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ABSTRACT
The trend towards powerfully programmable network switching
hardware has led to much discussion of the exciting new ways in
which it can be used. In this paper, we take a step back, and examine
how it should be used.
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1 INTRODUCTION
Fastpath forwarding in hardware switches has long been imple-
mented using switching ASICs. Traditionally, switch ASICs have
been fixed function and are designed to forward packets sent using
a small set of network protocols (e.g., IP packets sent over Ethernet).
The forwarding behavior of these ASICs – i.e., how they process
packets – is governed by one or more forwarding tables that contain
forwarding rules, each of which is expressed as a match-action pair.
The match portion of the rule acts as a predicate to select whether
a rule applies to a packet, and is expressed in terms of protocol-
specific header fields. The action specifies how a matched packet
should be forwarded and can both specify header modification (e.g.,
reducing the TTL of an IP packet) and forwarding instructions (e.g.,
specifying that a packet should be sent out through port X). While
the use of fixed function ASICs enabled switches to forward terabits
of aggregate traffic every second, their inflexibility has been an im-
pediment in adopting new protocols. As a result, handling new
protocols at high speed has typically required a hardware upgrade
and a new generation ASIC.

In response to this limitation, switch vendors developed pro-
grammable switch ASICs, e.g., Barefoot’s Tofino [3], Cavium’s Xpli-
ant [5], Intel’s Flexpipe [19], Cisco’s Doppler [18], Broadcom’s
Trident 3 [7]. Several of these ASICs implement the Protocol In-
dependent Switch Architecture (PISA), and all of them enable a
much greater degree of protocol independence (i.e., the ability to
programmatically add support for new protocols to existing switch
hardware). Protocol independence in these ASICs is enabled by two
main features:

• Flexible packet parsing: this allows a programmer to specify
how a packet should be parsed and the set of header fields

that should be extracted (these fields can then be used when
matching packets and modified by forwarding actions).

• Compound actions: these allow programmers to compose
multiple simple switch actions into a more complex forward-
ing action that can be applied to packets.

Network programmers can specify the forwarding behavior of
these switches by providing a description of how packets should be
parsed, a set of compound actions, and forwarding rules. The move
to programmable switches can greatly improve network flexibility,
allowing operators to easily adopt new network protocols. As a
result, many switch vendors, such as Cisco [6] and Arista [2], have
announced switches built on these programmable platforms.

While the primary motivation behind programmable switches
is to enable the adoption of new network protocols, a goal that
few could argue with, the flexibility offered by programmable
switches has also been recently used to implement application
logic in switches. Some of the recent proposals that have looked at
implementing application functionality in switches have addressed
consensus protocols (NetPaxos [8], NetChain [22]), caching for
key-value stores (NetCache [23]), load balancing for web services
and other applications (SilkRoad [25], Packet Subscriptions [21]),
aggregation for distributed computation (DAIET [32]), and stream
processing (Linear Road [20]). These proposals rely on both flexible
packet processing and compound actions to implement functional-
ity that extends far beyond traditional packet forwarding.

In this paper, we consider the question of whether (and, if so,
which) application functionality should migrate to switches. Note
that this is not a question that can be answered by simply appealing
to the end-to-end principle [31]. The end-to-end principle involves
askingwhat functions belong in the network abstraction (i.e., should
reliability or multicast be part of the network layer?), whereas the
proposals under consideration here are merely moving some appli-
cation functionality out of servers and into switches that are both
located in the same managed infrastructure (typically a datacenter).
Thus, this question is not about network abstractions, but whether
functionality should be implemented in switch hardware or server
hardware in a particular deployment.

We start by looking at how this question plays out in load balanc-
ing (Section 2), and then consider the problem of load partitioning
(Section 3) – two contexts where there have been proposals for mov-
ing application functionality into switches. We then summarize the
lessons learned from these two examples in Section 4, and discuss
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the use of programmable switches for networking applications in
Section 5, before concluding in Section 6.

2 LOAD BALANCING
2.1 Background
Load balancers are widely deployed as a mechanism to scale web
services by spreading requests across multiple backend servers. Ini-
tially, load balancers were implemented as hardware middleboxes
which offered a great deal of flexibility in how connections were
mapped to backend servers. For example, F5’s BIG-IP [13] hardware
load balancer supports load balancing policies which can be based
on application, resource utilization at a server, connection source,
etc. While these load balancers offered great policy flexibility, they
were not designed to scale. In particular, many policies require that
state be synchronized across instances, which makes it challeng-
ing to add additional instances. One response to this has been to
distribute policy enforcement, as is done in 6LB [9] via IPv6 Seg-
ment Routing [15]. While this approach avoids synchronization, the
performance challenges remain the same. In particular, 6LB is im-
plemented by forwarding each request through a sequence of load
balanced servers until one of the servers deems it appropriate to
respond. Thus, in the worst case for this approach, the initial packet
for a request visits all equivalent servers (the average case behavior
depends on the policy used, but for any performance-dependent
policy, a request is likely to be received by more than one server).
As a result, this approach adds additional load at each server for
any request processed by the system, and also inflates response
latencies. Ultimately, while this type of approach alleviates some
of the concerns with traditional middlebox-based load balancers
when applied to domains such as video streaming where response
sizes are far larger than request sizes, it is not as appropriate for
traditional web request handling where requests and responses are
of roughly similar size and fit within one or a few packets.

A widely-employed response to this scaling challenge was a
migration to scale-out server-based load balancers such as Ma-
glev [12] and Ananta [30] that rely on consistent hashing to map
each new connection to a backend server. The use of consistent
hashing means that assigning connections to backend servers is
stateless, so no cross-instance synchronization is needed on the
initial assignment. While this choice enabled scaling, it had three
main drawbacks.

First, it eliminated any policy flexibility (aside from which hash
function was used and what header fields were hashed). While
this made it hard to respect the flow affinities needed for some
applications (e.g., ftp), the larger issue is that random assignment
of flows typically leads to load imbalances. If we assume all flows
impose the same load, then the standard result for the random balls-
and-bins model states the maximum load is Θ( lnn

ln lnn ) with high
probability. Since one cannot predict which server will have the
overload, one needs to overprovision the total number of servers
by this factor, which for large n can be significant.

Second, while the use of consistent hashing allows the initial
processing of a connection to be stateless, the load balancers them-
selves must remain stateful. This is because correct load balancers
need to maintain per-connection consistency – i.e., they need to en-
sure that all packets in a connection are forwarded to the same
backend server – despite changes in the set of backend servers (due
to server failure or addition of new servers) or other events. Load
balancers implement per-connection consistency by recording the
backend server chosen to process the first packet in a connection

(e.g., a TCP SYN packet) in a connection table and then forward-
ing subsequent packets based on the information stored in the
connection table.

Third, the fact that the load balancing was implemented in soft-
ware led to limited performance. For instance, an optimized imple-
mentation of Maglev can handle up to 9 million packets per second
per core with performance scaling sublinearly as we increase the
number of cores [29]. As a result, operators commonly deploy sev-
eral load balancers to handle the load for a single service, with
an ECMP based switch or hardware load balancer responsible for
partitioning connections across the main pool of load balancers.
When deployed in this manner, connection tables can also be syn-
chronized across load balancers in order to provide fault tolerance.

Recently SilkRoad [25] has proposed using programmable
switches to implement high-throughput load balancers, thus reduc-
ing the number of instances required. In SilkRoad, the connection
table is stored in SRAM connected to the switch ASIC and is up-
dated whenever a new connection is assigned a backed server.
While SilkRoad instances can process higher packet rates when
compared to software load balancers, they can only handle a limited
number of active connections. This is because switches generally
have very limited SRAM available, e.g., many current switches pro-
vide about 12MB [33] of SRAM per port. Once SRAM is exhausted,
SilkRoad must either evict entries from the connection table – thus
violating per-flow consistency – or rely on the control plane to man-
age the connection table – thus severely degrading performance.
As a result, storing the connection table on switches severely limits
the scalability of SilkRoad and similar approaches.

Thus, the move to switch hardware may have eliminated the
concern about performance, but not about state or policy flexibility.
In fact, the state limitations for switch implementations of load bal-
ancing is much more challenging than for server-based approaches.
We now turn to how one can address the state and policy issues,
without being limited by switch hardware.

2.2 Handling More Connections
We observe that when processing a packet, SilkRoad needs access
to only the state that is associated with that connection. Thus, the
information needed to process a single packet is of fixed size, and
hence could potentially be encoded in the packet. This scheme was
originally advocated by [27], which proposed encoding connection
tracking information in the TCP timestamp option [4]. This infor-
mation can also be embedded in other fields, including the QUIC
connection ID [24] field, the MPTCP [16] destination port, or other
protocol fields. When using MPTCP, another alternative is to use
the mechanisms recently proposed as a part of the RFC6824BIS
draft [10, 17], which are designed to enable static load balancing
policies (i.e., ones which hash the TCP 5-tuple) for MPTCP connec-
tions. This mechanism allows a server to return a new destination
address (based on what server is chosen by the load balancer) when
the client initiates the first subflow, and all subsequent subflows
use this new destination address. In our case, we can therefore use
all or part of this address to encode connection information, which
is especially promising with large IPv6 addresses.

The use of mechanisms where load balancing information is
encoded in the packet header requires two things: (i) client support
– since the client must either enable TCP timestamps or it must
use either QUIC or MPTCP, and (ii) parsing flexibility at the switch
so it can extract and interpret information in the packet header to
determine the appropriate backend server (that is, the switch must
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be programmed to make a forwarding decision based on a packet
header not typically used for forwarding decisions). However, as-
suming the client supports this mechanism (i.e., implements and
enables support for TCP timestamps or uses QUIC or MPTCP), load
balancing in this manner achieves the same performance as can be
achieved using SilkRoad without imposing a limit on the number
of connections that can be handled by a load balancer.

Furthermore, even when client support is absent, load balancing
can be implemented without putting connection tracking informa-
tion in switches by storing this information in the backend servers
using a mechanism proposed previously in Beamer [28]. In this
case, we rely on the observation that the only case where consis-
tent hashing will fail to forward the packet to the correct backend
server is when the backend server pool changes, which is relatively
infrequent. We then require that any time a server receives a packet
that neither establishes a connection nor belongs to a connection
it is already handling, it forwards the packet to the correct back-
end server for the connection. This requires servers to know the
connection table mapping, which can either be learned from a cen-
tralized controller or by exchanging messages with other backend
servers. This mechanism imposes additional latency in the worst
case – i.e., when the set of backend server changes – and requires
additional communication between the servers, but assuming a
stable deployment (i.e., one where the backend pool changes in-
frequently) it performs as well as SilkRoad. Finally, similar to the
previous scheme (where connection state was carried in packets
headers), it imposes no limits on the number of connections that
can be handled by a switch (because in both cases the switch has
no connection state).

2.3 Enabling General Policies
The scalable schemes presented so far – one where the connection
state was carried in packet headers, and one where the connection
state was stored in servers – have looked at efficiently implement-
ing load balancing based on consistent hashing, and do not address
the question of more complex policies. We now show that the first
mechanism can also be used to implement more complex load bal-
ancing policies including ones that depend on backend server load
or on information about other connections. The main insight here
is that while switches cannot implement general policies, such
policies can be implemented in servers. Furthermore, since the
connection mapping is carried in packets, only the initial packet
needs to be processed by the policy server. Therefore, to imple-
ment more complex policies, one merely needs to configure the
switch to forward the initial packet for each connection to a desig-
nated policy server, which is then responsible for forwarding the
packet to an appropriate backend server. This can be done without
switch state, as initial packets can be identified, e.g., by the TCP SYN
flag. Subsequent packets in the connection carry connection state,
which the switch can use to directly forward packets to the appro-
priate backend server. While this scheme adds additional latency
when processing new connections, it does not have any impact
on throughput or latency beyond the first packet for a connection.
Furthermore, while policy complexity in this case affects the rate at
which new connections can be accepted, it does not have an impact
on data throughput nor on forwarding scalability.

In summary, the three solutions presented above show that de-
signs which restrict their use of switches so they aremostly stateless
forwarding engines, with state and complex computation pushed to
the end hosts, can provide the same performance as schemes which

move all processing and state to programmable switches. Further-
more, separating the implementation in this manner ensures that
performance does not come at the cost of limitations on application
semantics, e.g., all three designs presented here can scale to handle
an arbitrarily large number of connections, and the third design
(the one employing a policy server) can handle complex policies
including ones that require analyzing state across connections.

Finally, while we did not fully elaborate on these issues, limiting
switch state also has benefits for both fault tolerance – since state
does not need to be synchronized across switches – and scaling
– since adding additional load balancing capacity merely requires
adding more switches.

3 LOAD PARTITIONING
3.1 Background
Load balancing provides a mechanism for scaling services where
consistency is not a concern – either because connections do not
change state, or because the application is designed to operate
correctly despite inconsistency (e.g., because it lacks shared state).
However, this is not true for all services – services such as key-value
stores which provide consistency often require that all requests for
a given key go to one server or a small subset of servers – i.e., they
require load to be distributed according to actual requests. We refer
to the problem of request-aware load spreading as load partitioning,
and consider the implementation of such a service in the context
of consistent sharded key-value stores.

Key-value stores often shard storage by using a consistent hash-
ing scheme to decide where to place a key, which allows load to be
distributed across servers without requiring a directory or some
other datastructure to look up where keys are stored. However, as
we discussed for load balancing, this can result in the most loaded
server serving Θ( lnn

ln lnn ) keys. Furthermore, most workloads ex-
hibit a skewed access pattern, with some keys being accessed much
more frequently than others. As a result, an individual server might
be overloaded despite the use of random load distribution using
consistent hashing.

NetCache [23] is a recent proposal for addressing this problem.
NetCache relies on a previous observation [14] that shows that a
relatively small cache, whose size is a function of the number of
servers, is sufficient for eliminating load imbalances in a sharded
key-value store. NetCache uses programmable switches to imple-
ment caching as follows: the switch is programmed so it can parse
packets to determine the type of request (i.e., whether a key needs
to be read or written) and the key being accessed. On receiving a
read request, the switch increments a counter that it uses to track
the rate at which a key is accessed, and then checks to see if it has
cached the item. If so, the switch generates a response with the
appropriate value; if not, it forwards the request to the appropriate
server. On receiving a write request, the switch checks to see if
the key is cached, evicts it if so, and forwards the request to the
appropriate backend server. A controller periodically collects access
statistics from the switch and manages the switch cache so that
frequently accessed items can be served from the cache.

While caching hot keys in a top-of-rack switch does improve load
imbalance across key-value store shards, it also places significant
limits on the semantics offered by the store including limits on
the key size (which must be 16 bytes or less due to restrictions
on packet header length) and value size (which cannot exceed 128
bytes due to limits on the amount of state that can be accessed
while processing a packet). Furthermore, limits on switch memory
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mean that NetCache must rely on approximate datastructures –
such as sketches – to store key access statistics, placing limits on
cache policies that can be implemented by the controller.

3.2 An Alternative Approach
Similar to our observation for load balancing (§2), we find that by
intelligently partitioning processing between switches and servers,
we can retain the performance benefits of NetCache while simul-
taneously allowing arbitrarily large keys and values and arbitrary
caching policies. To do so, we make two changes:

• First, we collect key access statistics on servers rather than
collecting these on the switch. This allows us to collect accu-
rate access statistics rather than relying on approximations.

• Second, rather than caching at the switch, the controller repli-
cates overloaded keys on another server (or set of servers)
– which might be chosen either randomly or by selecting
the least loaded server(s) – and adds a rule to the switch
indicating all servers at which the key is cached.

With these changes in place, the switch and servers process requests
as follows. When the switch receives a read request, it checks to
see if it has a rule for where the key is replicated, in which case it
picks one of the replicas at random. If not, the switch hashes the
key and forwards the request to the appropriate server. When the
switch receives a write request it evicts any rules that refer to the
key before forwarding the request to the correct server. Finally, we
note that these changes by themselves do not address the limitation
on key lengths. To address this, we adopt a solution inspired by
NetCache – we require requests to include not just raw values
for the key but also hashes. We limit the hash to be no longer
than 16 bytes, thus allowing the switch to route requests without
imposing limits on key length. Arguments similar to the ones used
by NetCache ensure that at any given time the switch needs to hold
rules for only a constant number of replicated keys, and ensure
that this constant number of rules is sufficient to alleviate load
imbalance across servers.

When compared to the original NetCache design, our approach
adds a small amount of additional latency when accessing keys that
are cached. Furthermore, assuming that total aggregate demand on
the key-value store does not exceed the capacity of all servers, our
approach can provide the same throughput benefits as NetCache.

It is useful to separate two possible rationales for using Net-
Cache, and respond to them separately. First, there is the concern
that the load can be imbalanced due to either the Θ( lnn

ln lnn ) of ran-
dom hashing, or to imbalances in key request patterns in read-
dominated workloads. For this, the server-based approach described
here, which uses the switch not to serve requests but to send re-
quests to servers designed to handle the overload, has comparable
performance.

Second, one can consider the case of extreme load imbalances
that are write-dominated, where the rate of writes for one hot key
exceeds the capacity of the server handling that key. Here, neither
of the proposed solutions (NetCache and ours) can handle the load,
as they both rely on a single server to handle writes.

4 LESSONS LEARNED
In the two cases we examined, load balancing and load partition-
ing, for the cases where application logic was implemented in
programmable switches, we were able to find designs that were
roughly comparable in performance and did not need application
logic to reside in switches. Instead, they relied on a partitioning of

functionality where all application logic (complex processing and
state management) was handled by servers, and switches handled
forwarding. However, the programmability of the switches was
crucial, because this forwarding could require using nonstandard
fields in the packet header. Thus, we would argue that moving
application logic to switches is not necessary in these cases. But is
it desirable? This is the question we address in this section.

Performance has been the main impetus for moving application
functionality to programmable switches, since switch ASICs are
designed to process terabits of aggregate traffic every second –
which requires that they be able to process billions of packets per-
second – providing an order-of-magnitude or more improvement in
throughput when compared to software implementations. However,
this gap between switch and software performance is a result of
limitations on ASIC functionality including:

• Limits on how much of the packet can be accessed by the
ASIC.

• Limits on the amount of state that can be stored in the switch.
• Limits on the amount of state that can be accessed while
processing a single packet.

• Limits on the amount of processing that can be performed
on an individual packet.

• Limits on the type of processing – e.g., switch ASICs place
restrictions on sharing data across packets matched by dif-
ferent rules in order to enable parallelism.

As a result, implementing application logic in ASICs requires impos-
ing limits on application semantics. For example, NetCache must
limit key and value sizes due to limitations on how much of the
packet can be parsed and the amount of processing that can be
performed on the packet. In addition, SilkRoad can only support
a limited number of connections per switch due to limitations on
state stored within a switch. Thus, while these switches have mind-
boggling performance in isolation, there are important reasons that
using them for sheer performance is misguided.

First, the limitations cited above mean that they can only be
applied in very limited settings. If one needs larger value sizes,
or needs to support many more connections, then these switch-
based solutions do not degrade gracefully but instead “fall off a
cliff”. Thus, moving application logic to programmable switches
is likely to impose stringent requirements that may interfere with
the evolution of the application.

One might argue that we have no other option but to avail our-
selves of switch hardware. However, in the two cases we examined,
we did indeed find options with comparable performance. The key
to doing so was to use the switch programmability to flexibly parse
and steer packets, but to not involve them in the actual application
logic.

Thus, our “lesson learned” is that it is neither appealing nor
necessary to constrain application functionality so that it can be im-
plemented in switch ASICs. Instead, we advocate refactoring these
applications to use hardware as intended – i.e., use switches for
forwarding and routing messages in a way that requires minimal
state, and use general purpose servers to handle stateful general
purpose computation. Also, if the primary consideration in moving
application logic to switch ASICs is the ability to process terabits of
aggregate application traffic, then acceleration devices like FPGAs
and GPUs might provide better solutions; these devices can be
specialized to provide the appropriate amount of state and com-
puting that is desired by an application as opposed to repurposing
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the switching hardware to suit application logic. In fact, such de-
vices can also be co-located along with the switch if reducing the
processing latency is a consideration. All of these implementation
and deployment options are consistent with our observation that
applications should use hardware as intended.

While our observations were drawn from an analysis of load
balancing and load partitioning, they also hold for other classes of
applications, which we comment on briefly below:

• In-network aggregation DAIET [32] is a recent proposal
for performing aggregation (as performed by reducers in
map-reduce jobs or parameter servers in ML training) using
programmable switches. This is beneficial for performance
since all transfers within a rack must traverse the switch –
thus minimizing latency – and switches are provisioned so
they can simultaneously receive traffic at line rate from all
ports – thus avoiding incast and other congestion concerns.
However, the use of switches for aggregation severely limits
the types of algorithms that can be used when aggregating
information. Existing techniques in the HPC community,
e.g., butterfly allreduce [36] and variants, already address
the incast problem for aggregation. While it is impossible
to match the latency benefits of DAIET, our research on the
topic and conversations with practitioners suggests that co-
locating compute accelerators along with switches would
allow for both generality and performance in the long term.

• In-network coordination Proposals including Net-
Paxos [8], NetChain [22], and others have suggested
implementing consensus in programmable switches. While
these implementations do improve the rate at which locks
can be acquired or messages can be sequenced – generally
by reducing latency for sending and processing consensus
messages – they do not speed up the actual processing
that needs to be performed in the critical section (in cases
where a lock is acquired) or the rate at which messages
are processed (in cases where messages are sequenced).
As a result these proposals have only limited impact on
application performance. In this case, we believe that while
it is reasonable to implement simple stateless primitives
such as consensus in switches, this is neither necessary
nor useful in isolation. Instead, systems incorporating
these proposals need to first make algorithmic advances
or leverage other hardware acceleration to improve other
parts of the application before focusing on improvements to
consensus algorithms.

5 GOING BACK TO NETWORKING
While moving application functionality into switches is both un-
necessary and unhelpful, programmable switches do enable the
development of new types of network functionality, such as the
examples listed below:

• Network Load Balancers Systems such as Conga [1], have
suggested that congestion-aware load balancing might be
used to select routes for TCP flowlets in datacenters. The
load balancing algorithm used by Conga and similar systems
requires keeping track of the number of packets sent out on
any port and incorporating this into congestion information
from the path. These statistics change frequently (i.e., every
time a packet is sent out) and the accuracy of this algorithm
depends on the granularity at which congestion information
can be updated. As a result, these updates are best performed

in switches, which are on-path and already have visibility
into aggregate traffic metrics for each port, and the load
balancing policy itself must be implemented on the switch
so it can have low-latency access to this information. Finally,
while state exhaustion is also a concern in this case [33] –
since the switch must maintain a connection table like datas-
tructure to track individual flowlets – this can be addressed
by embedding such state in packets as suggested in §2.

• Network Telemetry Recent systems such as Marple [26]
have also proposed executing complex network queries on
programmable switches. Here again the main insight is that
queries in general require fine grained access to switch sta-
tistics, which cannot be easily shipped to a server. Instead,
executing queries on switches allows these statistics to be
aggregated before being shipped to a server, thus limiting
the amount of control bandwidth required. Note that the car-
dinality of queries supported by such systems is limited due
to limitations on switch memory and number of registers,
but similar limitations apply to any other approach.

• Packet Scheduling Packet scheduling, which determines
the order in which packets are processed by a switch, is
an oft-cited mechanism for enabling more efficient shar-
ing of link capacity between users, and better congestion
control. However, switches traditionally only implement a
few fixed packet scheduling algorithms. Recent proposals
such as PIFO [35] have looked at frameworks that can be
used to implement a variety of packet scheduling algorithms
on programmable switches, and other packet scheduling
proposals such as approximate fair queueing [34] are specif-
ically designed to account for the capabilities offered by
programmable switches. Functionally, implementing such
frameworks or algorithms outside of a switch is meaningless
and hence theymust be implemented within switches regard-
less of implementation limitations. Thus, developing pro-
grammable switches where these could be deployed would
be of great value.

• Congestion Control Prior work such as RCP [11] has also
shown the benefits of implementing switch-based conges-
tion control mechanisms that set rates based on measured
link utilization. Similar to network telemetry systems, these
mechanisms require access to fine grained switch counters,
and hence also must be implemented in switches.

As can be seen, these and other similar functions need timely access
to fine-grained packet counters so they can rapidly adjust routing
decisions in response to network state, and hence must be placed
within the network. Programmable switches greatly simplify the
deployment of such solutions, and while these solutions do suffer
from the same limitations mentioned in §4, in this case no host
based solution is available to us.

In addition, the functionality provided by these proposals is not
limited to a particular application but instead affects all (or most)
network traffic, and hence they are designed to be deployed by the
network operator or architect, who can engineer the deployment to
avoid resource exhaustion problems. For example, Conga deployed
on a top-of-rack switch benefits from the limited number of active
TCP connections in the rack, thus avoiding concerns about running
out of space for tracking flowlets. Designing networks to ensure
protocol scalability and avoid resource exhaustion is not unique to
programmable networks, but the main observation here is that in
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this case network operators only need to consider the needs of the
network and not of all applications.

Thus, we would amend our “Lesson Learned” to add that while
putting application logic into programmable switches is problem-
atic (for all the reasons we previously discussed), implementing
networking-related solutions where no host-based alternative is
available has no such downsides.

6 CONCLUSION
While programmable switches provide a powerful primitive for spe-
cializing networks for specific applications, they are not a panacea
for improving application performance. Some recent papers have
focused on finding ways to shoehorn application semantics into the
limited capabilities of programmable switch ASICs. This has demon-
strated great cleverness, as overcoming the resource restrictions
inherent to ASICs is no easy task. However, we question whether
this approach is wise.

In particular, in this paper we showed that moving application
logic into programmable switches is both unnecessary – since sim-
ilar performance can be achieved by offloading a much smaller
portion of application semantics – and harmful – since such shoe-
horning often imposes constraints on application behavior (e.g.,
limiting the size of values that can be handled) or, worse yet, limits
application semantics. As a result, we observe that when it comes
to implementing application specific functionality, switches should
continue to be used as switches, i.e., as network devices that re-
ceive packets, parse them, and then forward them with little or no
modification.
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