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Abstract—Soft robotics has witnessed increased attention from
the robotic community due to their desirable features in com-
pliant manipulation in unstructured spaces and human-friendly
applications. Their light-weight designs and low-stiffness are
ideally suited for environments with fragile and sensitive objects
without causing damage. Deformation sensing of soft robots so far
has relied on highly nonlinear bending sensors and vision-based
methods that are not suitable for obtaining precise and reliable
state feedback. In this work, for the first time, we explore the use
of a state-of-the-art high fidelity deformation sensor that is based
on optical frequency domain reflectometry in soft bending actu-
ators. These sensors are capable of providing spatial coordinate
feedback along the length of the sensor at every 0.8 mm at up to
250 Hz. This work systematically analyzes the sensor feedback for
soft bending actuator deformation and then introduces a reduced
order kinematic model, together with cubic spline interpolation,
which could be used to reconstruct the continuous deformation of
the soft bending actuators. The kinematic model is then extended
to derive an efficient dynamic model which runs at 1.5 kHz and
validated against the experimental data.

I. INTRODUCTION

The advancement of bio-inspired soft robots, featuring high

compliance and inherent safety of operation, in contrast to tra-

ditional rigid-bodied, precise but often dangerous robots, opens

up novel research paradigms. Soft robotics is an umbrella term

that herein is used to cover all types of active and physically

reactive compliant systems where the term “soft” is used in

different contexts: from completely soft deformable robots to

the compliant joints in serial rigid linked robots. In this paper,

we particularly focus on soft bending actuators (SBA) that

can bend, twist, and/or elongate, actively or passively, during

operation.

Soft robots, in the sense of “completely” deformable robot

systems, has been a highly active area of research in the

past few years [1], [2], [3], [4]. Soft robots in this sense

have often been made of soft materials such as elastomeric

polymers, allowing them to continuously change their shape

with a few degrees of freedom (DOF) to form “organic”

shapes (in contrast to fixed “geometric shapes” of rigid-

bodied robots). An impressive number of prototypes have

been proposed to date which employ a range of actuation
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Fig. 1. Soft bending actuator (SBA) experimental setup.

methods including compressed fluids (e.g. pneumatic and

hydraulics), shape memory alloys, electroactive polymers, and

magnetic fluids [5], [6]. Because of the passive deformation

these robots undergo, during operation and in the face of

external forces, they are considered as infinite DOF systems

and therefore highly underactuated. By appropriately arranging

these SBAs, one can generate complex behaviors aimed at

a wide spectrum of motion types including manipulation,

whole arm grasping, snake locomotion, legged locomotion [7],

[8], peristaltic locomotion, adaptive soft grippers [9], surgical

robots, and rehabilitation robots [10].

To date, much of the work has focused on open-loop

control methods where the desired actuation patterns are pre-

programmed [11]. This approach could demonstrate the overall

potential yet fails to adapt to environmental changes. Despite

an impressive amount of research in SBA that established

the immense potential [12], they are yet to make their mark

outside laboratory settings. This is due in part to the lack of

sophisticated dynamic models that can be used in real-time

and complimentary sensing solutions capable of providing

accurate, real-time shape deformation data. In this paper, the

term real-time is used to indicate the running times faster or

equal to actual time. While some modeling approaches have

been presented ([13], [14]), most of the modeling approaches

that have been presented involves systematic derivation of the

statics based on the mechanical properties of SBA. Though

rigorous, the approach presents challenges for applications in

dynamic control such as static models, where deformation

is defined as a function of pressure and only captures the

steady state shape deformation. In reality, fluidic actuators

are known for their high hysteretic behavior during dynamic

motion [15]. Consequently, the static models provide limited
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use in fast applications where hysteresis dominates the overall

shape deformation.

Unfortunately, the sensing techniques employed in soft

robot control have been inadequate to exploit the advantages

of soft robots. For example, image based sensing has been

the highest fidelity feedback method capable of measuring the

entire shape deformation in real-time: however this requires

special background requirements to assist the image high

speed processing and thus limits the robot’s application space.

In addition, occlusions (or line-of-sight) present a significant

obstacle, particularly, when the robots are expected to deform

significantly. Other sensing methods include bending sensors

and strain sensors. The most common approach is to measure

the tip coordinates. However, tip information is not a good

measure of the entire soft robot shape as it could be in

any one state out of infinitely many possibilities due to the

high compliance (similar to inverse kinematics of redundant

systems [16], [17]). Thus, tip measurements are of limited

value as a sufficient feedback method for SBA control. In this

respect, fiber optic shape sensors (FOSS) could serve as high-

fidelity position sensors for soft robots.

In this study, we integrated a high resolution FOSS into

a soft, fiber-reinforced, bending actuator to obtain precise

position data at 0.8 mm intervals along the length of the

sensor at 75 Hz. This level of high density data has not

previously been applied in soft robotic research and thus opens

up new research avenues on how such shape data may be used

to enable applications previously deemed infeasible for soft

robots. In addition to introducing the FOSS in soft robotics,

our objective in this paper is to introduce a reduced-order

dynamic model for SBA without betraying the overall bending

deformation. The motivation for the proposed approach stems

from the need to derive a sufficiently sophisticated model that

could benefit from the high density data at the same time

producing real-time dynamic modeling results.

This paper is arranged as follows. In Section II we first

briefly introduce the FOSS system and the integration thereof

to a fiber-reinforced SBA. Section III systematically develops

the complexity of the reduced order kinematic model to have

minimal deformation shape deviation from the experimental

results. We then derive the dynamic model for the bending

actuator and show that the dynamic model simulates highly

dynamic motion with a high degree of overall accuracy.

Concluding remarks and future work follow in Section V.

II. EXPERIMENTAL SETUP

An overview of the test bed is presented in Fig. 1, where

a Matlab Simulink Realtime operated digital valve was used

to pressurize the actuator at desired pressure levels while

a pressure sensor recorded the pressure readings. The SBA

was fabricated in-house by using a multi-step manufacturing

method reported in [18] for molding elastomeric tubular blad-

ders with fiber reinforcements (Fig. (2)). SBA bending portion

is semi-annular in cross section and 17 cm long and weighs

69 g. The fiber-reinforced wall thickness, w, is estimated to

be 4mm with r1 = 14mm and r2 = 10mm. The fibers

Fig. 2. (Left) Integration of fiber optic shape sensor (FOSS) into the soft
bending actuator, and (Right) the cross-section of the SBA.

constrain the radial strain to generate bending deformation

and increase the operating pressure range and the resulting

output force. During the molding process, Teflon lined lumens

were co-molded into the body of the actuator along the edges

of the strain limiting layer (i.e. neutral axis). The lumens

served a structural purpose to hold the FOSS in position

without significantly altering the active free deflection range

of motion of the actuator (see Fig. 2). The FOSS sensor comes

housed in a 3 mm outside diameter furcation tube (Fiber

Instrument Sales, Inc., Oriskany, NY, part #: F00FR3NUY)

that is intended to restrain the sensor from bending beyond its

10 mm radius of curvature and provide a low friction housing

for the FOSS to slide in to prevent the FOSS from experiencing

potentially damaging compressive and tensile loads during

handling. Consequently, it presents a challenge to find the

end points of the sensor that marks the tip of the SBA. To

overcome this problem, we included a cap at the tip of the

actuator with a known and constant curvature [19]. Thus, from

experimental data, we could identify the point where the Z-

directional gradient reaches the maximum value, as the tip

point. Having the robot tip position, the soft robot segment

within the cap can be derived from the soft robot and cap

dimension. The complete SBA with the FOSS sensor was

then rigidly attached to the table, in the FOSS’s XY plane,

for gathering the dynamic data.

In this pilot study, we use an experimental FOSS from

Luna Innovations Inc, Blacksburg, VA. The operating principle

underlying this FOSS platform is based on Optical Frequency

Domain Reflectometry (OFDR) [20]. A more detailed discus-

sion of the optics and mathematics that are used to make these

high definition, high sensitivity OFDR measurements can be

found in [21]. There are several features worth noting about

the FOSS platform. The fiber optic cable is compliant with an

ending radius of curvature as low as 10 mm, and can maintain

functionality under significant morphological variation. FOSS

can detect bending and twisting along the entire length of

the sensor with sensor measurements every 0.8 mm, thus

enabling high fidelity full 3D state estimation with sampling

rates up to 250 Hz. Furthermore, FOSS can be integrated

into soft material robotic structures thus eliminating the need

for line of sight, especially within non-engineered and fluidic

environments.

III. SYSTEM MODEL

A. Reduced-Order Model

FOSS-based continuous sensing along a SBA provides a

close-up look at the system state and enables investigation
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Fig. 3. Curvature variation along the length of the SBA during a 240 kPa
step input. Notice the significant curvature fluctuation which give rise to the
need for new models to account for such variation.

into the limitations of current models. For instance, almost

all SBA models to-date, assume uniform material distribution

and thus by the resulting models bend in uniform circular arc

shapes (constant curvature along the arm). But due to the SBA

fabrication process, slight variations in physical parameters

(material thickness and density along the length) are common.

As a result, the curvature of the actuator, even when it is

not actuated, is non-circular. Fig. 3 shows the initial curvature

variation (red color line) along the SBA. The figure also shows

how the the curvature profile is not maintained and undergoes

significant change during actuation. Hence, new models that

could account for such nonlinearities need to be proposed.

Ideally, a high-DOF discrete jointed system would be used

to represent the nonlinear deformation. But, similar to finite

element models, such models suffer from numerical efficiency

demands of real-time applications. Hence we propose to

combine a low-order approximation together with cubic spline

interpolation to reconstruct the continuous deformation. To de-

termine the lowest order with acceptable shape reconstruction

capability, we used experimental data collected from the SBA

for a step response. The data provides the spatial Cartesian

(XYZ) trajectories for points along the entire length of the

17 cm SBA at 0.8 mm apart. At any time instance, there are

212 such points denoting the entire shape of the arm. We

then uniformly divided the length of the arm to 2-5 segments

(from each time instance) and applied cubic spline technique to

reconstruct the bending shape. To quantify the reconstruction

quality, per time instance, we used the maximum Euclidean

distance between the reconstructed curve and the actual shape.

Figure 4 shows the error progression for discrete jointed

systems having 2-5 rigid segments. It can be seen that 5-

link system handles the deformation with less than 3 mm

maximum error (and 1.3 mm mean error) for the duration

of the experiment. Notice that low order discretizations could

lead to large errors (spikes around 4.1 s) when the cubic spline

method is applied.

Figure 5 shows some instances of this experiment where

we compare the actual data (+ marks) and the reconstructed

curve (solid line) along with the discrete points used for shape

reconstruction. It can be seen that the shape reconstruction

is identical without noticeable departure from the measured

curve. Thus, we use a 5-link discrete approximation for the

development of the dynamic model.

(a) (b)

Fig. 4. Comparing the maximum deformation shape departure for several
reduced order, discrete approximations. (a) Measuring the maximum shape
deformation of the cubic spline curve reconstruction from discrete position
coordinates, (b) Maximum error comparison for 2-5 point approximation. The
5-link system showed a good balance between accuracy (0.0024 m maximum
error and 0.0012 m mean error) for the duration of the experiment.

Fig. 5. Comparison of the measured versus the reconstructed shape deforma-
tion for a few instances of the SBA deformation during an experiment using
240 kPa step response (Fig. 4). + marks denote the experimental data, o marks
identify the joint coordinates of the reduced-order model, and the solid line
shows the cubic spline interpolation. Notice the negligible shape difference.

B. Kinematic Model

Figure 6-A shows the schematic of the planar 5-link discrete

system model. Without losing generality, consider any ith link

of the discrete model which has li length. Note that, as we

determine the discrete joins from the FOSS data points, the

link lengths, though close, are not identical. We noted that

this approach produces better fit when reconstructing the curve

from discrete points. As shown in Fig. 1 the unactuated SBA

has a noticeable curvature (see Fig. 1). Thus, each link has an

angle offset θi0 relative to the previous segment while θi is the

joint-space variable. Note that, SBA system only has a single

actuated DOF but, due to compliance, has infinitely many

DOF. Our approach attempts to find a middle ground (with

5 DOF) to emulate the complete system with minimal error

while enabling real-time dynamics. In addition, approximation

of the SBA to a rigid-linked system facilitates the use of rigid-

bodied dynamic algorithms that are numerically efficient and

thus ideally suitable for real-time applications.

Utilizing standard homogeneous transformation techniques,

we can derive the homogeneous transformation matrix (HTM)

for the ith segment, Ti ∈ SE
2 is given by (1) where Rz ∈

SO
2 models the rotation about the +Z axis and Py ∈ R is the

translation along the +Y axis. Ri ∈ R
2×2 and pi ∈ R

2×1 are

the segment rotational and translation matrices with respect to

the local coordinate system, {Oi}.
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Ti (θi) = Ry (θi + θi0)Pz (li) =

[
Ri pi

0 1

]
(1)

By means of standard serial link kinematics, the HTM of the

ith link, Ti : qi �→ SE
2, in the task-space coordinates is given

by (2) where qi = [θ1 · · · θi]
T
∈ R

i is the joint-space variable

and R
i ∈ R

2×2 and pi ∈ R
2×1 are the segment rotational and

translation matrices with respect to{O}.

T
i =

n∏
k=1

Tk =

[
R

i pi

0 1

]
(2)

Based on (2), we can derive the recursive relationships for

R
i and pi as

R
i = R

i−1
Ri

pi = pi−1 +R
i−1pi

(3)

where R
i−1 and pi−1, according to our definition, is the tip

coordinates of the prior, (i− 1)
th

segment.

We take the time derivative of (3) to compute the body

velocity (velocity with respect to coordinate frame at the center

of gravity, shown in Fig. 6-B), of the ith section in recursive

form as

Ωi = R
T
i

(
Ωi−1Ri + Ṙi

)
υi = R

T
i (υi−1 +Ωi−1pi + ṗi)

(4)

where Ωi ∈ R
2×2 and υi ∈ R

2×1 are the skew symmetric

angular velocity matrix and linear velocity vector respectively

[22]. The angular velocity, ω ∈ R can be derived from

from Ωi, as ωi = Ω
∨

i (see Tab. I for mathematical operator

definitions).

Utilizing (4), the recursive linear body velocity Jacobian,

J
υ
i = ∂υi

∂q̇T

i

∈ R
2×i, and angular body velocity Jacobian, JΩ

i =
∂Ωi

∂q̇T

i

∈ R
2×2i are given by

J
Ω

i = R
T
i

[
J
Ω
i−1

Ri Ri,q
i

]
J
υ
i = R

T
i

[
J
υ
i−1

+ J
Ω
i−1

pi pi,qT

i

] (5)

Utilizing the Jacobians in (5), the angular velocity Hessian,

H
Ω
i =

∂JΩ
i

∂q
i

∈ R
2i×2i is derived in (6) and linear velocity

Hessian, Hυ
i =

∂Jυ

i

∂q
i

∈ R
2i×i is given by

H
Ω

i =

⎡
⎣ R

T
i H

Ω
i−1

Ri 0

R
T
i,q

i

J
Ω
i−1

Ri · · · R
T
i,q

i

Ri,qT

i

· · ·

+R
T
i J

Ω
i−1

Ri,q
i

+R
T
i Ri,qT

i
,q

i

⎤
⎦ (6)

H
υ
i =

⎡
⎣ R

T
i

(
H

υ
i−1

+H
Ω
i−1

pi

)
0

R
T
i,q

i

(
J
υ
i−1

+ J
Ω
i−1

pi

)
· · · R

T
i,q

i

pi,qT

i

· · ·

+R
T
i J

Ω
i−1

pi,q
i

+R
T
i pi,qT

i
,q

i

⎤
⎦
(7)

These kinematic relationships will be used in the derivation

of equations of motion (EoM) in the next section. For a de-

tailed treatment of numerically efficient dynamic formulations,

the readers are referred to [23].

C. Dynamic Model

In this section, we derive the EoM of the system, given by

(8), recursively.

Fig. 6. Schematic of the discrete model. (Left) the discrete jointed reduced
order model of SBA show in the task-space coordinate system, {O}, (Right)
shows the segment variables relative to its body coordinate frame, {Oi},
related physical properties (further detailed in Section III-C).

Mq̈ + (C+D) q̇ +G = τ (8)

where M, C, D, G, and τ are respectively the generalized

inertia matrix, centrifugal and Coriolis force matrix, damping

force matrix, conservative force matrix, and the joint-space

torque applied to each link.

Prior work by the authors in [23] derives the relationship of

individual links of serially arranged robots to the final EoM.

For instance, the M =
∑

Mi with Mi being the generalized

inertia matrix contribution from the ith segment given by

Mi = mi (J
υ
i )

T
J
υ
i + (Jω

i )
T
IωJ

ω
i (9)

where J
ω
i =

(
J
Ω
i

)∨
, mi = m

5
is the mass of one segment.

Considering the SBA as a semi-annular cylinder (shown in

Fig. 2), the moment of inertia of a segment about the local

coordinates is Iω = 1

3
mi

l2
i

25
.

Similarly, C =
∑

Ci and Ci can be derived from Christof-

fell symbols of the second kind [22], which in turn utilizes the

partial derivatives of Mi, given by

∂Mi

∂qh
= 2mi (H

υ
i )

T
h J

υ
i + 2 (Hω

i )
T
h IωJ

ω
i (10)

where (Hυ
i )h = J

υ
i,h and (Hω

i )h = J
ω
i,h.

Following the same cumulative relationship, G =
∑

Gi.

The Gi is derived by assuming a torsional spring at each joint

(this depicts the elastic property of the soft material used in the

fabrication) as Gi=Kbθi where Kb is the fictitious torsional

spring coefficient at the joints.

Considering an semi-annular cross-section and the area mo-

TABLE I
NOMENCLATURE OF MATHEMATICAL OPERATORS

Operator Definition

( ),q Partial derivative with respect to elements of q along the
dimension of q. Eg. if q ∈ Rn×1 and A ∈ Ru×v , then
A,q ∈ Rnu×v and A,qT ∈ Ru×nv respectively.

( )∨ Form the angular velocity vector of R from skew
symmetric angular velocity matrix of R2×2. ( )∧

denotes the inverse operation.
D Form a diagonal matrix from the enclosed vector as the

principal diagonal
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ment of the shape, we can find the point of action to compute

the external torque, τi = pAd where d = 4r2
3π

(d shown in

Fig. 6-B), p is pressure, and A =
πr22
2

is the SBA cross-

section area. Kb and D are computed via an experimental

characterization process, similar to the approach reported in

[23]. Therein, the SBA is supplied rectangular inputs and

the response is recorded. The EoM were implemented in the

Matlab computational environment (non-optimized) and run at

1.5 kHz. The model is solved using the Matlab Simulink plat-

form using the ODE15s solver. Then, we define a cost-function

which is based on the root mean square value of the difference

between the experimental data and simulated output. Utilizing

the Matlab global search framework with fmincon constrained

optimization technique, the model is solved to find the optimal

Kb = 1.6067 and D = 10−3
D ([8, 8, 8, 8, 8]) values.

IV. EXPERIMENTAL VALIDATION

The EoM derived in III-C are then compared against the

experimental data. Fig. 7 shows the step response comparison

for a rectangular pressure signal of 119 kPa for 2.76 s

starting at 0.12 s. The maximum bending associated with

this experiment is shown in Fig. 8-1. The plot shows the

X and Y coordinate trajectories of the 5 tip positions of

the discrete dynamic model (numbered from 1-5). Empirical

results suggest that the numerical model simulates the SBA

well. The abrupt pressure increase causes the SBA to move

suddenly causing the entire arm to oscillate. The oscillation of

the experiments is due to the momentum and compliance of

the SBA. Due to the friction of the system, the step response

is under-damped with oscillation frequency about 5 Hz. Note

that the SBA models proposed so far [13], [18] are yet to

model this behavior at such high frequencies. The proposed

model successfully simulates the SBA response well overall.

Particularly, the model is able to model the under-damped

oscillations along the length of the arm. We can observe some

steady state errors towards the end of the simulation. This is

due to the hysteresis inherent in SBAs. In this model, we have

not considered the hysteresis, but this could be accounted for

via an appropriate hysteresis model, such as the one reported

by the authors in [15].

The next input signal is a rectangular pressure signal of

142 kPa starting and ending at 0.28 s and 2.36 s respectively.

The maximum bending for this pressure input is shown in

Fig. 8-2 and the position coordinate trajectories shown in Fig.

9. This causes the SBA to bend significantly more and, as

a result, exhibits significant overshoot and takes longer to

achieve steady state. Our model correctly simulates the overall

behavior. Some steady state error can be observed in the X and

Y coordinate points of the fifth segment with out of phase

oscillation toward the end.

A third experiment also applies a rectangular pressure signal

of 198 kPa amplitude which starts at 0.4 s and terminates at

2.04 s. This high pressure causes the arm to deform even more

(as shown in Fig. 8-3) and the resulting coordinate trajectories

are included in Fig. 10. As expected of an under-damped

system, this step input causes the SBA to overshoot about

Fig. 7. Experiment one: Comparison of the simulated results against the
experimental results. The subscripts of the X,Y coordinates denotes the task-
space trajectories of the tips of segments relative to {O}.

Fig. 8. Maximum bending of SBA related to Figs. 7 (Left), 9 (Center), and
10 (Right) from the neutral position shown in Fig. 1.

50% (see Y coordinates). The X-5 coordinate does not show

much oscillation but this is due to its displacement at this

pressure being parallel to Y axis (see Fig. 8-3) while the Y-5

and X-1 to X-4 trajectories capture the overshoot. Likewise,

the system again shows oscillatory behavior when the pres-

sure is removed and our model simulates this phenomenon

correctly. To the best of our knowledge, this is the first time

a SBA was subjected to a comprehensive dynamic analysis

and lays the foundation to subsequent dynamic control of

SBA-based soft and continuum robotic systems. The proposed

numerically efficient dynamics could be utilized in real-time

for implementing inverse dynamics control schemes involving

both feedback and feed-forward techniques. In addition, this

numerical framework could be used to model SBA systems for

design optimization to meet desired mechanical and dynamic

characteristics and applications in contact estimation and en-

vironmental sensing [19].

V. CONCLUSIONS

Soft bending actuators have strong potential for applications

in non-structured and human-friendly robotic applications. To

date, their potential has not been realized and the authors

hypothesize that this is due to their lack of controllability

which in turn depends on sophisticated feedback systems and

advanced models. To address the former point, in this work,

we integrate a SBA with FOSS sensor to obtain high fidelity
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Fig. 9. Experiment two: Comparison of the simulated results against the
experimental results. The subscripts of the X,Y coordinates denotes the task-
space trajectories of the tips of segments relative to {O}.

Fig. 10. Experiment three: Comparison of the simulated results against the
experimental results. The subscripts of the X,Y coordinates denotes the task-
space trajectories of the tips of segments relative to {O}.

data of the entire SBA structure at 75 Hz rate to achieve

orders of magnitude better (than state of the art techniques)

sensing of the SBA state-space. To effectively benefit from

this data, we systematically identified and proposed a reduced-

order dynamic model to facilitate real-time computations.

The non-optimized Matlab implementation of the model, runs

at 1.5 kHz (suitable for real-time computations), and was

compared against the experimental data to validate the model.

The proposed model showed good agreement and captures the

dynamic behavior of SBA for different input signals. Based

on this model, our future work will focus on implementing

dynamic control and applications in environmental sensing.
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