-
ment, it is enough to communicate just the bin densities per every
dimension (i.e., an histogram). From this summarized information,
uninformative or noisy dimensions can be collapsed and a final clus-
tering assignment is done by partitioning and merging the binning
histograms. An important aspect of KeyBin is that all the compu-
tations on the original data can be done on site, in parallel, and
without computing pairwise distances. The only information that is
communicated across nodes, processes, or distributed sites are the
binning histograms. Bins are orders of magnitude smaller than the

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

ICPP 2018, Aug 13-16, 2018, Eugene, OR, USA

original data and cannot be used to trace back or reconstruct the
original information. As such, this approach is ideal for distributed
and privacy sensitive scenarios. In this work, we present an updated
version of our KeyBin algorithm; in particular, we address three
major limitations of our initial design:

Orthogonality assumption. Although we do not perform pair-
wise distance computations, distance between points affects how
they are assigned into bins. Imagine the distance between points p
and q is dx(p, q) = |x2 —x1| on dimensiony. If we include an orthog-
onal dimensiony, the actual distance in the 2D space is d(p, q) =

(e — x1)2 + (y2 — y1)? = |x2 — x1]. Then we can use the bin num-
ber of x1,x2 and yj, y2 to infer the actual positions of p and g in 2D
space. However, if instead there exists a nonorthogonal dimension,,,
the actual distance d(p, q) in the 2D space might be shortened for
some cases. That is to say, we cannot rely on the bin number of
X1, x2 and y/l, y/2 to infer the actual position of p and g in the 2D
space.

Projection overlapping. The binning histograms on each di-
mension can be seen as a partial view of the data projected into
a particular dimension. If the projections of two clusters overlap,
KeyBin cannot distinguish them. If p; is the probability of two clus-
ters overlapping on the ith dimension, then the probability that our
algorithm cannot separate the two clusters is the product of such
overlapping probabilities on all dimensions]_[l{i 1 Di-

Partitioning heuristics. The only centralized operation in Key-

Bin consists on partitioning the binning histograms in order to
perform a final clustering assignment. This operation used a simple
heuristic based on bin densities to determine partitioning locations.
As the density landscape is not known in advance and every dataset
has it’s own inherent behavior, partitioning through heuristics is
not deemed to be robust and presents a serious limitation to accu-
rately identify clusterings.
In this paper we address these limitations by introducing an efficient
process for dimensionality collapsing based on random projections,
and a robust partitioning mechanism based on discrete optimization.
Our specific contributions are:

(1) We introduce KeyBin2, a significant extension of the original
KeyBin. The enhanced algorithm, takes advantage of random
projections and discrete optimization to provide robustness
and improve its ability to separate difficult datasets.

(2) We perform accuracy and scalability tests to evaluate our
algorithm’s performance using synthetic and real datasets.

(3) We present a case study for in-situ clustering of protein
folding trajectories using KeyBin2.

(4) We provide an implementation of KeyBin2 that runs on mul-
ticore GPU clusters, using both, a cuda-python compiler and

mpi4py.

The remainder of this paper is organized as follows: Section 2 briefly
summarizes related work. Section 3 presents the details of KeyBin2.
Section 4 presents the evaluation of KeyBin2 in terms of scalability
and accuracy. Section 5 presents a case study for in-situ analysis of
protein folding trajectories. Finally Section 6 concludes the paper.

X. Chen et al.

2 RELATED WORK

A variety of clustering methods have been proposed to address
dimensionality and scalability concerns [32, 58] in these three ma-
jor areas: partitional clustering approaches represented by the K-
Means[42] family, density based clustering approaches like DB-
SCAN [20] and DENCLUE[27], and hierarchical clustering like
subspace clustering methods. In the following paragraphs, we elab-
orate on the above list and discuss the relationship to our body of
work.

Partitional clustering like K-means[42], while a tried and
tested clustering technique, has a few key drawbacks. Namely, the
number of clusters, K, must be provided. X-means [49] proposes
handling this drawback with Bayesian Information Criterion (BIC)
in order to automatically select the optimal K values. A second
limitation of K-means is that it is unable to find non-convex clus-
ters [58]. Modern K-means with multi-threaded[53] or multi-core
technique[39] are able to deal with large amount of data, but they
still inherit the above limitations. From our experiments, K-means
performs well in finding sphere-shape clusters but has a tendency
to mislabel some points on the corners of box-shape clusters. This
is because points on the diagonal of a box may be closer to other
cluster’s center than to their real cluster center. In contrast, KeyBin2
determines automatically the number of clusters, is able to deal
well with convex clusters, and can handle points in box corners, as
well.

Density based clustering. Density based clustering algorithms
have the advantage of finding non-convex clusters and that out-
liers and noise have less impact on the overall clustering accuracy.
The basic idea is to consider regions with high density to be clus-
ters. DBSCAN[20] uses counting techniques to find dense regions
through the number of points within the radius of a neighborhood
that exceed given thresholds. DBSCAN maintains high accuracy
in clustering synthetic data when given the appropriate radius
and threshold parameters. PDSDBSCAN[47] and its successor, BD-
CATS[48], are the state of art density based clustering algorithms,
capable of clustering up to a trillion 3-dimensional data points.
Their limitation is that they are not able to handle well very large
dimensional data (i.e., inputs with a very large number of features).
DENCLUE[27] uses influence functions to estimate the probability
densities of regions. The influence functions yield results compara-
ble to Gaussian kernel density estimations (KDE)[55]. The clusters
are centered at influence attractors, which are the local maxima
of influence values. DBSCAN-MR[15] apply Map-Reduce meth-
ods to build distributed index and optimize load balance. On top
pf this Map-Reduced algorithm, GA-DBSCANMR[29] use genetic
algorithm to improve accuracy by iteratively adjust the minPts
and Eps parameter. HPDBSCAN[25] combined OpenMP and MPI
techniques to parallelize DBSCAN and improve the computation
time.

Hierarchical clustering. Subspace Clustering algorithms be-
long to grid-based, hierarchical clustering algorithms and use bottom-
up search strategies, assuming that higher dimensional clusters
are composed of lower dimensional subspace clusters. They also
assume some dimensions are not useful or are noise. Finding clus-
ters in subspaces can help exclude noisy dimensions. CLIQUE [3]
and MAFIA [24] find dense regions in lower-dimensional spaces,

KeyBin2: Distributed Clustering for Scalable and In-Situ Analysis

and merge these lower-dimensional regions into bigger higher-
dimensional hyper-cubes if no common-face exists between two
regions. A comprehensive parallel framework[26] apply MPI tech-
nique to address big amount of data points. Due to the expensive
combinations of all possible lower dimensional regions, the time
complexity of grid-base subspace clustering algorithm is O(c¥") [24].
The limitation of these algorithms is in their inability to scale when
the dimensionality is high. In our work, we are able to scale linearly
with the number of dimensions because we build higher dimen-
sional clusters upon 1-dimensional groupings. With this approach,
we do not need to check for combinations of clusters in intermediate
subspaces.

Fern et al. [22] use random projections combined with an ensem-
ble approach for clustering. Under each individual projection, the
clustering algorithm learns part of the underlying patterns and the
final clustering labels are aggregated from previous results based
on the change of similarities. Our approach is different because we
do not perform pairwise comparison of data points and we use the
internal clustering dispersion to evaluate a projection rather than
an ensemble.

3 KEYBIN2

KeyBin2, our extension to KeyBin [13], is a linear-time algorithm to
perform distributed clustering. Assume a dataset D° of size M X N,
where M is the number of data points and N is the number of
dimensions (i.e., features). This algorithm extrapolates for data
streams with M = 1 and for distributed datasets with multiple D’s.
KeyBin2’s clustering process is as follows:

(1) Projecting into a lower space. To address some of KeyBin’s
limitations, we perform a random linear transformation to
each data point x € RN — x’ € RNr»_ This transformation
has two advantages: it rotates the data, reducing the likeli-
hood of projection overlapping in all of the dimensions, and
it produces a much smaller dimensional space, making pro-
cessing more efficient. For a projected point x” is ith feature
is x] = |x| cos 0;, where 6; is the angle between x and the
random vector used for projection. As long as cos ; # 0, the
relative ordering of points in dimension i does not change
and the binning process is not negatively impacted.

(2) Assigning a key to a point. Given the ith point x/, we denote
it’s jth feature, for i < M, j < Nyp as xlf’j. For a predefined
maximum depth dp,4x, and for a predetermined space range
["min. rmax]; xi,j is assigned a key. This key is calculated
by concatenating the bin label b; corresponding to rp,in +
b (rm“’;#), ifxl{’j € by for d = 1 to dpmax. Each point
is identified by a key and assigned to a hierarchy of bins.
As more points are seen by the system, either as a batch or
as a stream, bins update their density in the form of a local
histogram.

(3) Communicating binning histograms. For every dimension in
the projected sub-space, KeyBin2 computes at most dpqx
binning histograms. The histograms are communicated back
to a central location where the clustering assignment is made.
In practice we have observed that for convex problems, 2 to
4 histograms per dimension suffice to accurately clustering
the data. As noted in [13], this communication step does

ICPP 2018, Aug 13-16, 2018, Eugene, OR, USA

not necessarily have to be made to a central authority. The
algorithm works as well for a ring topology.

Partitioning binning histograms. In order to consolidate an in-
tegrated view of the data, binning histograms are partitioned
by their modes. This process uses discrete optimization iden-
tify inflexion points in the underlying data distribution and
to maximize the inter-clustering distance while minimizing
intra-clustering distance. However, still no pairwise distance
is computed and all of the operations are performed only
through the histograms. The partitions are broadcast back
to the data collection sites, processes, or nodes.

(5) Performing clustering assignments. Once binning histograms
are partitioned, primary clusters are locally built. Primary
clusters are sets of bins organized in a partial clustering
assignment for a single dimension. Primary clusters are anal-
ogous to a space map where keys can be directly assigned to
form global clusters. Every point can be mapped to a specific
set of primary clusters in all of its dimensions, leading to a
final global clustering assignment.

Assessing projected sub-spaces. Before finally accepting a clus-
tering assignment and because the randomly projected data
may or may not exhibit a separable behavior, we perform
bootstrapping. During the analysis phase we calculate the
within- and between-cluster dispersion. Our goal is to select
the projection that produces the most compact and separable
clusters. This evaluation is performed only on the binning
histograms rather than the input points and therefore it
scales independently of the input size.

—
N
=

—
=)
=

Steps 2, 3, and 5 were first introduced in KeyBin version 1. Thus,
for additional details and discussions, please refer to its publication
in [13]. Steps 1, 4, and 6 are specific improvements for KeyBin2 and
will be explained in further detail in the remainder of this section.

3.1 Projecting into a Lower Space

To address KeyBin’s limitations in orthogonality assumption and
the projection overlapping, we use linear Random Projections [1, 9,
17, 18] to transform the original data into multiple, lower dimen-
sional spaces. A random projection is a mapping f : DN = DN
from an original N-dimensional space into Ny, dimensions. In
high dimensional spaces, there are a large number of orthogonal
vectors[9]. If column vectors in A are close to orthogonal, the trans-
formation reduces the dimensionality and rotates the data points, all
while preserving their lengths and angles. To illustrate the rotation
effect, we show two clusters in a 2D space in figurel. The original
data points (a) are correlated and exhibit a projection overlapping in
both of their dimensions. In these conditions, our previous method
would not have been able to separate the two clusters. The other
5 sub-figures (b, c, d, e, f) depict 5 different random projections of
the original data. Projections b and c are able to decorrelate the
data, but d and f exacerbate the problem.

The most widely used way to project data into a lower dimen-
sional orthogonal subspace, capturing as much variation of the
data as possible for the chosen Ny, is principal component analysis
(PCA) [34]. However, PCA is expensive, even when using a singular
value decomposition. Its time complexity is O(NcM), where N and
M are the number of dimensions and number of points respectively,

ICPP 2018, Aug 13-16, 2018, Eugene, OR, USA

2.51

0.0 1

254

2.5

0.0 1

254

Figure 1: (a) original 2D data points. (b)-(f) projected points
in space.

and c is the average number of non-zero values per column. For the
projection method to work at scale, it needs to be independent of
the number of points in the dataset. By randomly constructing pro-
jection matrices, the time complexity only depends on N, Ny, and
a constant C. To construct our projection matrix first we need to
determine the target dimension size Ny,. Unlike the bound of lower
dimensionality proposed by Daspupa.el [18], which states that the
lower bound of reduced dimensionality is 4(e?/3 — €3)~In(N) to
preserve internal distances within an arbitrary error €; we argue
that our algorithm is able to handle even lower dimensions because
it does not rely on pairwise distances preserved to some bounded
range.

The process is as follows: to change the basis of the original fea-
ture space into a lower dimension, we use a transformation matrix
that columns vectors are unit vectors. Consider x = (x1, X2, .., XN),
a data point in the original feature space RN, and the transforma-
tion matrix:

A(Nerp)z[al az as ... aNVP]

where a1, ..an

rp

is projected to x” = (x{,xé, ..,x;\l p) with Nyp << N.Let 0 be the

are unit column vectors. Then the data point x

angle between x and aj, then the new coordinate x] = |x| cos 0.
The binning histogram we build on this new dimension; reflects
how data points are ordered along the direction of vector a;.

The lower bound of dimensionality proposed by Dasgupta [18]
aims to preserve the pairwise distance of data points within an arbi-
trary error €. This distance-preserving condition is very important
to algorithms such as K nearest neighbors. As KeyBin does not de-
pend on actual pairwise distance computations, the only necessary
condition of the projection is that the ordering along some column
vector a; provides a decent spread of the data points. The optimal
reduction is challenging to estimate because we do not know the
intrinsic dimension of the original feature space. Recall that one
of the constraints that we established for our algorithm is that it
should scale to very large datasets and also work for streams. Thus,
computing for example the covariance matrix is strictly off limits.

X. Chen et al.

Then, assuming that the dataset D has an intrinsic dimension
R, with R < N, where N — R are redundant, noisy or uninforma-
tive dimensions. Without replacement, we want to select z = Nrp
useful projected dimensions. The probability P(Z = z) follows
the hypergeometric distribution. The lower bound of the target
dimensionality reduction should satisfy that at least one separa-
ble dimension is selected. The expectation of this distribution is
E(Z) = Nyp - %. This means we want Ny > %.

()
W
P(z) = (1)

N-R
Nrp-R

when N;p <R

) when Nyp 2 R
rp

Although we do not know the exact values for R and Ny, in the
first case we want the probability of P(z = Nyp) to be high, and
in the second case, we want the probability of P(z = Nyp — R) to
be low. In both cases, we want Nyp to be small. Thus, we choose a
logarithmic growth for the determination of Ny, = 1.5log(N) as a
reasonable small number, which empirically achieves good results.

After calculating a projection matrix for the specific dataset,
every data point is projected into the lower dimensional space. In
this new space, a key is computed (as explained in Step 2) and
used to update the binning histogram for each new dimension.
These steps are fully parallel, per data point and per dimension,
as long as each point has access to the projection matrix. If data
is being processed in batches, then histograms are communicated
after a batch is over. If data is processed as a stream, histograms are
communicated periodically (i.e., after a number of updates, or after
a specific period of time). Once histograms are collected, statistically
anomalous dimensions are identified with the Kolmogorov-Smirnov
test [40] and collapsed. The following step consists of identifying a
partition in the histogram space and broadcasting out to the nodes,
processes, or distributed sites.

3.2 Partitioning Binning Histograms

A key aspect of our binning approach is that the size of the bins
directly affects the accuracy of our method. Bins that are too large
can easily confound a multimodal distribution. Bins that are too
small can result in an artificially inflated number of clusters. Be-
cause of this, we produce multiple histograms with different bin
sizes. Still, a key question for our algorithm is: based on the binning
density, how do we partition a specific dimension?. For the original
KeyBin, the previous heuristic to find partitioning locations was
based on a density threshold, which is not robust under streaming
scenarios, or when the size of the data and expected densities are
difficult to estimate. In turn, a necessary extension was needed in
the partitioning mechanism.

KeyBin’s histograms represent discrete approximations to the un-
derlying probability distributions observed across each dimension
of the distributed datasets. To optimize the dimension partitioning,
it is important to find a smoothed representation of said probabil-
ity distributions. The first step is to merge all of the histograms
collected from the distributed sites. Approximating the probability
distribution is not trivial; the number of modes in the distribu-
tion and their shape is not known in advance, and it is expected

KeyBin2: Distributed Clustering for Scalable and In-Situ Analysis

that noise and confounding factors will be present. We perform a
non-parametric discrete optimization to determine points in the 1-
dimensional space of histograms where the density of the different
distributions is minimized. To this end, we smooth possible noise
in the histogram by applying a moving average model that uses a
window size equal to the square root of the number of bins in the
histogram (w = +/log22(M)). For each window and its neighbors,
we apply local regression. The first derivative determines the slope
of the tangent line of the linear function at the specific bin. The
second derivative identifies the inflection points in the function,
indicating regions of sudden change. Once a partition is decided per
every dimension, this information is broadcast to the processing
nodes, which use it along with the points’ keys to perform a global
clustering assignment, as was done in the previous version [13].

The kernel density estimation (KDE)[55] is an alternative method
that can produce an approximation of the true probability density
function. The estimated distribution curves are continuous and
differentiable. DENCLUE[27] provides a method to do this, but
needs to compute pairwise distances between all data points to find
the influence of each data point. Our simpler method reaches similar
accuracy compared to KDE curves, but our smoothing technique is
much faster than the kernel density estimation.

3.3 Assessing Projected Subspaces

As illustrated in Section 3.1, some projections are better than others
and there is always the possibility of encountering a pathologi-
cal transformation. To rate clustering models, we use a modified
version of the Calinksi-Harabaz [10] index, which is the ratio of
between-cluster dispersion and within-cluster dispersion. The tra-
ditional computation of this index involves computing pairwise
distances between cluster centroids and the points assigned to them.
For scalability reasons, we avoid pairwise distance computation
involving the data points and instead rely solely on the histogram
and keys’ space. Recall that a point is identified by a key. This key
corresponds to the set of bins to which the point belongs to in all
of its dimensions (e.g., if point x belongs to bin 35 in dimension 1,
64 in dimension 2 and 06 in dimension 3 its key is simply "356406").
Global clusters are formed by a range of bins in each dimension.
This set of bins is found by the partitioning mechanism discussed
in Section 3.2. For a set Q of global clusters and a specific cluster
Cq € Q, the value of Calinski-Harabaz index can be calculated
using only the the keys and density of each bin b € Bins with the
following equations [10]:

cal = [%] < | B ool -n)

Wo = Z Z Z (bl = cqlj1)* x Densityy[;]1 ~ (2b)
qeQ J beCy

Bg = Z Z(Cq[j] - c[j])2 X Z Densityp|;] (2¢)
q€Q j beCq

Where j denotes a specific dimension, b[;] and Densityp[;] are the
key of bin b and its density in dimension j respectively. c¢g refers
to the center of a local cluster C4 and c refers to the global center
in the dataset, calculated by finding bins corresponding to the 50th
percentile in each dimension.

ICPP 2018, Aug 13-16, 2018, Eugene, OR, USA

Figure 2 is an intuitive view of what this process entails. The
figure depicts a 2-dimensional space consisting of 6 clusters. His-
tograms for each dimension are shown top and right of the figure.
The grid inside of the space represents the specific partitions found
by KeyBin2. For a specific cluster Cq, we identify the range of
bins in each dimension belonging to Cq. Within this range, we
identify the cluster’s centroid given by the histograms modes. The
within-cluster dispersion Wy is computed by summing the square
difference between each bin and the cluster’s centroid, multiplied
against the density of that bin. This process is repeated for every
dimension. To calculate the between-cluster dispersion the opera-
tions are similar; in this case, the difference is calculated between
each cluster’s centroid cq and the dataset center c. The center ¢
is found by calculating the 50th percentile of the histogram in
each dimension. Again, it is important to note that this process is
performed completely on the histogram’s space and is therefore
scalable; calculations do not involve comparisons between data
points.

Bins in Cq[9=1)
-—

Centroid
determined by the
modes in Cq

cq

Bins in
Caqlg=2]

ith bin in j=2
b[j=2]

Data center is the

~ key representing the
50th percentile in
each dimension

~

Figure 2: Assessing projection subspaces in a 2-dimensional
example

3.4 Complexity Analysis

The entire KeyBin2 algorithm breaks down into three major steps:
(1) projecting the data, (2) computing the keys and updating bins,
and (3) collapsing dimensions and computing partitions. The overall
time complexity is the summed complexity of each step multiplied
by the number of bootstrapping. In [14], we determined that the
time complexity to assigning keys to M points with N dimensions,
when we use B bins is O(MNlogB). As we reduce the dimensionality
from N to Nyp = 1.5logN, the number of bins turns B = logM and
the complexity of building keys is O(MlogNloglogM) and building
histograms is O(Mlog? N). Before reducing dimensionality, we need
to project the data using a random matrix. The time complexity for
this step is O(MNN;p) = O(MNIogN). M in those operations can
be combined, as every point needs to be read once, then multiplied
by the random matrix to reduce its dimensionality, and assigned a

ICPP 2018, Aug 13-16, 2018, Eugene, OR, USA

key. After that, the point can be either discarded or sent to secondary
storage awaiting its final clustering assignment.

Partitioning histograms, which entails smoothing, differentiat-
ing, and finding cuttings, is O(NypBw) = O(logNlog®M). Bootstrap-
ping iterates over the previous two steps, in addition to evaluat-
ing the cluster assignment up to a number of ¢ trials. The eval-
uation step takes two passes over the histogram - one to find
the centroids, and one to calculate the dispersions, with a time
complexity of O(B) O(log?N). Finally, assigning clusters for the
whole dataset is O(MN;p); one pass to concatenate keys gener-
ated in previous steps and another pass to aggregate points with
the same key to form clusters. The time complexity for labeling
is O(MNyp) = O(MlogN). In summary, the time complexity for
KeyBin2 is t X [0(MlogNloglogN) + O(logNlog>M) + O(log>N)] +
O(MlogN). Further optimization would perform ¢ simultaneous
random projections to M points, taking out M from the ¢ boot-
strapping steps. The communication cost between K locations is
O(2KNypB). With the reduced dimensionality Ny, and the number
of bins B, the required communication is as small as several Kbytes.

3.5 Implementation Details

For the implementation of KeyBin2, we use a master-worker topol-
ogy and mpi4py[16] to establish communication between processes.
Each process generates a fraction of the data and leverages the GPU
to assign keys to projected data points and build histograms on
each dimension. This step is done in parallel per data point and
per dimension. We accelerate this part of the computation with
Numba[36], an LLVM-based compiler that enables Python to use
CUDA[45]. When histograms are completed, they are communi-
cated to the master process, which reduces the information, com-
putes global densities, and broadcasts the aggregated information
back. With the aggregated histograms, workers utilize the GPU
again to find a final clustering labels for the reduced data points.
The code, datasets, and documentation for everything are available
online at: https://lobogit.unm.edu/datascience.

4 EVALUATION

To evaluate KeyBin2, we compared its performance (i.e., scalabil-
ity and accuracy) to other well-known and widely-used clustering
algorithms: (1) K-means++, an optimized version of the popular
K-means algorithm from scikit-learn 0.17.1. (2) parallel-kmeans
by [39], which has been shown to achieve speedup by distributing
the entire dataset into many MPI ranks. (3) PDSDBSCAN [47], an
HPC implementation of DBSCAN. We also attempted a compari-
son with the GPU implementation of MAFIA (GPUMAFIA [11]),
however GPUMAFIA was unable to converge under our particular
setup.

We present two sets of experiments: first, we measure scalability
as a function of the number of dimensions. For our second experi-
ment, we measure scalability as the number of points and processes
grow. Most parallel clustering approaches report scalability, but
as clustering is an unsupervised learning algorithm, they almost
never report accuracy. To avoid this pitfall, we were sure to use clas-
sification problems for our tests and then quantify the clustering
accuracy. We report precision, recall, and f1-score. In the clustering
context, precision is the ratio tp/(tp + fp) where tp is the number

X. Chen et al.

of true positives (i.e., point pairs assigned to same clusters that ac-
tually belong to same clusters) and fp the number of false positives
(i.e., point pairs assigned to same clusters that do not belong to
same clusters). The precision is the ability of the clustering not to
assign a point to a cluster C that does not belong to it. Recall is
the ratio tp/(tp + fn) where fn the number of false negatives (i.e.,
the number of point pairs that belong to same clusters were not
identified as same clusters). Recall is the ability to find all the data
points that belong to a cluster. The f-score is the harmonic mean of
precision and recall.

Our experiments ran on the Xena cluster at the Center for Ad-
vanced Research Computing of the University of New Mexico. Xena
is a PowerEdge R730 / Intel Xeon CPU E5-2640 at 2.6 GHZ with 32
nodes, 16 cores per node, Infinibad interconnect, and 4GB of RAM
per core. Each also has a NVIDIA Tesla K40m graphic card.

In the following experiments, we test scalability. Synthetic data
is generated from 4 mixed Gaussian distributions with a diagonal
covariance matrix. The data is produced and stored on K MPI pro-
cesses. Our first experiment test how KeyBin2 scales with regards to
the dataset size. We fix the number of processes to 16 and increase
the dimensionality of the data from 20 to 1280 at intervals of 4X (see
table 1). In the second experiment, we fix the dimensionality of the
data to 1280 dimensions and we perform a doubling experiment by
increasing the number of MPI processes from 1 to 16. The amount
of data doubles too, as each process handles 80,000 points (see ta-
ble 2. In both experiments, we provide the true number of clusters
k = 4 to kmeans++ and parallel-kmeans, so they always find the
correct number of clusters. Similarly, we provide the optimal € and
minPoint parameters to PDSDBSCAN[47]. We report confidence
intervals for 20 independent runs per each experimental design
point.

For some of the runs, we were unable to get results from kmeans++
and pdsdbscan because they would crash from memory issues. Ta-
ble 1 does not include results for pdsdbscan because it could not
handle more than 100,000 points. Table 2 does not include results
for kmeans++ because it stopped converging with as little as 100
dimensions. For both runs we can see that KeyBin2’s scalability
is linear and grows slower than parallel-kmeans (except when the
number of dimensions is very small, e.g., 20).

In terms of accuracy, KeyBin2 finds a larger number of clusters
than the ground truth number. Recall that we provided the correct
number of clusters to kmeans++ and parallel-kmeans and the opti-
mal parameters to PDSDBSCAN. This information was not made
available to our KeyBin2 algorithm, as it is non-parametric. Our
real test is in the precision and recall of the clusters found. KeyBin2
found a larger number of clusters, but some of them were small
outliers from noise in the data.

In more detail, we observe that, as problems become larger (i.e.,
increasing dimensions or increasing data points), KeyBin2’s recall
and precision both drop. This indicates the ordering of data points
becomes more ambiguous in high dimensional spaces (i.e, points
are lying in a thin shell[2, 8, 17]) and the effect of the Calinski-
Harabaz index to accurately select the best model is decreasing.
Still, KeyBin2 outperforms the other methods as described by their
F1 score.

KeyBin2: Distributed Clustering for Scalable and In-Situ Analysis ICPP 2018, Aug 13-16, 2018, Eugene, OR, USA

Table 1: 1.28 million data points on 16 MPI processes (80,000 per proc.)

Method Clusters Recall ‘ Precision ‘ F1 score ‘ Time (sec)
20 dimensions
KeyBin2 7.37 £ 1.49 0.836+ 0.04 0.929+ 0.05 0.877+ 0.03 42.11+ 2.21
kmeans++ 4.0+ 0 0.714+ 0.01 1.0+ 0 0.829+ 0.01 509.12 £ 5.94
parallel-kmeans 4.0+ 0 0.724+ 0 1.0+ 0 0.840+ 0 20.01 + 0.81
80 dimensions
KeyBin2 9.73 £ 2.48 0.828+ 0.07 0.990+ 0.01 0.898+ 0.04 45.31 + 2.07
kmeans++ 3.0+ 0 0.692+ 0.01 1.0+ 0 0.815+ 0.08 638.26 £ 8.0
parallel-kmeans 4.0+ 0 0.871+ 0 0.613+ 0 0.719+ 0 58.90 + 5.08
320 dimensions
KeyBin2 10.07 £ 1.75 0.752+ 0.05 0.955+ 0.02 0.838+ 0.04 58.26 + 4.50
kmeans++ - - - - -
parallel-kmeans 4.0+ 0 0.695+ 0 0.627+ 0 0.659+ 0 200.90 + 20.60
1280 dimensions
KeyBin2 11.00 £ 1.41 0.774+ 0.04 0.967+ 0.02 0.857+ 0.03 285.20 + 22.25
kmeans++ - - - - -
parallel-kmeans 4.0+ 0 0.557+ 0.0 0.574+ 0.0 0.565+ 0.0 1086.85 + 35.27

Table 2: 1280-dimensional data points on multiple MPI processes (80,000 per proc.)

Method Clusters Recall l Precision l F1 score l Time (sec)
1 process (80,000 data points)
KeyBin2 10.40 + 2.57 0.850+ 0.09 0.991+ 0.01 0.912+ 0.06 20.75 + 1.66
parallel-kmeans 4.0+ 0 0.831+ 0.15 0.962+ 0.06 0.879+ 0.07 62.34 £ 9.38
pdsdbscan 1.0+ 0.0 1.0+ 0.0 0.286+ 0.0 0.445+ 0.0 1816.20 +
148.20

2 processes (160,000 data points)
KeyBin2 12.00 + 3.16 0.797+ 0.05 0.978+ 0.01 0.877+ 0.03 28.58 + 2.79
parallel-kmeans 4.0+ 0 0.698+ 0.09 1.0+ 0.0 0.819+ 0.05 151.77 + 25.34
pdsdbscan - - - - -

4 processes (320,000 data points)
KeyBin2 12.40 + 2.05 0.766=+ 0.03 0.982+ 0.01 0.860+ 0.02 38.83 +5.19
parallel-kmeans 4.0+ 0 0.491+ 0.09 1.0+ 0.0 0.654+ 0.07 199.06 + 5.19
pdsdbscan - - - - -

8 processes (640,000 data points)
KeyBin2 13.50 + 4.33 0.775+ 0.09 0.981+ 0.02 0.861+ 0.06 57.41 = 16.01
parallel-kmeans 4.0+ 0.0 0.694+ 0.05 1.0+ 0.0 0.818 + 0.03 398.08 + 5.82
pdsdbscan - - - - -

16 processes (1,280,000 data points)

KeyBin2 9.50 = 0.50 0.827+ 0.01 0.977+ 0.01 0.891+ 0.06 285.20 + 22.25
parallel-kmeans 4.0+ 0 0.557+ 0.0 0.574+ 0.0 0.565+ 0.0 1086.85 + 35.27
pdsdbscan - - - - -

5 IN-SITU ANALYSIS OF PROTEIN FOLDING

To test the applicability of KeyBin2 to a challenging in-situ analysis,
we apply it to protein folding trajectories. Protein folding simu-
lations search for trajectories leading to conformations close to
the native (folded) protein structure originating from an unfolded
conformation. During the folding process, the protein changes
its conformations into what are called meta-stable and transition
stages [4].

In a metastable stage, consecutive protein conformations keep a
similar structure and display only small variations. In a transition

stage, consecutive protein conformations change from one meta-
stable stage to another and exhibit large structural variations. In
order to identify these stages, it is important to identify when one
or multiple trajectories eventually converge to the same confor-
mation. Work has been done to understand intra-trajectory and
inter-trajectory convergence. These studies [7, 50, 57, 59] explore
multiple folding trajectory spaces in parallel and determine what
conformations are more likely to be stable.

ICPP 2018, Aug 13-16, 2018, Eugene, OR, USA

Computational trajectory analysis usually performs a large scale
comparison of trajectory frames, constructing a centralized dis-
similarity matrix using all the trajectory data, reducing the dimen-
sionality of the matrix, and then clustering the low dimensional
matrix. The centralized nature of the algorithms in Best el al. [7]
and Phillips et al. [50] makes their analysis inefficient when deal-
ing with large proteins and long trajectories. Other work in [57]
analyzes simple statistical data of long trajectories at a very large
scale. Our previous work [33, 59] deals with this issue in a local
to global fashion, rendering the parallel analysis very efficient for
large datasets and is suitable for in-situ analysis.

We used 31 simulated protein folding trajectories from MoDEL,
the Molecular Dynamics Extended Library [43]. MoDEL is a large
library of molecular dynamics trajectories of representative protein
structures. Trajectories of all monomeric soluble structures have
been studied by means of state-of-the-art atomistic molecular dy-
namics simulations in near-physiological conditions. Trajectories
used for our analysis range from 2,000 to 20,000 time steps (i.e,
number of data points M) and from 58 to 747 residues (i.e., number
of dimensions N). Table 3 shows their characteristics.

Table 3: Characteristics of 31 MoDEL Trajectories

Characteristic Mean Stdev Min Max
Number of residues 193.06 145.29 58 747
Simulation time (ps) | 9,779.03 | 3,425.85 | 2,000 | 20,000

5.1 Trajectory analysis

We perform the protein folding trajectory analysis as if it was a
clustering problem. Simulations can be performed in parallel, with
different nodes taking care of different segments of a trajectory,
or, more accurately, different trajectories given particular starting
conditions. As simulations progress, in-situ analysis is necessary
to determine what conformational spaces have been analyzed and
whether the current conformation is stable or transitional. To per-
form this analysis in parallel, we characterize each conformation
(i.e., a specific conformation associated with a trajectory frame)
by its collection of secondary structures given the Ramachandran
plot [52]. That is, every residue was characterized by the torsion
angle phi, ¢, (angle between the C-N-CA-C atoms) versus the tor-
sion angle psi, , (angle between the N-CA-C-N atoms), and omega
w (usually restricted to be 180 deg for the typical trans case or
0 deg for the rare cis case). Based on the constraints of the torsion
angles (¢, ¥, and w) as described by the Ramachandran, we can
associate each amino acid residue in the protein with one of six
types of secondary structures: a-helix, f-strand, Polyproline PII-
helix, y’-turn, y-turn, and cis-peptide bonds. As a protein folds and
unfolds over time, its residues may participate in very different
types of secondary structures, but if conformations are revisited
over time, they should cluster together. We hypothesize that by
clustering secondary structures, multiple fine grained clusters asso-
ciated with specific secondary structure transformations will arise
over time. Sequences of fine grained clusters will form a cluster
fingerprint. This fingerprint can be used to identify stable phases
and to differentiate conformational search spaces.

X. Chen et al.

5.2 Results

Quantitative evaluation. The first evaluation of KeyBin2 for fold-
ing trajectories is just the clustering time. As shown by figure 3
KeyBin2’s overhead is very small. Given the size of the data (num-
ber of dimensions times number of data points), KeyBin2’s time
is around 4 seconds in total, or 0.0004 seconds per frame. It’s exe-
cution time is much smaller than the other algorithms. Given its
small overhead and its parallel nature, KeyBin2 can be seamlessly
used for in-situ analysis.

+ keybin2
600 kmeans-++
dbscan

500

400 o

time(sec)
w
8
8
|

200

100 o

T T T T T T T T
0 100 200 300 400 500 600 700
data size(number of points x number of dimensions)

Figure 3: Execution time for clustering 31 protein trajecto-
ries.

Qualitative evaluation. To show how KeyBin2’s clustering
output can be used to differentiate conformational search spaces, we
validated our method using an offline probabilistic approach. After
a trajectory is completed, we selected N distinct conformations
sampled by using a power law distribution with respect to the
distance to the mean conformation. This setup is designed to find
a set of diverse representative conformations along the trajectory.
For each of them, we compute the root mean squared deviation
with respect to each frame in the trajectory. Given a set of root
mean squared deviation time series, we preprocessed the data by
converting the distance measures into probabilities that a particular
time step (i.e., frame) of the trajectory is a given conformation.

1/d;

Pr(lis stable ati|ll € L,dy ; € Dj) = ———+—,
' S, 1/dg

©)

where L is the set of N distinct conformations and D; is the set
of distance measures for each conformation at frame i. We then
create a probability distribution of stability for each representative
conformation, which for simplicity we denote as a label, at time
step i using the previous 100 time steps. Using the probability
distributions, we calculate the center of the 70% High Density Region
(HDR) for each label. This generates a score of stability ranging
from 0 to 1 for each label at time step i, where 1 indicates high label
stability and 0 indicates low stability. To determine if frame i is not

KeyBin2: Distributed Clustering for Scalable and In-Situ Analysis

ICPP 2018, Aug 13-16, 2018, Eugene, OR, USA

Representative conformations found by KeyBin2 for each meta-stable phase

5

p=

15

mj
® s @mes o
']

(5]

~o 1000] 2000

Cluster fingerprints

10000

Six meta-stable phases found by the validation process

Figure 4: Qualitative clustering validation for 10,000 frames of trajectory 1a70. Rectangles represent stable segments, se-
quences of vertical dots represent cluster fingerprints and denote a specific conformational search

stable we compare the two highest label stability scores as follows,

Sp,i —Sq,i <W, notstable

©

Stability(sy. i, Sq.i, W) = s
y(P’l K) p is stable

otherwise,
where w is a predefined threshold, p, g € L, s ; is the stability score
of label I at frame i, and label p has the higher stability score at
frame i. Figure 4 shows an example of how our clustering results
can be used to differentiate conformational search spaces, while
at the same time using this information to identify stable versus
transitional conformations.

Figure 4 shows six meta-stable phases identified by the probabilis-
tic approach and denoted by rectangles. It also shows the clustering
fingerprints (i.e., each sequence of vertical dots) produced by Key-
Bin2. In the figure it is possible to visually inspect when clustering
fingerprints change over time and how they correspond to the dif-
ferent meta-stable phases. The clustering fingerprints provide a
richer set of information that can be used to extend the trajectory
analysis with a more fine grained understanding of the different
structural changes of a conformation.

6 CONCLUSIONS

In this paper we presented the improved binning clustering algo-
rithm KeyBin2. This parallel clustering algorithm uses bootstrap-
ping and random projection methods to overcome the limitation of
orthogonality assumption of our previous method (KeyBin). The
rotation effect of random projection helps to separate overlapping
clusters which are not solved in KeyBin. In this version, we elim-
inate a density threshold in the partitioning heuristics, thus pro-
ducing more robust clustering results. With these improvements,
KeyBin2 improves scalability and can deal with more complex data
than its predecessor. Experiments show that our algorithm scales
linearly when the number of data points or the dimensionality in-
creases. In its current form, KeyBin2 can be used for unsupervised
learning of streaming data on distributed locations without moving

data to a centralized place. Finally, we show the applicability of
KeyBin2 for in-situ analysis of folding trajectories.

ACKNOWLEDGMENTS

This work was supported by NSF grants CAREER: Enabling Dis-
tributed and In-Situ Analysis for Multidimensional Structured Data
(NSF ACI-1453430) and BIGDATA: IA: Collaborative Research: In Situ
Data Analytics for Next Generation Molecular Dynamics Workflows
(NSF 1741057). We also thank the UNM Center for Advanced Re-
search Computing for computational resources used in this work.

REFERENCES

[1] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park. 1999. Fast
Algorithms for Projected Clustering. SIGMOD Rec. 28, 2 (1999), 61-72.

[2] Charu C Aggarwal and Philip S Yu. 2001. Outlier detection for high dimensional
data. In ACM Sigmod Record, Vol. 30. ACM, 37-46.

[3] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Ragha-
van. 1998. Automatic subspace clustering of high dimensional data for data
mining applications. ACM SIGMOD Record 27, 2 (1998), 94-105. https://doi.org/
10.1145/276305.276314

[4] David Baker. 1998. Metastable states and folding free energy barriers. Nature
Structural and Molecular Biology 5 (1998).

[5] M. Bendechache, N. A. Le-Khac, and M. T. Kechadi. 2016. Hierarchical Aggrega-
tion Approach for Distributed Clustering of Spatial Datasets. In 2016 IEEE 16th
International Conference on Data Mining Workshops (ICDMW). 1098-1103.

[6] J. C. Bennett, H. Abbasi, P. Bremer, R. Grout, A. Gyulassy, T. Jin, S. Klasky, H.
Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson, H. Yu, F. Zhang, and
J. Chen. 2012. Combining In-situ and In-transit Processing to Enable Extreme-
scale Scientific Analysis. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE Computer Society
Press, 49:1-49:9.

[7] C.Bestand H. C. Hege. 2002. Visualizing and identifying conformational ensem-
bles in molecular dynamics trajectories. Computing in Science Engineering 4, 5
(2002).

[8] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999.
When is 4AlJnearest neighboraAl meaningful?. In International conference on
database theory. Springer, 217-235.

[9] Ella Bingham, Ella Bingham, Heikki Mannila, and Heikki Mannila. 2001. Random
projection in dimensionality reduction: applications to image and text data.
International Conference on Knowledge Discovery and Data Mining (KDD) (2001),
245-250. https://doi.org/10.1145/502512.502546

[10] Tadeusz Caliniski and Jerzy Harabasz. 1974. A dendrite method for cluster analysis.
Communications in Statistics-theory and Methods 3, 1 (1974), 1-27.

https://doi.org/10.1145/276305.276314
https://doi.org/10.1145/276305.276314
https://doi.org/10.1145/502512.502546

ICPP 2018, Aug 13-16, 2018, Eugene, OR, USA

[11]

[12]
[13

[14]

[15]

[16

[17]

[18

[19]

[20

[21]

[22]

[23]

[24

[25]

[26

[27]

[28]

[29]

[30

[31]

[32]

Canonizer. [n. d.]. Implementation of MAFIA Subspace Clustering on NVidia
GPUs. https://github.com/canonizer/gpumafia. ([n. d.]). open source code 2012.
CERN [n. d.]. CERN - Large Hadron Collider. ([n. d.]). http://home.web.cern.ch/.
X Chen,] Benson, and T Estrada. 2017. keybin: Key-Based Binning for Distributed
Clustering. In 2017 IEEE International Conference on Cluster Computing (CLUSTER).
572-581. https://doi.org/10.1109/CLUSTER.2017.96

Xinyu Chen and Trilce Estrada. 2017. Index Clustering: A Map-reduce Clustering
Approach using Numba. In Proceedings of the 6th International Conference on Data
Science, Technology and Applications - Volume 1: DATA,. INSTICC, SciTePress,
233-240. https://doi.org/10.5220/0006437402330240

Bi-Ru Dai and I-Chang Lin. 2012. Efficient map/reduce-based dbscan algorithm
with optimized data partition. In Cloud Computing (CLOUD), 2012 IEEE 5th Inter-
national Conference on. IEEE, 59-66.

Lisandro Dalcin, Rodrigo Paz, and Mario Storti. 2005. MPI for Python. J. Parallel
and Distrib. Comput. 65, 9 (2005), 1108-1115.

Sanjoy Dasgupta. 1999. Learning mixtures of Gaussians. In Foundations of com-
puter science, 1999. 40th annual symposium on. IEEE, 634-644.

Sanjoy Dasgupta and Anupam Gupta. 1999. An elementary proof of the Johnson-
Lindenstrauss lemma. International Computer Science Institute, Technical Report
(1999), 6-99.

M. Dreher and B. Raffin. 2014. A Flexible Framework for Asynchronous in Situ
and in Transit Analytics for Scientific Simulations. In IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. 277-286.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, and Others. 1996. A
density-based algorithm for discovering clusters in large spatial databases with
noise.. In Kdd, Vol. 96. 226-231.

Trilce Estrada and Michela Taufer. 2012. On the Effectiveness of Application-
aware Self-management for Scientific Discovery in Volunteer Computing Systems.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society Press, 80:1-80:11.
Xiaoli Z Fern and Carla E Brodley. 2003. Random projection for high dimen-
sional data clustering: A cluster ensemble approach. In Proceedings of the 20th
International Conference on Machine Learning (ICML-03). 186-193.

A. Gionis, P. Indyk, and R. Motwani. 1999. Similarity Search in High Dimensions
via Hashing. In Proceedings of the 25th International Conference on Very Large
Data Bases. Morgan Kaufmann Publishers Inc., 518-529.

S Goil, H Nagesh, and A Choudhary. 1999. MAFIA: Efficient and scalable subspace
clustering for very large data sets. ... Discovery and Data Mining 5 (1999), 443-452.
https://doi.org/CPDC-TR-9906-010

Markus Gotz, Christian Bodenstein, and Morris Riedel. 2015. HPDBSCAN: highly
parallel DBSCAN. In Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments. ACM, 2.

Poonam Goyal, Sonal Kumari, Shubham Singh, Vivek Kishore, Sundar S Bala-
subramaniam, and Navneet Goyal. 2016. A Parallel Framework for Grid-Based
Bottom-Up Subspace Clustering. In Data Science and Advanced Analytics (DSAA),
2016 IEEE International Conference on. IEEE, 331-340.

Alexander Hinneburg and Da Keim. 1998. An Efficient Approach to Clustering
in Large Multimedia Databases with Noise. In Proceedings of 4th International
Conference in Knowledge Discovery and Data Mining (KDD 98) (1998), 58-65.
https://doi.org/10.1.1.44.3961

L. Hong, Z. Gao, X. Pan, and K. Yang. 2011. Segmentation of high resolution
remote sensing image based on hierarchically multiscale object-oriented Markov
random fields model. In IEEE International Conference on Spatial Data Mining and
Geographical Knowledge Services (ICSDM). 343-347.

Xiaojuan Hu, Lei Liu, Ningjia Qiu, Di Yang, and Meng Li. 2017. A MapReduce-
based improvement algorithm for DBSCAN. Journal of Algorithms & Computa-
tional Technology (2017), 1748301817735665.

P. Indyk and R. Motwani. 1998. Approximate Nearest Neighbors: Towards Re-
moving the Curse of Dimensionality. In Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing. ACM, 604-613.

J.A.Insley, L. Grinberg, and M.E. Papka. 2011. Visualizing multiscale, multiphysics
simulation data: Brain blood flow. In IEEE Symposium on Large Data Analysis
and Visualization (LDAV). 3-7.

Anil K Jain and East Lansing. 2009. Data Clustering : 50 Years Beyond K-Means
1 Anil K . Jain Michigan State University. (2009).

T. Johnston, B. Zhang, A. Liwo, S. Crivelli, and M. Taufer. 2017. In situ data
analytics and indexing of protein trajectories. J Comput Chem. 38, 16 (2017).

H. Kargupta, W. Huang, K. Sivakumar, and E. Johnson. 2001. Distributed Cluster-
ing Using Collective Principal Component Analysis. Knowledge and Information
Systems 3, 4 (2001), 422-448.

H. Kawashima, R. R. Sato, and H. Kitagawa. 2008. Models and Issues on Probabilis-
tic Data Streams with Bayesian Networks. In Proc. of the International Symposium

[36

[37

[38

[39

[40

[41

=
)

[43

[44

[45

[46]

[47

(48

i~
X2

[57

[58

[59

[60

X. Chen et al.

on Applications and the Internet (SAINT).

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A llvm-based
python jit compiler. In Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC. ACM, 7.

LargeSynopticSurveyTelescope [n. d.]. LSST - Large Synoptic Survey Telescope.

([n. d.]). http://www.lsst.org/lsst/.
Z.Li and M. Parashar. 2007. Grid-based asynchronous Replica Exchange. In 8th

IEEE/ACM International Conference on Grid Computing. 201 —208.

Liao. [n. d.]. Parallel K-Means Data Clustering. http://www.ece.northwestern.
edu/~wkliao/Kmeans/index.html. ([n. d.]). open source code.

Hubert W Lilliefors. 1967. On the Kolmogorov-Smirnov test for normality with
mean and variance unknown. Journal of the American statistical Association 62,
318 (1967), 399-402.

Y. Liu, L. C. Jiao, F. Shang, F. Yin, and F. Liu. 2013. An Efficient Matrix Bi-
factorization Alternative Optimization Method for Low-rank Matrix Recovery
and Completion. Neural Netw. 48 (2013).

Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129-137.

INB. Molecular modeling and Bioinformatics Group. [n. d.]. Molecular Dynamics
Extended Library. http://mmb.pcb.ub.es/MoDEL/index jsf. ([n. d.]).
NASA [n. d]. NASA-Center for Climate Simulation. ([n. d.]).
http://www.nasa.gov/topics/earth /features/ climate-sim-center.html.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable
parallel programming with CUDA. In ACM SIGGRAPH 2008 classes. ACM, 16.
J.M. Paluska, H. Pham, U. Saif, G. Chau, C. Terman, and S. Ward. 2008. Structured
Decomposition of Adaptive Applications. In Proceedings of the 6th Annual IEEE
International Conference on Pervasive Computing and Communications. 1-10.
Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao, Fredrik
Manne, and Alok Choudhary. 2012. A new scalable parallel DBSCAN algorithm
using the disjoint-set data structure. In Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis. IEEE
Computer Society Press, 62.

Md Mostofa Ali Patwary, Suren Byna, Nadathur Rajagopalan Satish, Narayanan
Sundaram, Zarija Luki¢, Vadim Roytershteyn, Michael] Anderson, Yushu Yao,
Pradeep Dubey, et al. 2015. BD-CATS: big data clustering at trillion particle scale.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 6.

Dan Pelleg, Andrew W Moore, and Others. 2000. X-means: Extending k-means
with efficient estimation of the number of clusters.. In Icml, Vol. 1. 727-734.

J. Phillips. 2011. Validating clustering of molecular dynamics simulations using
polymer models. BMC Bioinformatics 12, 1 (2011).

A. Quiroz, M. Parashar, N. Gnanasambandam, and N. Sharma. 2012. Design and
Evaluation of Decentralized Online Clustering. ACM Trans. Auton. Adapt. Syst. 7,
3(2012), 34:1-34:31.

G.N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. 1963. Multipolar
representation of protein structure. Journal of Molecular Biology 7, 95 (1963).
Conrad Sanderson and Ryan Curtin. 2017. An open source C++ implementation of
multi-threaded Gaussian mixture models, k-means and expectation maximisation.
arXiv preprint arXiv:1707.09094 (2017).

SDSS [n. d.]. SDSS - Sloan Digital Sky Survey. ([n. d.]). https://www.sdss3.org/.
Bernard W Silverman. 1981. Using kernel density estimates to investigate multi-
modality. Journal of the Royal Statistical Society. Series B (Methodological) (1981),
97-99.

D. Tiwari, S. S. Vazhkudai, Y. Kim, X. Ma, S. Boboila, and P. J. Desnoyers. 2012.
Reducing Data Movement Costs Using Energy-Efficient, Active Computation on
SSD. In 2012 Workshop on Power-Aware Computing and Systems. USENIX.

T. Tu. 2008. A scalable parallel framework for analyzing terascale molecular
dynamics simulation trajectories. In CM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SCAAZ08).
Dongkuan Xu and Yingjie Tian. 2015. A Comprehensive Survey of Clustering
Algorithms. Annals of Data Science 2, 2 (2015), 165-193. https://doi.org/10.1007/
540745-015-0040-1

B. Zhang, T. Estrada, P. Cicotti, and M. Taufer. 2014. Enabling in-situ data analysis
for large protein folding trajectory datasets. In IEEE International Parallel and
Distributed Processing Symposium.

F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer, K. Schwan, H. Abbasi, and S.
Klasky. 2013. GoldRush: Resource Efficient in Situ Scientific Data Analytics Using
Fine-grained Interference Aware Execution. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
ACM, 78:1-78:12.

https://github.com/canonizer/gpumafia
https://doi.org/10.1109/CLUSTER.2017.96
https://doi.org/10.5220/0006437402330240
https://doi.org/CPDC-TR-9906-010
https://doi.org/10.1.1.44.3961
http://www.ece.northwestern.edu/~wkliao/Kmeans/index.html
http://www.ece.northwestern.edu/~wkliao/Kmeans/index.html
http://mmb.pcb.ub.es/MoDEL/index.jsf
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1

	Abstract
	1 Introduction
	2 Related work
	3 KeyBin2
	3.1 Projecting into a Lower Space
	3.2 Partitioning Binning Histograms
	3.3 Assessing Projected Subspaces
	3.4 Complexity Analysis
	3.5 Implementation Details

	4 Evaluation
	5 In-Situ Analysis of Protein Folding
	5.1 Trajectory analysis
	5.2 Results

	6 Conclusions
	Acknowledgments
	References

