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Abstract 

Motivated by recent advancement in neurocognitive in brain modeling research, a multiple model-based 
Q-learning structure is proposed for optimal tracking control problem of time-varying discrete-time 
systems. This is achieved by utilizing a multiple-model scheme combined with adaptive resonance theory 
(ART). The ART algorithm generates sub-models based on the match-based clustering method. A 
responsibility signal governs the likelihood of contribution of each sub-model to the Q-function. The Q-
function is learned using the batch least-square algorithm. Simulation results are added to show the 
performance and the effectiveness of the overall proposed control method. 
Keywords: Neural Network, Reinforcement learning, Adaptive algorithms, Multiple Model Control. 

1. Introduction 

The tracking control problem has gained significant attention in the control system community, due to 
its numerous applications. The objective is to design a control law to ensure stability of the control 
systems, as well as track a desired reference trajectory in an optimal fashion, by minimizing a performance 
function. Traditional solutions to the optimal tracking problem aim at finding two components [1], 
namely, a feedback term obtained by solving a Hamilton-Jacobi-Bellman (HJB) equation and a feedforward 
term obtained by solving a noncausal difference equation [2]-[3]. The feedback and feedforward terms 
are mainly found separately, and the solution is commonly obtained in an offline fashion, which requires 
complete knowledge of the system dynamics. Reinforcement learning (RL) [4-7], as a class of machine 
learning methods, has been widely used to find the online solution to the optimal tracking problem of 
time-invariant discrete-time systems. RL algorithms mainly use neural networks (NNs) to approximate the 
value function and consequently find the optimal control solution. This application of NNs essentially 
extends traditional adaptive control capabilities to more advanced optimal adaptive learning feedback 
controllers. There is a large gap between such neural adaptive learning feedback controllers and the 
manner in which the human brain functions. In neuro-cognitive psychology, it is observed that the human 
makes quick decisions based on association of existing external variables or cues with responses learned 
and stored based on previous experiences [8]-[9]. If there is a match between current observed 
circumstances and previously stored responses, the human executes the previously stored response that 
most closely corresponds to current observations. Otherwise, the human generates a new response to 
the new conditions.  

Likewise, in many applications, the system operates in different environments, with each environment 
requiring a dynamic description of the system. Such is the case in multiple-model adaptive control [10]-
[11], fault tolerant control, and elsewhere. In these applications, neural networks must provide high-level 
functions such as classification, clustering, and so on. There are similarities between such applications in 
different environments and the operation of the brain in using previously stored responses.  
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Learning networks can be used to encapsulate previous experiences into categories of stored 
responses that correspond to system response in different environments. Motivated by the sensory 
information handling in parts of the cerebral cortex in the human brain, numerous methods of data 
clustering have been developed to match current experiences to previously stored experiences [8]. In self-
organized clustering, the categories are determined automatically based on various criteria for 
determining similarity, and new categories may be created if current data does not match with the 
previous experience [9]. In k-mean clustering [13]-[14], the goal is to partition the inputs into a 
predetermined k clusters. In the self-organizing map [15-17], previously experienced data is stored as 
representative categories in the interconnection weights of a neural network, which is trained to produce 
a low-dimensional discretized mapping of the input space to achieve clustering with dimensionality 
reduction. Such methods of self-organized clustering are subject to unstable categorization when the 
distances between categories are too large, and to temporal instability in stored memory when categories 
are updated and do not retain their distinct characteristics. Methods for adding or resetting categories 
based on new information in the incoming data and for pruning or removing categories that are not used 
are generally ad hoc and do not have performance guarantees. An adaptive self-organizing map [2] was 
applied to feedback control applications in by sorting observed data into previously defined categories, 
within each of which a feedback controller based on prior experiences is stored. Nevertheless, this method 
can exhibit temporal instability in stored memory since representatives of several categories can be tuned 
simultaneously. Therefore, improved methods of self-organized clustering [17] are needed that have 
more stable categories and temporal behaviors for applications in automatic feedback control for 
different environments.  

Adaptive Resonance Theory (ART) is a match-based clustering approach that provides an explanation 
of human cognitive information processing [17]. It represents a number of NN models which use 
supervised and unsupervised learning methods to address problems such as pattern recognition and 
prediction in the human brain. The basic concept is to categorize the input data into categories, based on 
a vigilance criterion. Once some categories are established, the new input data is matched with existing 
categories, which is called the internal memory of an active code. ART matching leads either to a resonant 
state or a rest state. This matching state is established if the vigilance criterion is met. If the resonance is 
not achieved, the learning process takes place and an alternative category search is to be established. If 
the search ends, i.e. no resonance with all the categories, a new category, active code, is created. This 
match-based learning process is the foundation of ART code stability.  

In this paper, motivated by recent neurocognitive models of mechanisms in the brain, a model-free Q-
learning-based algorithm is presented to find the optimal solution to the tracking problem of time-varying 
discrete-time systems. It is assumed that the number of sub-models is not fixed and updated adaptively 
once a mismatch between the stored sub-models and the new data is detected. The proposed algorithm 
combines RL with ART algorithms to monitor changes in the dynamics of the environment. The system 
starts with a number of sub-models based on a prior knowledge. A new sub-model is then added due to 
the vigilance once a mismatch, no resonance, is established in ART. A responsibility signal is defined using 
ART algorithm which indicates the likelihood of the current input belonging to the existing sub-models in 
the time space. Then, an overall Q-function is defined which is the linear combination of all sub-models’ 
Q-functions. Each sub-model contributes to overall Q-function based on the responsibility signal. Based 
on the presented Q-function structure, a model free algorithm is presented to find the optimal control 
input for discrete time-varying systems. The proposed method does not require system identification or 
any knowledge about the system dynamics. The optimal solution is found using only measured data. 

This paper is organized as follows. The optimal control problem is discussed in Section 2. Adaptive 
resonance theory is presented in Section 3. A new formulation for the optimal tracking problem of time-
varying discrete-time systems using Q-learning is presented in Section 4. Simulation and conclusion are 
presented in Sections 5 and 6, respectively. 

2. Optimal Tracking Control Problem 

Consider the linear system dynamics as 
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                                                                              + = +1k j k j kx A x B u                                                                          (1) 

where ∈n
kx is the state vector of the system, and ∈m

ku is the control input. It is assumed that the 
system operates in multiple environments which may change abruptly from one sub-model to another. 
That is, ⊂ = 1 1 2 2( , ) {( , ),( , ),...,( , )}j j N NA B M A B A B A B  with N  is the number of sub-models which is generally 
unknown. 

The goal is to design the control input ku  to assure that the states of the system track the reference 
trajectory kr  in an optimal manner by minimizing a predefined performance function as 

                                                             γ
∞

−

=

 = − − + ∑( , ) ( ) ( )i k T T
k k i i i i i i

i k

J x r x r S x r u Ru                                               (2) 

with ≥ 0S  and = > 0TR R  . γ< ≤0 1  is a discount factor.  
The desired reference trajectory is defined as 

                                                                              + =1k kr F r                                                                                          (3) 

with ∈n
kr . 

The rest of this section assumes there is only one sub-model. This assumption is relaxed in the next 
section. Based on the system dynamics (1) and the reference trajectory dynamics (3), construct the 
augmented system as 

                                                      +
+

+

       
= = + ≡ +       
       
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0 0
                                        (4) 

where the augmented state is  =  
TT T

k k kX x r . 
The performance function (2) in terms of the state of the augmented system for the sub-model j  can 

be written as  

                                                                      γ
∞

−

=

 = + ∑V ( ) i k T T
j k i j i i j i

i k

X X S X u R u                                                      (5) 

where  
− 

=  − 

j j
j

j j

S S
S

S S
.  

It is shown in [18] that the value function is quadratic in terms of the states of the system (4) as 

                                                                                  =( ) T
j k k j kV X X P X                                                                            (6) 

Substituting (6) into (5) yields the Bellman equation corresponding to −j th  sub-model as  

                                                              γ + += + + 1 1
T T T T
k j k k j k k j k k j kX P X X S X u R u X P X                                                      (7) 

Then, the optimal control input corresponding to sub-model j  is given as 

                                                                γ γ −= − +* 1
1 1 1( )T T

k j j j j j j j ku R B P B B PT X                                                                (8) 

where jP  is obtained by solving the following algebraic Riccati equation (ARE) 

                                                    γ γ γ −− + − + =2 1
1 1 1 1( ) 0T T T T

j j j j j j j j j j j j j j jS P T P T T P B R B P B B PT                                        (9)
Eq. (8) is the optimal control input when one has just one model to show the behavior of the system. 
However, the time-varying systems have different dynamics for each kind of fault or change in the 
environment. Each type of these dynamics is a sub-model and we should take into account all these sub-
models in the value function and control input. In the next section, adaptive resonance theory (ART) for 
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self-organized clustering is proposed to determine the contribution of each sub-model in the general value 
function using a signal extracted by ART. The overall system is highlighted in Fig.1. 

3. Adaptive Resonance Theory and Value Function for Multiple-model Systems 

Adaptive resonance theory (ART) is a cognitive and neural theory of how the brain autonomously 
learns to categorize inputs in a changing world based on a vigilance criterion. Once some categories are 

established, the new input data is matched with existing categories if the vigilance criterion is met. The 
learning process takes place and an alternative category is created if vigilance criterion is not met. This 
match-based learning process is the foundation of ART code stability. These properties can be used to 
control of time-varying systems. To do so, ART starts with a number of sub-models based on a prior 
knowledge. A new sub-model is then added due to the vigilance once a mismatch, no resonance, is 
established in ART. A responsibility signal is defined using ART algorithm which indicates the likelihood of 
the current input belonging to the existing sub-models in the time space. Then, an overall Q-function is 
defined which is the linear combination of all sub-models’ Q-functions. Each sub-model contributes to 
overall Q-function based on the responsibility signal. The fundamentals of ART are first presented and it 
then is combined with multiple model and Q-learning to approximate the optimal value function and 
consequently the optimal solution for uncertain time-varying systems.  

3.1. Adaptive Resonance Theory 

ART remedies many of these defects noted above by employing two maps between two spaces 
[9][12][19]. An input data space F1 is called the short-term memory, and a category feature space F2 is 
called the long-term memory. One map is from the input data space F1 to the category feature space F2. 
This is termed the bottom-up map. A second dual map is from the category feature space F2 back to the 
input space F1, known as the top-down map. The process of matching the observed data to a stored 
category occurs as a result of the interaction of these two maps. The model postulates that 'top-down' 
expectations mapped back to the input space take the form of a category prototype which is then 
compared, using certain metrics, with the actual input data as detected. When the difference between 
the actual input and the category prototype does not exceed a threshold called the vigilance parameter, 
the input is considered a member of the expected class. ART thus offers a solution to the plasticity versus 
stability paradox [19][20]. Furthermore, in the ART network, pruning and resetting of categories is 
furthermore formally defined using certain parameters. Furthermore, the number of categories is not 
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predefined. There are many different forms of the ART theory which utilize different methods or metrics 
for determining the match between the input signal and the category prototype.  

These notions are captured mathematically as follows. The complete ART algorithm is detailed in Table 
1. The situation of our concern is when the observed input data for the ART are the inputs and outputs of 
a dynamical system (1). The input data for the ART are defined as the vector of past controls and states 

                                             δ δ− − − − −= 1 1 2[ ... ... | ... ]
x u

T T T T T T T
k k k k k k kd x x x u u u                                   (10) 

where δ δ,x u   depend on the problem in hand and are determined by the user based on experience. On 
one hand, the greater δ δ,x u  are, the higher dimension of the clustering space, which makes the clustering 
more complicated, on the other hand, accurate clustering requires to take into account enough number 
of past input and the state to distinguish different model of the system. These input data are viewed as 
residing in the F1 layer, and a map to the category feature space, or F2 layer, is provided by  

                                                              = =
T

k
k T

k

W d
v

W d
  

1 ... ...
Tj N

k k kv v v                                                      (11) 

where matrix W  is interpreted as the weight matrix of a neural network. Define [ ]= 1 2 JW W W W  
where the columns =, 1,...,jW j N  are the category representatives currently stored in the ART network. 
As such, (11) is an inner product that compares the input data kd  to each category column of W , with 
elements j

kv  larger for categories jW  that are closer to kd  in Euclidean norm.  
The next step in ART is to use competitive learning to choose a winning category to which kv  most 

closely belongs. To accomplish this, sort the entries j
kv  in F2 in descending order of magnitude to define 

the ordered list 1 2, ,..., Nj j j . Define =*
1j j , the largest index as the chosen category F2 winner, Define the 

F2 vector *
kv  as a vector of zeros with an entry of 1 in position =*

1j j . Define the dual map from F2 to F1 
as 

                                                                                          =* *
k kd Wv                                                                               (12) 

Then, = *
*
k j

d W  is the expected or hypothesized category prototype in F1 space. That is, *
kd  is the ideal 

data signal that would produce category representative *j
W  using the map (11). 

The key step in ART now occurs, namely matching the input data to a stored category. To accomplish 
this, compare the input data to the category prototype = *

*
k j

d W  in F1 space. Many norms have been 
proposed for this matching test, including techniques from fuzzy logic. We use simply the Euclidean norm 
condition  

                                                                                    ν− <*
k kd d                                                                             (13) 

where ν  is known as the vigilance parameter, specified by the user. If this condition is satisfied, then 
column =*

1jj
W W  is declared the winning category and resonance is said to occur. Then, the weights in 

column *j
W  are updated to more closely fit the observed input data. This is accomplished by using the 

adaptive learning algorithm  

                                                                             α α+ = + −
* *

1 (1 )j j
k k kW d W                                                                 (14) 

To avoid unstable categorization and temporal instability in the stored categories, only one step of this 
update is performed. Note that non-winning category representatives are not updated. This preserves 
stability of categorization in ART. If condition (13) does not hold, then no winning category is declared, 
and the next closest category to kv  is selected. That is, one sets the trial value =*

2j j . Then the map from 
F2 to F1 (12) and the matching test (13) are repeated. If match occurs, then column =*

2jj
W W  is declared 

the winning category and resonance is said to occur. Then, the weights in column *j
W  are updated by one 

step of adaptive learning algorithm (14). Again, if condition (13) does not hold, then no winning category 
is declared, and the next closest category to kv  is selected, namely =*

3j j . The steps (12), (13) are 
repeated until a winning category is found. If no winning category is found, then a new category is 
declared, and the input data itself is added as the last column of NN weight matrix W, so that the number 
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of categories increases to +1J . Thus, adding new categories is automatic in ART, whereas in other 
clustering methods, it is usually ad hoc. 

In summary, the ART network consists of four stages. The first stage is the preprocessing stage wherein 
the input data kd  is mapped to a vector kv  in category space F2. The second stage is the choice stage of 
selecting a winning category in F2, namely *j , which is the category to which the data most closely 
belongs. Third, the match stage, where the winning category is mapped back to F1 to obtain the 
hypothesized category prototype *

kd , which is compared to the current observed data kd . If there is a 
match between and kd  and *

kd , resonance is said to occur. Then, in a fourth adaptation stage, the winning 
category representative is update to more closely match the current observed data.  

The complete ART algorithm is detailed in Table 1. Several details remain about the functioning of ART. 

The first is the specification of how many categories to try before the condition of ‘no winning category’ 
is declared. This number is called κ  in Table 1. Next, if a category is selected as the winning category 

=*
lj j  in F2, and if this choice fails the match test (13) in F1, then a refractory time period ρ  is initiated 

for the category lj  and it cannot be used again until the refractory period is over. This is kept track using 
a refractory index τ ( )

lj
k  in Table 1. Finally, ART includes a formal method for deleting categories that are 

Table.1. Extended ART Algorithm 

 Select λ , ρ , κ≤ ≤0 J , 
 Initialize  = 0k , 0x , τ =0 0 , λ=0f  
(1) = +1k k  
 

+ = +1k k kx Ax Bu  ∈n
kx  

 
Form kd  δ δ+∈ ( 1)n x m u

kd = k
k

k

d
d

d
 

 τ τ+ − −
= −1 max( 1,0)k k , Where τ  Is Refractory Index 

+ − −
= −1 max( 1,0)k kf f , And f Fading Index 

 If =( ) 0jf k  Remove Column jW  
 

=
T

k
k T

k

W d
v

W d
=   1( ) ... ( ) ... ( )

T

j Jv k v k v k  

 Order ( )jv k  In Descending Order 1 To -1, Call the Ordered Indices 1 2, .... Jj j j  
 Set =1l  
(2) Set =*

lj j  
 Define *( )v k = [ ]0 0 1 0 0 T   As A Zero Vector With 1 In Position *j  
  If τ =* ( ) 0

j
k  Then = *

*
k j

d W  

  Else Go To (3) 
   If ν− <*

k kd d   Then 

   Train *j
W  As ( α α+ = + −* *( 1) (1 ) ( )kj j

W k d W k ) Set λ+ =* ( 1)
j

f k  

   Set τ ρ+ =( 1)
ij

k , ∀ <ij l  Start Refractory 

   Else Go To (3) 
(3) Set = +1l l    
 If κ>l  Go To (2) 
 Set + =1 ( )JW d k  
 Go To (1) 
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never used. This is accomplished using a fading index J-vector kf  in Table 1, where the j-th entry of kf  is 
the fading index for category j. If category j is not used during the fading period λ , then category column 

jW  of the NN weight matrix is removed, and the number of categories J  is set to −1J   

3.2. New Value Function Structure Using ART 

In this subsection, a general value function approximation for multiple-model linear systems using ART 
is presented. In the proposed value function approximation scheme, each sub-model contributes to the 
value function using a responsibility signal. In fact, the general value function is given by 

                                                                  
= =

= =∑ ∑
1 1

( ) ( )
N N

j j T
k k j k k k j k

j j

V X v V X v X P X                                                          (15) 

where =1,...,j
kv j N  are the responsibility signals which determine the contribution of each sub-model 

to the general value function.  
Considering (4) and (15) in (2), yields the Bellman equation for time-varying systems 

                                                γ + +
= =

= + +∑ ∑ 1 1
1 1

N N
j T T T j T
k k j k k k k k k k j k

j j

v X P X X S X u Ru v X P X                                                 (16) 

and the Hamiltonian is defined as 

                                                γ + +
= =

= + + −∑ ∑1 1
1 1

( , )
N N

T T j T j T
k k k k k k k k j k k k j k

j j

H X u X S X u Ru v X P X v X P X                                (17) 

Applying the stationarity condition ∂ ∂ =( , ) 0k k kH X u u  yields the optimal control input as 

                                                        
1

1 1 1
1 1

( )
J J

k
j T j T

k k j j j k j j j
j j

u v R B P B v B PT Xγ γ
−

∗

= =

   
= +   

   
∑ ∑                                                 (18) 

where =1,...jP j N  are obtained by solving a set of AREs (9).  

Remark 1. Note that complete knowledge about the augmented system dynamics is required to find the 
optimal control input (18). In the next section, RL is used to find the solution to the optimal tracking 
problem without requiring any knowledge about the system dynamics.  

4. Q-learning to Solve Optimal Tracking Problem of Multiple-model Systems 

The solution to the optimal multiple-model tracking control problem needs complete knowledge about 
the system dynamics and reference trajectory dynamics. In this section a Q-learning algorithm is 
developed that solves this problem online without requiring any knowledge of the augmented system 
dynamics.  

Based on the Bellman equation (7), the discrete-time Q-function for j-th sub-system is defined as 

                                                                  γ + += + + 1 1( ) T T T
k k k k k kj j j jQ k X S R PX u u X X                                             (19) 

Substituting the augmented system (4) in (19) yields, 

                                    

γ

γ γ
γ γ

= + + + +

 +   
=     +     

    
=     

     
=

1 1

1

1 1 1

( , ) ( B ) ( B )j k k j j i k j i k

T T T
j j j j j j

T T
j j j j

T xx xu
j j
ux

T T T
k k k k k k

k k

k k

k k

k
uu
j

jk k

j k

T

Q X u X S R T u P T u

S T PT T P B
PT R B P B

H H
H

X u u X X

X X
u uB

X
u

Z

H

H

X
u

Z

                                    (20) 
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For the multiple-model systems, the general Q function is defined as  

                                                                               
1

( ) ( )j k

N
j
k

j

Q k v Q X
=

=∑                                                                        (21) 

By substituting the quadratic form (20) in (21), one has 

                                           

1 2
1 1 2

1

1

1 1

1 1

( ) ( ) ...
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N
j T T N T
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N
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j

N N
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T
k

j

j

k

kQ k v Q X v Z H Z v Z H Z v Z H Z

Z v H Z

v H v H
Z Z

v H v H

Z Z

=

=

= =

= =

= = + + +

=

 
 
 =
 
 
 

=

∑

∑

∑ ∑

∑ ∑

                                             (22) 

Eq. (22) shows that the general Q-function for multiple-model systems is quadratic in terms of the states 
of the augmented system and control input.  

Applying the stationarity condition ( ) / 0kdQ k du =  yields,  

                                                                     
1

1 1

N N

k
j uu j ux

k k j k j
j j

u v H v H X
−

∗

= =

   
=    
   
∑ ∑                                                              (23) 

Now, we can present a Q-learning algorithm to solve the optimal tracking control problem of multiple-
model systems online without knowing the augmented system dynamics 1( , )j jT B .  

The Bellman equation (16) in terms of Q-function is given as  

                                                          γ + += + + 1 1( , ) ( , )T T
k k k k k kk kQ X u X S R Q X uX u u                                                     (24) 

Substituting (22) into (24), the Q-function Bellman equation (24) becomes 

                                                             γ + += + +1 1 1H HT T T T
k k k k k k k kZ Z X S X u Ru Z Z                                                         (25) 

Policy iteration is especially easy to implement in terms of the Q-function, as follows. 

Algorithm 1. Policy Iteration using Q-function 

1. Policy evaluation 

                                                            γ+ +
+ += + +1 1

1 1H ( ) ( ) HT i T i T i T i
k k k k k k k kZ Z X SX u R u Z Z                                                     (26) 

2. Policy improvement 

                                                        
−

+ + +

= =

   
= −   

   
∑ ∑

1

1 1 1

1 1

(H ) (H )
N N

i j uu i j ux i
k k j k j

j j
ku v v X                                                         (27) 

Q-Learning algorithm attempts to learn the cost of the current category state, and taking a specific 
action toward minimizing the performance index. The advantage of Q-learning algorithm is that 
convergence guarantees can be given even when function approximation is used to estimate the action 
values. 
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Remark 2. Note that the policy improvement step (27) in Algorithm 1, which is given by minimizing the Q-
function (24) with respect to the control input, can be carried out in terms of the learned kernel matrix 
Hi+1 without resorting to the system dynamics. 

Remark 3. The computation complexity of the proposed algorithm depends on the number of the states 
of the systems and also the number of sub-models. If we have more states and sub-models, it takes more 
time for the algorithm to learn the optimal control input. 

5. Simulation 

To show the effectiveness of the proposed method, simulations have been carried out on a mass-
spring-damper system. The system dynamics is 

                                                                
1, 1 1, 2,

2, 1 1, 2,
1

(1 )

k k k

k k k k
k b

x x u
m m

x x

x
m

x+

+

= +

= − + − +
                                                      (28) 

Three different system behaviors are considered for this simulation. The parameters set of each 
interval are provided in Table 2.  These parameters change the system dynamics (28).  For each time 
interval, a system is activated for the corresponding parameters.   

Table 2: The parameters of three system dynamics for three-time intervals 

Time Interval System Parameters 

< ≤0 300t  = = =1 1 110 10 90k b m  

< ≤300 600t  = = =2 2 230 15 90k b m  

< ≤600 1000t  = = =3 3 350 50 90k b m  

The extended ART parameters are chosen as λ =100 , ρ = 0.78 , κ =20 , and δ δ= = 4x u . Fig.2 shows 
the norm of the difference between the optimal control gain and the computed gain. It is obvious from 
the figure that the gain converges to the optimal value. Spikes are seen in the first iterations with system 
1, a smaller spike is seen when the dynamic changes at 300 points, and tiny spike at 600. This is because 
the extended ART sub-models are carried through the three systems, and the change in the system 
dynamic is not very huge.  Fig 3 shows the states of the system after applying the computed control input 
using the proposed approach. The optimal gain and the computed gain are shown in table 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Table 3: The optimal gains vs the Computed gains 
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Fig. 2.  The norm of the difference between the optimal control 
gain and the computed gain 

Fig. 3.  The states of the system 
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System 1 𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆1∗ = [−0.127 3.019] 𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆1 = [−0.127 3.019] 

System 2 𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆2∗ = [−4.292 23.686] 𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆2 = [−4.292 23.686] 

System 3 𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆3∗ = [−0.489 1.297] 𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆3 = [−0.489 1.297] 

6. Conclusion 
In this paper, ART clustering algorithm is combined with RL to find the optimal solution to the tracking 

problem of time-varying discrete-time systems. The changes in the system behavior is taken into account 
using multiple-model approach. ART algorithm generates sub-models based on the clustering match-
based method. A Q-learning based algorithm is then used to find the optimal solution online and without 
requiring any knowledge of the system dynamics. Each sub-model contributes into Q-function through a 
responsibility signal generated by ART.  

A possible extension of this work can be sample-data control systems with noisy sampling interval [21] 
[22] as they are time-varying systems.  
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