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Abstract

Motivated by recent advancement in neurocognitive in brain modeling research, a multiple model-based
Q-learning structure is proposed for optimal tracking control problem of time-varying discrete-time
systems. This is achieved by utilizing a multiple-model scheme combined with adaptive resonance theory
(ART). The ART algorithm generates sub-models based on the match-based clustering method. A
responsibility signal governs the likelihood of contribution of each sub-model to the Q-function. The Q-
function is learned using the batch least-square algorithm. Simulation results are added to show the
performance and the effectiveness of the overall proposed control method.

Keywords: Neural Network, Reinforcement learning, Adaptive algorithms, Multiple Model Control.

1. Introduction

The tracking control problem has gained significant attention in the control system community, due to
its numerous applications. The objective is to design a control law to ensure stability of the control
systems, as well as track a desired reference trajectory in an optimal fashion, by minimizing a performance
function. Traditional solutions to the optimal tracking problem aim at finding two components [1],
namely, a feedback term obtained by solving a Hamilton-Jacobi-Bellman (HJB) equation and a feedforward
term obtained by solving a noncausal difference equation [2]-[3]. The feedback and feedforward terms
are mainly found separately, and the solution is commonly obtained in an offline fashion, which requires
complete knowledge of the system dynamics. Reinforcement learning (RL) [4-7], as a class of machine
learning methods, has been widely used to find the online solution to the optimal tracking problem of
time-invariant discrete-time systems. RL algorithms mainly use neural networks (NNs) to approximate the
value function and consequently find the optimal control solution. This application of NNs essentially
extends traditional adaptive control capabilities to more advanced optimal adaptive learning feedback
controllers. There is a large gap between such neural adaptive learning feedback controllers and the
manner in which the human brain functions. In neuro-cognitive psychology, it is observed that the human
makes quick decisions based on association of existing external variables or cues with responses learned
and stored based on previous experiences [8]-[9]. If there is a match between current observed
circumstances and previously stored responses, the human executes the previously stored response that
most closely corresponds to current observations. Otherwise, the human generates a new response to
the new conditions.

Likewise, in many applications, the system operates in different environments, with each environment
requiring a dynamic description of the system. Such is the case in multiple-model adaptive control [10]-
[11], fault tolerant control, and elsewhere. In these applications, neural networks must provide high-level
functions such as classification, clustering, and so on. There are similarities between such applications in
different environments and the operation of the brain in using previously stored responses.
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Learning networks can be used to encapsulate previous experiences into categories of stored
responses that correspond to system response in different environments. Motivated by the sensory
information handling in parts of the cerebral cortex in the human brain, numerous methods of data
clustering have been developed to match current experiences to previously stored experiences [8]. In self-
organized clustering, the categories are determined automatically based on various criteria for
determining similarity, and new categories may be created if current data does not match with the
previous experience [9]. In k-mean clustering [13]-[14], the goal is to partition the inputs into a
predetermined k clusters. In the self-organizing map [15-17], previously experienced data is stored as
representative categories in the interconnection weights of a neural network, which is trained to produce
a low-dimensional discretized mapping of the input space to achieve clustering with dimensionality
reduction. Such methods of self-organized clustering are subject to unstable categorization when the
distances between categories are too large, and to temporal instability in stored memory when categories
are updated and do not retain their distinct characteristics. Methods for adding or resetting categories
based on new information in the incoming data and for pruning or removing categories that are not used
are generally ad hoc and do not have performance guarantees. An adaptive self-organizing map [2] was
applied to feedback control applications in by sorting observed data into previously defined categories,
within each of which a feedback controller based on prior experiences is stored. Nevertheless, this method
can exhibit temporal instability in stored memory since representatives of several categories can be tuned
simultaneously. Therefore, improved methods of self-organized clustering [17] are needed that have
more stable categories and temporal behaviors for applications in automatic feedback control for
different environments.

Adaptive Resonance Theory (ART) is a match-based clustering approach that provides an explanation
of human cognitive information processing [17]. It represents a number of NN models which use
supervised and unsupervised learning methods to address problems such as pattern recognition and
prediction in the human brain. The basic concept is to categorize the input data into categories, based on
a vigilance criterion. Once some categories are established, the new input data is matched with existing
categories, which is called the internal memory of an active code. ART matching leads either to a resonant
state or a rest state. This matching state is established if the vigilance criterion is met. If the resonance is
not achieved, the learning process takes place and an alternative category search is to be established. If
the search ends, i.e. no resonance with all the categories, a new category, active code, is created. This
match-based learning process is the foundation of ART code stability.

In this paper, motivated by recent neurocognitive models of mechanisms in the brain, a model-free Q-
learning-based algorithm is presented to find the optimal solution to the tracking problem of time-varying
discrete-time systems. It is assumed that the number of sub-models is not fixed and updated adaptively
once a mismatch between the stored sub-models and the new data is detected. The proposed algorithm
combines RL with ART algorithms to monitor changes in the dynamics of the environment. The system
starts with a number of sub-models based on a prior knowledge. A new sub-model is then added due to
the vigilance once a mismatch, no resonance, is established in ART. A responsibility signal is defined using
ART algorithm which indicates the likelihood of the current input belonging to the existing sub-models in
the time space. Then, an overall Q-function is defined which is the linear combination of all sub-models’
Q-functions. Each sub-model contributes to overall Q-function based on the responsibility signal. Based
on the presented Q-function structure, a model free algorithm is presented to find the optimal control
input for discrete time-varying systems. The proposed method does not require system identification or
any knowledge about the system dynamics. The optimal solution is found using only measured data.

This paper is organized as follows. The optimal control problem is discussed in Section 2. Adaptive
resonance theory is presented in Section 3. A new formulation for the optimal tracking problem of time-
varying discrete-time systems using Q-learning is presented in Section 4. Simulation and conclusion are
presented in Sections 5 and 6, respectively.

2. Optimal Tracking Control Problem

Consider the linear system dynamics as
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Xy =AX, +BU, (1)

where x, € R"is the state vector of the system, and u, e R™ is the control input. It is assumed that the
system operates in multiple environments which may change abruptly from one sub-model to another.
Thatis, (A;,B,)cM={(A,,B,),(A,,B,),...,(A,,B,)} with N is the number of sub-models which is generally
unknown.

The goal is to design the control input u, to assure that the states of the system track the reference
trajectory r, in an optimal manner by minimizing a predefined performance function as

J(xk,rk)zi;/"’k[(xi—r,.)TS(x,.—r,)+u,.TRu,.] (2)

with $>0 and R=R" >0 . 0<y <1 is a discount factor.
The desired reference trajectory is defined as

len =F 1 (3)

with r, eR".
The rest of this section assumes there is only one sub-model. This assumption is relaxed in the next
section. Based on the system dynamics (1) and the reference trajectory dynamics (3), construct the

augmented system as
Xeiq A 0] x B,
X + u=TX +B. .u 4
k+1 |:rk+1:| |:o F rk o k Jj 7k 17k ( )

;
where the augmented state is X, —[Xk r

The performance function (2) in terms thhe state of the augmented system for the sub-model j can
be written as

V,(X,) =i y [X,TEj X, +u]R, u,] (5)

i=k
S, =S
where S
Itis shown i TfS] tl’§at he value function is quadratic in terms of the states of the system (4) as
V,(X,)=X; PX, (6)
Substituting (6) into (5) yields the Bellman equation corresponding to j—th sub-model as
XkT P.X, =XkT§j Xk+ukTRj uk+7XkT+1 P X (7)
Then, the optimal control input corresponding to sub-model j is given as
:_V(Rj+731Tj PjBlj)ilBIj PjTij (8)
where P is obtained by solving the following algebraic Riccati equation (ARE)
3 2
S,—P+yT/P.T.—y’T'PB, (R, +yB/P.B ) B PT =0 (9)
Eg. (8) is the optimal control input when one has just one model to show the behavior of the system.
However, the time-varying systems have different dynamics for each kind of fault or change in the

environment. Each type of these dynamics is a sub-model and we should take into account all these sub-
models in the value function and control input. In the next section, adaptive resonance theory (ART) for
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self-organized clustering is proposed to determine the contribution of each sub-model in the general value
function using a signal extracted by ART. The overall system is highlighted in Fig.1.

3. Adaptive Resonance Theory and Value Function for Multiple-model Systems

Adaptive resonance theory (ART) is a cognitive and neural theory of how the brain autonomously
learns to categorize inputs in a changing world based on a vigilance criterion. Once some categories are

X _ xk 7
k= P k . <
7 < Reference Dynamic <
Xy
< System Dynamic <
V(X))

Sub-model j V(X,)
.

Gathering -

Sub-model 1 > —
ub-mode . > > mecahmism P»| Actor u,
»| Reinforcement Q-learning algorithm
P 1
V(X,) x
Extended Adaptive Vi
> Resonance Theory
Algorithm

Fig.1 : Overall system

established, the new input data is matched with existing categories if the vigilance criterion is met. The
learning process takes place and an alternative category is created if vigilance criterion is not met. This
match-based learning process is the foundation of ART code stability. These properties can be used to
control of time-varying systems. To do so, ART starts with a number of sub-models based on a prior
knowledge. A new sub-model is then added due to the vigilance once a mismatch, no resonance, is
established in ART. A responsibility signal is defined using ART algorithm which indicates the likelihood of
the current input belonging to the existing sub-models in the time space. Then, an overall Q-function is
defined which is the linear combination of all sub-models’ Q-functions. Each sub-model contributes to
overall Q-function based on the responsibility signal. The fundamentals of ART are first presented and it
then is combined with multiple model and Q-learning to approximate the optimal value function and
consequently the optimal solution for uncertain time-varying systems.

3.1. Adaptive Resonance Theory

ART remedies many of these defects noted above by employing two maps between two spaces
[9][12][19]. An input data space F1 is called the short-term memory, and a category feature space F2 is
called the long-term memory. One map is from the input data space F1 to the category feature space F2.
This is termed the bottom-up map. A second dual map is from the category feature space F2 back to the
input space F1, known as the top-down map. The process of matching the observed data to a stored
category occurs as a result of the interaction of these two maps. The model postulates that 'top-down'
expectations mapped back to the input space take the form of a category prototype which is then
compared, using certain metrics, with the actual input data as detected. When the difference between
the actual input and the category prototype does not exceed a threshold called the vigilance parameter,
the input is considered a member of the expected class. ART thus offers a solution to the plasticity versus
stability paradox [19][20]. Furthermore, in the ART network, pruning and resetting of categories is
furthermore formally defined using certain parameters. Furthermore, the number of categories is not

Submitted to Neurocomputing October 10, 2017



predefined. There are many different forms of the ART theory which utilize different methods or metrics
for determining the match between the input signal and the category prototype.

These notions are captured mathematically as follows. The complete ART algorithm is detailed in Table
1. The situation of our concern is when the observed input data for the ART are the inputs and outputs of
a dynamical system (1). The input data for the ART are defined as the vector of past controls and states

de=Ix Xy o o Xes | ULy U, e U T (10)
where 6,5, depend on the problem in hand and are determined by the user based on experience. On
one hand, the greater §,,J, are, the higher dimension of the clustering space, which makes the clustering
more complicated, on the other hand, accurate clustering requires to take into account enough number
of past input and the state to distinguish different model of the system. These input data are viewed as
residing in the F1 layer, and a map to the category feature space, or F2 layer, is provided by

w'd, ; T
[v1 .oV vQ’] (11)
el
where matrix W is interpreted as the weight matrix of a neural network. Define W:[W1 w, - WJ]

where the columns W, j=1,..,N are the category representatives currently stored in the ART network.
As such, (11) is an inner product that compares the input data d, to each category column of W, with
elements v, larger for categories W, that are closer to d, in Euclidean norm.

The next step in ART is to use competltlve Iearnlng to choose a winning category to which v, most
closely belongs. To accomplish this, sort the entries v, in F2 in descending order of magnitude to define
the ordered list j,,J,,..., - Define j = j,, the largest index as the chosen category F2 winner, Define the
F2 vector vk as a vector of zeros with an entry of 1 in position | = j, . Define the dual map from F2 to F1
as

d, =Wy, (12)

Then, d W is the expected or hypothesized category prototype in F1 space. That is, dk is the ideal
data S|gnal that would produce category representative W using the map (11).

The key step in ART now occurs, namely matching the mput data to a stored category. To accomplish
this, compare the input data to the category prototype d; =W. in F1 space. Many norms have been
proposed for this matching test, including techniques from fuzzy fogic. We use simply the Euclidean norm
condition

(13)

where v is known as the vigilance parameter, specified by the user. If this condition is satisfied, then
column w.=w, is declared the winning category and resonance is said to occur. Then, the weights in
column W are updated to more closely fit the observed input data. This is accomplished by using the
adaptive Iearnlng algorithm

W, =ad, +(1-aW/ (14)

To avoid unstable categorization and temporal instability in the stored categories, only one step of this
update is performed. Note that non-winning category representatives are not updated. This preserves
stability of categorization in ART. If condition (13) does not hold, then no winning category is declared,
and the next closest category to v, is selected. That is, one sets the trial value j = j,. Then the map from
F2 to F1 (12) and the matching test (13) are repeated. If match occurs, then column W =W, is declared
the winning category and resonance is said to occur. Then, the weights in column w. are upéated by one
step of adaptive learning algorithm (14). Again, if condition (13) does not hoId then no winning category
is declared, and the next closest category to v, is selected, namely j = J;. The steps (12), (13) are
repeated until a winning category is found. If no winning category is found, then a new category is
declared, and the input data itself is added as the last column of NN weight matrix W, so that the number
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of categories increases to J+1. Thus, adding new categories is automatic in ART, whereas in other
clustering methods, it is usually ad hoc.

In summary, the ART network consists of four stages. The first stage is the preprocessing stage wherein
the input data d, is mapped to a vector v, in category space F2. The second stage is the choice stage of
selecting a winning category in F2, namely j , which is the category to which the data most closely
belongs. Third, the match stage, where the winning category is mapped back to F1 to obtain the
hypothesized category prototype dk , Which is compared to the current observed data d, . If there is a
match between and d, and dk , resonance is said to occur. Then, in a fourth adaptation stage the winning
category representatlve is update to more closely match the current observed data.

The complete ART algorithm is detailed in Table 1. Several details remain about the functioning of ART.

Table.1. Extended ART Algorithm

Select 4, p, 0<k<J,

Initialize k=0, x,, 7,=0, f,=4
(1) k=k+1

X, =AX, +Bu, x, R’

dk
o]

7,., =max(r, —1,0), Where 7 Is Refractory Index

Form d, d, eR"™ ¢ =

firn =max(f, —%,9), And f Fading Index

If f,(k)=0 Remove Column W,

w’ d, T
v, = vi(k) . vik) . vy(k)
Tral :

Order v, (k) In Descending Order 1 To -1, Call the Ordered Indices j,, j,....J,
Set /=1
(2) set j =)

Define v(k)'=[0 0 1 0 o]T As A Zero Vector With 1 In Position j
If 7.(k)=0 Then d, =
Else Go To (3)
If “dk —d*kH<v Then
Train w. As (Wj, (k+1)=cad, +(1—a)Wj,(k)) Setfj, (k+1)=2

Set 7, (k+1)=p, Vj, <I Start Refractory

Else Go To (3)
(3) Set/=I+1
If I>x GoTo(2)
Set W, =d(k)

J+1
GoTo (1)

The first is the specification of how many categories to try before the condition of ‘no winning category’
is declared. This number is called x in Table 1. Next, if a category is selected as the winning category
i =j, in F2, and if this choice fails the match test (13) in F1, then a refractory time period p is initiated
for the category j, and it cannot be used again until the refractory period is over. This is kept track using
a refractory index T, (k) in Table 1. Finally, ART includes a formal method for deleting categories that are
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never used. This is accomplished using a fading index J-vector f, in Table 1, where the j-th entry of f, is
the fading index for category j. If category j is not used during the fading period A, then category column
W, of the NN weight matrix is removed, and the number of categories J issetto J—1

3.2. New Value Function Structure Using ART

In this subsection, a general value function approximation for multiple-model linear systems using ART
is presented. In the proposed value function approximation scheme, each sub-model contributes to the
value function using a responsibility signal. In fact, the general value function is given by

N N
V(X )= vIVi(X,) =D viX{ P, X, (15)
j=1 j=1

where v,f j=1,...,N are the responsibility signals which determine the contribution of each sub-model
to the general value function.
Considering (4) and (15) in (2), yields the Bellman equation for time-varying systems

ZV X P X, =X/S X, +uRu, +7Zv Xp P X (16)
j=1 j=1
and the Hamiltonian is defined as
N
H(X,,u,)=X.S X, +u/Ru, +72v X P Xa = D VX, P X, (17)
j=1 j=1

Applying the stationarity condition 6H(X,,u,)/0u, =0 yields the optimal control input as

=y(zjlvi(R+yBlrijBlj)J [ZV’B PTJ (18)

j=1
where P, j=1,..N are obtained by solving a set of AREs (9).

Remark 1. Note that complete knowledge about the augmented system dynamics is required to find the
optimal control input (18). In the next section, RL is used to find the solution to the optimal tracking
problem without requiring any knowledge about the system dynamics.

4. Q-learning to Solve Optimal Tracking Problem of Multiple-model Systems

The solution to the optimal multiple-model tracking control problem needs complete knowledge about
the system dynamics and reference trajectory dynamics. In this section a Q-learning algorithm is
developed that solves this problem online without requiring any knowledge of the augmented system
dynamics.

Based on the Bellman equation (7), the discrete-time Q-function for j-th sub-system is defined as

Q,(k)=X,"S X, +u R +yX,.,'P, X, (19)
Substituting the augmented system (4) in (19) yields,
Qj(xk,uk)zx SX, +ukTR.uk +7(T. X, +B,u,)"P(T. X, +B,u,)

S,+yT/PT,  yT'PB, [ X,
yBIPT. R, +yB[PB, | u,

{ H i

H

(20)
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For the multiple-model systems, the general Q function is defined as
N
ak)=> vi0,(X,) (21)
j=1
By substituting the quadratic form (20) in (21), one has

N
Q(k)=> viQ,(X,) =V, Z{H, Z, +V,Z{H, 2, +...+V, Z{H,Z,
j=1

N
=Z, (> viH))Z,

j=1

ZN:viH}.XX iv,{HjX“ (22)
-z )z

Zv,ﬁHl‘.‘X ZV,{H}’“

j=1 j=1
=Z/HZ,

Eqg. (22) shows that the general Q-function for multiple-model systems is quadratic in terms of the states
of the augmented system and control input.
Applying the stationarity condition dQ(k) / du, =0 vyields,

N R
up =[ZV;H;UJ [ZV;H?])Q (23)
j=1 j=1

Now, we can present a Q-learning algorithm to solve the optimal tracking control problem of multiple-
model systems online without knowing the augmented system dynamics (T;,B, ;).
The Bellman equation (16) in terms of Q-function is given as

Q(X,,u,)=X,SX, +u,Ru, +yQ(X,.,,U,,) (24)
Substituting (22) into (24), the Q-function Bellman equation (24) becomes
ZHZ, =X/S, X, +u/Ru, +yZ] HZ, , (25)
Policy iteration is especially easy to implement in terms of the Q-function, as follows.

Algorithm 1. Policy Iteration using Q-function

1. Policy evaluation
ZIH"Z, = X]SX, +(u) R(u)+yZ,, H"Z, . (26)

2. Policy improvement

N I
U;:H:_[Zvli(Hl;u)Hlj {Zvé(Hj{X)Hl\]Xk (27)
j=1 j=1

Q-Learning algorithm attempts to learn the cost of the current category state, and taking a specific
action toward minimizing the performance index. The advantage of Q-learning algorithm is that
convergence guarantees can be given even when function approximation is used to estimate the action
values.
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Remark 2. Note that the policy improvement step (27) in Algorithm 1, which is given by minimizing the Q-
function (24) with respect to the control input, can be carried out in terms of the learned kernel matrix
H*! without resorting to the system dynamics.

Remark 3. The computation complexity of the proposed algorithm depends on the number of the states
of the systems and also the number of sub-models. If we have more states and sub-models, it takes more
time for the algorithm to learn the optimal control input.

5. Simulation

To show the effectiveness of the proposed method, simulations have been carried out on a mass-
spring-damper system. The system dynamics is

Xiprr = Xy T X

k b 1 (28)
X1 = T Xuk +(1__)X2,k +—U,
m m m

Three different system behaviors are considered for this simulation. The parameters set of each
interval are provided in Table 2. These parameters change the system dynamics (28). For each time
interval, a system is activated for the corresponding parameters.

Table 2: The parameters of three system dynamics for three-time intervals

Time Interval System Parameters

0<t<300 | k,=10 b, =10 m,=90

300<t<600 | k,=30 b,=15 m,=90

600<t<1000 | k,=50 b,=50 m,=90

The extended ART parameters are chosenas 4 =100, p=0.78, k=20, and &, =5, =4 . Fig.2 shows
the norm of the difference between the optimal control gain and the computed gain. It is obvious from
the figure that the gain converges to the optimal value. Spikes are seen in the first iterations with system
1, a smaller spike is seen when the dynamic changes at 300 points, and tiny spike at 600. This is because
the extended ART sub-models are carried through the three systems, and the change in the system
dynamic is not very huge. Fig 3 shows the states of the system after applying the computed control input

using the proposed approach. The optimal gain and the computed gain are shown in table 3.
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‘ \ \ \ \ \ \ \ \

15 NE

al] 1 10

ol B 5

o J o \‘\M‘M ,,,,,,,,,,,

| | s

ol A 1 -10 |
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Fig. 2. The norm of the difference between the optimal control Fig. 3. The states of the system
gain and the computed gain
Table 3: The optimal gains vs the Computed gains
Optimal Gains Computed Gains
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6.

System1 | K3 =[-0.127 3.019] | Ksye =[-0.127 3.019]

System 2 | Kg, = [-4.292 23.686] | Ksys, = [-4.292 23.686]

System 3 | Kgye3 = [-0.489 1.297] | Ksys3 = [-0.489 1.297]

Conclusion

In this paper, ART clustering algorithm is combined with RL to find the optimal solution to the tracking

problem of time-varying discrete-time systems. The changes in the system behavior is taken into account
using multiple-model approach. ART algorithm generates sub-models based on the clustering match-
based method. A Q-learning based algorithm is then used to find the optimal solution online and without
requiring any knowledge of the system dynamics. Each sub-model contributes into Q-function through a
responsibility signal generated by ART.

A possible extension of this work can be sample-data control systems with noisy sampling interval [21]

[22] as they are time-varying systems.
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