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Abstract

Human-centric applications such as virtual reality and immersive gaming are central to future
wireless networks. Common features of such services include: a) their dependence on the human user’s
behavior and state, and b) their need for more network resources compared to conventional applications.
To successfully deploy such applications over wireless networks, the network must be made cognizant
of not only the quality-of-service (QoS) needs of the applications, but also of the perceptions of the
human users on this QoS. In this paper, by explicitly modeling the limitations of the human brain,
a concrete measure for the delay perception of human users is introduced. Then, a learning method,
called probability distribution identification, is developed to find a probabilistic model for this delay
perception based on the brain features of a human user. Given the learned model for the delay perception
of the human brain, a brain-aware resource management algorithm based on Lyapunov optimization

is proposed for allocating radio resources to human users while minimizing the transmit power and
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taking into account the reliability of both machine type devices and human users. Then, a closed-
form relationship between the reliability measure and wireless physical layer metrics of the network
is derived. Simulation results show that a brain-aware approach can yield savings of up to 78% in
power compared to the system that only considers QoS metrics. The results also show that, compared
with QoS-aware, brain-unaware systems, the brain-aware approach can save substantially more power

in low-latency systems.
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Computers, Pacific Grove, CA, USA [1].
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I. INTRODUCTION

The next generation of wireless services is expected to be highly human centric. Examples
include virtual reality and interactive/immersive gaming [2]-[4]. To cope with the quality-
of-service (QoS) needs of such human-centric applications, in terms of data rate and ultra-
low latency, wireless networks must exploit substantially more radio resources by leveraging
heterogeneous spectrum bands [5]. Although allocating heterogeneous spectrum resources can
potentially increase the raw QoS, given the human-centric nature of emerging applications, their
users may not be able to perceive the improved QoS, due to human factors such as the cognitive
limitations of the brain [6]. Indeed, many empirical studies (anecdotal and otherwise) have shown
that the limitations on the human brain can be translated into a limitation on how wireless users
translate QoS into actual quality-of-experience (QoE) [7]-[9]. For example, the human brain
may not be able to perceive any difference between videos transmitted with different QoS (e.g.,
rates or delays) [9], [10].

Hence, in order to deploy these services over wireless networks, such as 5G cellular systems,
there is a need to enable the system to be strongly cognizant of the human user in the loop.
In particular, to deliver immersive, human-centric services, the network must tailor the usage
and optimization of wireless resources to the intrinsic features of its human users such as
their behavior and brain processing limitations. By doing so, the network can potentially save
resources, accommodate more users, and provide a more realistic QoE to its users. Moreover,
the saved resources can be used to accommodate emerging applications in wireless networks
such as drone communications [11], [12] and autonomous driving [13]-[16].

Developing resource management mechanisms that can cater to intrinsic needs of wireless
users and their context (e.g., device features or social metrics) has recently been studied in
[5], [17]-[24]. In [17], a context-aware scheduling algorithm for 5G systems is proposed. This
algorithm exploits the context information of user equipments (UEs), such as battery level, to
save energy in the system while satisfying the QoS requirements of users. The authors in [18],
proposed a user-centric resource allocation framework for ultra-dense heterogeneous networks.
Context-aware resource allocation for heterogeneous cellular networks is also studied in [5], [19],
and [20]. In [5], a novel approach to context-aware resource allocation in small cell networks is
introduced. Both wireless physical layer metrics and the social ties of human users are exploited

in [5] to allocate wireless resource blocks. Proactive caching using context information from



social networks is studied in [21]. The results in [21] show that such a socially-aware caching
technique reduces the peak traffic in 5G networks. Other context-aware resource allocation
algorithms are also studied in [22], [25], and [24]. However, despite this surge in literature on
context-aware networking [5], [17]-[22], [24], and [25] this prior art is still reliant on device-level
features. Moreover, the works in [5], [17]-[22], [24], and [25] are agnostic to the human users
and their features (e.g., brain limitation or behavior). Hence, adapting these existing approaches
can waste network resources due to the potential allocation of more resources to human users
that cannot perceive the associated QoS gains, due to cognitive brain limitations.

A general framework for modeling the intelligence of communication systems which serve
humans is proposed in [26]. The author defines intelligence in terms of predicting and serving
human demands in advance. However, the work in [26] does not account for the cognitive
limitations of a human brain. Moreover, demand prediction, as done in [26], will not be sufficient
to capture the full spectrum of the human user limitations and behavior. By being aware of
brain limitations of each user, the network can provide a unique experience for each user and
optimize its performance. For example, an increase in the delay of a wireless system may have
different effects on the QoE perceived by different human users. In particular, such different delay
perceptions can potentially be exploited by the cellular network to minimize power consumption
and reduce the amount of wasted resources. To our best knowledge, no existing work has studied
the impact of such disparate brain delay perceptions on wireless resource allocation. systems.
Furthermore, none of the prior studies on systems with humans-in-the-loop in other fields [27]
and [28] have analyzed the human brain limitations.

The main contribution of the paper is a novel brain-aware learning and resource management
framework that explicitly factors in the brain state of human users during resource allocation in
a cellular network. In particular, we formulate the brain-aware resource allocation problem using
a joint learning and optimization framework. First, we propose a learning algorithm to identify
the delay perceptions of a human brain. This learning algorithm employs both supervised and
unsupervised learning to identify the brain limitations and also creates a statistical model for
these limitations based on Gaussian mixture models. Then, using Lyapunov optimization, we
address the resource allocation problem with time varying QoS requirements that captures the
learned delay perception. Using this approach, the network can allocate radio resources to human
users while considering the reliability of both machine type devices and human users. We then

identify a closed-form relationship between system reliability and wireless physical layer metrics



and derive a closed-form expression for the reliability as a function of the human brain’s delay
perception. Simulation results using real data show that the proposed brain-aware approach can
substantially save power in the network while preserving the reliability of the users, particularly
in low latency applications. In particular, the results show that the proposed brain-aware approach
can yield power savings of up to 78% compared to a conventional, brain-unaware system.

The rest of the paper is organized as follows. Section II introduces the system model. Sec-
tions III and IV present the proposed learning algorithm and resource allocation framework,

respectively. Section V presents the simulation results and conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink of a cellular network with humans-in-the-loop having a single base
station (BS) serving a set H of N human users with their UEs and a set M of M machine type
devices (MTDs). We assume that each human user uses one UE. Each UE or MTD can have a
different application with different QoS requirements such as sending a command to an actuator
(for an MTD) or playing a 3D interactive game (for a UE). We consider a time-slotted system,
and define /C as the set of K resource blocks (RBs). In our model, the packets associated with
user i € H U M arrive at the BS according to independent Poisson processes with rate a;(t).
The lengths [;, Vi € H UM of the packets follow an exponential distribution. Hence, each user’s
buffer at the BS will follow an M/M/1 queuing model. The total queuing and transmission delay
of each user 7 is D;(t) = ¢;(t) + -Li-, where ¢;(t) is the queuing delay. The data rate for each

Ti (t) ’
user is given by:

o

ri(t) =B Zpij(t) log, (1 - ZM) , (1)

where p;;(t) is the transmit power between the BS and user ¢ over RB j at time ¢ and h;;(¢) is
the time-varying Rayleigh fading channel gain. In (1), p;;(t) = 1 if RB j is allocated to user ¢
at time slot ¢, and p;; (t) = 0, otherwise. B is the bandwidth of each RB. o? is the noise power
which is defined as the power spectral density of the noise multiplied by the bandwidth B.
We define 3;(t) as the delay perception threshold for any user i € HUM at time ¢. If the delay
decreases below the threshold f;(t), the user will not be able to discern the change in service
quality. We use the concept of delay perception f3;(¢) to measure time varying delay requirements
of UEs and MTDs. Since the delay perception for MTDs is constant, hereinafter, for simplicity,

we use [3;(t) to exclusively denote the delay perception of human users, i.e, 3;(t), Vi € H, unless



mentioned otherwise. This delay perception can be affected by multiple sources pertaining to
the human brain such as context, human attention, human fatigue or cognitive abilities and is
determined by measuring the capabilities of the human brain at each time slot using machine
learning methods. By explicitly accounting for the cognitive limitations of the human brain, the
BS can better allocate resources to the users that need it, when they can actually use it. This is
in contrast to conventional brain-agnostic networks [5], [26] in which resources may be wasted,
as they are allocated only based on application QoS without being aware on whether the human
user can indeed process the actual application’s QoS target.

We pose this resource allocation problem as a power minimization problem that is subject to

a brain-aware QoS constraint on the latency:

mm Z [Z P’ + Z P]} (2a)
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where p(t) is an (M + N) x K matrix having each element p;;(¢). P(t) is an (M + N) x K
matrix with each element p; ;(¢) representing the instantaneous power allocated to user ¢ on
RB j. The term P/ = lim,_,o, + T S L pii(T)pij (1) is the time average of the power allocated
to user ¢ on RB j. D;(t) incorporates both transmission and queuing delays. D"** (ﬂz(t)) is
the maximum tolerable delay. This delay depends on [;(t) because changes in human delay
perception will change maximum tolerable delay for human users. ¢;(3;(t)) in equation (2b)
denotes the maximum probability of the packet delay exceeding D***(/3;(t)). Hence, we can
define 1 —¢;(5;(t)) as the reliability of the user i. We define reliability as the proportion of time
during which the delay of a given user does not exceed a threshold. For notational convenience,
hereinafter, we use the terms D ((;(¢)) and D*** interchangeably. Constraint (2b) takes into
account the packet size and the rate of the application implicitly in addition to the maximum
tolerable delay and reliability. From a resource allocation perspective, we can consider any
application using (2b).

The key difference between our problem formulation and conventional RB allocation problems
[29] is seen in the QoS delay requirement in (2b). Constraint (2b) is with respect to two random

processes D;(t) and §;(t). In (2b), the network explicitly accounts for the human brain’s (and
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Figure 2: Graphical representation of building

Figure 1: Illustration of the system model. a PDI model.

the MTDs’) delay needs. By taking into account the features of the brain of the human UEs,
the network can avoid wasting resources. This waste of resources can stem from allocating
more power to a UE, solely based on the application QoS, while ignoring how the brain of the
human carrying the UE perceives this QoS. Clearly, ignoring this human perception can lead to
inefficient resource management.

We propose a machine learning algorithm to identify the human brain delay perception S;(t).
Each human user has d features, (e.g., age, occupation, location) assumed to be known to the
BS. This time-varying feature vector is denoted by z;(t) € R%. We develop a learning algorithm
to build a model that maps these features to 3;(t) for each user. We then show that being aware
of B;(t) can help the resource allocation algorithm to save a significant amount of resources for
low-latency systems. We assume that the BS has access to the user features x;(t). In practice,
the BS can collect such data whenever a given user registers in the network or by using the
sensors of a user’s mobile device. The system model is shown in Fig. 1. Also, Table I provides
a list of our main parameters and notations.

To find the mapping B;(t) = f(x;(t)) between human features x;(¢) and the delay perception of
the brain, we introduce a novel supervised learning mechanism called the probability distribution
identification (PDI) method. Here, function f(.) shows this mapping. Since reliability is a key

factor in a communication system, we need a supervised learning algorithm that not only predicts



Table I: List of notations.

[ Notation | Description | Notation | Description
Dij Power of user < on RB j Pij RB j allocation indicator to user %
D; Packet delay for user ¢ L Total number of clusters, brain modes
Drax(.) Target delay for user () target reliability of user ¢

Bi(t) Delay perception of user ¢ at time ¢ |4 Balancing parameter for reliability constraint

hy;(t) Time-varying Rayleigh fading channel gain A Lagrange multiplier
B RB bandwidth o? Noise power
N Number of UEs k(j) Optimal allocation for RB j
K Number of available RBs II Projection operator

a;(t) Arrival rate of user ¢ in time ¢ G Subgradient of element i of \,

F,(t) Virtual queue for user ¢ at time ¢ 3k Covariance matrix of mode k£ of human brain
n # of training users, P(.) PDF of multivariate normal

Dpax Target end-to-end latency for user ¢ [ Mean vector of mode & of human brain
M set of MTDs H Set of UEs
K Set of RBs X2 () chi-square distribution function
Tk Mixture weight of mode & z Mode indicator vector
L Likelihood function d # of features for each user
f Supervised learning model c(w;), ¢ Cluster (mode) number of w;
Yy Set of labels for supervised learning &) 0-1 loss function

Dmin(e’ Effective delay of human user ¢ Q4(y) | Quantile function of chi-square distribution with d DOF

S Reliability event of the system xa(-) Chi-square function with d DOF
L, Lagrange dual function ej Unit vector at j

Bi(t) as a function of x;(t), but also gives a measure of reliability for this prediction. This measure
of reliability is one of the key advantages of PDI learning over other supervised learning methods
[30], [31]. Although conventional methods such as neural networks can be used to approximate
the continuous function f(.) [31], these methods cannot quantify the reliability of this prediction.
The reliability of predictions is defined as the probability that the prediction of §;(t) lies within
a certain range of the true values for (3;(t).

The PDI method can find the distribution of the prediction values. Although many existing
supervised learning methods can build a model for predicting an output based on a given input,
they fail to find a statistical model for this prediction. In addition, by using the statistical model
for the predictions s resulting from our proposed PDI, the system designer can better design the
system based on desired reliability.

As discussed in [32], the delay perception of a human brain typically follows a multi-modal
distribution. As a result, we design the proposed PDI approach to capture such a model and
find the different modes of a human brain. Then, using the distribution of the brain delay, the
PDI approach can find the effective delay of the human brain. This effective delay determines

relationship between [;(t) and «;(t) along with its reliability.



A. Building a PDI model

Consider a dataset {x(t), - ,x,(t)}, where z;(t) € R? is one sample data vector. The
elements of x;(t) are user features which can be both categorical (such as gender) and numerical
(such as age). For each input vector x;(t), we have a corresponding output value of delay
perception [3;(t). This data can be collected using experiments or surveys such as those in [33].
Since we can remove time dependency of the data using time-series techniques such as in [34],
hereinafter, we use x instead of x(¢). Although we omit the time dependency from x;(t) for
the training process, it is still implicitly a function of time. This dataset can be represented by
a matrix X € R™*?, where ! is row i of X. Using PDI, we first create an n x (d + 1) dataset
matrix:

wi x  Bu(t)
W=[x|8=]|:|=|: |, 3)

wl xl  B,.(t)

n

where w; € R4 is a vector of the delay perception 3;(t) and d other correlated features of the
human brain. First, in the unsupervised learning step, we fit a Gaussian mixture model (GMM) to
our dataset using the expectation-maximization (EM) algorithm [35] to obtain p(x;, 5;(t)). After
finding p(x;, 5;(t)), we are able to cluster the data samples and find m brain modes in the data.
Then, each data vector x; is labeled based on its cluster number ¢; so that each x;, i =1,--- ,n
has a label in the cluster set ¢; € C = {1,---, L}. Using this method we have a labeled dataset
which can be used for the supervised learning. These cluster numbers will correspond to the
modes of the human brain that determine its effective delay perception.

Next, we describe the Gaussian mixture model that we use as underlying model for the
human brain. We use GMM for clustering (unsupervised learning) and statistical modeling of
human brain because of its multimodal structure which resembles human brain activites [36], its
scalibility, and its robustness and stability under high-noise levels compared to nonparametric
methods.

A multi-modal stochastic model is assumed for the brain features w; for user ¢. The proposed

distribution for w; is given by [30]:

plw;) = plz)plwi|z) =Y map(wilpy, Si), “4)

where ¥ (w;|p,, Xy) is the probability density function for a multivariate normal distribution



with mean vector p, and covariance matrix ;. X and p,, represent the covariance matrix and
mean vector for mode & of the human brain, respectively. z is a binary random vector, in which
a particular element z; is equal to 1 and all other elements are 0. z essentially indicates which
mode is activated in the GMM, and 7, is defined as p(zy = 1) = 7. L is the total number of
modes in the GMM. The human brain will be in mode k with probability 7, and its features
are generated using a multivariate normal distribution with mean and covariance pu; and 3,

respectively. The posterior probability, i.e. responsibility, for mode k£ will be:

' _ Tt (wi| gy, X))
) ST iy, 5

This responsibility can be used for clustering the data as well. After fitting the GMM on the

&)

dataset, we can find the mode with highest responsibility for each data point and assign the data
to this mode. The EM algorithm is used to find p;, ¥y, and 7, for all £ = 1,--- . L, based
on the real-time human brain behavior [35]. The log likelihood function for our dataset can be

written as:
L

lnﬁ(E, s ﬂ-‘w) =In Zp(wl‘za My 7T) = Z In Z Wkw(wl‘u’k? Ek) (6)
i i k=1
The likelihood function in (6) has singularities and, hence, it is infeasible to find parameters

Tk, 2k, and p,. The EM algorithm is proposed in [37] to maximize the likelihood function for
a Gaussian mixture model. In the EM algorithm, we first initialize 3, p,, and 7; randomly.
Next, we find the responsibility for each mode using (5). Then, we reestimate parameters using
current responsibilities. Finally, the likelihood in (6) is maximized with respect to 3, p, ,and
T

As a result of the EM algorithm (unsupervised learning), we now have a GMM of our dataset
matrix W. Based on this GMM, the data will be labeled (clustered) as follows. For each data

point w;, the most probable mode is assigned as the label of this data, i.e.,

¢; = c(w;) = argmax p(z; = l|w;) = argmax 7;(2). (7)
k k
In (7), we assign the most likely cluster to each data point w,. After building a GMM model using
T
unsupervised learning on the W dataset to obtain target vector y = |c(w;) - - c(w,)| » We

use the pair { X, y} to train a supervised learning model. Thus, the output of the unsupervised
learning step y is used for training the supervised learning model. Then, during the supervised
learning step, we train a classifier so that it can find the mode c¢; using the human features x;

as input. Given the data matrix X and the output vector y, this supervised learning builds us a



Algorithm 1 Building PDI model

Input: w; = [z; i, i=1,---,n
Output: f, m, pug, 2, k=1=---,L
Unsupervised Learning :
Apply EM algorithm to w;, find 7y, pg, S, 75(2x) k=1,---, L, i=1--- n.
fori=1=--- ndo
find c¢(w;) using (7).
end for
Pass y = [c(w;) - c(wn)}T to the supervised learning algorithm
Supervised Learning :
Find f using (8).
: return f, mp, g, g, k=1=--- L

AR

38

model f such that ¢; = f(x;), where
f = argminy ¢ (c(w), flz). ®)
i=1
where £(.) is a 0-1 loss function [38, Equation 7.5]. f is a function that is approximated using
a set of points (x;,¢;) and determines the relationship between the features of a user and its
cluster. To overcome overfitting, we use the elbow method for finding the optimal number of
clusters in PDI, as discussed in Section IV. After approximating f, given each human user’s

feature vector x;, we find the modes c¢; using model f. Algorithm 1 summarizes building a PDI

learning model. Also, a graphical representation for building a PDI model is shown in Fig. 2.

B. Deployment of the PDI learning model

In this subsection, we bound D!"**(;(t)) based on its features x;. Note that the deployment
and training of the PDI learning method are separated from each other. The deployment part
only uses the model generated by the training part. Now that the system can identify the human
users’ modes, we need to find a relationship between a human user’s mode and the probabilistic

model of its delay perception by defining the concept of effective delay.

Definition 1. Given the statistical model for human delay perception [;(t), D™"(¢') is the

effective delay for human user ¢ that satisfies:

Pr{fi(t) < D"™(¢)} < €. 9)

To find the effective delay for human user ¢, we first find the probability that the delay
perception of human user 7 is less than a threshold D" (¢’). In other words, we want to find the
relation between ¢ and D™"(¢') in (9). The concept of effective delay is defined using the fact

that delays less than D"(¢') cannot be sensed by a human with (1 — €’) certainty. The relation



Algorithm 2 Deploying PDI model for finding brain delay perception

Input: z;,2=1,--- N
Output: y;, X, t1=1,--- | N
.fori=1=---,N do
2. find the cluster for x;: k; = f(x;) and hence pug,, X, .
3:  find function D"(€’) using (13)
4:  using target reliability find ¢’ and then using function D"(¢’) find D™,
5:  set the D™ (3;(t)) = D", and using (16) and ¢ find €(3;(t))
6: end for
7. return D*(B;(t)) and €(B;(t)) fori=1=--- /N

between ¢ and D™"(¢') in (9) is found in Theorem 1. For notational simplicity, hereinafter, we

use D™ ingtead of DM (¢).

Theorem 1. If brain mode £ is identified for user ¢, then its delay perception will be bounded

as follows:

Pr{16,(6) = pu(d+ D] < \/Quss ()€l Brean | > 7. (10)

where 3, and p;(d+ 1) represent, respectively, the covariance matrix and the (d+ 1)th element
of the mean vector of the identified brain mode k. Q4(y) is the quantile function of chi-square

distribution with d degrees of freedom, and is defined as

Q4+1(y) = inf {x e Rly < / Xflﬂ(u)du}, (11)

0
and e; is a unit vector in R, whose jth element is 1 and all other elements are zero. d is
number of features used for learning. x2 1(x) is the probability density function of a chi-square

random variable with d + 1 degrees of freedom.

Proof: See Appendix A. [ ]
Note that the bound in (10) is different from finding a bound using marginal distributions, as

it is based on high probability density areas. The use of a marginal distribution is not possible
here, since the Gaussian assumption is only valid locally around the mean. Also, in case of
data classification error which mostly happens when the data is located in the overlapping area
between clusters, the bound in (10) will be either more conservative than the actual bound for
delay perception or it will not change significantly compared to the actual bound. As seen from
Theorem 1, in addition to the delay perception element zi;(d + 1), the only other parameter that
affects the delay is edTHEkedH, which is the (d + 1)th diagonal element of 3, which is not

assumed to be diagonal. Fig.3 shows the relationship between D" and GMM random data



generated from a Gaussian mixture model. Fig.3 shows that, after finding the GMM for the
dataset, one can find the predictive coverage of each Gaussian distribution and, then, we can
determine the probability with which 3;(¢) for a user 7 will be higher than a threshold D™,
In order to find the effective delay for human user i, we first find the probability with which
the delay perception for human user i will be less than a threshold D™, In other words, we
will find the relationship between ¢ and D™ in (9) using the following corollary that follows

directly from Theorem 1.

Corollary 1. As a direct result of Theorem 1, we can reduce (10) to

1 _
Pr{ﬂi(t) < pr(d+1) - \/Qdﬂ(”Y)edTHEkedH} < 77 (12)

Therefore, we find D™"(¢) and € in (9) as

D) = uy(d+1) = 1/ Qain (1 — 26)€l, Searn. (13)

Since Q411(7y) can only be calculated numerically, a closed-form relationship between D" (¢)
and e cannot be found. However, we can numerically analyze this relationship, as shown in Fig.
4. Fig. 4 is found using a set of points generated with (13) for different values of py(d + 1)
and X;. From Fig. 4, we can first observe that D" (¢) is an increasing function. This means
that the probability of the human brain noticing QoS differences for low delays will be much
smaller than for higher delays, which is an intuitive fact. Furthermore, it can be inferred that,
if the delay perception for a group of human users within a cluster is diverse, then the system’s
confidence on the delay perception of this group of humans will decrease, i.e., the estimation
of the delay perception of this group of human users will be less reliable. Next, we determine
constraint (2b) using D™ ().

As stated before, some delays are not perceptible to human users. To capture this feature,
we find D"*(3;(t)) and €(53;(t)) in problem (2) using D" (¢). Recall that D*(3,(t)) is a
parameter that will be used by the resource allocation system to represent the maximum tolerable
delay for the reliable communication of user ¢ with 1 — €(/3;(¢)) being the reliability of user i.
There are three possible cases for D** based on D" of a human user i:

1) D" > Dmin: In this case, the system will not be reliable even if we satisfy Pr(D >
D»*) < e. The reason is that the human user has a delay perception of less than the maximum

delay D;"** and hence, the system is not reliable.
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2) DPax < D™n: In this case, if the system is able to satisfy Pr(D > D) < ¢, then the

Figure 3: Finding D™ using a GMM model
for two different clusters.

system will be reliable, because user i cannot sense delays less than D™ and its service delay
will not exceed D"**.

3) D = Dmin: If this equality holds, the system will be reliable and it will also have
prevented a waste of resources. If any given user cannot perceive delays less than D™, then it
is not effective to allocate more resources to this user.

We define S as the event resulting from case 2 and case 3 while assuming events F; and F,
satisfy D < D™ and f3;(t) > D", respectively. We know that for case 1, event F; N E5 is
a subset of event S, and in case 2, event S is a subset of event F; N E,. Similarly, in case 3,
event F; N Fy is same as event S. Since the probability of F; N E5 can be computed, if we set

D to D (case 3), we can find S as follows:

Pr(EyNEy) =1 — Pr((D > DY U (Bi(t) < D;nin)) (14)

—1- (Pr(D > D) 4 Pr(,(t) < D™) — Pr(D > D™\Pr(By(t) < D;ﬂin)). (15)

(14) follows from De Morgan’s law, and (15) is true since D and (;(t) are two independent
random variables at each iteration. Therefore, if D™ = D™ for user i and e€’ is small, we
can see that

1= (Pr(D > D) + Pr(B(t) < DI™)) = 1= (e +¢), (16)

and, hence, Pr(S) = Pr(E1NEy) > 1—(e+¢€'), where Pr(S) is the reliability of the system defined



in (2). Subsequently, as we design the system, we consider the reliability as a predetermined
target design parameter for the system. Using this parameter, we can set ¢ and €. Given ¢
and numerical function D™"(¢') derived in (12), D™ can be determined. Now, given ¢(3;(t))
and D™(f3;(t)), we can fully characterize problem (2). We note that, as the human user delay
perception changes throughout a day, D***(5;(t)) changes accordingly. Therefore, our solution
should take into account changes in D*(f3;(t)) as well as changes in channel gains h;;(t).
D@ is a threshold and 1 — ¢ denotes the reliability which is used in all cellular systems.
However, in a wireless system that explicitly takes into account human users in its loop, D;"**
will become a function of f3;(¢) and can be determined using the concept of effective delay

Dn(¢') defined in (9).

III. BRAIN-AWARE RESOURCE MANAGEMENT

The notion of human-in-the-loop implies that human factors (such as brain limitations) will
be part of the resource allocation framework, i.e., in the loop of resource allocation. For such a
system, resource management can dynamically adapt to the human user in its loop, as opposed
to just the device. Therefore, our approach considers the human brain limitations as functions of
time and adapts the system to the dynamic changes that can occur in the brain and its cognitive
limitations, over time.

Since the human brain state usually changes rapidly, our work is different from context-aware
or QoS-aware works. The fast fluctuations in the cognitive activities of a human brain which
have been validated in many works such as [39]-[41] requires the resource allocation framework
to be aware of time-varying brain-aware delay constraint in each time slot.

To solve problem (2), we propose a novel brain-aware resource management framework that
takes into account the time-varying wireless channel and the time-varying brain-aware delay
constraint (2b). We transform this constraint into a mathematically tractable form.

The relation between the packet length distribution and the service time distribution for a
packet is shown next, in Corollary 2. Here, the packet service time is defined as the transmission

time of a packet from the BS to the UE or MTD.

Corollary 2. If a fixed rate r; is allocated to a user and the packet lengths follow an exponential
distribution with parameter Y, then, the distribution of the service time s will also be exponential

with parameter yr;.



Proof: The CDF of the exponential distribution is F;(¢)) = Pr(l < 1)) = 1 — e X¥. Hence,

l
Fo(S) =Pr(s < S) =Pr(— < S) =Pr(l < r;S) = Fp,5(s) =1 — e X9, (17)
T
This means that the PDF for the service time is fg(s) = e X", [

the packet length distribution parameter Y is constant in our analysis, without loss of generality,
we assume that the service time of each packet is an exponential random variable with parameter
r;, which is the same as the rate allocated to the user. We assume that for any given user, the
packets arrive according to a Poisson process with the rate a;(7), and the user data rate is
exponential with parameter r;(7) in slot 7 = 1,---  t. Next, we derive the probability with

which the delay of a given user ¢ exceeds a threshold D"**.

Theorem 2. Assume that user ¢ has a time varying rate r] at time slot 7. If the duration of each

time slot is long enough for the queue to reach its steady state, i.e.,

——— << 6 18
) —am T o
then, the probability that the delay exceeds a threshold is
1 t
PI‘(D > Dzmax) _ thm - e—(””i(T)_ai(T)) D;“ax’ (19)
—00
T=1

under the condition that 7;(7) > a;(7) for all 7 > 0.

Proof: See Appendix B. [ ]
Theorem 2 shows that constraint (2b) is satisfied if the network can satisfy the following
condition
1 t max
lim + 3" e () —aim) o (20)
t—oo ¢ gt

Fig. 5 shows the relationship between the theoretical result from Theorem 2 and simulation
results. Clearly, simulation and analytical results are a near-perfect match with a maximum error

of only 0.0146.

A. Optimal Resource Allocation with Guaranteed Reliability

Constraint (20) is analogous to the drift-plus-penalty method in Lyapunov optimization frame-
work [42] which we use to solve (2). The problem has a time-varying nature since the human
brain conditions and needs will change from time to time. The users’ processing state 3(t) is also
a function of time, and accordingly, the latency needs in (2b) will be time-varying. Therefore,

we need to solve the optimization problem (2) during each time slot efficiently. We propose an
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Figure 5: Comparison between simulation results and the result of Theorem 2.
algorithm with a low computational complexity for solving problem (2). The drift-plus-penalty
approach is used to stabilize a queue network while minimizing time average of a penalty
function. To satisfy constraint (2b) in all time slots, (19) must be smaller than e. For this reason,
we use virtual queues to model the time average constraint (20) in the optimization problem.

We define a virtual queue:
Fi(t + 1) = max{F}(t) + e~ (r-a®)op _ 0}. (21)

We can see that e~ (rit)=ait) D= _ € < F(t) — F;(t). Consequently, we obtain:
t
Z e~ (ri(T)—ai(T))D?}ax — et < E(t) — FZ(O) (22)
=1
If F;(0) is bounded, we have:

t

1 . . max E t
lim ©$ e (e -a@) o= gy ﬁ. (23)
t—oo ¢ gt t—oo
If the queue F;(t) is mean-rate stable, that is, lim; E "t(t) = 0, then we have:
t
1 . . max
lim = $7 e (r—e) o (24)
t—o00 p—
The Lyapunov function is defined for all the queues in the base stationas Y (t) = 2 >, . Fi(t)%.

Then, we can find the drift function At =Y (¢t + 1) — Y (¢) as:

1 , 1 , 1 )
Yi+)=5 > RE+1'<5 3 F@*+5 3 w®’+ > wl)fE), @5
1EMUH 1EMUH 1EMUH IEMUH
where

ye(t) = e~ (nO-a@) D _ (26)



Thus,
1
At <5 > oyt + D yE®). 27

1IEMUH 1IEMUH

We can form the drift-plus-penalty by adding V', . p;;(?) to both sides of inequality (27),
where Zl ; bij 1s the total power of the BS which we want to minimize, and V' is a parameter
that determines how important minimizing the objective function (2a) is in comparison with
satisfying (2b). We can balance the tradeoff between power and delay. The drift-plus-penalty
inequality is

1 c 2 c
At + Vzplj <3 > )+ Vzpij(t) + > g E(®). (28)
1,7 1€EMUH ,] 1EMUH
Given that we assumed r;(t) > a;(t) for all ¢, we know that |y$(¢)| < 1Vt,i € MU®H, and

hence, we can rewrite (28) as

At+ VY py SUB+VY pu(t)+ > yi(t)F(), (29)

1] Y] iEMUN

where U B is the upper bound of  >~._ .\ . ¢(t)?, and is equal to W || is the cardinality
of set H. Using the drift-plus-penalty algorithm [43], we know that, by minimizing the right hand
side of equation (29), queue F;(t) will be mean-rate stable, and hence, the condition yS(t) < 0
will be satisfied. As a result, constraint (2b) will also be satisfied. Furthermore, we know that
by minimizing the right hand side of (29), cost function (2a) is also minimized, owing to the
fact that (2a) is defined as a penalty function. By minimizing the right hand side of (29), our

optimization problem can be converted to the following time-varying problem:

g -V ijj () + GMZH Ui (D E(L), (302)
st ri(t) > ai(t), Vie HUM (30b)
pi(t) >0,  pi(t) € {0,1}, Vice HUM,j €K, (30c)

> pylt) =1, Vi e K. (30d)

1€HUM

The cost function in (30a) is equivalent to (2a) and (2b) in the original optimization problem.
Learning the effective delay of each human user using our proposed PDI method determines
the parameters y{(¢) and F;(¢) in the problem (30a). However, in order to satisfy (2b), we need

to also satisfy (30b). The reason for adding (30b) is that if this constraint is not satisfied in



any time slot, the queue length will approach infinity. Constraints (30c) and (30d) are feasibility
conditions and remain the same as (2). Hence, by solving (30) in each time slot, the original
problem (2) will be solved.

Nonetheless, problem (2a) is not a convex optimization problem, due to the fact that it is
a mixed integer problem and its complexity increases exponentially with the number of users.
Since (2a) needs to be solved at each time slot, this exponential order of complexity makes the
implementation infeasible. Consequently, we should use a dual decomposition method to break
down optimization problem (30) to smaller subproblems, and find the optimal solution to (30)
using a low complexity method. It is rather challenging to solve (30) using a dual decomposition
method, as the structure of y$(¢) makes it infeasible to decompose the objective function for
each RB. In order to overcome this challenge, we convert (30) to a decomposable form. Then,
we will show that this converted problem is equivalent to (30).

For this purpose, the Lagrangian for problem (30) is written as

VY o)+ D yiOF@) + Y Aalt) —ri(h)), G
ij iEMUH iEMUH

where ); is the Lagrange multiplier. As we know, y§(t) = e~ (”(t)_‘“(t))D """ _ €. Therefore, the
only decision variables are allocation of resource blocks to the users and allocating power to
each RB. Although F;(¢) is a function of y§(t), it is not a decision variable and is treated as a
constant. Hence, (31) can be rewritten as

Vzpij(t)—l— Z e—(n() ai (1)) D o Z Ai(ai(t) —ri(1)). (32)
4]

1EMUH 1EMUH
The main optimization problem consists of two components. First, minimizing the total power

of the BS with weight V', and second, minimizing the summation Zie MUN ¢ ") which has a
weight Fj(t)e~ %MD for each user i.

As we can see, (32) is not decomposable for each RB. Here we will have an approximation of
(30) and then propose an algorithm to solve this approximation efficiently. In this C-additive ap-
proximation, » .\, 2 € (ri0-ai) D " F,(t) in (32) is substituted with its linear approximation
of exponential term e~ at z = 0.

> —(ri(t) — ai(t)) D™ Fy(t). (33)

1IEMUH

In the original problem, if y§(¢) starts to become greater than zero for user 4, then F;(t) will

pmax

increase and it will give more weight to the term e (”(t)*“i(t)) i . As a result, the algorithm



allocates more resources to user ¢ such that it minimizes e <”() ‘“(t)) " for user i, and
accordingly, y$(¢) decreases. Hence, Fj(t)e” (ri-a)) D= plays the role of feedback in the
system. As we can see from (33), this approximation will not change this feedback mechanism
and plays the same role in the system. Therefore, we can write

nlggl{v Zpij(t) + Z —(Tz'<t> - az‘(t))D;naXE'@)}

1IEMUH

<C+ mm{v Sty + > e (r-ait Dmei(t)}. (34)
1,7 1EMUH
Using this C-additive approximation, it can be easily proved that all terms are mean-rate stable.

Hence, (2b) in the original problem is satisfied [42]. Finally, problem (2) can be presented as:

min VY py) = Y (D) = () DPUR),

p(1),P(t)

1EMUH
s.t. ri(t) > a;(t), (35a)
pi;(t) >0, Yie HUM,jeK, (35b)
pii(t) €{0,1}, Yie HUM,je K, (35¢)
Y opylt)=1, Vjek. (35d)
1EHUM

In order to solve this problem, we can decompose it into /K subproblems. Since these subprob-

lems are coupled through constraint (35d), we use the dual decomposition method for solving (35)
[44]. First, the Lagrangian is written for problem (35), and in the second step, it is decomposed
for each RB. Then, the resource block allocation and the power of each RB are found in terms
of the Lagrange multiplier vector A. Finally, A is calculated using an ellipsoid method.

The Lagrangian for problem (35) is

Lo(P,p, A VZp” + Y —(ri(t) = a(®)) DPFi(t) — Xi(rilt) — ai(t))

e MUH
= VZpi,xt) = > (N+ DPEW®) (rilt) — ai(h)). (36)
2,7 1EMUH

One major difference between our problem and conventional power minimization problems is
that there is an additional term D}***F;(t) added to the Lagrange multiplier (the shadow price).

In this problem, D**F;(t) plays the role of a bias term. Therefore, a new hypothetical
Lagrange multiplier A} is assumed and defined as A, = \; + D***F;(t). This means that adding
constraint (2b) to the problem instead of constraint (35a) increases the shadow price by a factor

of D" F;(t). Increasing the shadow price for a constraint makes it looser. As a result, in many
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Algorithm 3 Resource allocation algorithm

Obtain D™ ¢;(t)Vi € H U M using PDI algorithm (Algorithm 2).

Find F;(t), Vi € H U M, using (21)

Initialize A

while convergence condition is not satisfied do
Find p;;, Vi € HUM, j € K, using the updated A (40)
for each RB j € I, find k(j) by searching over all users i € H UM using (41) and then
assign pj; and pj; for all i € HUM, j € K,

7. Use the ellipsoid method to find A

8: end while

AN o b

time slots, constraint (35a) will not be a tight constraint and the Lagrange multiplier will be set
to N = [\ — D;naXFi(t)r. the Lagrange dual function is
A) = min Lo(P,p, ). 37
9N = min  L.(P.p.N) (37)
The minimization problem (37) can be decomposed to K subproblems. g’(A) can be written as
mae hijpi;
ey = min VZp” > (Ni+D; E(t))(Wlog2(1+KT)), (38)
1EMUH
where D is a set of fea51ble pi;s in which for RB j, there is only one ¢ that p;; # 0. Hence,

g(A) is

- Zg;()\) + Z ()‘i + DzmaXFi(t)) (@i(t))- 39)

iEMUH

If A is fixed, gj(A) is a convex function of P. Therefore, P is found by taking a derivate with
respect to p;; and setting it to zero. This results in
B [(Ai + DPE())W o2 r
Pig = \%4 10g2 Kh” ’
The optimal RB allocation for RB j is k(j), and can be written as

k(j) = argminV 3 py— S (Ai+D?la"ﬂ(w)(Wlogz(HK%)), @1)
v i iEMUH

(40)

hi D i
g5(A) = minV’ me- = > (M +DME() (Wlogy(1+ K %)). (42)

i 1EMUH
Thus, pj; and p;; will be given by:
p;'kj = p:j = (43)
0, otherwise. 0, otherwise.

Hence, the optimal rate becomes r; = Zj Wlog,(1 + K %) The only parameter that
affects this joint RB and power allocation is A. As the number of RBs increases, the duality gap

in this problem approaches zero [44]. We know that the optimal value is found by maximization
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of g(X\) with respect to A. In order to find A, we use the ellipsoid method [45], and to do so,
we have to find the sub-gradient for the dual objective g(A). The following theorem will show

that the subgradient for (36) is a vector with elements ¢; = a; — r;.

Theorem 3. The subgradient of the dual optimization problem with dual objective defined in

(39), is the vector d whose elements (;, Vi € H U M are given by:

* *
a; —r;, a; 2Ty,

G = (44)
0, a; <71}
Proof: Since
g(A) = rlr;in Lo(P,p, )= Lo(P* p" N), (45)
P
we have:
9(8) <Ly (P",p",6)
=V pit)— > (6 + DME(®)) (5 () — ai(t))
i,J iIEMUH
=V pr,j(t) - Z (N + DP=Fi(t)) (r7 (t) — ai(t))
ij iIEMUH
+ (N = 0) (7 () — ai(t)) = g(A) + (A= 8)"¢, (46)
T
where ¢’ = T—ar o TNy — aN—i—M} :

However, because of the term DM [;(t), when \; = 0 and a; < r}, the direction of ¢’
will be infeasible. Using the projected subgradient method [46], we can transform this infeasible
direction to a feasible one. The update rule for projected subgradient is: AFEHD — H()\(k) — ()
where o is the step size and II is the Euclidan projection on the feasible set. Since the feasible

set is A\; > 0, we can see that

ITA® — ) = AW — q,, 47
where:
1{7 CZ/ZO a’i_lr‘;‘k7 az’Z?‘;,
G = = (48)
0, (<0 0, a; <ry.
|

Algorithm 3 summarizes our proposed resource allocation algorithm.
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B. Complexity Analysis

Next, we find the complexity of our algorithm which needs to be run in each iteration. There
are K RBs in our problem, for each of which (41) needs to be evaluated for M + N users.
It takes O((M + N)K ) times to solve a primal problem. Subsequently, the dual problem will
be solved, which gives us the optimal value of A in an M + N dimensional space and has a
complexity of O((M + N)?). Therefore, the overall complexity should be O((M + N)3K).
However, as mentioned before, adding D[***F;(t) to the Lagrange multiplier sets a major part
of it to zero, and as a result, the order of complexity will decrease to (’)((M + N)K ) Given
the low-complexity of the proposed algorithm, in practice, it can be easily run periodically by
the network at each time slot ¢, so as to effectively adapt to dynamic, time-varying changes in

both the human delay perceptions of the users and the wireless channel.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider the dataset in [33] to model the delay perception of a human
user. In [33], the authors conducted human subject studies using 30 human users, where each
subject is asked to rate the quality of 5 movies while the delay and packet loss in the system is
being increased. We used the average score of each human user to estimate their delay perception.
In [33], The highest delay that the test subject is not able to sense is considered as the delay
perception of this subject, and, this, matches our definition of delay perception. We also used a
variation of the bootstrap method [38] to increase the number of data points to 1000. We can
see the histogram of the delay perception for these 1000 data points in Fig. 7.

To the best of our knowledge, no dataset which includes features for each human user as well
as human delay perception currently exists. Hence, we attribute three continuous features to each
user. The process of adding features starts by clustering the delay perceptions 3;(¢) for 1000
users. Then, we choose a random mean vector and a random positive semidefinite covariance
matrix for each cluster and use them to create multivariate random Gaussian features for each
data in the cluster. In consequence the random features have: 1) a GMM structure and 2) a
predictive ability for 3;(t). Hence, each user is associated with a vector w € R*.

We consider a network with a bandwidth of 10 MHz, a;(¢) = 1 Mbps, 02 = —173.9 dBm, and
e = 0.05. We use a circular cell with the cell radius of 1.5 km. We set the path loss exponent
to 3 (urban area) and the carrier frequency to 900 MHz. The packet length is an exponential

random variable with an average size of 10 kbits. We use 5 MTD and 5 UE in the system
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Figure 6: Within point scatter for the EM Figure 7: Distribution of (3;(¢) for the 1000
clustering method on the datasest. users in dataset.

and we set D"** to 20 ms for them, unless otherwise mentioned. For the brain aware users, we
arbitrarily select 5 UE in the system out of all data points. The brain-unaware case is QoS-aware
and power-aware. In this case, D["** and e are not functions of f3;(t).

Fig. 6 shows the within cluster point scatter for the EM algorithm in our dataset. This within
cluster point scatter for a clustering C'is defined as [38]: W(C) = 53711 Do 2o equry—r A@i, Tir),
where d is an arbitrary distance metric. In essence, the within cluster point scatter is a loss
function that allows the determination of hyper-parameters in the clustering algorithm. The hyper-
parameter that we seek to find here is the number of clusters in the dataset. As we can see from
Fig. 6, after the number of clusters reaches 5, increasing the number of clusters does not decrease
the within cluster point scatter substantially. Hence, the optimal number of clusters is 5. This
method of model selection known as elbow method allows the algorithm to avoid overfitting.

Fig. 8 shows the total BS power resulting from the proposed brain-aware case and from a
brain-unaware case in which UEs have a fixed constraint (2b) with D;"®* between 10 ms to
60 ms. Here, the total power is the objective of main optimization problem (2). Fig. 8 shows
that, as the latency increases, the total power decreases, because it is easier to satisfy constraint
(2b) at higher latencies. Also, at higher delays, being brain-aware will no longer yield substantial
gains, since f;(t) and D™ become close to each other and learning ;(¢) cannot save resources
for the system. In contrast, in Fig. 8, we can see that for stringent low-latency requirements, the
proposed brain-aware approach yields significant gains in terms of saving power. In particular,

for 10 ms delay in (2b), Fig. 8 shows that the BS in brain-unaware approach uses 44 % more
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Figure 8: Average power usage of the system Figure 9: Average power usage of the system
as function of different latency requirements for different number of MTDs and 5 UEs with
for the users. D = 20 ms.

power compared to the brain-aware case. These results stem from the fact that a brain-aware
approach can minimize waste of resources and provide service to the users more precisely based
on their real brain processing power. Fig. 9 shows average BS power for different number of
MTDs. As we can see from Fig. 9, the brain-aware approach will always outperform the brain-
unaware approach as the number of MTD increases. For the case of 30 MTD user, the BS in
brain-unaware approach uses 16% more power compared to the brain-aware case. This is due
to fact that brain-aware approach can allocate resources more efficiently in case of a shortage
in resources.

In Fig. 10, we show the average power usage of the system when the number of UEs increases
from 2 to 30 with D" set to 20 ms. As the number of users increases, the average power
consumption of the system will also increase. This is due to the fact that increasing the number
of users will decrease the bandwidth per user. Since the delay and rate requirements of each
user are still unchanged, the system needs to use more power to compensate for the bandwidth
deficiency. From Fig. 10, we can see that, in the case of 30 users, the brain-aware system is able
to save 6.7 dB (78%) on average in the BS power. The brain-aware system can allocate resources
based on each user’s actual requirement instead of the predefined metrics and this leads to this
significant saving in the power consumption of the BS.

In Fig. 11, we show the average power consumed in the system for different number of virtual
reality (VR) users. For the VR simulations, we assumed an arrival rate of 25.31 Mbps for each

user [47] and have used bandwidths of 20 MHz and 40 MHz. We can see that, the system is
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is learned. Low and high delay perception is learned. Low and high delay perception
users have delay perception of 26.8 ms and  users have delay perceptions of 26.8 ms and
133.73 ms, respectively. 133.73 ms, respectively.

able to save power up to 40% and 15% compared to the brain-unaware scenario in the case of
20 MHz, and 40 MHz bandwidth, respectively. Fig. 11 also shows that the proposed approach
is able to allocate resources more efficiently when resources are scarce, i.e. in the 20 MHz case.
Also, we can see that increasing the bandwidth will decrease the total power usage in the system
which is an inherent feature of communication systems.

In Fig. 12, Fig. 13, and Fig. 14, we consider the case of 7 UEs and 5 MTDs. Two UEs are
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chosen as brain-aware users and their delay perception is learned by the PDI method. One of
the brain-aware UEs has a delay perception of /3;(¢) = 133.73 ms, and the other one has [;(t)
equal to 26.8 ms. The system does not learn the delay perception of the 5 remaining UEs and,
hence, it allocates resources to them by using a predefined delay requirement (brain-unaware
users).

As we can see in Fig. 12, the power consumption of the first two brain-aware users will be less
than that of the brain-unaware users. Moreover, the power consumption for a user with higher
delay perception will be less than that of a user with lower delay perception. This shows that
the system can successfully allocate resources according to the delay perception of the users.
Furthermore, the power consumption related to each user with predetermined delay requirements
is different, due to their different channel gains. However, as we will see later, the system is
robust to such differences and can guarantee the reliability and rate requirements for users having
different channel gains.

In Fig. 13, we show the transmission rate for four different users. We can see that the rate for
brain-unaware users with predetermined delay will converge to 2.5 Mbps. This rate will ensure
the reliability for these users. However, the rate of the users with learned delay perception
will converge to a smaller rate. This is due to the fact that these users’ actual requirements
are known to the system, and the system uses this knowledge to avoid unnecessarily wasting
resources. However, as we will see next, this rate reduction does not change the reliability for
these users.

Fig. 14 shows the reliability for the four aforementioned users. As we can see, the reliability
of all the users will converge to 95 %, which is the target reliability value for the users. We can
see that the system is able to ensure reliability for the users with identified delay perceptions as
well as the users with predefined delay requirements. However, as observed from Fig. 12, the
system uses 45% less power for those users for which the delay perception is learned.

Finally, Fig. 15 investigates the effect of parameter V' for the system with 5 MTDs and 5 UEs.
We can see that, as 1 increases from 1 to 1.9, the convergence time decreases from 40 iterations
to 15 iterations. Nevertheless, increasing V' will make the algorithm unstable, and as we can see,
increasing it to 2.2 will create an overshoot which is 11% higher than the final value. Hence,
parameter V, if adjusted correctly, can create a balance between stability and convergence rate

of our algorithm.
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Figure 15: Effect of balancing parameter V' in
(30a) on the convergence of the resource
allocation algorithm.

Figure 14: Reliability for 4 different users. The
delay perception of two of the users is learned.

V. CONCLUSION

In this paper, we have introduced and formulated the notion of delay perception of a human
brain, in wireless networks with humans-in-the-loop. Using this notion, we have defined the
concept of effective delay of human brain. To quantify this effective delay, we have developed
a learning method, named PDI, which consists of an unsupervised and supervised learning part.
We have then shown that PDI can predict the effective delay for the human users and find
the reliability of this prediction. Then, we have derived a closed-form relationship between the
reliability measure and wireless physical layer metrics. Next, using this relationship and the PDI
method, we have proposed a novel approach based on Lyapunov optimization for allocating
radio resources to human users while considering the reliability of both machine type devices
and human users. Our results have shown that the proposed brain-aware approach can save a
significant amount of power in the system, particularly for low-latency applications and congested
networks. To our best knowledge, this is the first study on the effect of human brain limitations
in wireless network design. This paper only scratched the surface of an emerging research area
that admits several future extensions. On the one hand, we can extend the studied framework
to accommodate other brain-related features beyond the mode of the brain. Examples of such
features include perceptual memory and consistency constraints. On the other hand, we can
develop recurrent neural network models to capture how the sequence in the brain mode can
dynamically change. Finally, another important future work is to conduct real-world experiments

with actual users to gather empirical date on brain behavior so as to refine the developed solution.
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APPENDIX A

PROOF OF THEOREM 1

We assume that a single brain mode is dominant for each user at each time. We index this
single mode as k. For each user i with this dominant mode, w; = [wy, - , w41 has the

following probability density function:

_1 1 _
plw:) = 25| exp | = 5 (ws — ) "B (wi — ) (49)
We want to find the smallest region D in R4*!, in which the delay perception lies with probability
v, 1.€.,
// p(wy, wa, ..., Wat1) dwy- -+ dwgrq = 7. (50)
D
D is not a unique region. However, the objective is to find the smallest region. To this end, we
need to find the region where f(wi,ws, ..., wy1) has the greatest value, i.e., if
/' : / p(wi, wa, ..., wayr) dwy- - - dw, = / e / Y1, Y25 - -5 Yn) A1+ - dyn, (51)
Dy Do
and also
Py, Y2, - - - Yar1) < p(wi, wa, .., War1) Vy € Dy, Yw; € Dy, (52)
then

// dwl---dwd+1§/"'/ dyi- - dygs1, (53)
'Dl DQ

which implies that the volume of the region D; is smaller than the volume of D,. Hence, if we
find the region D for which (50) holds, and, using (52), show that all other regions for which
(50) holds have greater volumes, then, we would have found the smallest region D, in which
the human behavior will stay with the probability ~.

Since w; is distributed according to a multivariate Gaussian, we can find the region where it

has the highest probability density, i.e., {w;|p(w;) > C;}. This region can be written as:

fu

which is equivalent to

1 1
|27T§]k|_5 exp |:— 5(’(1]1 — uk)TE,zl(wZ — I’l’k):| > 01}7 (54)

(w = ) S5 (w; = ) < G}, (55)
where C; is a positive constant and equals — In |2733| %C’l. Since 3 is a positive definite matrix,
(55) is the inner volume of an ellipsoid in a d dimensional space.

We now conjecture that this ellipsoid D is the smallest region, in which the delay perception
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lies with probability -, i.e., the probability of w; being in this region is . We use a proof by
contradiction to show this. Consider that there exists any other space £ which is smaller than D,
and the probability of w; being in this region is . We can partition £ into two parts A = END
and & = £ N D', where D’ is the complement of the set D. We also define D, = DN E’. We
know that

/Dp(wi)d'w,-z/Ap(wi)dme/DQp(wi)dwi (56)
Z/gp(wz‘)d’wi Z/Ap(wi)dwz‘Jr/ p(w;)dw; = 7. (57)

&
Hence, fD (w;)dw; = fg (w;)dw;. Since

p(’UJZ) < Cl < p(y) V’LUZ € 52, (TS DQ, (58)

using (51) and (52) we have f £ dw; < fm dw;. This means that the set £ has a bigger volume
than D, which is a contradiction to our first assumption. This proves that region D is the smallest
region in R¥*! that has the probability ~.

Next, we find the relation between C5 and 7. y can be defined as fD p(w;)dw; and can be

calculated using chi-square distribution [48]. The region D can be written as

D = {wi|<wi — ) TS (w; — ) < Qd+1(’7)}a (39

where Qq41(7) is the quantile function of the chi-square distribution with d + 1 degrees of
freedom. It is defined as Qg.1(7y) = inf {CE e Rly < [y x3(u du}

Having defined the confidence region based on v, we now must find the edges of this ellipsoid.
We know that the center of this ellipsoid is p,. We need to solve the following optimization
problem:

min or max eT'wz7 subject to w; € D, (60)
w; w;

where e; is a unit vector in R%™, having 1 in its ith element and zero otherwise. Using KKT

conditions for solving the above problem, we have:

ej + A3 (w; — ) =0, (61a)
(w; — ) "B (wi — ) < Quir (), (61b)
A(wi = )" (W = ) = Qaia () =0, A= 0, (61c)

The inequality in (61b) is tight. With some algebraic manipulation, we have w; — ;. (j) =
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B 0 el's e;
and so, %e;prkEklEkej = Qa+1(7). Therefore w; = +, /—ede;lk(ZiEkej + oy, A= i\/ Q]d+1k('y])7
and eJT'wi = ﬂ:\/QdH(V)eJTEkej + pi ()

If )\ is positive, we can find the maximum which is +\/Qd+1(7)ejT2kej + pr(4), and if X is

negative, we can find the minimum which is —\/Qdﬂ(’y)ejTEkej + 1k (J)-
Here, 1x(j) is the jth element of p,. If we set j = d + 1, then the delay perception of user

7 1s in the following range:

- \/Qd+1(7)edT+1Eked+1 < ﬁz‘(t) - Mk(d + 1) < \/Qd+1(7)edT+1Eked+17 (62)

at least with probability +. Hence, Theorem 1 is proved.

APPENDIX B

PROOF OF THEOREM 2

Since the queuing delay is much smaller than the duration of each time slot, we can assume
that each packet arriving at a specific time slot will be served at the same time slot. For analyzing
the packet delay, we consider a packet that just arrives in the system in time slot 7%, and find
Pr(D > D) for this packet. When this packet arrives, there are m packets in the system.
From lemma 2, we know that the serving time will be an exponential random variable. Since
the exponential distribution is memoryless, there is no distinction between a packet already in
service and the other packets. Therefore, the waiting time for the packet that has just arrived is
the summation of m exponential distributions. Also, the transmission delay for this packet will
be another exponential random variable. Hence, the delay of a packet which arrives at time slot

T while there are m packets in the system can be written as:
d(Tk,m) =15+ tl(Tk) + t2(Tk) + -+ tm_l(Tk) 4+ tc(Tk), (63)

where t;(7;,) is the service time for packet i in the queue, and t.(7) is the service time for
packet already in service. Also, ¢, is the service time for the packet that has just arrived. we
seek to find Pr(d(rx, m) > D) which can be written as
Pr(d(7y,, m) > D) = ZPr(D > D™ |m, 7,)Pr(m, 1)
m,k

= Pr(D > DI|m, 7,)Pr(m|7,)Pr(7). (64)
m,k

The probability that there are m users in an M/M/1 queue at time slot 7, i.e. Pr(m|7;), can be

written as (see [49]): Pr(m/|7y) = (%) (1 - %) . Since we assumed the time slots have
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equal lengths, the packets arrive at each time slot with equal probability of Pr(7;) = %, where ¢

is the total number of time slots.

The sum of m + 1 identically independent exponential random variables with the mean

1
ri(7k)

i1s a gamma random variable. Consequently, if the users arrive at time slot 73, while there are m

users in the system at the time of arrival, the distribution of delay is

Ti<7_k)m+1

m_—7;i(TK)$
Tmt? ¢ ‘ 65)

D(¢|m7 Tk) =

As a result, we can write the probability of delay exceeding a threshold D" as

o

Pr(D > D) — / Z Fo(6|m, 7o) Pr(m| 7 )Pr(r)dd 66)

max

m 1 . .
-/ maxtzr’ T et @y @y (a)

ri(T1) ri(Ti)

IS [ ) —apeey P g
k=1 i

m=0

1= [
— 2 / () — wfm)e” ) og (69)

:_Z n (7x) ai(m))D?“, (70)

which proves the theorem.
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