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Center of Gravity-based Approach for Modeling
Dynamics of Multisection Continuum Arms
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Abstract—Multisection continuum arms offer complementary
characteristics to those of traditional rigid-bodied robots. Inspi-
red by biological appendages, such as elephant trunks and oc-
topus arms, these robots trade rigidity for compliance, accuracy
for safety, and therefore exhibit strong potential for applications
in human-occupied spaces. Prior work has demonstrated their
superiority in operation in congested spaces and manipulation of
irregularly-shaped objects. However, they are yet to be widely
applied outside laboratory spaces. One key reason is that,
due to compliance, they are difficult to control. Sophisticated
and numerically efficient dynamic models are a necessity to
implement dynamic control. In this paper, we propose a novel,
numerically stable, center of gravity-based dynamic model for
variable-length multisection continuum arms. The model can
accommodate continuum robots having any number of sections
with varying physical dimensions. The dynamic algorithm is of
O

(
n2

)
complexity, runs at 9.5 kHz, simulates 6-8 times faster

than real-time for a three-section continuum robot, and therefore
is ideally suited for real-time control implementations. The model
accuracy is validated numerically against an integral-dynamic
model proposed by the authors and experimentally for a three-
section, pneumatically actuated variable-length multisection con-
tinuum arm. This is the first sub-real-time dynamic model based
on a smooth continuous deformation model for variable-length
multisection continuum arms.

Index Terms—continuum arms, dynamics, center of gravity,
real-time

I. INTRODUCTION

R IGID-bodied robots have been the backbone of the robo-
tic industrial revolution which has not only significantly

improved throughput but also relieved humans of most of the
mundane, repetitive, dangerous, and dirty tasks of assembly
lines. Rigid-linked industrial robots have high payload capa-
city and precision superior to human capabilities. However,
the lack of compliance of rigid robots renders them dangerous,
and therefore industrial robot task-spaces are often restricted of
human presence. In addition, due to the structural rigidity, they
are poorly adaptable to environmental interaction and yield
poor performance in unstructured environments [1]. There is
currently great interest in robots that work cooperatively with
humans [2], which implies a need for inherently human-safe
robotic manipulators. Continuum robots have been proposed
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Fig. 1. Examples of pneumatic muscle actuator (PMA) powered variable-
length multisection continuum arms. (a) the continuum arm developed at the
Italian Institute of Technology is used to validate the dynamic model proposed
in this paper [10], (b) OctArm-IV [11] continuum manipulator developed at
Clemson University.

as a potential solution to serve niche applications where
adaptability, compliance, and human safety are critical [3].
In this paper, we refer to continuum robots as those robotic
structures that lack rigid frames and generate motion through
smooth, continuous structural deformation, such as the robots
reported in [4]–[9].

Continuum arms are inspired by biological appendages
such as elephant trunks and octopus arms. Such muscular
structures are highly deformable and able to achieve com-
plex geometrical shapes. Despite being made entirely out of
muscles, they demonstrate compelling benchmarks in terms of
forces and precision of operation [12]–[16]. Often constructed
from elastic material, continuum arms aim to imitate such
behavior by generating complex smooth geometric shapes
through structural deformation. The smaller continuum robots
target operation in smaller spaces such as inside human bodies
during minimally invasive surgeries [17], and are actuated by
elastic tubes or tendons. The larger variants, constructed to
handle macro or human body scale objects are often powered
by pneumatic muscle actuators (PMA). PMA’s, also known
as McKibben actuators have a number of desirable features,
such as ease of design, fabrication, and high power-to-weight
ratio, and therefore are sought after in continuum arm designs.
In this paper, we focus on PMA powered variable-length
multisection continuum arms. There are several key features
common to this type of manipulator. Unlike tendon-actuated
continuum arms, they are fabricated by serially stacking con-
tinuum sections where each continuum section consists of
multiple PMAs (typically three, though four actuators are also
possible [6]) and are capable of generating omnidirectional
bending deformation independent of other sections. Since there
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are no backbones, continuum sections undergo axial length
changes, extend or contract, depending on the PMA operation
mode. Figure 1 shows a couple of variable-length multisection
continuum arm prototypes. Due to their unique mechanical
characteristics, deriving mathematical models for these robots
has been a challenge.

A. Prior Work on Dynamic Modeling of Continuum Arms
Early continuum-style (which are not truly continuum wit-

hout continuously bending deformation) robots have been
discretized rigid structures [18], [19] that mimicked smooth
bending. The computational constraints that prevailed at the
time motivated numerically efficient parametric or modal
approaches [20]. However, such low dimensional methods did
not fully capture the complete task-space and suffered from
numerical instabilities [21]. Other early continuum-style robots
and discrete-link dynamic models include [5], [14], [22].

Cosserat rod theory has been proposed to model quasi-
statics of tendon actuated inextensible flexible backbone and
concentric continuum robots. The works in [6], [23] model
the dynamics of a multibending soft manipulator. But due
to the complexity of deformable bodies, the methods repor-
ted inefficient simulation times. The work reported in [24]
utilized elliptic integrals to develop kinematics and statics
of miniature single continuum section. Kane’s method was
used in [25] to model the dynamics of a tendon-actuated
continuum manipulator. The work in [26] validated a planar,
static Cosserat rod model for PMA-actuated variable-length
multisection continuum arms.

Another avenue to derive equations of motion (EoM) is to
utilize energy-based methods such as the Lagrangian formu-
lation. During operation, the relative displacement between
points of a continuum body varies and thus limits the use
of numerically efficient algorithms [27]. Theoretical models
for inextensible, rope-like mechanisms were proposed in [28],
but continuum arms have multiple degrees of freedom (DoF).

The kinematic model reported in [29] laid the foundation
for curve parametric models for variable-length continuum
arms. Nonetheless, the use of circular arc parameters resul-
ted in complex nonlinear terms and numerical instabilities
for straight-arm poses to limit the model’s extensibility for
modeling dynamics. For an in-depth treatment of the limitati-
ons of curve parametric models, see [10]. An energy-based
derivation of planar dynamic models for OctArm variable-
length continuum manipulator [11] were reported in [30], [31].
However, continuum arms are capable of spatial operation, and
the models were not experimentally validated. In addition, the
resulting EoM were nonlinear, complex, and of integral nature,
and therefore numerically inefficient and unstable.

Prior work by the first author proposed a modal method to
overcome the numerical instabilities and inefficiencies present
in curve parametric models [32]. Therein, the terms of the
homogeneous transformation matrix (HTM) of continuum
sections were approximated by multivariate polynomials [10],
[32] where the degree of polynomials could be chosen to
meet desired error metrics. The model laid the foundation for
formulating EoM of variable-length continuum sections [33]–
[35]. The extended recursive formulation was later validated

for a variable-length multisection continuum manipulator [36]
where the integral terms are presolved to improve numerical
performance.

Numerically efficient (via rigid body dynamic algorithms)
lumped models have also been applied for continuum robots.
However, such models require a large number of discrete
joints to approximate the deformation [14], [22], [37]. Some
work has attempted to trade numerical efficiency for modeling
accuracy by using relatively few rigid segments [38], [39].
However, such lumped parametric approaches lose unique
features of continuum arms such as smooth bending.

The key motivation of this paper is to introduce a lum-
ped model without betraying the continuous nature of the
resulting expressions. Our prior work introduced a center of
gravity (CoG) based modeling approach for a single section
continuum arm [40], [41]. Therein, the EoM were derived for
a point mass at the CoG of the continuum section. Thus,
instead of an integral formulation, the process resulted in
a compact model and superior numerical efficiency. In the
derivation process, due to the physical dimensions of the robot,
we did not consider the angular kinetic energy as the energy
contribution was less than 3%. But this will not be the case
for all continuum arms. Besides, the model was limited to a
single section continuum arm where multisection continuum
arms are required for performing useful tasks such as whole
arm manipulation [42] and spatial trajectory tracking [32].

B. Contributions
In this work, we extend and generalize our CoG-based

spatial dynamic model derived for a single continuum section
[41], evaluate against the integral dynamics proposed in [36]
to verify the numerical accuracy and computational efficiency,
and validate the model against spatial dynamic responses of
the prototype arm shown in Fig. 1a. Beyond our prior work
reported in [36], [40], [41], the proposed dynamic model;
(1) theoretically accommodates variable-length multisection
continuum arms with any number of sections and a wide range
of length and radii combinations, (2) considers both linear and
angular kinetic energies of a continuum arm at the CoG for
better energy accuracy, (3) achieves energy matching via a
series of energy shaping coefficients that are constant for any
variable-length multisection continuum arm, (4) employs the
results from [36] to systematically and recursively derive the
EoM, (5) demonstrates O

(
n2
)

complexity for the first time for
a dynamic model for a three-section continuum arm based on
continuous (non-discretized) deformation representation, (6)
runs at 9.5 kHz (step execution rate), and (7) achieves sub real-
time dynamic simulation in Matlab Simulink environment.
Therefore the proposed model unifies the ideas of lumped
parametric approaches of discrete rigid-bodied robotics and
continuous (integral) approaches of continuum robotics and is
expected to lay a strong numerical and algorithmic foundation
for implementing real-time dynamic control schemes.

II. KINEMATICS OF CENTERS OF GRAVITY

A. System Model and Assumptions
Tables I and II list the nomenclatures of mathematical

symbols and operators employed in this paper. Figure 2a
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TABLE I
NOMENCLATURE OF MATHEMATICAL SYMBOLS

Symbol Definition
i Continuum section index].
[ ] Refers to the center of gravity-related terms

ri, Li,lij Radius, original length, and jth actuator length change
q,qi,q

i Complete, ith, and up to ith section joint-space vector∗

{O},{Oi},
{
O′i
}

Task, base, and moving coordinate frames
Ti,pi,Ri HTM‡, position, and rotation matrices relative to {Oi}
Ti,pi,Ri HTM, position, and rotation matrices relative to {O}

ξi Scalar to define
{
O′i
}

along the continuum section
mi Mass of continuum section

K, Ki Total and ith section kinetic energy
Kωi , Kυi Angular and linear kinetic energies of continuum section
βωj , βυj Energy shaping coefficients ∀j ∈ {1, 2, 3}
P , Pi Total and ith section potential energy

Mυ
i , Mω

i Disc linear and angular inertia matrices
M, C Complete inertia and Coriolis/Centrifugal matrices

Mυ
i , Mω

i Generalized linear and angular inertia matrices
Cυ
i , Cω

i Linear, angular Coriolis/Centrifugal force matrices
G,Gi Complete, ith section conservative force vectors

Jυi ,Hυ
i Linear velocity Jacobian and Hessian w.r.t to

{
O′i
}

JΩ
i ,HΩ

i Angular velocity Jacobian and Hessian w.r.t to
{
O′i
}

Ke
i Elastic stiffness coefficient matrix
τ Complete input force vector in the joint-space
I3 Rank 3 identity matrix

] Subscript i represents the ith continuum section parameters whereas
superscript stands for terms associated with up to the ith continuum section.
∗Lowercase, boldface italics (i.e., qj ) denote vectors and regular lowercase
italics (i.e., lijor h) denote vector/matrix elements or constants. Matrices are
denoted by boldface uppercase letters (i.e., T, Mω

i )
‡ Homogeneous transformation matrix (HTM).
All quantities are represented in metric units.

shows the schematic of a multisection continuum arm with
n ∈ Z+ sections. The sections are numbered starting from the
base continuum section (index 1) attached to the task-space
coordinate system, {O}. Any ith continuum section (Fig. 2b)
is assumed to be actuated by three extending PMAs which are
mounted on plates situated at either end at ri ∈ R+ distance
from the neutral axis and 2π

3 rad apart. Let the unactuated
length of PMAs be L ∈ R+, the maximum length change
lmax, and the joint-space vector of the continuum section,
qi = [li1, li2, li3]

T where lij ∈ [0, lmax] ∀j ∈ {1, 2, 3}.
The joint where the (i+ 1)

th continuum section is attached
introduces σi ∈ R+

0 linear displacement along and γi ∈ R0

angular displacement about the +Z axis of {Oi}. As the PMAs
are constrained to maintain ri clearance normal to the neutral
axis, differential length changes cause the section to bend or
extend (when length changes are equal) [11]. The subsequent
derivations rely on the assumptions that the continuum secti-
ons: (1) bend in circular arc shapes, (2) have no backbone,
(3) have constant circular cross-section, (4) are kinematically
independent, and (5) have constant mass mi ∈ R+ and
variable, but uniform linear density1. In addition, PMAs were
operated high pressure (high stiffness) and mounted vertically
to ensure constant-curvature deformation. Similarly, in appli-
cation situations involving object manipulation, velocity and
payload bounds can be enforced to achieve the same.

1These are reasonable assumptions under typical operating conditions
without large external forces as shown in [10] and [36].

TABLE II
NOMENCLATURE OF MATHEMATICAL OPERATORS

Operator Definition
( ),q Partial derivative with respect to elements of q along the

dimension of q. Eg. if q ∈ Rn×1 and A ∈ Ru×v , then
A,q ∈ Rnu×v and A,qT ∈ Ru×nv respectively.

( )∨ Forms the velocity vector from skew-symmetric angular
velocity matrix∫
Integration from 0 to 1 with respect to ξi

T2 Trace operator (involving only the first two diagonal
elements) on a 3× 3 matrix or sub-matrix

(a) (b)

Fig. 2. (a) Schematic of a multisection continuum arm. (b) Schematic of an
infinitesimally thin slice the CoG of any ith continuum section. The linear
(σi) and angular (γi) offsets at continuum sections joints are also shown.

B. Recursive Velocities, Jacobians, and Hessians

The kinematics of continuum arms has been well studied
over the years [17], [29], [43], [44]. Here, we provide a review
of the modal kinematics for multisection continuum arms.

The deformation of a continuum section can be defined by
the curve parameters λ (qi) ∈ R+ radius of the circular arc,
φ (qi) ∈ R+

0 angle subtended by the circular arc, and θ (qi) ∈
(−π, π]2 (see Fig. 2b). Employing the curve parameters, the
HTM of {O′i} along the neutral axis of the ith continuum
section at ξi ∈ [0, 1] with respect to {Oi}, Ti : (qi, ξi) 7→
SE3, is computed as

Ti = RZ (θi)PX (λi)RY (ξiφi)PX (−λi)RZ (θi) · · ·

PZ (σi)RZ (γi) =

[
Ri pi
0 1

]
(1)

where PX ∈ SE3, RZ ∈ SO3, and RY ∈ SO3 are HTM that
denotes translation along the +X axis, rotation about the +Z
and +Y axes respectively. Ri (qi, ξi) ∈ R3×3 is the rotation
matrix and pi (qi, ξi) ∈ R3 is the position vector. The scalar ξi
denotes points along the neutral axis where ξi = 0 is the base
where {O′i} ≡ {Oi} and ξi = 1 is the tip of the continuum
section. We then apply 15th order multivariate Taylor series
expansion on the terms of (1) to obtain a numerically efficient
and stable modal form of the HTM [10].

Employing the continuum section HTM given in (1) and
principles of kinematics of serial robot chains, the HTM of any
ith section with respect to the task-space coordinate system
{O}, Ti :

(
qi, ξi

)
7→ SE3, is given by

2As shown in [10], the curve parameters are also functions of unactuated
length of PMAs, Li, and radius of continuum section, ri, but are not included
in the notation (constants for a given continuum arm) for brevity.
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Ti =

i∏
k=1

Ti =

[
Ri pi

0 1

]
(2)

where Ri
(
qi, ξi

)
∈ R3×3 and pi

(
qi, ξi

)
∈ R3 define the

position and orientation of {O′i} along the neutral axis at ξi
of the ith continuum section.

The HTM in (2) can be expanded to obtain the recursive
form of the kinematics as

Ri = Ri−1Ri

pi = pi−1 + Ri−1pi
(3)

where Ri−1
(
qi−1

)
∈ R3×3 and pi

(
qi−1

)
∈ R3 is the

section tip rotation matrix and position vector of the preceding
continuum section. Notice the absence of ξi as ξk = 1∀k < i
as per the definition of ξi [10]. Also, from now on, the
dependency variables are not included in the equations for
reasons of brevity.

Exploiting the integral Lagrangian formulation [36], we
consider a thin disc at ξi (which lies on the XY plane of
{O′i}. Utilizing (3), the angular and linear body velocities
with respect to {O′i}, ωi

(
qi, q̇i

)
∈ R3 and υi

(
qi, q̇i

)
∈ R3

respectively, can be defined as

Ωi = RT
i

(
Ωi−1Ri + Ṙi

)
υi = RT

i (υi−1 + Ωi−1pi + ṗi)
(4)

where we define Ωi

(
qi, q̇i

)
∈ R3×3 and ωi = Ω∨i for ease

of subsequent development of the EoM, The derivations are
outlined in Appendices B and A.

As shown in [36], Jacobians and Hessians play a critical
role in recursive development of the EoM. Applying the
standard techniques, the angular and linear velocity Jacobians,
Jωi
(
qi, ξi

)
∈ R3×3n and Jυi

(
qi, ξi

)
∈ R3×3n respectively are

derived. We use the property ωi = Ω∨i to define JΩ
i

(
qi, ξi

)
∈

R3×9n, in the development of the EoM and it is given by

JΩ
i = RT

i

[
JΩ
i−1Ri Ri,qi

]
(5)

where and Jωi =
(
JΩ
i

)∨
and JΩ

i−1

(
qi−1

)
∈ R3×9(n−1).

Appendix C details the derivation.
Taking the partial derivative of (5) with respect to qi, the

angular body velocity Hessian, HΩ
i = JΩ

i,qi

(
qi, ξi

)
∈ R9n×9n

is given by

HΩ
i =

 RT
i HΩ

i−1Ri 0
RT
i,qi

JΩ
i−1Ri · · · RT

i,qi
Ri,qT

i
· · ·

+RT
i JΩ

i−1Ri,qi
+RT

i Ri,qT
i ,qi

 (6)

where HΩ
i−1

(
qi−1

)
∈ R9(n−1)×9(n−1). Refer to Appendix E

for the derivation.
Similarly, the linear velocity Jacobian, Jυi , and Hessian,

Hυ
i = Jυi,qi

(
qi, ξi

)
∈ R9n×3n are given by

Jυi = RT
i

[
Jυi−1 + JΩ

i−1pi pi,qT
i

]
(7)

Hυ
i =

 RT
i

(
Hυ
i−1 + HΩ

i−1pi
)

0

RT
i,qi

(
Jυi−1 + JΩ

i−1pi
)
· · · RT

i,qi
pi,qT

i
· · ·

+RT
i JΩ

i−1pi,qi
+RT

i pi,qT
i ,qi


(8)

where Jυi−1

(
qi−1, ξi

)
∈ R3×3(n−1), Hυ

i−1

(
qi−1

)
∈

R9(n−1)×3(n−1) and the derivation is listed in Appendices D
and F.

C. Extension for Kinematics of Centers of Gravity

Similar to Section II-B, without losing generality, we derive
the kinematics for the CoG of any ith section. We define
a coordinate system at the CoG,

{
Oi
}

, whose HTM, Ti :
(qi) 7→ SE3, with respect to {Oi} is defined as

Ti =

∫
Ti =

[
Ri pi
0 1

]
(9)

where Ri =
∫

Ri (qi) ∈ R3×3 is the resultant rotation matrix
and pi =

∫
pi (qi) ∈ R3 is the position vector [40]. Note

that the CoG is a function of qi and therefore varies as the
continuum section deforms.

To derive the kinematics of the CoG coordinate frame,{
Oi
}

, with respect to {O}, we can combine Ti with the gene-
ral HTM given in (2). From the definition,

{
O′i−1|ξi−1=1

}
≡

{Oi} (Fig. 2b) and therefore, CoG of the ithsection relative
to {O}, T

i
:
(
qi
)
7→ SE3, can be defined as

T
i
=

∫
Ti−1Ti =

(
i−1∏
k=1

Tk

)(∫
Ti

)
=

[
R
i
pi

0 1

]
(10)

where R
i (
qi
)
∈ R3×3 is orientation and pi

(
qi
)
∈ R3 are

position matrices of the CoG coordinate frame.
Akin to (3), the recursive form of R

i
and pi are given by

R
i
= Ri−1Ri

pi = pi−1 + Ri−1pi
(11)

where Ri−1 and pi−1 are formulated from (3).
Similar to (4), the angular and linear body velocities of the

CoG (relative to
{
Oi
}

), ωi
(
qi, q̇i

)
∈ R3 and υi

(
qi, q̇i

)
∈

R3 can be derived as

Ωi = R
T

i

(
Ωi−1Ri + Ṙi

)
υi = R

T

i

(
υi−1 + Ωi−1pi + ṗi

) (12)

where υi−1 and Ωi−1, defined in (4), are linear and angular
velocities at the tip of the (i− 1)

th continuum section. Here
too, we employ the relationship ωi = Ω

∨
i . to compute

Ωi

(
qi, q̇i

)
∈ R3×3.

Analogous to (5), (6), (7), and (8) the angular body velocity
Jacobian of CoG, J

Ω

i

(
qi
)
∈ R3×9n, Hessian H

Ω

i

(
qi
)
∈

R9n×9n, linear body velocity Jacobian, J
υ

i

(
qi
)
∈ R3×3n,

Hessian H
υ

i

(
qi
)
∈ R9n×3n, are respectively given by (13),

(14), (15), and (16) as



5

J
Ω

i = R
T

i

[
JΩ
i−1Ri Ri,qT

i

]
(13)

H
Ω

i =

 R
T

i HΩ
i−1Ri 0

R
T

i,qi
JΩ
i−1Ri · · · R

T

i,qi
Ri,qT

i
· · ·

+R
T

i JΩ
i−1Ri,qi

+R
T

i Ri,qT
i ,qi

 (14)

J
υ

i = R
T

i

[
Jυi−1 + JΩ

i−1pi pi,qT
i

]
(15)

H
υ

i =


R
T

i

(
Hυ
i−1 + HΩ

i−1pi
)

0

R
T

i,qi

(
Jυi−1 + JΩ

i−1pi
)
· · · R

T

i,qi
pi,qT

i
· · ·

+R
T

i JΩ
i−1pi,qi

+R
T

i pi,qT
i ,qi


(16)

D. Case Study: Point vs. Non-point Mass at the CoG

Consider the CoG velocities depicted in (12) when Ωi−1 =
[0, 0, ωz] with ωz 6= 0, υi−1 = 0, qi = 0, and q̇i = 0.
Physically this refers to a non-actuating ith continuum section
(essentially a cylinder of length Li0 and radius ri whose CoG
is located at the midpoint, i.e., pi =

[
0, 0, Li0

2

]
, of the neutral

axis where the tip of the (i− 1)
th section rotates in place

without translation. This scenario is theoretically possible and
demonstrated in [10] where kinematic decoupling is present in
multisection continuum arms. From (12), the CoG velocities
become Ωi = Ωi−1 and υi = 0. The kinetic energies of the
ith section then become Kωi = 1

4mir
2
i ω

2
z and Kυi = 0. If a

point-mass is considered at the CoG, it will result in Kωi =
Kυi = 0. As a result, a point-mass model is inadequate for
modeling multisection continuum arms. Thus, in this paper, we
will consider a hypothetical thin disc of mass mi and radius ri
on the XY plane of

{
Oi
}

with its geometric center coinciding
the origin of

{
Oi
}

, i.e., at the CoG (Fig. 2b). The kinetic
energies then become Kωi = 1

4mir
2
i ω

2
z and Kυi = 0 to match

that of the actual continuum section energy. Employing the
disc model at the CoG, Section III derives the energy shaping
coefficients [40] to match energies to that of the integral model
reported in [36].

III. DERIVE ENERGY BALANCE OF CENTER OF
GRAVITY-BASED SYSTEM

A. Continuum Section Kinetic Energy: Integral and CoG-
based Models

Without losing generality, we next derive the kinetic ener-
gies, angular and linear, for any ith continuum section. Then
we compare the terms to formulate the energy scaling con-
ditions. Analogous to [36], to find the kinetic energy of the
continuum section using an integral approach, we will consider
an infinitesimally thin disc of radius ri along the length of
the continuum section. By applying the body velocities given
by (4), the energy computed for a disc is then integrated with
respect to ξi to compute the section energy. The angular kinetic
energy, Kωi :

(
qi, q̇i

)
7→ R+

0 , is given by

Kωi =

∫ (
1

2
ωTiMω

i ωi

)
=

1

2
IxxT2

(∫
ΩT
i Ωi

)
=

1

2
IxxT2

(∫
RT
i ΩT

i−1Ωi−1Ri · · ·

+2

∫
ṘT
i Ωi−1Ri +

∫
ṘT
i Ṙi

)
(17)

where Ixx = 1
4mir

2
i is the moment of inertia about the X axis

of {O′i}.
Using the angular velocity given in (12), the angular kinetic

energy of the disc at the CoG, Kωi :
(
qi, q̇i

)
7→ R+

0 , becomes

Kωi =
1

2
ωTiMω

i ωi =
1

2
IxxT2

(
Ω
T

i Ωi

)
(18)

=
1

2
IxxT2

(
R
T

i ΩT
i−1Ωi−1Ri + 2Ṙ

T

i Ωi−1Ri + Ṙ
T

i Ṙi

)
Similarly, using the linear body velocity in (4), the linear

kinetic energy of the continuous model, Kυi :
(
qi, q̇i

)
7→ R+

0 ,
can be computed as

Kυi =

∫ (
1

2
υTiMυ

i υi

)
(19)

=
1

2
mi

(
υTi−1υi−1 + 2υTi−1Ωi−1pi + 2υTi−1ṗi · · ·

+

∫
pTi ΩT

i−1Ωi−1pi + 2

∫
pTi ΩT

i−1ṗi +

∫
ṗTi ṗi

)
where Mυ

i = miI3. Additionally, the CoG model’s linear
kinetic energy, Kυi :

(
qi, q̇i

)
7→ R+

0 , is derived as

Kυi =
1

2
υTiMυ

i υi =
1

2
mi

(
υTi−1υi−1 + 2υTi−1Ωi−1pi · · ·

+2υTi−1ṗi + p
T
i ΩT

i−1Ωi−1pi + 2pTi ΩT
i−1ṗi + ṗ

T

i ṗi

)
(20)

B. Minimize Energy Difference Between the Integral and
CoG-based Models

In this section, utilizing the energies derived in Section
III-A, we systematically derive scalars to match the kinetic
energy of the CoG models to that of the integral model.
Unlike the single section case [40] however, the kinetic energy
is dependent on the velocities of the ith section as well as
the previous sections. Consider the angular energy difference
between the models, derived for the ith continuum section,
given by

Kωi −K
ω

i =
1

2
IxxT2

(∫
ṘT
i Ṙi − βω3 Ṙ

T

i Ṙi · · ·

+ 2

∫
RT
i ΩT

i−1Ωi−1Ri − 2βω1 R
T

i ΩT
i−1Ωi−1Ri · · ·

+

∫
ṘT
i Ωi−1Ri − βω2 Ṙ

T

i Ωi−1Ri

)
(21)

where βωk ∀k ∈ {1, 2, 3} are the energy shaping coefficients
that we apply to the CoG energy terms to match the energies.

Note that, in this case, unlike the single section case
reported in [41], we have three terms that do not get canceled
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when taking the difference. Likewise, the linear kinetic energy
difference is computed as

Kυi −K
υ

i =
1

2
mi

(∫
pTi ΩT

i−1Ωi−1pi − βυ1pTi ΩT
i−1Ωi−1pi · · ·

+

∫
pTi ΩT

i−1ṗi − βυ2pTi ΩT
i−1ṗi · · ·

+

∫
ṗTi ṗi − βυ3 ṗ

T

i ṗi

)
(22)

Notice that some terms are canceled due to the absence
of products of integrable terms, and thus resulting in three
remaining terms. We introduce the energy shaping coefficients,
βυk ∀k ∈ {1, 2, 3}, for each of those terms. The coefficients,
introduced in (21) and (22), will be solved in the latter part
of this section through a multivariate optimization routine.

1) Generate Random Sample Set: Including the physi-
cal robot parameters such as Li0, li, and ri, the energy
differences given by (21) and (22), become functions of
(αl, αr, qi, q̇i,Ωi−1) ∈ R11 where αl = max(li)

Li0
and αr =

ri
Li0

are the normalized length and radius of the continuum
section. Similarly, we generate 107 random combinations of
αr ∈ [ 1

20 ,
1
2 ], αl ∈ [ 1

20 ,6παr], qi ∈ [0, αlLi0], and q̇i ∈ [0, Li0].
The upper bound of αl limits the maximum bending angle of
continuum sections to 4π

3 . Also, note that Ωi−1 depends on(
qi−1, q̇i−1

)
, and for a general ith section, it is not possible

to sample the joint-space variables since i is arbitrary. To
overcome this challenge, we generate random Ωi−1 where
each component is chosen from the range

[
−102, 102

]
. Note

that these parametric bounds for Ωi−1 and αl, though arbitrary
and unrealistically large for physical continuum arms, were
chosen to ensure the rigor and generality of the proposed
model and within the error bounds of the 13th order modal
shape functions used in this paper. However, one may increase
this bound (which would also require adjusting the order
of modal shape functions of the HTM elements to meet
the desired position and orientation error metrics at the tip
at the maximum bending). More details related to choosing
expansion order and errors can be found in [10].

2) Computing the Energy Shaping Coefficients: For the
random combinations of joint-space variables and physical
parameters generated in the previous step, corresponding kine-
tic energy differences of the integral and CoG-based models,
depicted in (21) and (22) are computed. As suggested by
the definitions, for the ease of comparison of corresponding
terms, we computed the three residual terms of each of kinetic
energy differences separately. For instance, in the case of
Kωi , terms T2(

∫
RT
i ΩT

i−1Ωi−1Ri), T2(
∫

ṘT
i Ωi−1Ri), and

T2(
∫

ṘT
i Ṙi) are computed separately. Similarly, for Kωi ,

T2(R
T

i ΩT
i−1Ωi−1Ri), 2T2(Ṙ

T

i Ωi−1Ri), and T2(Ṙ
T

i Ṙi) are
computed separately. Then the sum of these terms, scaled by
1
2Ixx, will yield the energy difference, Kωi − K

ω

i . The same
approach is followed for the linear kinetic energy difference
given by (22) and scaled by mi

2 . The corresponding terms for
the integral system and the CoG-based system are then plotted
against each other in Fig. 3.

It can be seen that, despite the variation of the physical
shape (max (lij) and ri), there are proportional relationships

between the matching terms of the two analytical models. This
indicates us that the fundamental variable-length continuum
section behavior across the two systems are proportional and
independent of the physical shape. The proportional constants
can be computed in two ways. One approach is to consider
matching terms individually and compute the least square
linear fit. The other approach is to consider the kinetic energy
of the entire system and find the optimal coefficients that
would minimize the cumulative energy difference. In this
work, we have opted for the latter approach, since it provided
a slight, though negligible, improvement in energy matching.
We formulated our optimization problem in Matlab 2017a
and used global optimization on the inbuilt fmincon multiva-
riate constrained optimization subroutine using the objective
function Kυi −K

υ

i (β
υ)+Kωi −K

ω

i (β
ω) for all 107 parametric

combinations. Noting the direct proportionality, we bounded
the scalar range to [0, 1] for numerical efficiency. The resultant
energy shaping coefficient values are shown in Fig. 3.

Notice that the proportional coefficient of Fig. 3f is slightly
more aggressive than what the data suggests. The reason is the
difference of the ratio of contributions from individual terms.
For instance, the contribution of the term mi

2

∫
ṗTi ṗi is orders

of magnitude greater than that of the term 1
2IxxT2

(∫
ṘT
i Ṙi

)
.

The system-wide energy consideration would then place more
emphasis on larger contributors to yield optimal energy scalars,
and this explains the sub-optimal results of the term-wise
computation of proportional coefficients. However, based on
our computations, given the strong correlation of the energy
terms (< ±0.036% normalized 95% bound) between the
two modeling approaches, either method produces sufficient
accuracy for practical purposes.

3) Numerical Validation of Energy Shaping Coefficients: In
this section, we statistically validate the coefficients generated
in the previous section for a ten-section continuum robot
model. For an n section continuum arm, 6n variables are
required to compute the kinetic energy (3n joint-space dis-
placements and velocities each). Assuming the L0 = 0.15m,
ri = 0.0125m, and mi = 0.1 kg (physical parameters
corresponding to the prototype arm shown in Fig. 1a), here
we generate 106 random sample values based on uniform
distribution (to ensure accurate statistical distribution of error)
within [0, 0.07m] and [−L0, L0] ms−1 for q and q̇ respecti-
vely for the continuum arm numerical model. The difference of
the complete system kinetic energies is computed by taking
the cumulative of section-wise energy differences given by
(21) and (22). The energy difference percentages, normalized
to max (Kυi +Kωi ), for each sample, are then computed and
plotted in Fig. 4a. Note that, max (Kυi +Kωi ), is not the
absolute maximum kinetic energy for the given robot, but
rather it is a statistical upper bound, and therefore the energy
percentage errors computed here are conservative, and the
actual error is likely to be significantly lower in practice.
The percentage error distribution is shown in Fig. 4b. The
figure shows that the energy difference is essentially negligible
with less than 10−7 mean percentage error. The results show
that the computed energy scalars are accurate and applicable
for arbitrary length continuum arms without undesirable error
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Comparison of the ratios of energy terms given by (22): (a)∫
pTi ΩT

i−1Ωi−1pi vs. pTi ΩT
i−1Ωi−1pi, R

2 = 0.998 (where R2 is the
coefficient of determination, also known as R-squared), (b)

∫
pTi ΩT

i−1ṗi

vs. pTi ΩT
i−1ṗi, R2 = 0.9966, and (c)

∫
ṗTi ṗi vs. ṗTi ṗi R2 =

0.9984. Similarly, the comparison of the ratio of energy terms given by

(21): (d)
∫

ṘT
i Ṙi vs. Ṙ

T

i Ṙi, R2 = 0.9993, (e) 2
∫
RT
i ΩT

i−1Ωi−1Ri

vs. 2R
T
i ΩT

i−1Ωi−1Ri, R2 = 0.9975, and (f)
∫

ṘT
i Ωi−1Ri vs.

Ṙ
T

i Ωi−1Ri, R2 = 0.9914. The strong correlation between the terms are
evidenced by less than 5 × 10−4 (<.036% normalized to coefficients) 95%
confidence intervals for each fit.

propagation, eliminating the need for complex integral terms.

C. Potential Energy of Continuum Sections
As reported in [36], a continuum arm is subjected to

gravitational and elastic potential energies. Elastic potential
energy, given by Pe = 1

2q
TKeq,only depends on q and is

therefore independent of the modeling approach herein. The
gravitational potential energy for the integral and CoG-based
model can be defined as Pgi =

∫
mig

Tpi and Pgi = mig
Tpi

respectively. Note that, Pgi does not contain products of
integrable terms. Therefore, Pgi can be simplified to Pgi =
mig

T
(∫
pi
)

and from the definition (10), then becomes
Pgi = mig

T
(
pi
)

= Pgi . Thus, the gravitational potential
energy is identical in both models.

IV. RECURSIVE FORMULATION OF EQUATIONS OF
MOTION

This section utilizes the energy relationships derived in
Section III-B2 to formulate the recursive form of the EoM.

(a) (b)

Fig. 4. Normalized energy difference between the integral and CoG-based
modeling approaches for a 10-section continuum arm. (a) Energy difference
for 106 randomly selected joint-space displacement and velocity samples, (b)
Histogram of the normalized energy difference for the same samples.

Let the Lagrangian of the system using the CoG-based model
be K − P . Then the EoM in standard form is given by

Mq̈ + Cq̇ +G = τ (23)

where M ∈ R3n×3n, C ∈ R3n×3n, G ∈ R3n×1, and τ ∈
R3n×1 are generalized inertia matrix, centrifugal and Coriolis
force matrix, conservative force matrix, and joint-space input
force vector.

From the theorems derived in [36], we can decompose these
matrices into section-wise contributions as M =

∑
Mi, C =∑

Ci, and G =
∑
Gi respectively. In this section, we derive

the section-wise contributions in recursive form to compute
the EoM in (23). Note that CoG-based model was derived
by integrating the integral terms with respect to ξ, a scalar
(Section II-C). As a result, the joint-space terms between the
integral Lagrangian and CoG-based models remain unaffected
during EoM formulation via Lagrangian principles.

A. Generalized Inertia Matrix
(
Mi

)
Analogous to the integral modeling approach [36], we can

define the ith section kinetic energy to be the sum of the scaled
(using the energy scalars to math the integral model) angular
and linear kinetic energies, Ki = K

υ

i +K
ω

i . Thus, by applying
the partial derivatives with respect to the joint-space velocities
on Ki, we obtain the generalized inertia matrix contributions
as, Mi = M

ω

i +M
υ

i . Using the angular velocity Jacobian, J
Ω

i

and the scalar coefficients derived in Section III-B2, we can
derive M

ω

i as

M
ω

i = IxxT2

[
βω1 σ

ω
11 βω2 σ

ω
12

βω2 σ
ω
12
T βω3 σ

ω
22

]
(24)

where σω11 =
(
JΩ
i−1Ri

)T
JΩ
i−1Ri, σω12 =

(
JΩ
i−1Ri

)T
Ri,qT

i
,

and σω22 = R
T

i,qT
i
Ri,qT

i
respectively.

Equivalently, by applying the recursive form of the Jacobian
in (15) and the energy scalars derived in Section III-B2, we
can derive M

υ

i as

M
υ

i = mi

[
συ11 συ12

συ12
T συ22

]
(25)

where συ11 = Jυi−1
T
(
Jυi−1 + 2JΩ

i−1pi
)
+βυ1

(
JΩ
i−1pi

)T
JΩ
i−1pi,

συ12 =
(
Jυi−1 + βυ2 JΩ

i−1pi
)T
pi,qT

i
, and συ22 = βυ3p

T
i,qT

i
pi,qT

i
.
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TABLE III
TERMS ASSOCIATED WITH (27) AND (28).

ηω11 = 2βω1

(
JΩ
i−1Ri

)T (
HΩ
i−1

)
h

Ri

ηω12 = βω2

{(
HΩ
i−1

)
h

Ri,qi

}T
Ri

ηω11 = 0

γω11 = 2βω1

(
JΩ
i−1Ri,h

)T
JΩ
i−1Ri

γω12 = βω2

(
JΩ
i−1Ri,qi,h

)T
Ri+

(
JΩ
i−1Ri,qi

)T
Ri,h

γω22 = 2βω3 R
T
i,qi,h

Ri,qT
i

ηυ11 = 2
(
Hυ
i−1

)T
h

(
Jυi−1 + JΩ

i−1pi

)
+ 2Jυi−1

T
(
HΩ
i−1

)
h
pi +

2βυ1

(
JΩ
i−1pi

)T (
HΩ
i−1

)
h
pi

ηυ12 =
{(

Hυ
i−1

)
h
+ βυ2 HΩ

i−1pi

}T
pi,qT

i

ηυ22 = 0

γυ11 = 2Jυi−1
TJΩ

i−1pi,h + 2βυ1

(
JΩ
i−1pi,h

)T
JΩ
i−1pi

γυ12 =
(
Jυi−1 + βυ2 JΩ

i−1pi

)T
pi,qT

i ,h
+ βυ2

(
JΩ
i−1pi,h

)T
pi,qT

i

γυ22 = 2βυ3 p
T
i,qT

i ,h
pi,qT

i

B. Coriolis and Centrifugal Force Matrix
(
Ci

)
Using partial derivatives of Mi, the Christoffel symbols of

the 2nd kind are used to derive the Ci elements as

[
Ci

]
jk

=
1

2

3i∑
h=1

([
Mi

]
kj,qh

+
[
Mi

]
kh,qj
−
[
Mi

]
hj,qk

)
q̇h

(26)

Noting that Mi = M
ω

i +M
υ

i , by applying partial derivatives
with respect to h ∈ qi, we get Mi,h = M

ω

i,h + M
υ

i,h. Hence,
considering the variable with respect to which the partial
derivation is carried out, we can obtain M

ω

i,h as

M
ω

i,h = IxxT2



[
ηω11 ηω12

ηω12
T ηω22

]
; h ∈ qi−1[

γω11 γω12

γω12
T γω22

]
; h ∈ qi

(27)

where
(
HΩ
i−1

)
h
= JΩ

i−1,h is the submatrix of HΩ
i−1 and the

terms are listed in Tab. III.
Similarly, the M

υ

i,h is given by

M
υ

i,h = mi



[
ηυ11 ηυ12

ηυ12
T ηυ22

]
; h ∈ qi−1[

γυ11 γυ12

γυ12
T γυ22

]
; h ∈ qi

(28)

where
(
Hυ
i−1

)
h
=
(
Jυi−1

)
,h

is the submatrix of Hυ
i−1 and the

terms are listed in Tab. III.

C. Conservative Force Matrix (Gi)

The total potential energy of a continuum section is Pi =
Pgi +Pei where Pgi andPei are gravitational and elastic potential
energies. Therefore, Gi can be written as Gi = G

g
i +G

e
i [36].

For the ith section, Pgi can be written as Pgi = mig
Tpi. As

there are no products of integrable terms, Gg
i is identical for

both integral and CoG-based models and given by

Gg
i
T
=
(
mig

Tpi
)
,(qi)T

= mig
TRi−1

[
Jυi−1 + JΩ

i−1pi pi,qT
i

]
,

(29)

where the derivation is included in Appendix G.
The elastic potential energy, Pe = 1

2q
TKeq, is independent

of mass or the relative position in the task-space. Hence,
similar to Gg

i , Ge
i identical in both integral and CoG-based

systems and could be readily formulated as

Ge
i = Pei,qi

= Keqi (30)

D. Numerical Simulation Model

The EoM numerical model was implemented in Matlab
2017a on a computer with Intel i7-4910MQ (2.9 GHz) and
32 GB RAM. The HTM was implemented in Maple 16 [45]
symbolically and manipulated to derive the CoG-based terms
and the partial derivatives thereof. Similarly, the kinematic
terms of ith section used for computing the forward kine-
matics (i.e., Jacobians given by (5), (7) and Hessians given
by (6), (8)) were computed by making ξi = 1. Algorithm
1, implemented in Matlab Simulink environment, is used
to numerically solve the EoM using the integrated ODE15s
solver. Figure 5a compares the CoG-based model against the
integral dynamics model reported in [36] where the former is
of O

(
n2
)

whereas the latter is O
(
n3
)
. For a single section

system (three DoF), both models show similar computation
cost, but the numerical efficiency of the proposed model is
evident for multisection continuum arms. The performance
gain achieved by the proposed model relative to the integral
dynamics model is plotted in Fig. 5b. It can be seen that
the CoG-model is ideally suited for simulating dynamics of
multisection continuum arms. The dynamic parameters and
coefficients, such as Ke

i and Di, are difficult to measure
or accurately estimate solely through physical and material
properties. Therefore such parameters were identified through
an iterative system characterization process. In addition, input
forces τ is computed as τ = PA where P is the input pressure
vector, and A = 2.2×10−4m2 is the PMA cross-section area.
The reader is referred to [36] for a detailed discussion of the
process including the information regarding the experimental
setup and continuum arm shape measurement techniques.

V. COMPARISON TO EXPERIMENTAL RESULTS AND
INTEGRAL DYNAMICS

Figure 1a shows the prototype continuum arm utilized
in the following experiments. We use the data reported in
[36] and compares the proposed CoG-based dynamics against
the integral dynamics and the experimental results therein.
Readers are referred to [36] for side-by-side visual comparison
of resulting continuum arm motion.

The first experiment involves section-wise actuation of all
the sections on the y = 0 plane. The joint-space variables
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Algorithm 1 Outline of the CoG-based EoM derivation via recursive
Lagrangian formulation.

FOR i FROM 1 TO n DO
compute pi, Ri, pi, Ri, and partial derivatives
compute Mi = Mi + (Mω

i + Mυ
i )

compute Gi = Gi + (Gpi +Gei )
FOR h FROM 1 TO n DO

compute Mi,h

update Jυi ,Jωi , pi, and Ri

FOR i FROM 1 TO n DO
compute Ci= f

(
Mi,h

)
SOLVE

Mq̈ +
(
C + D

)
q̇ +G = τ

(a) (b)

Fig. 5. (a) Time complexity comparison and (b) performance gain of CoG-
based dynamics against integral Lagrangian dynamics as the number of
continuum sections (i.e., DoF) increase.

(physically the PMA’s of continuum sections), l33, l22, and
l11, are supplied with 600 kPa, 500 kPa, and 500 kPa step
pressure inputs at t = 0 s, t = 3.2s, and t = 7.55s respecti-
vely. The EoM given in (23), derived using the proposed CoG-
based approach, is the provided the same pressure input to
simulate the forward dynamics. The simulation took 1.13 s to
complete, which is 6.69 times faster than real-time. The resul-
tant joint-space trajectories are then applied to the kinematic
model given by (23) to compute the associated tip task-space
trajectories. The section tip coordinate task-space trajectories,
measured using a two-camera setup [36] (illustrated in various
shaped discrete markers) are then compared to the simulated
task-space trajectories (drawn in solid lines) in Fig. 6. In
addition, the task-space trajectories computed by the integral
dynamics [36] are also included to compare the performance
of the two approaches (shown in dotted lines). The errors
between the experimental data versus CoG-based model and
integral dynamics are also shown in each of the subplots for
ease of comparison. It can be seen that the difference in errors
and simulated results between the two numerical models are
negligible. The aggregated error, plotted in the bottom subplot
shows the maximum error among the three tip positions and
the mean of the position errors of all sections. It can be
seen that the proposed model matches the integral dynamics
proposed in [36]. Similar plots are generated for two further
experiments detailed below.

The second experiment involves the actuation of the distal
and mid section in two, non-parallel bending planes while
the base section remains unactuated. Step pressure inputs of
300 kPa and 500 kPa were applied to l23 at t = 0 s and
l33 at t = 3.3 s. The resulting experimental and simulated
task-space trajectories (using both integral dynamics and CoG-

Fig. 6. Tip coordinate (X: blue, Y: black, and Z: red) trajectories of continuum
sections for the first experiment. Experimental X, Y, and Z trajectories for
each section tips are denoted by +, ◦,× marks respectively. Integral dynamic
simulation results are shown in dashed (- -) lines, whereas CoG-based dynamic
simulation results are shown in solid lines of the same colors. Tip trajectory
plots include the position errors (Euclidean distance between experimental
and simulation data) at each tip for integral dynamics (magenta * marks)
and CoG-based dynamics (solid magenta lines). The mean (dashed lines)and
maximum (solid lines) of the tip errors for the integral (blue) and CoG-based
(red) dynamics are shown in the bottom plot.

based dynamics) are shown in Fig. 7. The base section,
though unactuated deforms passively to balance the dynamic
forces induced by the other moving sections and weight
of the arm due to gravity, which is correctly modeled by
both integral and CoG-based dynamic models. The numerical
computation was 7.8 times faster than real-time and completed
within 0.89 s. Both models show comparable errors during the
transient phase of the step response, but both models correctly
simulate the steady-state dynamics afterward. The error in this
experiment also varies during the step input transient stages,
but section settles down quickly.

The third experiment extends the second and includes the
actuation of the base section. The prototype and the dynamic
model are provided pressure step inputs of 500 kPa, 300 kPa,
and 300 kPa are respectively to actuators l33 at t = 0 s , l23

at t = 2.55 s and l11 at t = 5.05 s and maintained during the
experiment, and cause the continuum arm sections to deform in
non-parallel planes. Figure 8 compares the integral and CoG-
based dynamics against the experimental results reported in
[36]. The simulation only took 1.3 s to complete this 7.9 s
long experiment, which is 7.3 times faster than real-time. It
can be seen that the CoG-based dynamics agrees with both
the integral dynamics and experimental results. These expe-
rimental and empirical data demonstrate that the proposed,
numerically efficient CoG-based dynamic model for variable-
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Fig. 7. Tip coordinate (X: blue,Y: black, and Z: red) trajectories of continuum
sections for the second experiment. The legend is the same as Fig. 6.

Fig. 8. Tip coordinate (X: blue,Y: black, and Z: red) trajectories of continuum
sections for the third experiment. The legend is the same as Fig. 6.

length multisection continuum arms successfully simulates
both the transient and steady-state dynamic behaviors well.

VI. CONCLUSIONS

Multisection continuum arms have strong potential for use
in human-friendly spaces. Despite continued research, they

have yet to make their mark outside the laboratory settings. A
key reason for this is the lack of numerically efficient dynamic
models that can be used in sub real-time. Accuracy, numerical
stability, and efficiency are critical for dynamic models to be
used in dynamic control. Limited research has been conducted
on physically accurate dynamic modeling of multisection
continuum arms experimental validation thereof. In this paper,
a novel, CoG-based dynamic model was proposed. The work
extended our prior work on CoG-based modeling of a single
continuum section to derive a general model that can be used
not only on arbitrarily long continuum arms but also such
robots of varying physical sizes. The results show that the
model accommodates arbitrarily long variable-length multi-
section continuum arms and various length-radii combinations,
considers both linear and angular kinetic energies at the CoGs
of sections for more accuracy in energy computation, matches
energy through a series of constant (for any variable-length
multisection continuum arm) energy shaping coefficients, de-
rives the EoM terms recursively, attains O

(
n2
)

complexity
for continuous (non-discretized) dynamic model for variable-
length arms, and is 6-8 times numerically efficient than real-
time for a three-section continuum arm model (suitable for
implementing dynamic control schemes) and runs at 9.5 kHz.
The model was experimentally validated on a three-section
continuum arm and showed that results agree well with both
the robot output as well as the integral dynamic models.

APPENDIX
MATHEMATICAL DERIVATIONS

A. Recursive Angular Body Velocity

Ωi = RiT Ṙi

=
(
Ri−1Ri

)T (
Ṙi−1Ri + Ri−1Ṙi

)
= Ri

{(
Ri−1T Ṙi−1

)
Ri +

(
Ri−1TRi−1

)
Ṙi

}
= RT

i

(
Ωi−1Ri + Ṙi

)
(31)

B. Recursive Linear body Velocity

υi = RiT ṗi

=
(
Ri−1Ri

)T (
ṗi−1 + Ṙi−1Ri + Ri−1ṗi

)
= RT

i

{(
Ri−1T ṗi−1

)
Ri +

(
Ri−1T Ṙi−1

)
pi · · ·

+
(
Ri−1TRi−1

)
ṗi

}
= RT

i (vi−1 + Ωi−1pi + ṗi) (32)

C. Recursive Angular Body Velocity Jacobian

JΩ
i = Ω

i,(q̇i)
T

= RT
i

(
Ωi−1Ri + Ṙi

)
,(q̇i)

T

= RT
i

[
Ω
i−1,(q̇i−1)

T Ri Ṙi,q̇T
i

]
= RT

i

[
JΩ
i−1Ri Ri,qi

]
(33)
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D. Recursive Linear Body Velocity Jacobian

Jυi = υ
i,(q̇i)

T

= RT
i (υi−1 + Ωi−1pi + ṗi) ,(q̇i)

T from (4)

= RT
i

[
υ
i−1,(q̇i−1)

T + Ω
i−1,(q̇i−1)

T pi ṗi,q̇T
i

]
= RT

i

[
Jυi−1 + JΩ

i−1pi pi,qT
i

]
(34)

E. Recursive Angular Body Velocity Hessian

HΩ
i = JΩ

i,qi

=
(
RT
i

[
JΩ
i−1Ri Ri,qT

i

])
,qi

=

RT
i

(
JΩ
i−1,qi−1

)
Ri Ri,qT

i ,q
i−1

RT
i,qi

JΩ
i−1Ri · · · RT

i,qi
Ri,qT

i
· · ·

+RT
i JΩ

i−1Ri,qi
+RT

i Ri,qT
i ,qi


=

 RT
i HΩ

i−1Ri 0
RT
i,qi

JΩ
i−1Ri · · · RT

i,qi
Ri,qT

i
· · ·

+RT
i JΩ

i−1Ri,qi
+RT

i Ri,qT
i ,qi

 (35)

F. Linear Body Velocity Hessian

Hυ
i = Jυi,qi

=
(
RT
i

[
Jυi−1 + JΩ

i−1pi pi
])
,qi

=

RT
i

(
Jυi−1,qi−1 + JΩ

i−1,qi−1pi

) (
RT
i pi,qT

i

)
,qi−1

RT
i,qi

(
Jυi−1 + JΩ

i−1pi
)
· · · RT

i,qi
pi,qT

i
· · ·

+RT
i JΩ

i−1pi,qi
+RT

i pi,qT
i ,qi


=

 RT
i

(
Hυ
i−1 + HΩ

i−1pi
)

0

RT
i,qi

(
Jυi−1 + JΩ

i−1pi
)
· · · RT

i,qi
pi,qT

i
· · ·

+RT
i JΩ

i−1pi,qi
+RT

i pi,qT
i ,qi


(36)

G. Conservative Force Vector, (Gg
i )

Gg
i
T
= mig

T
(
pi
)
,(qi)T

= mig
TR

i
{

R
iT (

pi
)
,(qi)T

}
= mig

TR
i
Jυi−1

= mig
T
(
Ri−1Ri

)
RT
i

[
Jυi−1 + JΩ

i−1pi Ri−1pi,qT
i

]
= mig

TRi−1
(
RiR

T
i

) [
Jυi−1 + JΩ

i−1pi Ri−1pi,qT
i

]
= mig

TRi−1
([

Jυi−1 + JΩ
i−1pi Ri−1pi,qT

i

])
(37)
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