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ABSTRACT

We propose a new algorithm for inference of gene regula-
tory networks (GRN) from noisy gene expression data based
on maximum-likelihood (ML) adaptive filtering and the dis-
crete fish school search algorithm (DFSS). The approach is
based on the general partially-observed Boolean dynamical
system (POBDS) model, and as such can be used for simul-
taneous state and parameter estimation for any Boolean dy-
namical system observed in noise. The proposed DFSS-ML-
BKF algorithm combines the ML adaptive Boolean Kalman
Filter (ML-BKF) with DFSS, a version of the Fish School
Search algorithm tailored for discrete parameter spaces. Re-
sults based on synthetic gene expression time-series data us-
ing the well-known p53-MDM2 negative-feedback loop GRN
demonstrate that DFSS-ML-BKF can infer the network topol-
ogy accurately and efficiently.

Index Terms— Discrete fish school search, gene regula-
tory network, partially observed Boolean dynamical system,
maximum-likelihood estimation, Boolean Kalman filter

1. INTRODUCTION

Gene regulatory networks (GRN) govern the functioning of
key cellular processes, such as the cell cycle, stress response,
and DNA repair. Inference of GRNs from gene expression
time-series data is a problem of critical importance in compu-
tational biology [1, 2, 3].

The GRN inference problem includes the determination
of the topology of the network as well as the estimation of
expression and noise parameters. Towards this goal, many
mathematical models have been proposed in the literature,
including linear models [4], Bayesian networks [5, 6], and
neural networks [7]. In particular, the Boolean network
model, first introduced by Kauffman and collaborators [8],
has proved to be an effective model for GRNs consisting
of bi-stable genes, which can be either in an activated or
inhibited transcriptional state [9, 10, 11].

This work was supported by the U.S. National Science Foundation,
through NSF award CCF-1718924.

However, the Boolean network model is deterministic and
assumes that the system Boolean states are directly observed
without noise. The partially-observed Boolean dynamical
system (POBDS) [12, 13] is a signal model that addresses
those difficulties by postulating stochastic Boolean state and
general observation processes, as well as state transition and
observation noise processes; the time-series data in the exper-
iment arise from the observation process, while the Boolean
states are hidden. The optimal minimum mean-square error
(MMSE) state estimator for this model can be computed ex-
actly and efficiently through a recursive algorithm known as
the Boolean Kalman Filter (BKF).

In [13], a framework was proposed for the simultane-
ous estimation of state and parameters for POBDS using a
maximum-likelihood approach. In the case where the pa-
rameter space is discrete, the resulting ML-BKF estimator
consists of a bank of BKFs running in parallel, each tuned
to a different value of the parameter. This corresponds to an
exhaustive search over the parameter space. However, for
a system with a large number of unknown parameters, the
computation of all candidate solutions becomes impractical.

In this paper, we propose to combine maximum-likelihood
adaptive filtering and nature-inspired swarm intelligence
techniques to perform the search over large discrete pa-
rameter space and thus make GRN inference possible in
low-information cases where most of the topology of the
network is unknown. The proposed framework combines the
ML-BKF with the discrete Fish School Search (DFSS) algo-
rithm. DFSS is a contribution of this paper, which combines
elements of the original fish school search (FSS) [14, 15]
and binary fish school search (BFSS) algorithms [16, 17].
The performance of the proposed approach is assessed by
numerical experiments based on the well-known p53-MDM2
negative-feedback loop gene regulatory model.

2. PARTIALLY-OBSERVABLE BOOLEAN
DYNAMICAL SYSTEMS

The POBDS state model is

Xk = f (Xk−1,uk) ⊕ nk (1)
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for k = 1, 2, . . . where f : {0, 1}d −→ {0, 1}d is called
the network function, Xk ∈ {0, 1}d is the Boolean system
state at time k, uk ∈ {0, 1}d is an input at time k, nk ∈
{0, 1}d is Boolean process noise at time k, and “⊕” indicates
component-wise modulo-2 addition.

The POBDS observation model is entirely general:

Yk = h (Xk,vk) (2)

for k = 1, 2, . . . where Yk is the data at time k, h is a gen-
eral function of the state vector, and vk is measurement noise.
The process and observation noise processes {nk,vk; k =
1, 2, . . .} are assumed to be white noise, independent of each
other, and independent of the initial state X0.

Given observations Y1:k = {Y1, . . . ,Yk}, we would
like to find an estimator X̂k = g(Y1:k) of the state Xk that
minimizes the conditional MSE:

X̂MS
k = argmin

X̂k∈Ψ

E[ ||X̂k −Xk||2 |Y1:k] , (3)

where Ψ is the space of all Boolean estimators.
For a vector v ∈ [0, 1]d, define the thresholding operator

v ∈ {0, 1}d as v(i) = 1 if v(i) > 1/2 and 0 otherwise, for
i = 1, . . . , d, respectively. It was shown in [12, 13] that

X̂MS
k = E

[
Xk | Y1:k

]
. (4)

The optimal MMSE filter in (4) can be calculated ex-
actly by a recursive procedure called the Boolean Kalman
filter (BKF) [12, 13], which is described briefly next. Let
(x1, . . . ,x2d

) be an arbitrary enumeration of the possible
state vectors. Define the state conditional probability distri-
bution vector as:

Πk|k(i) = P
(
Xk = xi | Y1:k

)
, i = 1, . . . , 2d, (5)

for k = 0, 1, . . . According to equation (4),

X̂MS
k = E

[
Xk | Y1:k

]
= AΠk|k , k = 1, 2, . . . (6)

where A =
[
x1 · · ·x2d

]
is a matrix of size d× 2d.

The computation of Πk|k can be performed recursively.
First, notice that

Πk|k−1 = MkΠk−1|k−1 , k = 1, 2, . . . (7)

whereMk is the transition matrix of the Markov state process,
with entries given by:

(Mk)ij = P (Xk = xi | Xk−1 = xj), i, j = 1, . . . , 2d. (8)

On the other hand,

Πk|k ∝ T (Yk) Πk|k−1 , k = 1, 2, . . . (9)

where “∝” means that the result must be normalized to add
up to 1, and T (Yk) is the update matrix, which is a diagonal
matrix of size 2d × 2d with diagonal elements:(

Tk(Yk)
)
ii

= p
(
Yk | Xk = xi

)
, i = 1, . . . , 2d . (10)

3. MAXIMUM-LIKELIHOOD ADAPTIVE
BOOLEAN KALMAN FILTER

The previous BKF algorithm can only be applied to com-
pute the optimal MMSE state estimator in case the system
is fully known. If the network function or the statistics of the
noise processes are unknown or only partially known, then a
suboptimal adaptive approach must be employed, where the
unknown components of the system are estimated simultane-
ously with the state.

In this paper, we will focus on the case where there are
a finite number M of possible models in one-to-one corre-
spondence to a parameter space Θ = {θ1, θ2, · · · , θM}. For
example, this would be the case when some of the discrete
connections between genes in a GRN are unknown and need
to be inferred from the data.

Next we review briefly the ML-BKF algorithm, proposed
as a solution to the adaptive filtering problem in [13]. Given
the data Y1:k up to time k, the log-likelihood function Lk(θ)
can be computed recursively via

Lk(θ) = log pθ(Y1:k)

= log pθ(Yk | Y1:k−1) + log pθ(Y1:k−1)

= log pθ(Yk | Y1:k−1) + Lk−1(θ) ,

(11)

where L0(θ) = 0 and

pθ(Yk | Y1:k−1)

=

2d∑
i=1

pθ(Yk | Xk = xi, Y1:k−1) Pθ(Xk = xi |Y1:k−1)

=

2d∑
i=1

pθ(Yk | Xk = xi) Pθ(Xk = xi |Y1:k−1)

= ||T θk (Yk) Πθ
k|k−1||1 ,

(12)
where ||w||1 is the sum of the elements of vector w, while
T θk and Πθ

k|k−1 are respectively the update matrix and the
one-step predicted state distribution at time k, defined in the
previous section, for the system corresponding to parameter θ.

With βθk = T θk (Yk) Πθ
k|k−1, (11) and (12) lead to

Lk(θ) = Lk−1(θ) + log ||βθk||1 . (13)

Notice that the quantity ||βθk||1 can be readily computed by a
BKF tuned to parameter θ. It follows that ML estimates of
the parameter and state

θ̂ML
k = argmax

θ∈{θ1,··· ,θM}
Lk(θ),

X̂ML
k = X̂k(θ̂ML

k ),

(14)

for k = 1, 2, . . . can be obtained by running M BKFs in
parallel, each one tuned to a different parameter θj , for j =
1, . . . ,M .



4. FISH SCHOOL SEARCH ALGORITHM

Fish school search (FSS) is a population-based continuous op-
timization algorithm proposed in [14], which is inspired by
the collective behavior of natural fish schools that expand and
contract while searching for food. We describe here the orig-
inal FSS algorithm for optimization over continuous spaces,
and then propose in the next section a modification of the al-
gorithm for the discrete spaces arising in GRN inference.

There are N “fish” in the “school” corresponding to pos-
sible solution of the optimization problem. Each fish is repre-
sented by anM -dimensional vector zi with associated weight
wi, for i = 1, . . . N , where the weight reflects the quality
of the solution. After randomly initializing the positions and
weights of all fish, those are updated at each iteration by
means of four main operations, which are described next.

Individual movement operator: Each fish zi moves in
the direction of a unit vector ∆zind,i generated randomly and
independently if it improves its fitness, otherwise it stays put:

zi(t+1) =


zi(t) + ξ×stepind×∆zind,i

if f(zi(t) + ξ×stepind×∆zind,i) > f(zi(t)),

zi(t) , otherwise.
(15)

where f is the fitness function, ξ ∼ Unif([0, 1]), and stepind

is the step size, which is linearly reduced after each iteration
to promote exploitation over exploration later in execution.

Feeding operator: The weights of all fish are updated
based on the fitness improvement from individual movement:

wi(t+1) = wi(t)+
f [zi(t+ 1)]− f [zi(t)]

maxi{|f [zi(t+ 1)]− f [zi(t)]|}
. (16)

Collective instinctive movement operator: This opera-
tor makes the fish that had successful individual movements
influence the collective direction of movement of the school:

zi(t+ 1) = zi(t) +

∑N
i=1 ∆zind,i{f [zi(t+ 1)]−f [zi(t)]}∑N

i=1{f [zi(t+ 1)]−f [zi(t)]}
,

(17)
Collective volitive movement operator: Let

B(t) =

∑N
i=1 xiwi(t)∑N
i=1 wi(t)

, (18)

be the Barycenter of the fish school. If the school is success-
ful, i.e., its total weight increases, its radius contracts:

zi(t+ 1) = zi(t)− τ×stepvol×[ zi(t)−B(t)], (19)

otherwise, it expands to escape a bad region or local optimum:

zi(t+ 1) = zi(t) + τ×stepvol×[ zi(t)−B(t)], (20)

where τ ∼ Unif([0, 1]), B(t) is the barycenter of the fish
school at time t, and stepvol is the volitive step, which is set
to twice the size of stepind. The procedure is summarized in
the following algorithm, where the stopping criterion adopted
here is to exit the algorithm after a pre-specified number of

iterations tmax.

Algorithm 1: Fish School Search Algorithm.

1 Initialize randomly all fish positions and weights.
2 while stopping criterion is not met do
3 for each fish do
4 Execute individual movement using (15)
5 Evaluate fitness and feed the fish using (16)
6 end for
7 for each fish do
8 Execute instinctive movement using (17)
9 end for

10 Calculate barycenter using (18)
11 for each fish do
12 Execute volitive movement using (19) or (20)
13 end for
14 Update stepind and stepvol

15 end while

5. DFSS-ML-BKF ALGORITHM FOR GENE
REGULATORY NETWORK INFERENCE

GRNs in the biomedical literature are typically represented by
gene activation/inhibition pathway diagrams, such as the one
in Figure 1(a). If f = (f1, . . . , fd) is the network function in
(1), the activation/inhibition of gene i can be modeled as:

fi(x) =

{
1,

∑d
j=1 aijx(j) + bi + u(i) > 0 ,

0,
∑d
j=1 aijx(j) + bi + u(i) ≤ 0 ,

(21)

where aij can take three values: aij = +1 if gene j activates
gene i, aij = −1 if gene j represses gene i, and aij = 0
if gene j is not an input to gene i; bi can take two values:
bi = +1/2 or bi = −1/2, according to whether gene i is
activated or repressed, respectively, when its inputs contain
the same number of activation and inhibition signals.

In this paper, we assume that all system parameters are
known, except for some of the interactions between genes,
i.e., some of the discrete parameters aij . Therefore, the FSS
algorithm described in the previous section needs to be mod-
ified to deal with a discrete parameter space. The algorithm
proposed has similarities with the Binary FSS algorithm in
[16], which deals with binary parameter vectors (while we
deal here with ternary parameters aij). The modifications to
the original FSS algorithm are as follows.

Discrete initialization: The initial position zi(0) =
[z01, . . . , z0M ] of each fish is set to:

z0j =


1, if ρ ≥ 0.5,

−1, if ρ ≤ −0.5,

0, otherwise,
(22)

for j = 1, . . . ,M , where ρ ∼ Unif([0, 1]). The initialization
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Fig. 1. Activation/inhibition pathway diagram and state transition diagrams corresponding to a constant input dna dsb = 0
(no-stress) and dna dsb = 1 (DNA-damage) for the p53-MDM2 negative feedback loop gene regulatory network with negative
regulation biases.

of each parameter is biased towards 0 over 1 and -1. This
reflects the biological fact that GRNs are sparsely connected.

Discrete moves: Let s = [s1, s2, . . . , sM ] be the dis-
placement vector calculated by the individual, instinctive, or
volitive movement operators of the original FSS algorithm.
The values si are continuous, with −1 ≤ si ≤ 1, for i =
1, . . . ,M , and must be discretized to be applicable over a
ternary parameter space. We generalize the scheme for binary
parameters in [16] by considering two adaptive thresholds:

thrpos = maxj{pos(sj)} × t
tmax

thrneg = minj{neg(sj)} × t
tmax

(23)

where the positive and negative parts of sj are defined as
pos(sj) = (sj + |sj |)/2 and neg(sj) = (sj − |sj |)/2, re-
spectively. Then the discrete move is defined as

zi(t+1) = zi(t)+T [pos(s)>thrpos]−T [neg(s)<thrneg],
(24)

where the pos, neg, and T threshold operators are applied
componentwise. Therefore, a positive continuous displace-
ment sj produces a discrete displacement of +1 if it is larger
than thrpos; a discrete displacement of -1 if it is smaller than
thrneg; and no displacement, otherwise. An “absorbing”
boundary condition is adopted, whereby if a component of
zi(t + 1) would be larger than +1 or smaller than -1 after a
move, then it stays unchanged. The relaxation factor t/tmax

in (23) ensures convergence.
The fitness function for the DFSS search is the likelihood

function Lk(θ) in (11). By virtue of (13), Lk(θ) by recom-
puted recursively by running a BKF tuned to parameter θ.
Furthermore, this computation can be picked up from the last
time point at which the specific value of θ was visited, so the
BKF does not have to be restarted from time zero (unless this
value of θ has not been visited previously). Notice that, in
contrast to the ML-BKF approach in [13], which runs 3M fil-

ters in parallel and thus has exponential complexityO(3M ) in
the number of parameters M , the DFSS-ML-BKF algorithm
has complexity O(MN), where N is the number of fish.

6. NUMERICAL EXPERIMENTS

In this section, we examine the performance of DFSS-ML-
BKF using the well-known p53-MDM2 negative-feedback
gene regulatory network [18], which is displayed in Figure 1.
The gene interaction parameters aij for this GRN are:

a11 = 0, a12 = 0, a13 = −1, a14 = 0

a21 = +1, a22 = 0, a23 = −1, a24 = −1

a31 = 0, a32 = +1, a33 = 0, a34 = 0

a41 = −1, a42 = +1, a43 = +1, a44 = 0

with all biases bi = −1/2, i = 1, 2, 3, 4. The input signal uk
= (dna dsb, 0, 0, 0) is constant, with dna dsb=0 (no stress) or
dna dsb=1 (DNA damage). These two cases lead to the state
transition diagrams displayed in Figure 1(b) and (c), respec-
tively.

In our experiments, the process noise nk vector in (1) con-
sists of independent Bernoulli(p) random variables. Parame-
ter p is the probability that any component of the noise vector
is 1 which, according to (1), flips the state of the correspond-
ing gene. On the other hand, synthetic gene expression data
is generated by adding zero-mean Gaussian noise of variance
σ2
v to each gene state; i.e., (2) here takes the form ¡

Yk = Xk + vk, where vk ∼ Nd(0, σ2
vId). (25)

Average accuracy rates computed over 500 independently-
generated time series of different length n, process noise in-
tensity p, observation noise standard deviation σv , and the
no-stress and DNA-damage conditions are displayed in Ta-
ble 1. In each run, four of the interaction parameters are



Fig. 2. Comparison in computational effort among the various methods.

selected as unknown randomly, but the process and observa-
tion noises and regulation biases are always assumed to be
known. The accuracy rates correspond to the proportion of
time all four gene interaction parameters are correctly iden-
tified at the time-series endpoint (i.e., an error occurs if at
least one parameter is incorrectly identified). We can observe
that performance increases monotonically with an increasing
time-series length and decreasing observation noise intensity,
as expected. The behavior with respect to the process noise
is more interesting: under no stress, performance exhibits
peaking, whereby accuracy rates initially increases with in-
creasing process noise but eventually decreases. The reason
for this is that at low process noise levels, the system cannot
escape its singleton attractor easily, visiting fewer states and
decreasing performance. This is not an issue under DNA
damage, which contains a large cyclic attractor. On the other
hand, large process noise intensity renders the system too
chaotic, decreasing performance in all cases. Finally, we can
see that accuracy rates are better under DNA damage than no
stress, for a similar reason moderate process noise helps the
inference process: under DNA damage the system contains a
large cyclic attractor and thus, for a fixed time series length,
tends to visit a larger portion of the state space than under no
stress, when the system contains a singleton attractor. In fact,
performance can be quite poor under no stress, large process
and observation noise and small time series length, while the
opposite happens under DNA damage and small process and
observation noise levels.

Next we compare the performance of the ML-BKF and
the DFSS-ML-BKF approaches. Since the former corre-
sponds to an exhaustive search, it is expected to uniformly
dominate in terms of accuracy. The question we would like
to ask instead is how they compare in terms of computational
effort at a high level of accuracy for the DFSS-ML-BKF,
as the number of unknown parameters (i.e., the number of
unknown gene interactions) increases. The parameters of the

Table 1. Average accuracy rates for estimation of the gene
interaction parameters.

No-stress DNA-damage

n p σv = 0.1 σv = 0.3 σv = 0.5 σv = 0.1 σv = 0.3 σv = 0.5

20

0.05 0.378 0.338 0.194 0.830 0.762 0.624

0.1 0.446 0.388 0.208 0.738 0.616 0.462

0.2 0.426 0.290 0.156 0.516 0.374 0.202

0.3 0.230 0.192 0.086 0.238 0.138 0.074

50

0.05 0.528 0.426 0.312 0.954 0.908 0.838

0.1 0.728 0.610 0.400 0.948 0.898 0.766

0.2 0.808 0.628 0.322 0.838 0.666 0.490

0.3 0.538 0.392 0.170 0.518 0.334 0.152

100

0.05 0.692 0.596 0.444 0.986 0.956 0.914

0.1 0.900 0.786 0.528 0.996 0.976 0.896

0.2 0.932 0.854 0.518 0.972 0.898 0.698

0.3 0.780 0.630 0.296 0.756 0.634 0.324

200

0.05 0.902 0.732 0.486 1.000 0.992 0.964

0.1 0.982 0.882 0.688 1.000 1.000 0.966

0.2 0.996 0.958 0.742 1.000 0.980 0.902

0.3 0.964 0.858 0.522 0.944 0.828 0.566

simulation are set to n = 100, p = 0.1, and σv = 0.1 under
DNA damage. Two settings for the DFSS-ML-BKF are con-
sidered: “online,” when the observations are presented one
by one and “batch,” when all 100 data points are presented
at once. This does not make a difference for the ML-BKF
algorithm, since it runs 3M BKFs in parallel for a total of
3M × 100 BKF iterations in either case. We increased the
size of the fish school N and the maximum number of it-
erations tmax to make the DFSS-ML-BKF accuracy rate at
least 97% throughout. The number of visited parameters in
the search space and the number of BKF iterations against



the number of unknown gene interactions are plotted in Fig-
ure 2. We can see that the two methods are very similar in
computational effort for a small number of parameters, but
DFSS-ML-BKF is much more efficient for a number of un-
known parameters exceeding 11. We can also observe that
the batch method is more efficient than the online method,
since in the former case DFSS is only run once.

7. CONCLUSION

We proposed in this paper the DFSS-ML-BKF algorithm for
inference of GRNs. The algorithm is based on the POBDS
model and combines the ML-BKF and a new variant of
fish school search for discrete parameter spaces, called here
DFSS. After a brief review of the POBDS model, the ML-
BKF, and the original FSS algorithm, we introduced the
DFSS algorithm, which allows us to replace the exhaustive
search in the ML-BKF by an efficient search based on the
FSS heuristic. Numerical experiments with the p53-MDM2
negative feedback loop GRN demonstrated the accuracy and
efficiency of the proposed method.
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