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Abstract— Soft Continuum arms, such as trunk and tentacle
robots, can be considered as the “dual” of traditional rigid-
bodied robots in terms of manipulability, degrees of freedom,
and compliance. Introduced two decades ago, continuum arms
have not yet realized their full potential, and largely remain
as laboratory curiosities. The reasons for this lag rest upon
their inherent physical features such as high compliance which
contribute to their complex control problems that no research
has yet managed to surmount. Recently, reservoir computing
has been suggested as a way to employ the body dynamics
as a computational resource toward implementing compliant
body control. In this paper, as a first step, we investigate the
information processing capability of soft continuum arms. We
apply input signals of varying amplitude and bandwidth to a
soft continuum arm and generate the dynamic response for a
large number of trials. These data is aggregated and used to
train the readout weights to implement a reservoir computing
scheme. Results demonstrate that the information processing
capability varies across input signal bandwidth and amplitude.
These preliminary results demonstrate that soft continuum
arms have optimal bandwidth and amplitude where one can
implement reservoir computing.

I. INTRODUCTION

The advancement of bio-inspired soft continuum robots,
featuring high compliance and inherent safety of operation
in contrast to traditional rigid-bodied, precise but often dan-
gerous robots, opens up novel research paradigms [1]–[3].
Continuum robotics is an umbrella term that herein is used
to cover all types of active and physically reactive compliant
systems. In this paper, we mainly focus on continuum robotic
systems that can be bent, twisted and elongated, actively
or passively, during operation. Continuum robots in this
sense have often been made of elastomeric material or
superelastic alloys, allowing them to change their shape with
a few degrees of freedom (DoF) to form complex organic
shapes (in contrast to fixed geometric shapes of rigid-bodied
robots) and to be theoretically able to regulate stiffness over
a broad range. Because of the passive deformation these
robots undergo in the face of external forces, they can be
considered as infinite DoF systems that are highly under-
actuated. Continuum robotics has been a highly active area
of research in the past few years. An impressive number
of prototypes has been proposed over the years [4]–[7].
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Fig. 1. (A) Pneumatically actuated multisection continuum arm designed
at Italian Institute of Technology handling and object, (B) The same arm
bending on a plane [9], and (C) Schematic of the prototype arm showing the
coordinate convention and the output signal points (tip coordinates) used to
record system response in this paper.

Yet control of continuum robots has not received as much
attention, and therefore much of the control of continuum
robots is limited to open loop control. Due to the presence of
infinitely many DoF associated with inherent compliance, it
became clear that controlling continuum robots are challeng-
ing. Kinematic control has been implemented on continuum
robots wherein the robots are moved slowly in order not to
invoke the compliance related oscillatory behaviors [8]. As
a result, despite their enormous potential as human-friendly
manipulators, continuum arms are primarily restricted to lab
spaces, with their full potential remained to be realized.

Related to complex and compliant system control, a po-
tentially ground breaking application is the study of mor-
phological computations in which a robotic system uses its
body dynamics (that are dependent on the configuration and
physical properties such as stiffness and damping) to simplify
control computations [10], [11]. In other words, some aspects
of control can be outsourced to the body, using it as a
computational resource, with the notion that these dynamic
functions are already “encoded” within it. This approach
can drastically reduce the complexity of the robot’s system
dynamics computation and the corresponding control prob-
lems. A classic example of such embodied morphological
intelligence related locomotion control is observed when
the body of a dead fish starts swimming upstream when
exposed to flowing water [12]. We can conclude that a fish
can “outsource” the bulk of the neuromuscular coordination
tasks to the “body”, without continuous oversight by the
central nervous system, when the environmental conditions
(hydrodynamic vortices) are right.



Recent works on morphological computational aspects for
soft bodies [13]–[20] has shown that the mechanical proper-
ties of such infinite-dimensional bodies can be exploited as
real-time computational assets. This approach is related to
the reservoir computing framework [21]–[23]. The idea of a
reservoir computing is to map inputs to a high-dimensional
dynamics, which acts as a finite and temporal kernel, so that
the features of input signal can be linearly separable, and
the learning is achieved solely by adjusting the linear and
static readout weights attached to the reservoir dynamics.
Conventionally, this reservoir dynamics is designed using
a huge recurrent neural network in the software program
running on a PC, and this approach has been used to control
soft robots [24]–[27]. Recently, the physical implementations
of the reservoir have been demonstrated including the diverse
dynamics of soft body [13]–[20]. In this approach, just
like the conventional reservoir computing, the physical soft
body dynamics monitored as sensory signals is used as
a reservoir dynamics and for temporal machine learning.
Once a successful mapping is identified through the learning
process of the readout, the physical system itself can be used
to run the required function, which could be also used for
control by incorporating the feedback loop from the physical
body [15], [16]. without the addition of any nonlinearity or
memory required from external controller, such as recurrent
neural networks.

The emulatability of required function or the expressive
power of such mapping is termed as the systems’ information
processing capability in this paper. Another key benefit of
reservoir computing is that it is faster to train than traditional
recurrent neural networks due to the simple learning schemes
associated with it. In this paper, we will apply reservoir com-
puting principles to investigate the information processing
capability of the soft continuum arm shown in Fig. 1-A & B.

II. SYSTEM MODEL
A. Prototype Description

Each of the three continuum sections of the arm shown in
Fig. 1-A are powered by three pneumatic muscle actuators
(PMA). Each PMA is 0.15 m when unactuated and can
extend up to 0.065 m at 600 kPa input pressure. A PMA is
constructed from silicone rubber tube (inner diameter 7.5 mm
and outer diameter 9.5 mm) as the PMA containment layer
and polyester braided sheath (7 mm to 17 mm diameter
range) as the outer layer to control the radial expansion
and obtain extension. Nylon union tube connectors of inner
diameter 4 mm are used to seal the Silicone tubes and
facilitate air flow. More information about the fabrication
of PMAs can be found in [28]. The PMAs of a single
continuum section are mounted at 120◦ apart from each other
and constrained in such a way that they maintain 0.0125 m
length from the neutral axis (a hypothetical line that runs
in the center of the arm cross-section). The 3D printed
joints that connect adjacent continuum sections introduce a
60◦ angle offset about the neutral axis (+Z axis of {Oi}).
We use rigid plastic constrainers to maintain the PMAs in
parallel to the neutral axis and provide improved torsional

stiffness to minimize the possible deviations from constant-
curvature deformation when operating under the influence of
gravity. Each continuum section, inclusive of the tubing and
constrainers has an approximate mass of 0.13kg.

The pressure supply to the PMAs are precisely controlled
by 9 digital proportional pressure regulators at 20 Hz that
output pressures proportional to analog voltage signals be-
tween 0-10 V. The voltage signals are generated using a
National Instrument PCI-6704 data acquisition card. The
continuum arm motion in the workspace is tracked by using
a Polhemus G4 wireless magnetic tracking system. The
tracking system allows high speed 6 DoF motion tracking
at 100 Hz without subjected to occlusions (due to complex
deformations) common in image-based tracking. In total, we
mounted four trackers (two on the joints and one each on
the origin and the tip of the end-section, see Fig. 1-C). The
sensing and actuation are controlled by a Matlab Desktop
Realtime Simulink model implemented on Matlab 2018a.

B. Dynamic Model

The information capacity search requires large number of
data, typically involving more than 5000 randomly generated
sample points at different amplitudes and fundamental signal
frequencies (bandwidths). As reported in [28], [29] PMAs
have a pressure deadzone, close to 100 kPa, where little to
no extension is observed. The reason is that, in the pressure
deadzone, the Silicon bladders undergo radial expansion
within the braided mesh. Thus, the pressure range mapped
to length changes is [100 kPa,600 kPa] and we define 6
pressure amplitudes in that range (in 100 kPa intervals).
Similarly, given the prototype arm’s oscillatory behavior
and the ability to respond quickly to fast input pressure
signals, we define 7 time periods (1/8, 1/4, 1/2, 1, 2, 3,
and 4) in which we will generate the systems responses.
Further, for each combination of amplitude and time period,
it is recommended to conduct number of trials to remove
any bias from the input signals. Consequently, generating
these results on the prototype robotic arm, particularly in
the proof of concept stage, is not feasible. For instance, to
generate 20 trials of 5,000 samples at fundamental period
(bandwidth) 4 s, it will take 4 × 105 s. Therefore, the
dynamic model developed for the prototype arm, detailed
in [29], [30], is used to generate the dynamic responses.
The dynamic model was developed using the principles of
integral Lagrangian formulation and runs at sub real-time
efficiency. The model has been experimentally validated
for step pressure responses, which included out-of-plane
bending. In addition, the model, which was based on the
constant-curvature assumption, maintained that assumption
throughout those experiments. The model was implemented
on Matlab Simulink 2018a. The input signals were then
randomly generated, applied to the Simulink model, and
the joint positions were calculated (joint-space variables are
applied to the kinematic model [9]), and recorded. These data
are then used in the processing stage, detailed in Sec. III-B.



III. METHODOLOGY

A. Dynamic Response Generation

The dynamic model of the prototype soft continuum arm
shown in Fig. 1, as detailed in [29], is given by

Mq̈ +Cq̇ +Dq̇ +G = F (1)

where M ∈ R9×9 is the generalized inertia matrix, C ∈
R9×9 is the centrifugal/Coriolis force matrix, G ∈ R9 is the
conservative force vector, and F ∈ R9 is the input force
vector. Physically, F is the forces generated by the fluidic
actuators.

We first generate a random input signal u with time steps
of τ . Any u (k) value of the input signal is kept constant
until the next sample, u (k + 1).

Upon applying the input signal (pressures) to relevant
PMAs, we measure the system response (i.e., motion) of
the arm. We measure the position coordinates of each of the
continuum section tips (see Fig. 1-C) and recorded at τ/10
bandwidth. The choice for 10× sampling rate (relative to
the input signal bandwidth) ensures that the readout data is
faithful to the actual motion of the arm in the range of τ we
consider in this work. Otherwise, due to the fast dynamics
of the prototype continuum arm (as documented in [29]), the
recorded data will be incomplete and yields incorrect results.
For instance, Fig. 2-B shows the plots of the input (top) and
output coordinate (bottom) trajectories for τ = 0.5. It can
be seen that the smooth output data will be lost had the data
were recorded at the input signal bandwidth τ = 0.5 instead
at τ = 0.05.

B. Information Processing using the soft continuum arm

We here explain how to use the dynamics of our soft con-
tinuum arm as a computational resource (i.e., as a reservoir).
In this work, we only consider injecting the input stream (the
motor commands) to the base section of the continuum arm
(see Fig. 1). The reason for this selection is two fold. First,
it reduces the complexity of the input signal (3 in contrast to
9 signals). Second, because the sections are attached serially,
base section has influence over the successive sections. As
a result, we can observe the physical excitation propagates
along the length of arm via the compliant structure (see [31]–
[33] for examples).

The input stream is injected to our system as addition of
forces to the PMA actuators (also can be considered as active
springs due to their high compliance) of the base section (the
nearest to the base) with input weights Win = [wx wy wz]

T .
Throughout our analysis in this study, we use random real
value in the range of [0, 1] for the input uk at timestep k. This
is to avoid adding temporal correlations from the external
signals, which is important when analyzing the information
processing capability of the arm itself. Furthermore, to see
the effect of the amplitude of the input forces, input weights
are assigned randomly from the range of 0 < wx, wy, wz <
A, and the parameter A is controlled. This input is then
transformed to a pressure signal by multiplying the amplitude
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Fig. 2. Schematics showing the information processing scheme using the
arm (A) and the typical body dynamics generated by the random motor
commands (B). For (B), the upper plot shows the input series and the lower
plot shows the corresponding normalized sensory time series. The parameter
of the arm is set to (A, τ) = (2, 0.5).

of the pressure signal, A. The forces acting on the PMAs are
then found by calculating the area over which the pressure
is applied, Aπr2 where r = 8mm is the mean radius of
PMAs during actuation. The corresponding outputs to this
input stream are generated by the weighted sum of the joint
coordinates (we call these, sensory values, {six, siy, siz}, for
section i), which act as computational nodes in our setup
(Fig. 2A). This implies that we have three sensory values
for each section, and since we have three sections in this
study, we have nine sensory values in total (Fig. 2B).

Here, we set parameter τ to regulate the timescale of
each I/O computation (that is, a single timestep), in which
a single computation takes the time range of τ [s] (Fig.
2B). Accordingly, we divide each time range τ into 10
fragments and correspond each sensory value (e.g., {s1x(kτ+
(τ/10)), s1x(kτ + 2 ∗ (τ/10)), ..., s1x(kτ + 10 ∗ (τ/10)}) to
the input uk. This implies that 10 values are fragmented
for each sensory value, which samples 9 × 10 = 90 values
in total. Using these sampled data, 90 computational nodes
{x1k, x2k, ..., xik, ..., x90k } in total were prepared with reconfig-
ured numbering i. Now, according to the inputs uk provided
to the system, the corresponding output yk is calculated as
yk =

∑90
i=0 w

i
outx

i
k, where x0k is set to 1 as a bias term and

wiout is the readout weight of the i-th computational node.
In the reservoir computing framework, the learning of

the target function ŷk is conducted by adjusting the linear
readout weights wiout. During the training phase of the
weights, the input stream is provided to the system, which
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Fig. 3. Typical performances for NARMA tasks. Random input sequence
(the upper line), the corresponding reservoir dynamics from 90 compu-
tational nodes prepared from the arm (the second upper line), and the
corresponding target and system outputs are plotted for each NARMA task.
The case for (A, τ) = (6, 1) is shown for example with RMSE of 5.3e−4,
7.2e−3 and 1.1e−2 respectively.

then generates the arm motions, and the corresponding
sensory time series is collected together with the target
outputs for supervised learning. In this study, we apply a
ridge regression, which is known as an L2 regularization,
to obtain the optimal weights. In the evaluation phase, using
the optimal readout weights, we drive the system with a new
input stream and generate the system output, which is then
used for the analysis of the performance. Throughout our
experiments in this study, the washout phase, the training
phase, and the evaluation phase are set to 500 timesteps,
2000 timesteps, and 2500 timesteps, respectively.

IV. RESULTS

In this section, the information processing capability of
the soft continuum arm is investigated using numerical
experiments. By using a benchmark task, frequently used
in a machine learning context that evaluates the capability
to emulate nonlinear dynamical systems called nonlinear
auto-regressive moving average (NARMA) system, and by
assessing the linear and non-linear memory capacity, we
demonstrate how the parameter (A, τ) affects the perfor-
mance of our system systematically, where A is varied from
1 to 6 and τ is varied as 0.125, 0.25, 0.5, 1, 2, 3, and 4. The
evaluation schemes adopted here are popular in the context
of recurrent neural network learning.

A. Performance of NARMA tasks

The NARMA task is a benchmark task that is commonly
used to evaluate the computational capability of the learning
system to implement nonlinear processing with long time
dependence. By calculating the deviations from the target
trajectory in terms of errors, the NARMA task tests how
well the target NARMA systems, which we introduce later,
can be emulated by the learning system. According to the
choice of the target NARMA system, we can investigate
which type of information processing can be performed in the
learning system. The first NARMA system that we examine
is a second-order nonlinear dynamical system [34], expressed
as follows:

yk = 0.4yk−1 + 0.4yk−1yk−2 + 0.6u3k + 0.1, (2)

and this system is called NARMA2 in this paper. The
next NARMA system is the nth-order nonlinear dynamical
system, which is written as follows:

yk = ayk−1+a
′yk−1(

n−1∑
j=0

yk−j−1)+a
′′uk−n+1uk+a

′′′, (3)

where (a, a′, a′′, a′′′) = (0.3, 0.05, 1.5, 0.1). The order of
the system n is varied from 3 to 9 in this experiment, and
the corresponding systems are called NARMAn systems for
simplicity. For the input stream to the NARMA systems, the
range is linearly scaled from [-1, 1] to [0, 0.2] in order to
set the range of yk into the stable range. The performance
is evaluated by comparing the system output with the target
output in the evaluation phase using the normalized mean
squared error (NMSE), expressed as follows: NMSE =∑5000

k=2501(ŷk−yk)
2∑5000

k=2501 ŷ
2
k

, where ŷk and yk are the target output and
the system output at timestep k, respectively. For each setting
of (A, τ), NMSEs for 20 trials, where the system is driven
by a different random input sequence for each trial, are
calculated and averaged for the analysis.

Figure 3 shows typical system outputs for the NARMA
tasks in the evaluation phase, where the parameter is set
to (A, τ) = (6, 1). We can see that, in particular for the
NARMA2 emulation task, our system successfully traces the
target NARMA system, and according to the increase of the
order of the NARMA system, the overall task performance
is gradually getting worse, suggesting the increase of the
difficulty of the tasks. In Fig. 4, we have investigated the
performance of the system in terms of NMSE systematically
for each (A, τ) setting. We can clearly observe that, accord-
ing to the order of the NARMA system, the tendency of the
performance differs by the selection of the parameter (A, τ).
For example, for the NARMA3 task, the case for τ = 1
showed the lowest NMSE, which suggests the highest per-
formance, while other tasks showed the highest performance
when τ = 0.125. (The NARMA2 task also showed a good
performance (although it was not the best) when τ = 1.)
These results imply that how to actuate the arm strongly
affects the type of the information processing capability,
which can be induced from the arm. We should note that
one common tendency observed was that the parameter τ



Fig. 4. Analyses of the performance of NARMA tasks in terms of NMSE according to each setting of (A, τ).

affected more dominantly than the amplitude of the input
A to the task performance in this experimented parameter
region.

B. Analysis of Linear and Nonlinear Capacities

Considering the fact that the information processing ca-
pability of reservoir dynamics can be characterized by its
property of transforming the input stream, it has been pro-
posed to express the system’s information processing ca-
pacity by evaluating its emulatability of nonlinear functions
over the input stream [35]. These functions are expressed
as combinations of orthogonal functions, such as Legendre
polynomials or Hermite polynomials, over each differently
assigned delayed inputs. In this approach, the system’s
computational capability is decomposed into the degree of
nonlinear processing and memory of the input that the system
is capable to express. By exploiting the orthogonal functions,
the computational capability can be safely decomposed into
several nonlinear functions without overlaps. In this paper,
we do not investigate all the combinations of Legendre
polynomials of the previous inputs, but exploit n-th order
Legendre polynomials for each delay of input expressed as:

Pn(uk−d) = 2n
n∑

m=0

umk−d

(
n
m

)(
n+m−1

2
n

)
, (4)

where
(
n
m

)
is a binomial coefficient, and uk−d is the input

of d timesteps before from the timestep k. In this study,
we varied the value of n from 1 to 10, and the delay d
is varied from 0 to 50 and investigated how our system is
capable of learning each polynomial systematically. Note that
when n = 1, the polynomial becomes linear and it becomes
equivalent to the case introduced in [36].

For the n-th order Legendre polynomials emulation task,
using the system output time series, in each target function

with given delay d, we calculate memory function of de-
gree n, expressed as follows: MFnd = cov2(yk,ŷk)

σ2(yk)σ2(ŷk)
, where

cov(x, y) and σ(x) express the covariance between x and y
and the standard deviation of x, respectively. Then, the n-
th order memory capacity Cn can be expressed as follows:
Cn =

∑50
d=0MFnd . By using the measure MFnd and Cn,

we aim to evaluate the information processing capability of
the our system. For each setting of n and d of the target
Legendre polynomials, the learning scheme is exactly the
same as explained previously, and, by using the 20 trials,
the averaged MFnd and Cn are obtained for the analyses.

From the analyses of Cn, we first found that when n is
larger than 6, the value approaches to zero in all of the inves-
tigated parameter region. This expresses the limitation of the
expression power of the functions in our system. Figure 5
shows the results for n = 1, 2, and 3 for example. As we saw
in the NARMA task, according to the degree of nonlinearity
n of the target function, we can clearly observe that the
parameter region showing the highest capacity differs. For
example, we can see the highest C1 when τ = 0.125, while
the highest C2 can be observed in τ = 0.5 (Fig. 5, left
diagram in each line). By increasing the degree of n higher
than 3, we tend to observe the highest value in the parameter
region where τ is larger than 1 and the input amplitude
A is larger than 4. Basically, as we saw in the case for
NARMA task, the behavior of Cn was more dependent on
the parameter τ than A, but for the degree of nonlinearity
n larger than 3, the effect of the input amplitude A became
dominant in the region of the high τ . Checking the MFnd
profile, we can see that, in this region, the memory function
when d = 0 is dominant, which means the immediate
effect of input injection to the arm is exploited for the task
performance (Fig. 5).



degree 1

C

τ

τ

degree 2

degree 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

A=1
A=2
A=3
A=4
A=5
A=6

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14

τ=0.125
τ=0.25
τ=0.5
τ=1
τ=2
τ=3
τ=4

memory capacity memory function

M
F d

d

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

C

 0

0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14

M
F d

τ=0.125
τ=0.25
τ=0.5
τ=1
τ=2
τ=3
τ=4

d

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

C

τ

 0

0.2

0.4

 0.6

0.8

 1

 2  4  6  8  10  12  14
d

τ=0.125
τ=0.25
τ=0.5
τ=1
τ=2
τ=3
τ=4

M
F d

A=1
A=2
A=3
A=4
A=5
A=6

A=1
A=2
A=3
A=4
A=5
A=6

Fig. 5. Analyses of linear and nonlinear memory capacities and typical
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V. CONCLUSIONS

Due to high compliance, soft continuum arms have im-
mense potential for applications in spaces with human
presence. However, as a result of high compliance (pas-
sive DoF), control of such manipulators is still an open
challenge. Learning-based approaches such as morphological
computation and reservoir computing have shown promise
to surmount this problem. In this paper, we investigated the
information processing capability of a PMA powered soft
continuum arm. We applied randomly generated input signals
of 5000 sample points with varying amplitude and bandwidth
to an experimentally validated dynamic model and recorded
the system response. Using a benchmark task, which evalu-
ates the capability to emulate nonlinear dynamical systems
called nonlinear auto-regressive moving average (NARMA)
system, and by assessing the linear and nonlinear memory
capacity, we demonstrated how the parameter (A, τ) affects
the performance of our system systematically. The results
show that there are combinations of amplitude and bandwidth
which operates the continuum arm in a domain most suited
for reservoir computation based control implementation. In

future work, we will extend these qualitative results to
validate the findings experimentally.
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