
Near-optimal Smooth Path Planning for Multisection Continuum Arms

Jiahao Deng, Brandon H. Meng, Iyad Kanj, and Isuru S. Godage

Abstract— We study the path planning problem for
continuum-arm robots, in which we are given a starting and
an end point, and we need to compute a path for the tip of
the continuum arm between the two points. We consider both
cases where obstacles are present and where they are not.

We demonstrate how to leverage the continuum arm features
to introduce a new model that enables a path planning approach
based on the configurations graph, for a continuum arm
consisting of three sections, each consisting of three muscle
actuators. The algorithm we apply to the configurations graph
allows us to exploit parallelism in the computation to obtain
efficient implementation.

We conducted extensive tests, and the obtained results
show the completeness of the proposed algorithm under the
considered discretizations, in both cases where obstacles are
present and where they are not. We compared our approach to
the standard inverse kinematics approach. While the inverse
kinematics approach is much faster when successful, our
algorithm always succeeds in finding a path or reporting that
no path exists, compared to a roughly 70% success rate of the
inverse kinematics approach (when a path exists).

I. INTRODUCTION

In this paper, we study the path planning problem for
continuum-arm robots. In the path planning problem, we
are given two points, a starting point, and a destination/end
point, and we need to compute a path for the tip of the
continuum arm from the starting point to the destination
point. We consider both cases where obstacles are present
and where they are not.

Continuum arms, such as trunk and tentacle robots, at-
tempt to mimic the biological appendages—like elephant
trunks—and have seen a surge of research in recent years [1],
[2], [3], [4]. These robots lie between the two extremities of
rigid and soft robots and promise to capture the “best” of
both worlds in terms of manipulability/elasticity, degrees of
freedom (DoF), and compliance. Their need spans industrial,
manufacturing, and healthcare applications, in which safe
human-robot collaboration is essential [5], [6], [7], [8].
Despite their demonstrated capabilities in manipulability,
superior performance in constrained spaces, and compliant
operation, their full potential has not been realized yet. This
lag is primarily due to their inherent physical features, which,
while making continuum arms human-friendly, contribute to
complexities in path planning and control.

The authors are affiliated with the School of Com-
puting, DePaul University, Chicago, IL 60604, USA.
{jdeng5,bmeng1,ikanj,igodage}@depaul.edu.

This work was supported in part by the National Science Foundation (NSF)
grant number 1718755 and DePaul University Academic Initiative Pool
grant number 601709.

Fig. 1. Pneumatically actuated multisection continuum arms: (A) OctArm-
IV [9]; and (B) a continuum arm, designed at the Italian Institute of
Technology, handling an object [13].

A continuum arm usually consists of multiple sections,
each consisting of several pneumatic muscle actuators [9],
[10]. Figure 1 shows two pneumatically actuated multisection
continuum arms prototypes assuming smooth bending defor-
mation in each section to achieve complex poses. Due to the
redundancy in the number of DoF they possess, the mapping
between their configuration space (C-Space) and their task
space (W-space) is nonlinear, which makes path planning for
such robots a complex problem. (This redundancy is present
since multiple C-space configurations of the continuum arm
correspond to the same point in its W-space.) As a result,
little work has been done on path planning for continuum
arms [11], [12]. The prevailing mathematical tool used for
path planning relies on inverse kinematics (IK). Due to the
high redundancy alluded to above, IK-based methods are
not reliable, and result in a high failure rate [13], [14].
These methods have the potential of getting stuck in local
minima, especially if obstacles are present in the W-space
(such as in the application depicted in Fig. 1). Indeed, it
has been shown in [14] that IK methods can be unreliable.
Although they have not been applied yet to continuum
manipulators, sampling-based path planning methods present
another possibility for performing path planning (see [15]).
However, we mention that path planning approaches that
are based on sampling the C-space (e.g., PRM and RRT)
suffer from the lack of performance guarantee, and are not
suitable for sensitive applications of continuum-arm robots
(e.g., healthcare applications) [16].

A reliable approach, i.e., one that provides performance
guarantee, for performing path planning is based on the C-
space graph, which captures the whole range of motion of the
entire continuum arm, even in the presence of obstacles. In
such an approach, one chooses proper discretizations of the
W-space and the C-Space, and constructs a mapping from the



C-space to theW-space with respect to these discretizations.
A graph is then constructed, whose vertices are the C-space
configurations and whose edges represent the adjacencies
between configurations with respect to a 1-step variance
in the discretization of the C-space. Path planning is then
performed on this graph and mapped to the W-space. In
general, the issue with the above approach is that it becomes
infeasible for systems with high DoF, as the number of
configurations is exponential.

In this paper, we demonstrate how to leverage the contin-
uum arm features to introduce a new model that enables a
path planning approach based on the C-space graph, for a
continuum arm consisting of three sections, each consisting
of three muscle actuators bundled together. This model
allows discretizations of theW-space and C-space to a high-
fidelity degree, resulting in a reliable and smooth path plan-
ning algorithm. The graph algorithm we apply to the C-space
graph allows us to exploit parallelism in the computation
to obtain efficient implementation. We conducted extensive
tests. The obtained results show the completeness of the
proposed algorithm under the considered discretizations, in
both cases where obstacles are present and where they are
not: The algorithm provides a path between the initial and
final point in the W-space when such a path exists, and
otherwise, reports that no path exists.

Moreover, the algorithm does so within a reasonable
amount of time. We compared our approach to the standard
IK approach. While the IK approach is much faster when
successful, our algorithm always succeeds in finding a path
or reporting that no path exists, compared to a roughly 70%
success rate of the IK approach (when a path exists).

II. SYSTEM MODEL

Figure 2 shows the schematic of an n-section continuum
arm, in which the sections are identical and are enumerated
starting from the base section (index 1) attached to the task-
space coordinate system, {O}. The ith continuum section,
shown in Fig. 3, is actuated by three extending-mode PMAs
that are affixed on rigid terminating plates at either end at
distance r ∈ R+ from the neutral axis, and that are 2π

3
radians apart. Each continuum section has an inextensible
rigid chain of length L ∈ R+ in its neutral axis. The
unactuated length of PMAs is L ∈ R+, and the maximum
length change is lmax ∈ R+. The joint-space vector of
the continuum section is qi = [li1, li2, li3]

T , where lij ∈
[0, lmax] ∀j ∈ {1, 2, 3}. Individual continuum sections are
joined together using rigid joints that introduce σ ∈ R+

0

linear displacement along the +Z axis and γ ∈ R0 angular
displacement about the +Z axis of {Oi}.

Along the length of the continuum section, PMAs are
constrained to maintain ri clearance to the neutral axis.
Consequently, any differential length changes of PMAs due
to different pressure inputs cause the continuum section to
bend in a circular arc or extend (when length changes are
equal). The subsequent derivations rely on the assumption
that the continuum sections bend in circular arc shapes. This
is a reasonable assumption. As shown in [13] and [10],

Fig. 2. (A) Schematic of a general n-section continuum arm and (B)
cross-section of a continuum section showing the actuator arrangement and
inextensible backbone in the neutral axis.

under operating conditions where the continuum arms are
not subjected to large external forces, continuum sections
satisfy this condition.

A. Derivation of a Reduced DoF Mapping

The presence of an inextensible backbone introduces an
over-constrained system. Unlike the pneumatically-actuated
continuum arms without such a backbone (see [10], [9]), for
any ith section, the length changes are governed by∑

klik = 0, (1)

where physically this means that any extension of actuators
results in the contraction of the others.

As a result, without loss of generality, the complete
kinematic model for a continuum section has to be derived
from the principles of force/moment balance. However, in
this work, by utilizing the above constraint, we will introduce
a reduced, two-DoF model. In this approach, we will disre-
gard the third actuator, li3, and instead use li1, li2, and the
backbone length to derive a complete mapping. The objective
of our approach is to reduce the overall DoF of the continuum
arm, without betraying the physical behavior, in order to
explore the graph-theoretic path planning approach proposed
herein.

By definition, the bending of a continuum section can be
described by three curve parameters, the radius λi of the
circular arc, the angle φi subtended by the arc, and the angle
θi between the +X axis and the bending plane [13]. Figure 3
shows the schematic of the ith section bending in a circular
arc with the arc parameters λi, φi, and θi.

Utilizing the arc geometry, we can derive the following
relations between the actuator length changes and the curve
parameters. A similar and detailed exposition of the method-
ology, developed for continuum arms without constraining
backbones, is given in [13].

Li = λiφi,

Li + li1 = (λi − ri sin θi)φi, and

Li + li2 =
(
λi − ri sin

(π
3
+ θi

))
φi.

(2)

By manipulating the relations given in (2), we can derive
the curve parameters as functions of the length changes as



Fig. 3. (A) Schematic diagram showing the actuator and the backbone
arrangement of the continuum arm; and (B) the schematic of the ith

continuum section when looking from an angle normal to the bending plane.

θi = arctan
(
li2
√
3, 2li1 − li2

)
,

φi =
2
√
l2i1 − li1li2 + l2i2

ri
√
3

, and

λi =

√
3Liri

2
√
l2i1 − li1li2 + l2i2

.

(3)

Using (3), the homogeneous transformation matrix (HTM)
for the ith section can be derived as

Ti = RZ (θi)PX (λi)RY (ξiφi)PX (−λi)RZ (θi) · · ·

PZ (σi)RZ (γi) =

[
Ri pi
0 1

]
, (4)

where PX ∈ SE3, RZ ∈ SO3, and RY ∈ SO3 are HTM
that denote translation along the +X axis, rotation about
the +Z and +Y axes, respectively. Ri : (qi, ξi) 7→ SO3 is
the resultant rotation matrix and pi : (qi, ξi) 7→ R3 is the
position vector. The scalar ξi denotes any point along the
neutral axis, where ξi = 0 is the base where {O′i} ≡ {Oi}
and ξi = 1 is the tip of the continuum section. We then
apply the 15th order multivariate Taylor series expansion on
the terms of (4) to obtain a numerically efficient and stable
modal form of the HTM (see [13] ).

B. Actuator Range Derivation

In order to preserve the entire W-space of the continuum
section, the two actuator ranges have

to be modified. For instance, the actual PMAs only extend
during operation, but as we have omitted li3, to describe
the motion contributions of li3, as per (1), we will modify
the ranges of li1 and li2. Under the premise that PMA
extension is proportional to the differential pressure input,
using the resulting curve parameters given by (3) with the
length constraint (1), one can easily derive the correct ratio
of pressures given to PMAs.

Noting the maximum bending, φi,max = π, of the contin-
uum sections, we can find the valid actuator combinations
that result in φi ≤ π, as shown in Fig. 4. We identified
this valid length change range by comparing the actuator
combinations in the range [−0.04, 0.04] for Li = 0.15m
and ri = 0.0125m. The resulting valid actuator range is
give by the rotated ellipse given by

Fig. 4. Actuator range of the reduced mapping.

g (li1, li2) = al2i1 + bli1li2 + cl2i2 + dli1 + eli2 + f, (5)

where a = −0.5766, b = 0.5789, c = −0.5766, d =
0, e = 0, and f = 0.0007. This means that if g(li1, li2) ≥ 0
in (5), then the value pair (li1, li2) is a valid combination,
and results in φi ≤ π.

C. Kinematic Model

Employing the continuum section HTM given in (4) and
the kinematics principles of serial robot chains, the HTM
of the ith section with respect to the W-space coordinate
system {O}, Ti :

(
qi, ξi

)
7→ SE3, is given by

Ti =

i∏
k=1

Ti =

[
Ri pi

0 1

]
. (6)

The HTM in (6) can be expanded to obtain the recursive
form of the kinematics as

Ri = Ri−1Ri,

pi = pi−1 +Ri−1pi,
(7)

where Ri−1 :
(
qi−1

)
7→ SO3 and pi :

(
qi−1

)
7→ R3

is the section tip rotation matrix and position vector of
the preceding continuum section, respectively. Notice the
absence of ξi, as ξk = 1,∀k < i, by the definition of ξi
(see [13]).

III. THE ALGORITHM

We assume familiarity with basic graph algorithms and
terminologies and refer the reader to the textbook [17].

The approach we employ starts by constructing a mapping
between the C-space and theW-space of the continuum arm.
This is done by discretizing the pneumatic pressures of the
three arm-sections to an appropriate granularity level that
allows a feasible enumeration of the corresponding C-space
configurations, without trading off (by much) the quality of
the path planning achieved. After enumerating the C-space
configurations, we construct an auxiliary graph of the C-
space. Path planning is then performed on this auxiliary
graph and mapped back to the W-space. We proceed to the
details.



A. The Auxiliary Graph

We construct an auxiliary graph, GC , whose vertices cor-
respond to the enumerated configurations, and whose edges
correspond to adjacent configurations (i.e., configurations
that are obtained from one another via a one-step variation in
a single DoF). Since one of our goals is achieving smooth
path planning, we associate weights with the edges of the
auxiliary graph that reflect the change in the orientation
between the two configurations that are endpoints of the same
edge. This is quantified by measuring the distance between
two vectors whose coordinates are formed by the six angles
θi and φi (see Fig. 3), corresponding to the three arm sections
(i.e., two angles per section).

B. Path Planning

In the path planning problems under consideration, we are
given two points, a starting point s and a destination t, in a
3-dimensional W-space, and we wish to compute a smooth
s-t path for the continuum arm. We considered both cases:
where the W-space is obstacle-free and where it contains
obstacles.

To perform path planning, we start by discretizing the
W-space by creating a cubic-grid, in which each cube has
the same dimension (1 unit). Given two points s and t
in the 3-dimensional W-space that correspond to two C-
space configurations, between which we wish to compute a
(smooth) path, we first determine the two cubes Qs and Qt
containing s and t, respectively. We then find the shortest—
w.r.t. the Euclidean distance—cube path between Qs and
Qt, which is a sequence of adjacent cubes in the cubic-
grid that starts at Qs and ends at Qt. This step is done by
constructing a graph whose vertices are the cubes in the grid,
and whose edges correspond to adjacent cubes; we refer to
this graph as the cubes-graph and denote it by GQ. An edge
in GQ has a weight equal to the Euclidean distance between
the centers of the two cubes corresponding to the endpoints
of the edge. We then find the shortest path Pst in GQ
between Qs and Qt; this can be done by applying Dijkstra’s
algorithm. Let Pst = (Q0 = Qs, Q1, Q2, . . . , Qr = Qt).
Based on the enumeration of the C-space, we can find the
set of configurations, Ci, whose corresponding points in the
W-space fall within cube Qi, for i = 1, . . . , r; we let C0 be
the singleton containing the configuration corresponding to
the initial point s. In the case where obstacles are present,
we purge from each Ci the configurations that are invalid
because they correspond to a position in which the continuum
arm intersects an obstacle in the W-space. In order to test
that, for each configuration, we keep track of intermediate
points (in the W-pace) along the three sections of the
continuum arm, and use those points to detect an intersection
with obstacles.

The goal now becomes to compute the shortest path in
GC that starts at C0, proceeds to visit a vertex in each Ci,
for i = 1, . . . , r − 1 (in the listed order), and ends up at a
vertex in Cr. To compute such a path, and in order to reduce
memory storage (as storing the whole configurations graph
GC turns out to be quite inefficient) and exploit parallelism,

we employ a shortest-path algorithm that takes advantage
of the structure of the layered graph, GL, whose vertex-set
consists of the configurations in

⋃
i∈{0,...,r} Ci, and edge-

set consists of those edges in GC that join configurations in
consecutive layers Ci, Ci+1, for i ∈ {0, . . . , r− 1}. For this
purpose, we apply a variant of the Bellman-Ford’s algorithm
(see [17] for Bellman-Ford’s algorithm) for computing the
shortest path between the single configuration in C0 and
every vertex in Cr. Here, We do not insist on reaching t,
and settle for any configuration corresponding to a point
in t’s cube, and hence is close enough to t, i.e., within
distance

√
3 · d from t, where d is the cube dimension. The

algorithm starts by initializing the cost for C0 to 0, and for
each other configuration in GL to ∞, which is a sentinel
value that is assumed to be larger than any concrete number.
The algorithm employs the subroutine Relax(u, v), which
operates on edge uv and relaxes uv by updating cost(v)
to become cost(u) + wt(u, v), in case the current value
of cost(v) exceeds cost(u) + wt(u, v). The algorithm then
performs r iterations, where in iteration i, i = 0, . . . , r − 1,
the algorithm relaxes all edges between layer Ci and layer
Ci+1 in GL. (This computation is parallelized by running it
separately on the set of all edges incident to the same node
in Ci+1. Moreover, after iteration i, the vertices in Ci are no
longer useful during the rest of the algorithm, and hence, can
be removed from memory and replaced with those in Ci+2.)
At the end of step r−1, we have computed the shortest path
between the single configuration in C0 and every vertex in
Cr. The shortest path among all those (shortest paths) is then
mapped to an s-t path in the W-space.

IV. IMPLEMENTATION AND RESULTS

We implemented and tested our algorithm on a Windows-
10 computer, with 64-bit CPU, 6 core 3.20 GHz proces-
sor, and 64 GB RAM. Several considerations were made
throughout the project to reduce the CPU and memory load.
First of all, most of the calculations were performed using
the “NumPy” Python library [18]. The array and matrix
operations in “NumPy” are more efficient than the standard
library, as they are optimized to use less memory and CPU
time. We encoded the cube indices and the coordinates of
the points as decimal numbers to save memory. In order to
determine the points in theW-space, given their correspond-
ing configurations, we relied on large matrix multiplication.
To speed up this process, two features were used. First of
all, the matrix is modified so that it can be vectorized; this
has the effect of parallelization without any explicit threads
and improves performance. The other feature we used is
the “JIT” compiler of the Numba Library [19] to improve
performance. (For instance, the function that calculates the
shortest distance between points on the path is aggressively
vectorized.) These techniques brought the time taken to
generate the C-space graph down from 16 hours to 10
minutes. To avoid recalculating the graph each time, we used
the NumPy save function and the “pickle” python library1

1https://docs.python.org/3/library/pickle.html



TABLE I
SUMMARY OF THE NUMERICAL RESULTS.

Scenario # Cases I. K. Rate I. K. Time Alg. Rate Alg. Time
No obstacles 1000 74% 0.01 100% 75.43s
Obstacles 1000 68.67% 0.45 100% 85.55s

to store the graph, cube list, and point list on disk for easy
reuse. Lastly, in order to perform graph operations, we used
the python library “igraph”[20]. This is a high-performance
library that handles all of the graph generation and simple
path planning for the cubes.

To test our algorithm, we discretized the three sections
of the continuum arm; each section has 2 DoF, and each
DoF was uniformly discretized into (roughly) 26 steps. This
resulted in a sampling of 688 configurations for the tip of
each section. Thus, the number of vertices in the C-space
graph is 325, 660, 672. Based on the points in the W-space
corresponding to the sampled configurations, we placed a
bounding box of X-Y -Z dimensions 82 cm×82 cm×74 cm
that contains all these points. This bounding box was dis-
cretized into cubes, each of dimension 1 cm.

We ran 2,000 tests, 1000 tests in which the W-space is
obstacle-free, and 1000 tests in which the W-space contains
either 2 or 3 spherical-shape obstacles. The starting and
ending points of the path were generated randomly from the
W-space (by randomly choosing two configurations), and so
was the center of the spherical-shape obstacles; the radius
of the obstacles was randomly chosen from the interval
[3 cm, 25 cm]. We then located the two cubes containing the
starting and ending points; computed the shortest cube-path
between these two cubes in the cubes graph; and then ran our
algorithm on the corresponding layered graph resulting from
the cubes on this cube-path, as explained in the previous
section.

The IK approach was run on the same generated test
cases. To implement the IK approach, we used the Sequential
Least Squares Programming (SLSQP) method provided in
the Python Scipy Package. This method allows for obstacle
representation using constraints. Table I below summarizes
the results obtained for both approaches. The third column
of the table shows the success rate of the IK approach and
the fourth column shows the average time (in seconds) taken
by the IK approach (overall cases tested). Columns 5 and 6
show the corresponding data for our algorithm (Alg), given
in the previous section.

Figure 5 shows a test case in an obstacle-free space
where both the proposed and the IK approaches succeeded
in finding a solution. Given the (continuous) nature of the IK
approach, the resulting path generated by the IK approach
is shorter and smoother than the one computed by the
proposed approach. (Our approach is limited by the rough
discretizations of the C-Space and W-Space in order to
ensure a feasible computation. The reliability of our approach
stems from the fact that it has apriori access to the entire
(discretized) C-space, which it could use to avoid “knotting”
or running into local minima. As shown in Fig. 6, in this

Fig. 5. Illustrative test case where both the proposed approach (Right) and
the IK (Left) successfully found solutions. No obstacles were present in the
work-space. The Top point is the starting point and the black dot is the end
point.

Fig. 6. An example test case where the proposed approach (Left) converged
to a solution, but the IK (Right) was unsuccessful. No obstacles were
present in the work-space. The rightmost point is the beginning point and
the leftmost black dot is the ending point

example our planner was able to find a path, whereas the
IK approach did not even converge to a solution. It can be
seen that the base and the midsections of the continuum arm
form a Knot [21], as the IK approach tries to minimize the
distance to the target point but the mid and base sections
are already at the maximum bending. Consequently, the IK
approach failed to yield a solution. This is the common
reason behind the failure of IK-based continuum arm path
planners. Since the C-space graph—constructed according to
a proper discretization—allows us to capture a wide range of
motion for the continuum arm covering the entire task-space,
our algorithm has the ability to adjust itself, when started
from certain initial configurations, to reach the destination
point, in situations where the IK approach, starting from the
same initial configurations, is incapable of doing so, and
diverges to points that are far away from the destination
points.

Figure 7 shows a test case with obstacles. Due to the
highly-constrained nature of the problem, unlike the obstacle-
free scenario, in this case, it is not possible to generate
a meaningful shortest path between the starting and end
point. Therefore, in favor of a fair comparison with the
IK approach, we removed the shortest path requirement
so that the IK planner is only required to find a path.
In the IK planner, we formulated the obstacle avoidance



Fig. 7. One scenario in which the proposed planner (top) was able to find
a path from the starting point to the end point amidst obstacles whereas the
IK (bottom) planner failed.

as a constrained function; we considered ten points along
a continuum section (30 points total), and the constraint
function must maintain a positive distance between all the
points and obstacles. In contrast, the proposed planner solves
for the shortest path. As shown in Fig. 7, in this test, the IK
failed to converge. Similarly to the obstacle-free test case
shown in Fig. 6, the IK planner was stuck in a local minima
(knot configuration), whereas, due to the apriori knowledge
of the W-Space, our planner was able to find poses that
circumvent configurations associated with local minima.

Since we generate the obstacles randomly, there is the
possibility of having cases where there is no solution; for
instance, this is the case if the obstacles form a separator
in the W-Space, disconnecting the starting point from the
endpoint. We discarded such cases when computing the
success rate in Table I, and computed the success rate of
IK as a percentage of the successful cases, i.e., in which a
path exists. (Note that, given how our planner works, it is
able to find a solution if there is a path.) Consequently, the
proposed approach is near-optimal and reliable for planning
path of multisection continuum arms in spaces with or
without obstacles. In addition, it facilitates the introduction of
multiple optimization criteria—such as smooth trajectories,
in contrast to the IK approaches, which will increasingly fail
as the number of constraints grow. In future work, we will
explore the possibility of using other optimality criteria, such
as energy efficiency and dynamic stability, for path planning.

V. CONCLUSIONS

Continuum arms have seen a surge of research in recent
years. However, due to the complex and nonlinear kinematics
associated with continuum structures, limited research has
been conducted on path planning. Most of such planners have
been based on inverse kinematics, and therefore resulted in
poor reliability due to their potential of running into local
minima. This paper presented a near-optimal smooth path
planning approach for multisection continuum arms using a
graph-theoretic approach, which is based on a high-fidelity
mapping between the configuration space and the work space
of the arm. The proposed approach was then tested against
the classical IK solvers in work spaces with and without
obstacles. The proposed approach was able to solve the
path planning problems (100% without obstacles) where
the IK consistently reported poor reliability (70% without
obstacles). For tests with randomly placed obstacles in the
work space, the proposed planner reported 100% success

rate where there exists a solution, while the IK yielded 69%
success rate.

REFERENCES

[1] D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker, “Soft robotics:
Biological inspiration, state of the art, and future research,” Applied
Bionics and Biomechanics, vol. 5, no. 3, pp. 99–117, 1 2008.

[2] R. J. Webster and B. A. Jones, “Design and kinematic modeling of
constant curvature continuum robots: A review,” Int. J. Rob. Res.,
vol. 29, no. 13, pp. 1661–1683, 2010.

[3] D. Palmer and D. Axinte, “Active uncoiling and feeding of a contin-
uum arm robot,” Robotics and Computer-Integrated Manufacturing,
vol. 56, pp. 107–116, 2019.

[4] J. L. C. Santiago, I. S. Godage, P. Gonthina, and I. D. Walker,
“Soft robots and kangaroo tails: modulating compliance in continuum
structures through mechanical layer jamming,” Soft Robotics, vol. 3,
no. 2, pp. 54–63, 2016.

[5] S. Haddadin, M. Suppa, S. Fuchs, T. Bodenm
”uller, A. Albu-Sch
”affer, and G. Hirzinger, “Towards the robotic co-worker,” in Robotics
Research, C. Pradalier, R. Siegwart, and G. Hirzinger, Eds. Springer,
2011.

[6] S. Sanan and C. G. Atkeson, “A continuum approach to safe robots for
physical human interaction,” in International Symposium on Quality
of Life Technology, 2011.

[7] M. Zinn, B. Roth, O. Khatib, and K. Salisbury, “A new actuation
approach for human friendly robot design,” I. J. Robotics Res., vol. 23,
no. 4-5, pp. 379–398, 2004.

[8] G. Robinson and J. B. C. Davies, “Continuum robots - a state of the
art,” in Proceedings 1999 IEEE International Conference on Robotics
and Automation, vol. 4, 1999, pp. 2849–2854.

[9] W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I. D. Walker,
B. A. Jones, M. Pritts, D. Dienno, M. Grissom, and C. D. Rahn,
“Field trials and testing of the octarm continuum manipulator,” in
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on. IEEE, 2006, pp. 2336–2341.

[10] I. S. Godage, G. A. Medrano-Cerda, D. T. Branson, E. Guglielmino,
and D. G. Caldwell, “Dynamics for variable length multisection
continuum arms,” The International Journal of Robotics Research,
vol. 35, no. 6, pp. 695–722, 2016.

[11] I. S. Godage, D. T. Branson, E. Guglielmino, and D. G. Caldwell,
“Path planning for multisection continuum arms,” in Mechatronics and
Automation (ICMA), 2012 International Conference on. IEEE, 2012,
pp. 1208–1213.

[12] A. Ataka, P. Qi, H. Liu, and K. Althoefer, “Real-time planner for
multi-segment continuum manipulator in dynamic environments,” in
Robotics and Automation (ICRA), 2016 IEEE International Conference
on. IEEE, 2016, pp. 4080–4085.

[13] I. S. Godage, G. A. Medrano-Cerda, D. T. Branson, E. Guglielmino,
and D. G. Caldwell, “Modal kinematics for multisection continuum
arms,” Bioinspiration & biomimetics, vol. 10, no. 3, p. 035002, 2015.

[14] I. S. Godage and I. D. Walker, “Dual quaternion based modal kine-
matics for multisection continuum arms,” in Robotics and Automation
(ICRA), 2015 IEEE International Conference on. IEEE, 2015, pp.
1416–1422.

[15] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” IEEE Access, vol. 2, pp. 56–77, 2014.

[16] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum robots
for medical applications: A survey,” IEEE Transactions on Robotics,
vol. 31, no. 6, pp. 1261–1280, 2015.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms,, 3rd ed. The MIT Press, 2009.

[18] N. Developers, “Numpy,” NumPy Numpy. Scipy Developers, 2013.
[19] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python

jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC. ACM, 2015, p. 7.

[20] G. Csárdi and T. Nepusz, “igraph reference manual,” URL:
http://igraph. sourceforge. net/documentation. html (accessed April,
vol. 20, 2010.

[21] J. Xiao and R. Vatcha, “Real-time adaptive motion planning for a
continuum manipulator,” in Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on. IEEE, 2010, pp. 5919–
5926.


