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Abstract

Human-centric applications such as virtual reality and immersive gaming are central to future

wireless networks. Common features of such services include: a) their dependence on the human user’s

behavior and state, and b) their need for more network resources compared to conventional applications.

To successfully deploy such applications over wireless networks, the network must be made cognizant

of not only the quality-of-service (QoS) needs of the applications, but also of the perceptions of the

human users on this QoS. In this paper, by explicitly modeling the limitations of the human brain,

a concrete measure for the delay perception of human users is introduced. Then, a learning method,

called probability distribution identification, is developed to find a probabilistic model for this delay

perception based on the brain features of a human user. Given the learned model for the delay perception

of the human brain, a brain-aware resource management algorithm based on Lyapunov optimization

is proposed for allocating radio resources to human users while minimizing the transmit power and

taking into account the reliability of both machine type devices and human users. Then, a closed-

form relationship between the reliability measure and wireless physical layer metrics of the network

is derived. Simulation results show that a brain-aware approach can yield savings of up to 78% in

power compared to the system that only considers QoS metrics. The results also show that, compared

with QoS-aware, brain-unaware systems, the brain-aware approach can save substantially more power

in low-latency systems.

A preliminary version of this work appeared in the proceedings of the 51th Asilomar Conference on Signals, Systems and

Computers, Pacific Grove, CA, USA [1].
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I. INTRODUCTION

The next generation of wireless services is expected to be highly human centric. Examples

include virtual reality and interactive/immersive gaming [2]–[4]. To cope with the quality-

of-service (QoS) needs of such human-centric applications, in terms of data rate and ultra-

low latency, wireless networks must exploit substantially more radio resources by leveraging

heterogeneous spectrum bands [5]. Although allocating heterogeneous spectrum resources can

potentially increase the raw QoS, given the human-centric nature of emerging applications, their

users may not be able to perceive the improved QoS, due to human factors such as the cognitive

limitations of the brain [6]. Indeed, many empirical studies (anecdotal and otherwise) have shown

that the limitations on the human brain can be translated into a limitation on how wireless users

translate QoS into actual quality-of-experience (QoE) [7]–[9]. For example, the human brain

may not be able to perceive any difference between videos transmitted with different QoS (e.g.,

rates or delays) [9], [10].

Hence, in order to deploy these services over wireless networks, such as 5G cellular systems,

there is a need to enable the system to be strongly cognizant of the human user in the loop.

In particular, to deliver immersive, human-centric services, the network must tailor the usage

and optimization of wireless resources to the intrinsic features of its human users such as

their behavior and brain processing limitations. By doing so, the network can potentially save

resources, accommodate more users, and provide a more realistic QoE to its users. Moreover,

the saved resources can be used to accommodate emerging applications in wireless networks

such as drone communications [11], [12] and autonomous driving [13]–[16].

Developing resource management mechanisms that can cater to intrinsic needs of wireless

users and their context (e.g., device features or social metrics) has recently been studied in

[5], [17]–[24]. In [17], a context-aware scheduling algorithm for 5G systems is proposed. This

algorithm exploits the context information of user equipments (UEs), such as battery level, to

save energy in the system while satisfying the QoS requirements of users. The authors in [18],

proposed a user-centric resource allocation framework for ultra-dense heterogeneous networks.

Context-aware resource allocation for heterogeneous cellular networks is also studied in [5], [19],

and [20]. In [5], a novel approach to context-aware resource allocation in small cell networks is

introduced. Both wireless physical layer metrics and the social ties of human users are exploited

in [5] to allocate wireless resource blocks. Proactive caching using context information from
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social networks is studied in [21]. The results in [21] show that such a socially-aware caching

technique reduces the peak traffic in 5G networks. Other context-aware resource allocation

algorithms are also studied in [22], [25], and [24]. However, despite this surge in literature on

context-aware networking [5], [17]–[22], [24], and [25] this prior art is still reliant on device-level

features. Moreover, the works in [5], [17]–[22], [24], and [25] are agnostic to the human users

and their features (e.g., brain limitation or behavior). Hence, adapting these existing approaches

can waste network resources due to the potential allocation of more resources to human users

that cannot perceive the associated QoS gains, due to cognitive brain limitations.

A general framework for modeling the intelligence of communication systems which serve

humans is proposed in [26]. The author defines intelligence in terms of predicting and serving

human demands in advance. However, the work in [26] does not account for the cognitive

limitations of a human brain. Moreover, demand prediction, as done in [26], will not be sufficient

to capture the full spectrum of the human user limitations and behavior. By being aware of

brain limitations of each user, the network can provide a unique experience for each user and

optimize its performance. For example, an increase in the delay of a wireless system may have

different effects on the QoE perceived by different human users. In particular, such different delay

perceptions can potentially be exploited by the cellular network to minimize power consumption

and reduce the amount of wasted resources. To our best knowledge, no existing work has studied

the impact of such disparate brain delay perceptions on wireless resource allocation. systems.

Furthermore, none of the prior studies on systems with humans-in-the-loop in other fields [27]

and [28] have analyzed the human brain limitations.

The main contribution of the paper is a novel brain-aware learning and resource management

framework that explicitly factors in the brain state of human users during resource allocation in

a cellular network. In particular, we formulate the brain-aware resource allocation problem using

a joint learning and optimization framework. First, we propose a learning algorithm to identify

the delay perceptions of a human brain. This learning algorithm employs both supervised and

unsupervised learning to identify the brain limitations and also creates a statistical model for

these limitations based on Gaussian mixture models. Then, using Lyapunov optimization, we

address the resource allocation problem with time varying QoS requirements that captures the

learned delay perception. Using this approach, the network can allocate radio resources to human

users while considering the reliability of both machine type devices and human users. We then

identify a closed-form relationship between system reliability and wireless physical layer metrics
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and derive a closed-form expression for the reliability as a function of the human brain’s delay

perception. Simulation results using real data show that the proposed brain-aware approach can

substantially save power in the network while preserving the reliability of the users, particularly

in low latency applications. In particular, the results show that the proposed brain-aware approach

can yield power savings of up to 78% compared to a conventional, brain-unaware system.

The rest of the paper is organized as follows. Section II introduces the system model. Sec-

tions III and IV present the proposed learning algorithm and resource allocation framework,

respectively. Section V presents the simulation results and conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink of a cellular network with humans-in-the-loop having a single base

station (BS) serving a set H of N human users with their UEs and a setM of M machine type

devices (MTDs). We assume that each human user uses one UE. Each UE or MTD can have a

different application with different QoS requirements such as sending a command to an actuator

(for an MTD) or playing a 3D interactive game (for a UE). We consider a time-slotted system,

and define K as the set of K resource blocks (RBs). In our model, the packets associated with

user i ∈ H ∪M arrive at the BS according to independent Poisson processes with rate ai(t).

The lengths li, ∀i ∈ H∪M of the packets follow an exponential distribution. Hence, each user’s

buffer at the BS will follow an M/M/1 queuing model. The total queuing and transmission delay

of each user i is Di(t) = qi(t) + li
ri(t)

, where qi(t) is the queuing delay. The data rate for each

user is given by:

ri(t) = B
K∑
j=1

ρij(t) log2

(
1 +

pij(t)hij(t)

σ2

)
, (1)

where pij(t) is the transmit power between the BS and user i over RB j at time t and hij(t) is

the time-varying Rayleigh fading channel gain. In (1), ρij(t) = 1 if RB j is allocated to user i

at time slot t, and ρij(t) = 0, otherwise. B is the bandwidth of each RB. σ2 is the noise power

which is defined as the power spectral density of the noise multiplied by the bandwidth B.

We define βi(t) as the delay perception threshold for any user i ∈ H∪M at time t. If the delay

decreases below the threshold βi(t), the user will not be able to discern the change in service

quality. We use the concept of delay perception βi(t) to measure time varying delay requirements

of UEs and MTDs. Since the delay perception for MTDs is constant, hereinafter, for simplicity,

we use βi(t) to exclusively denote the delay perception of human users, i.e, βi(t),∀i ∈ H, unless
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mentioned otherwise. This delay perception can be affected by multiple sources pertaining to

the human brain such as context, human attention, human fatigue or cognitive abilities and is

determined by measuring the capabilities of the human brain at each time slot using machine

learning methods. By explicitly accounting for the cognitive limitations of the human brain, the

BS can better allocate resources to the users that need it, when they can actually use it. This is

in contrast to conventional brain-agnostic networks [5], [26] in which resources may be wasted,

as they are allocated only based on application QoS without being aware on whether the human

user can indeed process the actual application’s QoS target.

We pose this resource allocation problem as a power minimization problem that is subject to

a brain-aware QoS constraint on the latency:

min
ρ(t),P (t)

∑
j∈K

[∑
i∈H

P̄ j
i +

∑
i∈M

P̄ j
i

]
, (2a)

s.t. Pr
{
Di(t) ≥ Dmax

i

(
βi(t)

)
} ≤ εi

(
βi(t)

)
, ∀i ∈ H ∪M, (2b)

pij(t) ≥ 0, ρij(t) ∈ {0, 1} ∀i ∈ H ∪M, j ∈ K, (2c)∑
i∈H∪M

ρij(t) = 1, ∀j ∈ K, (2d)

where ρ(t) is an (M + N) ×K matrix having each element ρij(t). P (t) is an (M + N) ×K

matrix with each element pi,j(t) representing the instantaneous power allocated to user i on

RB j. The term P̄ j
i = limt→∞

1
t

∑t−1
τ=0 ρij(τ)pij(τ) is the time average of the power allocated

to user i on RB j. Di(t) incorporates both transmission and queuing delays. Dmax
i

(
βi(t)

)
is

the maximum tolerable delay. This delay depends on βi(t) because changes in human delay

perception will change maximum tolerable delay for human users. εi(βi(t)) in equation (2b)

denotes the maximum probability of the packet delay exceeding Dmax
i (βi(t)). Hence, we can

define 1− εi(βi(t)) as the reliability of the user i. We define reliability as the proportion of time

during which the delay of a given user does not exceed a threshold. For notational convenience,

hereinafter, we use the terms Dmax
i (βi(t)) and Dmax

i interchangeably. Constraint (2b) takes into

account the packet size and the rate of the application implicitly in addition to the maximum

tolerable delay and reliability. From a resource allocation perspective, we can consider any

application using (2b).

The key difference between our problem formulation and conventional RB allocation problems

[29] is seen in the QoS delay requirement in (2b). Constraint (2b) is with respect to two random

processes Di(t) and βi(t). In (2b), the network explicitly accounts for the human brain’s (and
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Figure2:Graphicalrepresentationofbuilding
aPDImodel.
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factorinacommunicationsystem,weneedasupervisedlearningalgorithmthatnotonlypredicts
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Table I: List of notations.

Notation Description Notation Description
pij Power of user i on RB j ρij RB j allocation indicator to user i
Di Packet delay for user i L Total number of clusters, brain modes

Dmax
i (.) Target delay for user εi(.) target reliability of user i
βi(t) Delay perception of user i at time t V Balancing parameter for reliability constraint
hij(t) Time-varying Rayleigh fading channel gain λ Lagrange multiplier
B RB bandwidth σ2 Noise power
N Number of UEs k(j) Optimal allocation for RB j
K Number of available RBs Π Projection operator
ai(t) Arrival rate of user i in time t ζi Subgradient of element i of λb
Fi(t) Virtual queue for user i at time t Σk Covariance matrix of mode k of human brain
n # of training users, ψ(.) PDF of multivariate normal

Dmax
i Target end-to-end latency for user i µk Mean vector of mode k of human brain
M set of MTDs H Set of UEs
K Set of RBs χ2

d+1(.) chi-square distribution function
πk Mixture weight of mode k z Mode indicator vector
L Likelihood function d # of features for each user
f Supervised learning model c(wi), ci Cluster (mode) number of wi

y Set of labels for supervised learning ξ(.) 0–1 loss function
Dmin
i (ε′) Effective delay of human user i Qd(γ) Quantile function of chi-square distribution with d DOF
S Reliability event of the system χd(.) Chi-square function with d DOF
La Lagrange dual function ej Unit vector at j

βi(t) as a function of xi(t), but also gives a measure of reliability for this prediction. This measure

of reliability is one of the key advantages of PDI learning over other supervised learning methods

[30], [31]. Although conventional methods such as neural networks can be used to approximate

the continuous function f(.) [31], these methods cannot quantify the reliability of this prediction.

The reliability of predictions is defined as the probability that the prediction of βi(t) lies within

a certain range of the true values for βi(t).

The PDI method can find the distribution of the prediction values. Although many existing

supervised learning methods can build a model for predicting an output based on a given input,

they fail to find a statistical model for this prediction. In addition, by using the statistical model

for the predictions s resulting from our proposed PDI, the system designer can better design the

system based on desired reliability.

As discussed in [32], the delay perception of a human brain typically follows a multi-modal

distribution. As a result, we design the proposed PDI approach to capture such a model and

find the different modes of a human brain. Then, using the distribution of the brain delay, the

PDI approach can find the effective delay of the human brain. This effective delay determines

relationship between βi(t) and xi(t) along with its reliability.
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A. Building a PDI model

Consider a dataset {x1(t), · · · ,xn(t)}, where xi(t) ∈ Rd is one sample data vector. The

elements of xi(t) are user features which can be both categorical (such as gender) and numerical

(such as age). For each input vector xi(t), we have a corresponding output value of delay

perception βi(t). This data can be collected using experiments or surveys such as those in [33].

Since we can remove time dependency of the data using time-series techniques such as in [34],

hereinafter, we use x instead of x(t). Although we omit the time dependency from xi(t) for

the training process, it is still implicitly a function of time. This dataset can be represented by

a matrix X ∈ Rn×d, where xTi is row i of X . Using PDI, we first create an n× (d+ 1) dataset

matrix:

W = [X‖β] =


wT

1

...

wT
n

 =


xT1 β1(t)
...

...

xTn βn(t)

 , (3)

where wi ∈ Rd+1 is a vector of the delay perception βi(t) and d other correlated features of the

human brain. First, in the unsupervised learning step, we fit a Gaussian mixture model (GMM) to

our dataset using the expectation-maximization (EM) algorithm [35] to obtain p(xi, βi(t)). After

finding p(xi, βi(t)), we are able to cluster the data samples and find m brain modes in the data.

Then, each data vector xi is labeled based on its cluster number ci so that each xi, i = 1, · · · , n

has a label in the cluster set ci ∈ C = {1, · · · , L}. Using this method we have a labeled dataset

which can be used for the supervised learning. These cluster numbers will correspond to the

modes of the human brain that determine its effective delay perception.

Next, we describe the Gaussian mixture model that we use as underlying model for the

human brain. We use GMM for clustering (unsupervised learning) and statistical modeling of

human brain because of its multimodal structure which resembles human brain activites [36], its

scalibility, and its robustness and stability under high-noise levels compared to nonparametric

methods.

A multi-modal stochastic model is assumed for the brain features wi for user i. The proposed

distribution for wi is given by [30]:

p(wi) =
∑
z

p(z)p(wi|z) =
L∑
k=1

πkψ(wi|µk,Σk), (4)

where ψ(wi|µk,Σk) is the probability density function for a multivariate normal distribution
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with mean vector µk and covariance matrix Σk. Σk and µk represent the covariance matrix and

mean vector for mode k of the human brain, respectively. z is a binary random vector, in which

a particular element zk is equal to 1 and all other elements are 0. z essentially indicates which

mode is activated in the GMM, and πk is defined as p(zk = 1) = πk. L is the total number of

modes in the GMM. The human brain will be in mode k with probability πk, and its features

are generated using a multivariate normal distribution with mean and covariance µk and Σk,

respectively. The posterior probability, i.e. responsibility, for mode k will be:

ri(zk) =
πkψ(wi|µk,Σk)∑L
j=1 πjψ(wi|µj,Σj)

. (5)

This responsibility can be used for clustering the data as well. After fitting the GMM on the

dataset, we can find the mode with highest responsibility for each data point and assign the data

to this mode. The EM algorithm is used to find µk, Σk, and πk for all k = 1, · · · , L, based

on the real-time human brain behavior [35]. The log likelihood function for our dataset can be

written as:

lnL(Σ, µ, π|w) = ln
∑
i

p(wi|Σ, µ, π) =
∑
i

ln
L∑
k=1

πkψ(wi|µk,Σk). (6)

The likelihood function in (6) has singularities and, hence, it is infeasible to find parameters

πk, Σk, and µk. The EM algorithm is proposed in [37] to maximize the likelihood function for

a Gaussian mixture model. In the EM algorithm, we first initialize Σk, µk, and πk randomly.

Next, we find the responsibility for each mode using (5). Then, we reestimate parameters using

current responsibilities. Finally, the likelihood in (6) is maximized with respect to Σk, µk ,and

πk.

As a result of the EM algorithm (unsupervised learning), we now have a GMM of our dataset

matrix W . Based on this GMM, the data will be labeled (clustered) as follows. For each data

point wi, the most probable mode is assigned as the label of this data, i.e.,

ci = c(wi) = arg max
k

p(zk = 1|wi) = arg max
k

ri(zk). (7)

In (7), we assign the most likely cluster to each data pointwi. After building a GMM model using

unsupervised learning on the W dataset to obtain target vector y =
[
c(w1) · · · c(wn)

]T
, we

use the pair {X,y} to train a supervised learning model. Thus, the output of the unsupervised

learning step y is used for training the supervised learning model. Then, during the supervised

learning step, we train a classifier so that it can find the mode ci using the human features xi

as input. Given the data matrix X and the output vector y, this supervised learning builds us a
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Algorithm 1 Building PDI model

Input: wi = [xi βi], i = 1, · · · , n
Output: f, πk, µk, Σk, k = 1 = · · · , L

Unsupervised Learning :
1: Apply EM algorithm to wi, find πk, µk, Σk, ri(zk) k = 1, · · · , L, i = 1 · · · , n.
2: for i = 1 = · · · , n do
3: find c(wi) using (7).
4: end for
5: Pass y =

[
c(w1) · · · c(wn)

]T to the supervised learning algorithm
Supervised Learning :

6: Find f using (8).
7: return f, πk, µk, Σk, k = 1 = · · · , L

model f such that ci = f(xi), where

f = arg min
f̂

n∑
i=1

ξ
(
c(wi), f̂(xi)

)
, (8)

where ξ(.) is a 0-1 loss function [38, Equation 7.5]. f is a function that is approximated using

a set of points (xi, ci) and determines the relationship between the features of a user and its

cluster. To overcome overfitting, we use the elbow method for finding the optimal number of

clusters in PDI, as discussed in Section IV. After approximating f , given each human user’s

feature vector xi, we find the modes ci using model f . Algorithm 1 summarizes building a PDI

learning model. Also, a graphical representation for building a PDI model is shown in Fig. 2.

B. Deployment of the PDI learning model

In this subsection, we bound Dmax
i (βi(t)) based on its features xi. Note that the deployment

and training of the PDI learning method are separated from each other. The deployment part

only uses the model generated by the training part. Now that the system can identify the human

users’ modes, we need to find a relationship between a human user’s mode and the probabilistic

model of its delay perception by defining the concept of effective delay.

Definition 1. Given the statistical model for human delay perception βi(t), Dmin
i (ε′) is the

effective delay for human user i that satisfies:

Pr
{
βi(t) < Dmin

i (ε′)
}
< ε′. (9)

To find the effective delay for human user i, we first find the probability that the delay

perception of human user i is less than a threshold Dmin
i (ε′). In other words, we want to find the

relation between ε′ and Dmin
i (ε′) in (9). The concept of effective delay is defined using the fact

that delays less than Dmin
i (ε′) cannot be sensed by a human with (1− ε′) certainty. The relation
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Algorithm 2 Deploying PDI model for finding brain delay perception
Input: xi, i = 1, · · · , N
Output: µi, Σi, i = 1, · · · , N

1: for i = 1 = · · · , N do
2: find the cluster for xi: ki = f(xi) and hence µki ,Σki .
3: find function Dmin

i (ε′) using (13)
4: using target reliability find ε′ and then using function Dmin

i (ε′) find Dmin
i .

5: set the Dmax
i (βi(t)) = Dmin

i , and using (16) and ε′ find ε(βi(t))
6: end for
7: return Dmax

i (βi(t)) and ε(βi(t)) for i = 1 = · · · , N

between ε′ and Dmin
i (ε′) in (9) is found in Theorem 1. For notational simplicity, hereinafter, we

use Dmin
i instead of Dmin

i (ε′).

Theorem 1. If brain mode k is identified for user i, then its delay perception will be bounded

as follows:

Pr
{
|βi(t)− µk(d+ 1)| <

√
Qd+1(γ)eTd+1Σked+1

}
> γ, (10)

where Σk and µk(d+1) represent, respectively, the covariance matrix and the (d+1)th element

of the mean vector of the identified brain mode k. Qd(γ) is the quantile function of chi-square

distribution with d degrees of freedom, and is defined as

Qd+1(γ) = inf
{
x ∈ R|γ ≤

∫ x

0

χ2
d+1(u)du

}
, (11)

and ej is a unit vector in Rd+1, whose jth element is 1 and all other elements are zero. d is

number of features used for learning. χ2
d+1(x) is the probability density function of a chi-square

random variable with d+ 1 degrees of freedom.

Proof: See Appendix A.

Note that the bound in (10) is different from finding a bound using marginal distributions, as

it is based on high probability density areas. The use of a marginal distribution is not possible

here, since the Gaussian assumption is only valid locally around the mean. Also, in case of

data classification error which mostly happens when the data is located in the overlapping area

between clusters, the bound in (10) will be either more conservative than the actual bound for

delay perception or it will not change significantly compared to the actual bound. As seen from

Theorem 1, in addition to the delay perception element µk(d+ 1), the only other parameter that

affects the delay is eTd+1Σked+1, which is the (d + 1)th diagonal element of Σk, which is not

assumed to be diagonal. Fig.3 shows the relationship between Dmin
i and GMM random data
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generated from a Gaussian mixture model. Fig.3 shows that, after finding the GMM for the

dataset, one can find the predictive coverage of each Gaussian distribution and, then, we can

determine the probability with which βi(t) for a user i will be higher than a threshold Dmin
i .

In order to find the effective delay for human user i, we first find the probability with which

the delay perception for human user i will be less than a threshold Dmin
i . In other words, we

will find the relationship between ε and Dmin
i in (9) using the following corollary that follows

directly from Theorem 1.

Corollary 1. As a direct result of Theorem 1, we can reduce (10) to

Pr
{
βi(t) < µk(d+ 1)−

√
Qd+1(γ)eTd+1Σked+1

}
<

1− γ
2

. (12)

Therefore, we find Dmin
i (ε) and ε in (9) as

Dmin
i (ε) = µk(d+ 1)−

√
Qd+1(1− 2ε)eTd+1Σked+1. (13)

Since Qd+1(γ) can only be calculated numerically, a closed-form relationship between Dmin
i (ε)

and ε cannot be found. However, we can numerically analyze this relationship, as shown in Fig.

4. Fig. 4 is found using a set of points generated with (13) for different values of µk(d + 1)

and Σk. From Fig. 4, we can first observe that Dmin
i (ε) is an increasing function. This means

that the probability of the human brain noticing QoS differences for low delays will be much

smaller than for higher delays, which is an intuitive fact. Furthermore, it can be inferred that,

if the delay perception for a group of human users within a cluster is diverse, then the system’s

confidence on the delay perception of this group of humans will decrease, i.e., the estimation

of the delay perception of this group of human users will be less reliable. Next, we determine

constraint (2b) using Dmin
i (ε).

As stated before, some delays are not perceptible to human users. To capture this feature,

we find Dmax
i (βi(t)) and ε(βi(t)) in problem (2) using Dmin

i (ε). Recall that Dmax
i (βi(t)) is a

parameter that will be used by the resource allocation system to represent the maximum tolerable

delay for the reliable communication of user i with 1 − ε(βi(t)) being the reliability of user i.

There are three possible cases for Dmax
i based on Dmin

i of a human user i:

1) Dmax
i > Dmin

i : In this case, the system will not be reliable even if we satisfy Pr(D >

Dmax
i ) < ε. The reason is that the human user has a delay perception of less than the maximum

delay Dmax
i and hence, the system is not reliable.
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Figure 3: Finding Dmin
i using a GMM model

for two different clusters.
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Figure 4: Relationship between ε and Dmin
i (ε)

for different values of µk(d+ 1) and Σk. I is
the identity matrix.

2) Dmax
i < Dmin

i : In this case, if the system is able to satisfy Pr(D > Dmax
i ) < ε, then the

system will be reliable, because user i cannot sense delays less than Dmin
i and its service delay

will not exceed Dmax
i .

3) Dmax
i = Dmin

i : If this equality holds, the system will be reliable and it will also have

prevented a waste of resources. If any given user cannot perceive delays less than Dmin
i , then it

is not effective to allocate more resources to this user.

We define S as the event resulting from case 2 and case 3 while assuming events E1 and E2

satisfy D < Dmax
i and βi(t) > Dmin

i , respectively. We know that for case 1, event E1 ∩ E2 is

a subset of event S , and in case 2, event S is a subset of event E1 ∩ E2. Similarly, in case 3,

event E1 ∩E2 is same as event S. Since the probability of E1 ∩E2 can be computed, if we set

Dmin
i to Dmax

i (case 3), we can find S as follows:

Pr(E1 ∩ E2) = 1− Pr
(

(D > Dmax
i ) ∪ (βi(t) < Dmin

i )
)

(14)

= 1−
(

Pr(D > Dmax
i ) + Pr(βi(t) < Dmin

i )− Pr(D > Dmax
i )Pr(βi(t) < Dmin

i )
)
. (15)

(14) follows from De Morgan’s law, and (15) is true since D and βi(t) are two independent

random variables at each iteration. Therefore, if Dmin
i = Dmax

i for user i and εε′ is small, we

can see that

1−
(

Pr(D > Dmax
i ) + Pr(βi(t) < Dmin

i )
)
≥ 1− (ε+ ε′), (16)

and, hence, Pr(S) = Pr(E1∩E2) > 1−(ε+ε′), where Pr(S) is the reliability of the system defined
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in (2). Subsequently, as we design the system, we consider the reliability as a predetermined

target design parameter for the system. Using this parameter, we can set ε and ε′. Given ε′

and numerical function Dmin
i (ε′) derived in (12), Dmin

i can be determined. Now, given ε(βi(t))

and Dmax
i (βi(t)), we can fully characterize problem (2). We note that, as the human user delay

perception changes throughout a day, Dmax
i (βi(t)) changes accordingly. Therefore, our solution

should take into account changes in Dmax
i (βi(t)) as well as changes in channel gains hij(t).

Dmax
i is a threshold and 1 − ε denotes the reliability which is used in all cellular systems.

However, in a wireless system that explicitly takes into account human users in its loop, Dmax
i

will become a function of βi(t) and can be determined using the concept of effective delay

Dmin
i (ε′) defined in (9).

III. BRAIN-AWARE RESOURCE MANAGEMENT

The notion of human-in-the-loop implies that human factors (such as brain limitations) will

be part of the resource allocation framework, i.e., in the loop of resource allocation. For such a

system, resource management can dynamically adapt to the human user in its loop, as opposed

to just the device. Therefore, our approach considers the human brain limitations as functions of

time and adapts the system to the dynamic changes that can occur in the brain and its cognitive

limitations, over time.

Since the human brain state usually changes rapidly, our work is different from context-aware

or QoS-aware works. The fast fluctuations in the cognitive activities of a human brain which

have been validated in many works such as [39]–[41] requires the resource allocation framework

to be aware of time-varying brain-aware delay constraint in each time slot.

To solve problem (2), we propose a novel brain-aware resource management framework that

takes into account the time-varying wireless channel and the time-varying brain-aware delay

constraint (2b). We transform this constraint into a mathematically tractable form.

The relation between the packet length distribution and the service time distribution for a

packet is shown next, in Corollary 2. Here, the packet service time is defined as the transmission

time of a packet from the BS to the UE or MTD.

Corollary 2. If a fixed rate ri is allocated to a user and the packet lengths follow an exponential

distribution with parameter χ, then, the distribution of the service time s will also be exponential

with parameter χri.
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Proof: The CDF of the exponential distribution is Fl(ψ) = Pr(l < ψ) = 1− e−χψ. Hence,

Fs(S) = Pr(s < S) = Pr(
l

ri
< S) = Pr(l < riS) = FriS(s) = 1− e−χriS. (17)

This means that the PDF for the service time is fS(s) = e−χris.

the packet length distribution parameter χ is constant in our analysis, without loss of generality,

we assume that the service time of each packet is an exponential random variable with parameter

ri, which is the same as the rate allocated to the user. We assume that for any given user, the

packets arrive according to a Poisson process with the rate ai(τ), and the user data rate is

exponential with parameter ri(τ) in slot τ = 1, · · · , t. Next, we derive the probability with

which the delay of a given user i exceeds a threshold Dmax
i .

Theorem 2. Assume that user i has a time varying rate rτi at time slot τ . If the duration of each

time slot is long enough for the queue to reach its steady state, i.e.,
1

ri(τ)− ai(τ)
<< δτ, (18)

then, the probability that the delay exceeds a threshold is

Pr(D > Dmax
i ) = lim

t→∞

1

t

t∑
τ=1

e−
(
ri(τ)−ai(τ)

)
Dmax

i , (19)

under the condition that ri(τ) > ai(τ) for all τ > 0.

Proof: See Appendix B.

Theorem 2 shows that constraint (2b) is satisfied if the network can satisfy the following

condition

lim
t→∞

1

t

t∑
τ=1

e−
(
ri(τ)−ai(τ)

)
Dmax

i < ε. (20)

Fig. 5 shows the relationship between the theoretical result from Theorem 2 and simulation

results. Clearly, simulation and analytical results are a near-perfect match with a maximum error

of only 0.0146.

A. Optimal Resource Allocation with Guaranteed Reliability

Constraint (20) is analogous to the drift-plus-penalty method in Lyapunov optimization frame-

work [42] which we use to solve (2). The problem has a time-varying nature since the human

brain conditions and needs will change from time to time. The users’ processing state β(t) is also

a function of time, and accordingly, the latency needs in (2b) will be time-varying. Therefore,

we need to solve the optimization problem (2) during each time slot efficiently. We propose an
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Figure 5: Comparison between simulation results and the result of Theorem 2.

algorithm with a low computational complexity for solving problem (2). The drift-plus-penalty

approach is used to stabilize a queue network while minimizing time average of a penalty

function. To satisfy constraint (2b) in all time slots, (19) must be smaller than ε. For this reason,

we use virtual queues to model the time average constraint (20) in the optimization problem.

We define a virtual queue:

Fi(t+ 1) = max{Fi(t) + e−
(
ri(t)−ai(t)

)
Dmax

i − ε, 0}. (21)

We can see that e−
(
ri(t)−ai(t)

)
Dmax

i − ε < Fi(t)− Fi(t). Consequently, we obtain:
t∑

τ=1

e−
(
ri(τ)−ai(τ)

)
Dmax

i − εt < Fi(t)− Fi(0). (22)

If Fi(0) is bounded, we have:

lim
t→∞

1

t

t∑
τ=1

e−
(
ri(τ)−ai(τ)

)
Dmax

i − ε < lim
t→∞

Fi(t)

t
. (23)

If the queue Fi(t) is mean-rate stable, that is, limt→∞
Fi(t)
t

= 0, then we have:

lim
t→∞

1

t

t∑
τ=1

e−
(
ri(τ)−ai(τ)

)
Dmax

i < ε. (24)

The Lyapunov function is defined for all the queues in the base station as Y (t) = 1
2

∑
i∈M∪H Fi(t)

2.

Then, we can find the drift function ∆t = Y (t+ 1)− Y (t) as:

Y (t+ 1) =
1

2

∑
i∈M∪H

Fi(t+ 1)2 ≤ 1

2

∑
i∈M∪H

Fi(t)
2 +

1

2

∑
i∈M∪H

yi(t)
2 +

∑
i∈M∪H

yi(t)Fi(t), (25)

where

yci (t) = e−
(
ri(t)−ai(t)

)
Dmax

i − ε. (26)
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Thus,

∆t ≤ 1

2

∑
i∈M∪H

yci (t)
2 +

∑
i∈M∪H

yci (t)Fi(t). (27)

We can form the drift-plus-penalty by adding V
∑

i,j pij(t) to both sides of inequality (27),

where
∑

i,j pij is the total power of the BS which we want to minimize, and V is a parameter

that determines how important minimizing the objective function (2a) is in comparison with

satisfying (2b). We can balance the tradeoff between power and delay. The drift-plus-penalty

inequality is

∆t+ V
∑
i,j

pij ≤
1

2

∑
i∈M∪H

yci (t)
2 + V

∑
i,j

pij(t) +
∑

i∈M∪H

yci (t)Fi(t). (28)

Given that we assumed ri(t) > ai(t) for all t, we know that |yci (t)| < 1∀t, i ∈ M ∪H, and

hence, we can rewrite (28) as

∆t+ V
∑
i,j

pij ≤ UB + V
∑
i,j

pij(t) +
∑

i∈M∪H

yci (t)Fi(t), (29)

where UB is the upper bound of 1
2

∑
i∈M∪H y

c
i (t)

2, and is equal to |H|+|M|
2

. |H| is the cardinality

of set H. Using the drift-plus-penalty algorithm [43], we know that, by minimizing the right hand

side of equation (29), queue Fi(t) will be mean-rate stable, and hence, the condition yci (t) < 0

will be satisfied. As a result, constraint (2b) will also be satisfied. Furthermore, we know that

by minimizing the right hand side of (29), cost function (2a) is also minimized, owing to the

fact that (2a) is defined as a penalty function. By minimizing the right hand side of (29), our

optimization problem can be converted to the following time-varying problem:

min
ρ(t),P (t)

V
∑
i,j

pij(t) +
∑

i∈M∪H

yci (t)Fi(t), (30a)

s.t. ri(t) > ai(t), ∀i ∈ H ∪M (30b)

pij(t) ≥ 0, ρij(t) ∈ {0, 1}, ∀i ∈ H ∪M, j ∈ K, (30c)∑
i∈H∪M

ρij(t) = 1, ∀j ∈ K. (30d)

The cost function in (30a) is equivalent to (2a) and (2b) in the original optimization problem.

Learning the effective delay of each human user using our proposed PDI method determines

the parameters yci (t) and Fi(t) in the problem (30a). However, in order to satisfy (2b), we need

to also satisfy (30b). The reason for adding (30b) is that if this constraint is not satisfied in
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any time slot, the queue length will approach infinity. Constraints (30c) and (30d) are feasibility

conditions and remain the same as (2). Hence, by solving (30) in each time slot, the original

problem (2) will be solved.

Nonetheless, problem (2a) is not a convex optimization problem, due to the fact that it is

a mixed integer problem and its complexity increases exponentially with the number of users.

Since (2a) needs to be solved at each time slot, this exponential order of complexity makes the

implementation infeasible. Consequently, we should use a dual decomposition method to break

down optimization problem (30) to smaller subproblems, and find the optimal solution to (30)

using a low complexity method. It is rather challenging to solve (30) using a dual decomposition

method, as the structure of yci (t) makes it infeasible to decompose the objective function for

each RB. In order to overcome this challenge, we convert (30) to a decomposable form. Then,

we will show that this converted problem is equivalent to (30).

For this purpose, the Lagrangian for problem (30) is written as

V
∑
i,j

pij(t) +
∑

i∈M∪H

yci (t)Fi(t) +
∑

i∈M∪H

λi
(
ai(t)− ri(t)

)
, (31)

where λi is the Lagrange multiplier. As we know, yci (t) = e−
(
ri(t)−ai(t)

)
Dmax

i − ε. Therefore, the

only decision variables are allocation of resource blocks to the users and allocating power to

each RB. Although Fi(t) is a function of yci (t), it is not a decision variable and is treated as a

constant. Hence, (31) can be rewritten as

V
∑
i,j

pij(t) +
∑

i∈M∪H

e−
(
ri(t)−ai(t)

)
Dmax

i Fi(t) +
∑

i∈M∪H

λi
(
ai(t)− ri(t)

)
. (32)

The main optimization problem consists of two components. First, minimizing the total power

of the BS with weight V , and second, minimizing the summation
∑

i∈M∪H e
−ri(t) which has a

weight Fi(t)e−ai(t)D
max
i for each user i.

As we can see, (32) is not decomposable for each RB. Here we will have an approximation of

(30) and then propose an algorithm to solve this approximation efficiently. In this C-additive ap-

proximation,
∑

i∈M∪H e
−
(
ri(t)−ai(t)

)
Dmax

i Fi(t) in (32) is substituted with its linear approximation

of exponential term e−x at x = 0.∑
i∈M∪H

−
(
ri(t)− ai(t)

)
Dmax
i Fi(t). (33)

In the original problem, if yci (t) starts to become greater than zero for user i, then Fi(t) will

increase and it will give more weight to the term e−
(
ri(t)−ai(t)

)
Dmax

i . As a result, the algorithm
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allocates more resources to user i such that it minimizes e−
(
ri(t)−ai(t)

)
Dmax

i for user i, and

accordingly, yci (t) decreases. Hence, Fi(t)e
−
(
ri(t)−ai(t)

)
Dmax

i plays the role of feedback in the

system. As we can see from (33), this approximation will not change this feedback mechanism

and plays the same role in the system. Therefore, we can write

min
P ,ρ

{
V
∑
i,j

pij(t) +
∑

i∈M∪H

−
(
ri(t)− ai(t)

)
Dmax
i Fi(t)

}
< C + min

P ,ρ

{
V
∑
i,j

pij(t) +
∑

i∈M∪H

e−
(
ri(t)−ai(t)

)
Dmax

i Fi(t)
}
. (34)

Using this C-additive approximation, it can be easily proved that all terms are mean-rate stable.

Hence, (2b) in the original problem is satisfied [42]. Finally, problem (2) can be presented as:

min
ρ(t),P (t)

V
∑
i,j

pij(t)−
∑

i∈M∪H

(
ri(t)− ai(t)

)
Dmax
i Fi(t),

s.t. ri(t) > ai(t), (35a)

pij(t) ≥ 0, ∀i ∈ H ∪M, j ∈ K, (35b)

ρij(t) ∈ {0, 1}, ∀i ∈ H ∪M, j ∈ K, (35c)∑
i∈H∪M

ρij(t) = 1, ∀j ∈ K. (35d)

In order to solve this problem, we can decompose it into K subproblems. Since these subprob-

lems are coupled through constraint (35d), we use the dual decomposition method for solving (35)

[44]. First, the Lagrangian is written for problem (35), and in the second step, it is decomposed

for each RB. Then, the resource block allocation and the power of each RB are found in terms

of the Lagrange multiplier vector λ. Finally, λ is calculated using an ellipsoid method.

The Lagrangian for problem (35) is

La(P , ρ,λ) = V
∑
i,j

pi,j(t) +
∑

i∈M∪H

−
(
ri(t)− ai(t)

)
Dmax
i Fi(t)− λi

(
ri(t)− ai(t)

)
= V

∑
i,j

pi,j(t)−
∑

i∈M∪H

(
λi +Dmax

i Fi(t)
)(
ri(t)− ai(t)

)
. (36)

One major difference between our problem and conventional power minimization problems is

that there is an additional term Dmax
i Fi(t) added to the Lagrange multiplier (the shadow price).

In this problem, Dmax
i Fi(t) plays the role of a bias term. Therefore, a new hypothetical

Lagrange multiplier λ′i is assumed and defined as λ′i = λi +Dmax
i Fi(t). This means that adding

constraint (2b) to the problem instead of constraint (35a) increases the shadow price by a factor

of Dmax
i Fi(t). Increasing the shadow price for a constraint makes it looser. As a result, in many
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Algorithm 3 Resource allocation algorithm

1: Obtain Dmax(t)
i , εi(t)∀i ∈ H ∪M using PDI algorithm (Algorithm 2).

2: Find Fi(t), ∀i ∈ H ∪M, using (21)
3: Initialize λ
4: while convergence condition is not satisfied do
5: Find pij, ∀i ∈ H ∪M, j ∈ K, using the updated λ (40)
6: for each RB j ∈ K, find k(j) by searching over all users i ∈ H∪M using (41) and then

assign ρ∗ij and p∗ij for all i ∈ H ∪M, j ∈ K,
7: Use the ellipsoid method to find λ
8: end while

time slots, constraint (35a) will not be a tight constraint and the Lagrange multiplier will be set

to λi =
[
λ′i −Dmax

i Fi(t)
]+. the Lagrange dual function is

g(λ) = min
ρ(t),P (t)

La(P ,ρ,λ). (37)

The minimization problem (37) can be decomposed to K subproblems. g′j(λ) can be written as

g′j(λ) = min
P (t)

V
∑
i

pi,j −
∑

i∈M∪H

(
λi +Dmax

i Fi(t)
)(
W log2(1 +K

hi,jpi,j
σ2

)
)
, (38)

where D is a set of feasible pijs in which for RB j, there is only one i that pij 6= 0. Hence,

g(λ) is

g(λ) =
∑
j

g′j(λ) +
∑

i∈M∪H

(
λi +Dmax

i Fi(t)
)(
ai(t)

)
. (39)

If λ is fixed, g′j(λ) is a convex function of P . Therefore, P is found by taking a derivate with

respect to pij and setting it to zero. This results in

pij =
[(λi +Dmax

i Fi(t)
)
W

V log2

− σ2

Khij

]+
. (40)

The optimal RB allocation for RB j is k(j), and can be written as

k(j) = argmin
i

V
∑
i

pi,j −
∑

i∈M∪H

(
λi +Dmax

i Fi(t)
)(
W log2(1 +K

hi,jpi,j
σ2

)
)
, (41)

g′j(λ) = min
i
V
∑
i

pi,j −
∑

i∈M∪H

(
λi +Dmax

i Fi(t)
)(
W log2(1 +K

hi,jpi,j
σ2

)
)
. (42)

Thus, ρ∗ij and p∗ij will be given by:

ρ∗ij =

1, i = k(j),

0, otherwise.
p∗ij =

pij, i = k(j),

0, otherwise.
(43)

Hence, the optimal rate becomes r∗i =
∑

jW log2(1 + K
hi,jp

∗
i,j

σ2 ). The only parameter that

affects this joint RB and power allocation is λ. As the number of RBs increases, the duality gap

in this problem approaches zero [44]. We know that the optimal value is found by maximization
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of g(λ) with respect to λ. In order to find λ, we use the ellipsoid method [45], and to do so,

we have to find the sub-gradient for the dual objective g(λ). The following theorem will show

that the subgradient for (36) is a vector with elements ζi = ai − ri.

Theorem 3. The subgradient of the dual optimization problem with dual objective defined in

(39), is the vector d whose elements ζi, ∀i ∈ H ∪M are given by:

ζi =

ai − r
∗
i , ai ≥ r∗i ,

0, ai < r∗i .
(44)

Proof: Since

g(λ) = min
P ,ρ
La(P ,ρ,λ) = La(P ∗, ρ∗,λ), (45)

we have:

g(δ) ≤La(P ∗, ρ∗, δ)

=V
∑
i,j

p∗i,j(t)−
∑

i∈M∪H

(
δi +Dmax

i Fi(t)
)(
r∗i (t)− ai(t)

)
=V

∑
i,j

p∗i,j(t)−
∑

i∈M∪H

(
λi +Dmax

i Fi(t)
)(
r∗i (t)− ai(t)

)
+ (λi − δi)

(
r∗i (t)− ai(t)

)
= g(λ) + (λ− δ)Tζ ′, (46)

where ζ ′ =
[
r∗1 − a1 · · · r∗N+M − aN+M

]T
.

However, because of the term Dmax
i Fi(t), when λi = 0 and ai < r∗i , the direction of ζ ′

will be infeasible. Using the projected subgradient method [46], we can transform this infeasible

direction to a feasible one. The update rule for projected subgradient is: λ(k+1) = Π(λ(k)−αkζ ′k)

where αk is the step size and Π is the Euclidan projection on the feasible set. Since the feasible

set is λi > 0, we can see that

Π(λ(k) − αkζ ′k) = λ(k) − αkζk, (47)

where:

ζi =

ζ
′
i, ζ ′i ≥ 0

0, ζ ′i < 0
=

ai − r
∗
i , ai ≥ r∗i ,

0, ai < r∗i .
(48)

Algorithm 3 summarizes our proposed resource allocation algorithm.
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B. Complexity Analysis

Next, we find the complexity of our algorithm which needs to be run in each iteration. There

are K RBs in our problem, for each of which (41) needs to be evaluated for M + N users.

It takes O
(
(M + N)K

)
times to solve a primal problem. Subsequently, the dual problem will

be solved, which gives us the optimal value of λ in an M + N dimensional space and has a

complexity of O
(
(M + N)2

)
. Therefore, the overall complexity should be O

(
(M + N)3K

)
.

However, as mentioned before, adding Dmax
i Fi(t) to the Lagrange multiplier sets a major part

of it to zero, and as a result, the order of complexity will decrease to O
(
(M + N)K

)
. Given

the low-complexity of the proposed algorithm, in practice, it can be easily run periodically by

the network at each time slot t, so as to effectively adapt to dynamic, time-varying changes in

both the human delay perceptions of the users and the wireless channel.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider the dataset in [33] to model the delay perception of a human

user. In [33], the authors conducted human subject studies using 30 human users, where each

subject is asked to rate the quality of 5 movies while the delay and packet loss in the system is

being increased. We used the average score of each human user to estimate their delay perception.

In [33], The highest delay that the test subject is not able to sense is considered as the delay

perception of this subject, and, this, matches our definition of delay perception. We also used a

variation of the bootstrap method [38] to increase the number of data points to 1000. We can

see the histogram of the delay perception for these 1000 data points in Fig. 7.

To the best of our knowledge, no dataset which includes features for each human user as well

as human delay perception currently exists. Hence, we attribute three continuous features to each

user. The process of adding features starts by clustering the delay perceptions βi(t) for 1000

users. Then, we choose a random mean vector and a random positive semidefinite covariance

matrix for each cluster and use them to create multivariate random Gaussian features for each

data in the cluster. In consequence the random features have: 1) a GMM structure and 2) a

predictive ability for βi(t). Hence, each user is associated with a vector w ∈ R4.

We consider a network with a bandwidth of 10 MHz, ai(t) = 1 Mbps, σ2 = −173.9 dBm, and

ε = 0.05. We use a circular cell with the cell radius of 1.5 km. We set the path loss exponent

to 3 (urban area) and the carrier frequency to 900 MHz. The packet length is an exponential

random variable with an average size of 10 kbits. We use 5 MTD and 5 UE in the system
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Figure 6: Within point scatter for the EM
clustering method on the datasest.
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Figure 7: Distribution of βi(t) for the 1000
users in dataset.

and we set Dmax
i to 20 ms for them, unless otherwise mentioned. For the brain aware users, we

arbitrarily select 5 UE in the system out of all data points. The brain-unaware case is QoS-aware

and power-aware. In this case, Dmax
i and ε are not functions of βi(t).

Fig. 6 shows the within cluster point scatter for the EM algorithm in our dataset. This within

cluster point scatter for a clustering C is defined as [38]: W (C) = 1
2

∑n
k=1

∑
c(i)=k

∑
c(i′)=k d(xi, xi′),

where d is an arbitrary distance metric. In essence, the within cluster point scatter is a loss

function that allows the determination of hyper-parameters in the clustering algorithm. The hyper-

parameter that we seek to find here is the number of clusters in the dataset. As we can see from

Fig. 6, after the number of clusters reaches 5, increasing the number of clusters does not decrease

the within cluster point scatter substantially. Hence, the optimal number of clusters is 5. This

method of model selection known as elbow method allows the algorithm to avoid overfitting.

Fig. 8 shows the total BS power resulting from the proposed brain-aware case and from a

brain-unaware case in which UEs have a fixed constraint (2b) with Dmax
i between 10 ms to

60 ms. Here, the total power is the objective of main optimization problem (2). Fig. 8 shows

that, as the latency increases, the total power decreases, because it is easier to satisfy constraint

(2b) at higher latencies. Also, at higher delays, being brain-aware will no longer yield substantial

gains, since βi(t) and Dmax
i become close to each other and learning βi(t) cannot save resources

for the system. In contrast, in Fig. 8, we can see that for stringent low-latency requirements, the

proposed brain-aware approach yields significant gains in terms of saving power. In particular,

for 10 ms delay in (2b), Fig. 8 shows that the BS in brain-unaware approach uses 44 % more
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as function of different latency requirements
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Figure 9: Average power usage of the system
for different number of MTDs and 5 UEs with

Dmax
i = 20 ms.

power compared to the brain-aware case. These results stem from the fact that a brain-aware

approach can minimize waste of resources and provide service to the users more precisely based

on their real brain processing power. Fig. 9 shows average BS power for different number of

MTDs. As we can see from Fig. 9, the brain-aware approach will always outperform the brain-

unaware approach as the number of MTD increases. For the case of 30 MTD user, the BS in

brain-unaware approach uses 16% more power compared to the brain-aware case. This is due

to fact that brain-aware approach can allocate resources more efficiently in case of a shortage

in resources.

In Fig. 10, we show the average power usage of the system when the number of UEs increases

from 2 to 30 with Dmax
i set to 20 ms. As the number of users increases, the average power

consumption of the system will also increase. This is due to the fact that increasing the number

of users will decrease the bandwidth per user. Since the delay and rate requirements of each

user are still unchanged, the system needs to use more power to compensate for the bandwidth

deficiency. From Fig. 10, we can see that, in the case of 30 users, the brain-aware system is able

to save 6.7 dB (78%) on average in the BS power. The brain-aware system can allocate resources

based on each user’s actual requirement instead of the predefined metrics and this leads to this

significant saving in the power consumption of the BS.

In Fig. 11, we show the average power consumed in the system for different number of virtual

reality (VR) users. For the VR simulations, we assumed an arrival rate of 25.31 Mbps for each

user [47] and have used bandwidths of 20 MHz and 40 MHz. We can see that, the system is
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i = 20 ms.
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Figure 12: Transmit power for 4 different
users. The delay perception of two of the users

is learned. Low and high delay perception
users have delay perception of 26.8 ms and

133.73 ms, respectively.
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Figure 13: Transmission rate for four different
users. The delay perception of two of the users

is learned. Low and high delay perception
users have delay perceptions of 26.8 ms and

133.73 ms, respectively.

able to save power up to 40% and 15% compared to the brain-unaware scenario in the case of

20 MHz, and 40 MHz bandwidth, respectively. Fig. 11 also shows that the proposed approach

is able to allocate resources more efficiently when resources are scarce, i.e. in the 20 MHz case.

Also, we can see that increasing the bandwidth will decrease the total power usage in the system

which is an inherent feature of communication systems.

In Fig. 12, Fig. 13, and Fig. 14, we consider the case of 7 UEs and 5 MTDs. Two UEs are
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chosen as brain-aware users and their delay perception is learned by the PDI method. One of

the brain-aware UEs has a delay perception of βi(t) = 133.73 ms, and the other one has βi(t)

equal to 26.8 ms. The system does not learn the delay perception of the 5 remaining UEs and,

hence, it allocates resources to them by using a predefined delay requirement (brain-unaware

users).

As we can see in Fig. 12, the power consumption of the first two brain-aware users will be less

than that of the brain-unaware users. Moreover, the power consumption for a user with higher

delay perception will be less than that of a user with lower delay perception. This shows that

the system can successfully allocate resources according to the delay perception of the users.

Furthermore, the power consumption related to each user with predetermined delay requirements

is different, due to their different channel gains. However, as we will see later, the system is

robust to such differences and can guarantee the reliability and rate requirements for users having

different channel gains.

In Fig. 13, we show the transmission rate for four different users. We can see that the rate for

brain-unaware users with predetermined delay will converge to 2.5 Mbps. This rate will ensure

the reliability for these users. However, the rate of the users with learned delay perception

will converge to a smaller rate. This is due to the fact that these users’ actual requirements

are known to the system, and the system uses this knowledge to avoid unnecessarily wasting

resources. However, as we will see next, this rate reduction does not change the reliability for

these users.

Fig. 14 shows the reliability for the four aforementioned users. As we can see, the reliability

of all the users will converge to 95 %, which is the target reliability value for the users. We can

see that the system is able to ensure reliability for the users with identified delay perceptions as

well as the users with predefined delay requirements. However, as observed from Fig. 12, the

system uses 45% less power for those users for which the delay perception is learned.

Finally, Fig. 15 investigates the effect of parameter V for the system with 5 MTDs and 5 UEs.

We can see that, as V increases from 1 to 1.9, the convergence time decreases from 40 iterations

to 15 iterations. Nevertheless, increasing V will make the algorithm unstable, and as we can see,

increasing it to 2.2 will create an overshoot which is 11% higher than the final value. Hence,

parameter V , if adjusted correctly, can create a balance between stability and convergence rate

of our algorithm.
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V. CONCLUSION

In this paper, we have introduced and formulated the notion of delay perception of a human

brain, in wireless networks with humans-in-the-loop. Using this notion, we have defined the

concept of effective delay of human brain. To quantify this effective delay, we have developed

a learning method, named PDI, which consists of an unsupervised and supervised learning part.

We have then shown that PDI can predict the effective delay for the human users and find

the reliability of this prediction. Then, we have derived a closed-form relationship between the

reliability measure and wireless physical layer metrics. Next, using this relationship and the PDI

method, we have proposed a novel approach based on Lyapunov optimization for allocating

radio resources to human users while considering the reliability of both machine type devices

and human users. Our results have shown that the proposed brain-aware approach can save a

significant amount of power in the system, particularly for low-latency applications and congested

networks. To our best knowledge, this is the first study on the effect of human brain limitations

in wireless network design. This paper only scratched the surface of an emerging research area

that admits several future extensions. On the one hand, we can extend the studied framework

to accommodate other brain-related features beyond the mode of the brain. Examples of such

features include perceptual memory and consistency constraints. On the other hand, we can

develop recurrent neural network models to capture how the sequence in the brain mode can

dynamically change. Finally, another important future work is to conduct real-world experiments

with actual users to gather empirical date on brain behavior so as to refine the developed solution.
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APPENDIX A

PROOF OF THEOREM 1

We assume that a single brain mode is dominant for each user at each time. We index this

single mode as k. For each user i with this dominant mode, wi = [w1, · · · , wd+1] has the

following probability density function:

p(wi) = |2πΣk|−
1
2 exp

[
− 1

2
(wi − µk)TΣ−1k (wi − µk)

]
. (49)

We want to find the smallest region D in Rd+1, in which the delay perception lies with probability

γ, i.e., ∫
· · ·
∫
D
p(w1, w2, . . . , wd+1) dw1· · · dwd+1 = γ. (50)

D is not a unique region. However, the objective is to find the smallest region. To this end, we

need to find the region where f(w1, w2, . . . , wd+1) has the greatest value, i.e., if∫
· · ·
∫
D1

p(w1, w2, . . . , wd+1) dw1· · · dwn =

∫
· · ·
∫
D2

p(y1, y2, . . . , yn) dy1· · · dyn, (51)

and also

p(y1, y2, . . . , yd+1) ≤ p(w1, w2, . . . , wd+1) ∀y ∈ D2, ∀wi ∈ D1, (52)

then ∫
· · ·
∫
D1

dw1· · · dwd+1 ≤
∫
· · ·
∫
D2

dy1· · · dyd+1, (53)

which implies that the volume of the region D1 is smaller than the volume of D2. Hence, if we

find the region D for which (50) holds, and, using (52), show that all other regions for which

(50) holds have greater volumes, then, we would have found the smallest region D, in which

the human behavior will stay with the probability γ.

Since wi is distributed according to a multivariate Gaussian, we can find the region where it

has the highest probability density, i.e.,
{
wi|p(wi) > C1

}
. This region can be written as:{

wi

∣∣∣∣ |2πΣk|−
1
2 exp

[
− 1

2
(wi − µk)TΣ−1k (wi − µk)

]
> C1

}
, (54)

which is equivalent to

D =
{
wi

∣∣∣(wi − µk)TΣ−1k (wi − µk) < C2

}
, (55)

where C2 is a positive constant and equals − ln |2πΣk|
1
2C1. Since Σk is a positive definite matrix,

(55) is the inner volume of an ellipsoid in a d dimensional space.

We now conjecture that this ellipsoid D is the smallest region, in which the delay perception
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lies with probability γ, i.e., the probability of wi being in this region is γ. We use a proof by

contradiction to show this. Consider that there exists any other space E which is smaller than D,

and the probability of wi being in this region is γ. We can partition E into two parts A = E ∩D

and E2 = E ∩ D′, where D′ is the complement of the set D. We also define D2 = D ∩ E ′. We

know that ∫
D
p(wi)dwi =

∫
A
p(wi)dwi +

∫
D2

p(wi)dwi (56)

=

∫
E
p(wi)dwi =

∫
A
p(wi)dwi +

∫
E2
p(wi)dwi = γ. (57)

Hence,
∫
D2
f(wi)dwi =

∫
E2 f(wi)dwi. Since

p(wi) < C1 ≤ p(y) ∀wi ∈ E2,y ∈ D2, (58)

using (51) and (52) we have
∫
E2 dwi <

∫
D2
dwi. This means that the set E has a bigger volume

than D, which is a contradiction to our first assumption. This proves that region D is the smallest

region in Rd+1 that has the probability γ.

Next, we find the relation between C2 and γ. γ can be defined as
∫
D p(wi)dwi and can be

calculated using chi-square distribution [48]. The region D can be written as

D =
{
wi|(wi − µk)TΣ−1k (wi − µk) ≤ Qd+1(γ)

}
, (59)

where Qd+1(γ) is the quantile function of the chi-square distribution with d + 1 degrees of

freedom. It is defined as Qd+1(γ) = inf
{
x ∈ R|γ ≤

∫ x
0
χ2
d(u)du

}
.

Having defined the confidence region based on γ, we now must find the edges of this ellipsoid.

We know that the center of this ellipsoid is µk. We need to solve the following optimization

problem:

min
wi

or max
wi

eTj wi, subject to wi ∈ D, (60)

where ej is a unit vector in Rd+1, having 1 in its ith element and zero otherwise. Using KKT

conditions for solving the above problem, we have:

ej + λΣ−1k (wi − µk) = 0, (61a)

(wi − µk)TΣ−1k (wi − µk) ≤ Qd+1(γ), (61b)

λ
(

(wi − µk)TΣ−1k (wi − µk)−Qd+1(γ)
)

= 0, λ ≥ 0. (61c)

The inequality in (61b) is tight. With some algebraic manipulation, we have wi−µk(j) = 1
λ
Σej ,
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and so, 1
λ2

eTj ΣkΣ
−1
k Σkej = Qd+1(γ). Therefore wi = ±

√
Qd+1(γ)

eTj Σk ej
Σkej +µk, λ = ±

√
eT
j Σkej

Qd+1(γ)
,

and eTj wi = ±
√
Qd+1(γ)eTj Σkej + µk(j).

If λ is positive, we can find the maximum which is +
√
Qd+1(γ)eTj Σkej + µk(j), and if λ is

negative, we can find the minimum which is −
√
Qd+1(γ)eTj Σkej + µk(j).

Here, µk(j) is the jth element of µk. If we set j = d + 1, then the delay perception of user

j is in the following range:

−
√
Qd+1(γ)eTd+1Σked+1 < βi(t)− µk(d+ 1) <

√
Qd+1(γ)eTd+1Σked+1, (62)

at least with probability γ. Hence, Theorem 1 is proved.

APPENDIX B

PROOF OF THEOREM 2

Since the queuing delay is much smaller than the duration of each time slot, we can assume

that each packet arriving at a specific time slot will be served at the same time slot. For analyzing

the packet delay, we consider a packet that just arrives in the system in time slot τk, and find

Pr(D > Dmax
i ) for this packet. When this packet arrives, there are m packets in the system.

From lemma 2, we know that the serving time will be an exponential random variable. Since

the exponential distribution is memoryless, there is no distinction between a packet already in

service and the other packets. Therefore, the waiting time for the packet that has just arrived is

the summation of m exponential distributions. Also, the transmission delay for this packet will

be another exponential random variable. Hence, the delay of a packet which arrives at time slot

τk while there are m packets in the system can be written as:

d(τk,m) = ts + t1(τk) + t2(τk) + · · ·+ tm−1(τk) + tc(τk), (63)

where ti(τk) is the service time for packet i in the queue, and tc(τk) is the service time for

packet already in service. Also, ts is the service time for the packet that has just arrived. we

seek to find Pr(d(τk,m) > Dmax
i ) which can be written as

Pr
(
d(τk,m) > Dmax

i

)
=
∑
m,k

Pr(D > Dmax
i |m, τk)Pr(m, τk)

=
∑
m,k

Pr(D > Dmax
i |m, τk)Pr(m|τk)Pr(τk). (64)

The probability that there are m users in an M/M/1 queue at time slot τk, i.e. Pr(m|τk), can be

written as (see [49]): Pr(m|τk) =
(
ai(τk)
ri(τk)

)m (
1− ai(τk)

ri(τk)

)
. Since we assumed the time slots have
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equal lengths, the packets arrive at each time slot with equal probability of Pr(τk) = 1
t
, where t

is the total number of time slots.

The sum of m+ 1 identically independent exponential random variables with the mean 1
ri(τk)

is a gamma random variable. Consequently, if the users arrive at time slot τk while there are m

users in the system at the time of arrival, the distribution of delay is

fD(φ|m, τk) =
ri(τk)

m+1

Γ(m+ 1)
φme−ri(τk)φ. (65)

As a result, we can write the probability of delay exceeding a threshold Dmax
i as

Pr(D > Dmax
i ) =

∫ ∞
Dmax

i

∑
m,k

fD(φ|m, τk)Pr(m|τk)Pr(τk)dφ (66)

=

∫ ∞
Dmax

i

1

t

∑
m,k

ri(τk)
m+1

m!
φme−ri(τk)φ(

ai(τk)

ri(τk)
)m(1− ai(τk)

ri(τk)
)dφ (67)

=
1

t

t∑
k=1

∫ ∞
Dmax

i

(ri(τk)− ai(τk))e−ri(τk)φ
∞∑
m=0

(
φai(τk)

)m
m!

dφ (68)

=
1

t

t∑
k=1

∫ ∞
Dmax

i

(ri(τk)− ai(τk))e−
(
ri(τk)−ai(τk)

)
φdφ (69)

=
1

t

t∑
k=1

e−
(
ri(τk)−ai(τk)

)
Dmax

i , (70)

which proves the theorem.
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