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Abstract—In order to effectively provide ultra reliable low
latency communications and pervasive connectivity for Internet
of Things (IoT) devices, next-generation wireless networks can
leverage intelligent, data-driven functions enabled by the inte-
gration of machine learning notions across the wireless core and
edge infrastructure. In this context, this paper provides a com-
prehensive tutorial that overviews how artificial neural networks
(ANNs)-based machine learning algorithms can be employed for
solving various wireless networking problems. For this purpose,
we first present a detailed overview of a number of key types of
ANN:s that include recurrent, spiking, and deep neural networks,
that are pertinent to wireless networking applications. For each
type of ANN, we present the basic architecture as well as specific
examples that are particularly important for wireless network
design. Such examples include echo state networks, liquid state
machine, and long short term memory. And then, we provide
an in-depth overview on the variety of wireless communication
problems that can be addressed using ANNs, ranging from
communication using unmanned aerial vehicles to virtual reality
applications over wireless networks and edge computing and
caching. For each individual application, we present the main
motivation for using ANNs along with the associated challenges
while we also provide a detailed example for a use case scenario
and outline future works that can be addressed using ANNs. In
a nutshell, this article constitutes the first holistic tutorial on the
development of ANN-based machine learning techniques tailored
to the needs of future wireless networks.

I. INTRODUCTION

The wireless networking landscape is undergoing a major
revolution. The smartphone-centric networks of yesteryears
are gradually morphing into an Internet of Things (IoT)
ecosystem [1]-[3] that integrates a heterogeneous mix of
wireless-enabled devices ranging from smartphones, to drones,
connected vehicles, wearables, sensors, and virtual reality
devices. This unprecedented transformation will not only drive
an exponential growth in wireless traffic in the foreseeable
future, but it will also lead to the emergence of new and
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untested wireless service use cases, that substantially differ
from conventional multimedia or voice-based services [4]. For
instance, beyond the need for high data rates — which has been
the main driver of the wireless network evolution in the past
decade — next-generation wireless networks will also have to
deliver ultra-reliable, low-latency communication [4] and [5],
that is adaptive and in real-time to the dynamics of the IoT
users and the IoT’s physical environment. For example, drones
and connected vehicles [6] will place autonomy at the heart of
the IoT. This, in turn, will necessitate the deployment of ultra-
reliable wireless links that can provide real-time, low-latency
control for such autonomous systems [7]-[9]. Meanwhile, in
tomorrow’s wireless networks, large volumes of data will
be collected, periodically and in real-time, across a massive
number of sensing and wearable devices that monitor physical
environments. Such massive short-packet transmissions will
lead to a substantial traffic over the wireless uplink, which has
traditionally been much less congested than the downlink [10].
This same wireless network must also support cloud-based
gaming [11], immersive virtual reality services [12], real-time
HD streaming, and conventional multimedia services. This
ultimately creates a radically different networking environment
whose novel applications and their diverse quality-of-service
(QoS) and reliability requirements mandate a fundamental
change in the way in which wireless networks are modeled,
analyzed, designed, and optimized.

The need to cope with this ongoing and rapid evolution of
wireless services has led to a considerable body of research
that investigates what the optimal cellular network architecture
will be within the context of the emerging fifth generation
(5G) wireless networks (e.g., see [13] and the references
therein). While the main ingredients for 5G — such as dense
small cell deployments, millimeter wave (mmWave) com-
munications, and device-to-device (D2D) communications —
have been identified, integrating them into a truly harmonious
wireless system that can meet the IoT challenges requires
instilling intelligent functions across both the edge and the
core of the network. These intelligent functions must be able
to adaptively exploit the wireless system resources and the
generated data, in order to optimize the network operations and



guarantee, in real-time, the QoS needs of emerging wireless
and IoT services. Such mobile edge and core intelligence can
potentially be realized by integrating fundamental notions of
machine learning (ML) [14], in particular, artificial neural
network (ANN)-based ML approaches, across the wireless
infrastructure and the end-user devices. ANNs [15] are a
computational nonlinear machine learning framework can be
used for supervised learning, unsupervised learning [16], semi-
supervised learning [17], and reinforcement learning [18], in
various wireless networking scenarios. Hereinafter, ML is used
to refer to ANN-based ML.

A. Role of ANNs in Wireless Networks

ML tools are undoubtedly one of the most important tools
for endowing wireless networks with intelligent functions, as
evidenced by the wide adoption of ML in a myriad of applica-
tions domains [19]-[24]. In the context of wireless networks,
ML will enable any wireless device fo actively and intelli-
gently monitor its environment by learning and predicting the
evolution of the various environmental features (e.g., wireless
channel dynamics, traffic patterns, network composition, con-
tent requests, user context, etc.) and proactively taking actions
that maximize the chances of success for some predefined
goal, which, in a wireless system, pertains to some sought
after quality-of-service. ML enables the network infrastructure
to learn from the wireless networking environment and take
adaptive network optimization actions. In consequence, ML
is expected to play several roles in the next-generation of
wireless networks [25]-[29].

First, the most natural application of ML in a wireless
system is to exploit intelligent and predictive data analytics
to enhance situational awareness and the overall network
operations [25]. In this context, ML will provide the wireless
network with the ability to parse through massive amounts
of data, generated from multiple sources that range from
wireless channel measurements and sensor readings to drones
and surveillance images, in order to create a comprehensive
operational map of the massive number of devices within the
network [30]. This map can, in turn, be exploited to optimize
various functions, such as fault monitoring and user tracking,
across the wireless network.

Second, beyond its powerful intelligent and predictive data
analytics functions, ML will be a major driver of intelligent
and data-driven wireless network optimization [30]. For in-
stance, ML tools will enable the introduction of intelligent
resource management tools, that can be used to address a
variety of problems ranging from cell association and radio
access technology selection to frequency allocation, spectrum
management, power control, and intelligent beamforming. In
contrast to the conventional distributed optimization tech-
niques, that are often done iteratively in an offline or semi-
offline manner [31], ML-guided resource management mech-
anisms will be able to operate in a fully online manner by
learning, in real time, the states of the wireless environment
and the network’s users. Such mechanisms will therefore be
able to continuously improve their own performance over

time which, in turn, will enable more intelligent and dynamic
network decision making. Such ML-driven decision making
is essential for much of the envisioned IoT and 5G services,
particularly those that require real-time, low latency operation,
such as autonomous driving, drone guidance, and industrial
control. In fact, if properly designed, ML optimization al-
gorithms will provide inherently self-organizing, self-healing,
and self-optimizing solutions for a broad range of problems
within the context of network optimization and resource
management. Such ML-driven self-organizing solutions are
particularly apropos for ultra dense wireless networks in which
classical centralized and distributed optimization approaches
can no longer cope with the scale and the heterogeneity of the
network.

Third, beyond its system-level functions, ML can play a
key role at the physical layer of a wireless network [32].
As shown in [32]-[37], ML tools can be used to redefine
the way in which physical layer functions, such as coding
and modulation, are designed, at both transmitter and receiver
levels, within a generic communication system. Such an ML-
driven approach has been shown [32]-[37] to have a lot of
promise in delivering lower bit error rates and better robustness
to the wireless channel impediments.

Last, but not least, the rapid deployment of highly user-
centric wireless services, such as virtual reality [38], in which
the gap between the end-user and the network functions
is almost minimal, strongly motivates the need for wireless
networks that can track and adapt to the human user behavior.
In this regard, ML is perhaps the only tool that is capable to
learn and mimic human behavior, which will help in creating
the wireless network to adapt its functions to its human users,
thus creating a truly immersive environment and to maximize
the overall quality-of-experience (QoE) of the users.

From the above discussion, we can further narrow down
the introduction of ML in wireless networks to imply two
key functions: 1) Intelligent and predictive data analytics,
the ability of the wireless network to intelligently process
large volumes of data, gathered from its devices, in order
to analyze and predict the context of the wireless users
and the wireless network’s environmental states thus en-
abling data-driven network-wide operational decisions, and 2)
intelligent/self-organizing network control and optimization,
the ability of the wireless network to dynamically learn the
wireless environment and intelligently control the wireless
network and optimize its resources according to information
smartly learned about the wireless environment and users’
states.

Clearly, the ML-based system operation is no longer a
privilege, but rather a necessity for future wireless networks.
ML-driven wireless network designs will pave the way to-
wards an unimaginably rich set of new network functions and
wireless services. For instance, even though 5G networks may
not be fully ML capable, we envision that the subsequent,
sixth generation (6G) [39] of wireless cellular networks will
surely integrate important tools from ML, as evidenced by the
recent development of intelligent mobile networks proposed



by Huawei [40] and the “big innovation house" proposed by
Qualcomm [41]. As such, the question is no longer if ML tools
are going to be integrated into wireless networks but rather
when such an integration will happen. In fact, the importance
of an ML-enabled wireless network has already been moti-
vated by a number of recent wireless networking paradigms,
such as mobile edge caching, context-aware networking, and
mobile edge computing [42]-[49], the majority of which use
ML techniques for various tasks such as user behavior analysis
and predictions so as to determine which contents to cache and
how to proactively allocate computing resources. However,
despite their importance, these works have a narrow focus and
do not provide any broad, tutorial-like material that can shed
light on the challenges and opportunities associated with the
use of ML for designing intelligent wireless networks.

B. Previous Works

A number of surveys and tutorials on ML applications in
wireless networking have been published, for example, [3],
[32], and [50]-[62]. Nevertheless, these works are limited in a
number of ways. First, a majority of the existing works focuses
on a single ML technique (often the basics of deep learning
[32], [50], and [56]-[58] or reinforcement learning [61]) and,
as such, they do not capture the rich spectrum of available ML
frameworks. Second, they mostly restrict their scope to a single
wireless application such as sensor networks [53], cognitive
radio networks [52], machine-to-machine (M2M) communica-
tion [3], physical layer design [32], software defined network-
ing [55], Internet of Things [57], or self-organizing networks
(SONs) [59], and, hence, they do not comprehensively cover
the broad range of applications that can adopt ML in future
networks. Third, a large number of the existing surveys and
tutorials, such as [3], [51]-[53], [60], and [62]', are highly
qualitative and do not provide an in-depth technical and quan-
titative description on the variety of existing ML tools that are
suitable for wireless communications. Last, but not least, some
surveys discuss the basics of neural networks with applications
outside of wireless communications. However, these surveys
are largely inaccessible to the wireless community, due to their
reliance on examples from rather orthogonal disciplines such
as computer vision. Moreover, most of the existing tutorials or
surveys do not provide concrete guidelines on how, when, and
where to use different artificial neural network (ANN) tools
in the context of wireless networks. Finally, the introductory
literature on ML for wireless networks such as in [3], [32],
and [50]-[62], is largely sparse and fragmented and provides
very scarce details on the role of ANNs, hence, making it
difficult to understand the intrinsic details of this broad and far
reaching area. Table I summarizes the difference between this
tutorial and the magazine, tutorial, and survey papers. From

IThe main difference between our tutorial and [62] is that the authors in
[62] do not provide a comprehensive tutorial on how a broad range of ANNs
can be used for solving the wireless communication problems related to drone-
based communications, spectrum management with multiple radio access
technologies, wireless virtual reality, mobile edge caching and computing,
and the IoT.

Table I, we can see that, compared to the existing works such
as [3], [32], [50]-[62], our tutorial provides a more detailed
exposition of several types of ANNs that are particularly useful
for wireless applications and explains, pedagogically and, in
detail, how to develop ANN-based ML solutions to endow
intelligent wireless networks and realize the full potential of
5G systems, and beyond.

C. Contributions

The main contribution of this paper is, thus, to provide a
tutorial on the topic of ANN-based ML for wireless network
design The overarching goal is to give a tutorial on the emerg-
ing research contributions, from ANNs and wireless commu-
nications, that address the major opportunities and challenges
in developing ANN-based ML frameworks for understanding
and designing intelligent wireless systems. To the best of our
knowledge, this is the first tutorial that gathers the state-of-
the-art and emerging research contributions related to the use
of ANNs for addressing a set of communication problems
in beyond 5G wireless networks. Our main contributions
include:

o We provide a comprehensive treatment of artificial neural
networks, with an emphasis on how such tools can be
used to create a new breed of ML-enabled wireless
networks.

o After providing a brief introduction to the basics of ML,
we provide a more detailed exposition of ANNs that are
particularly useful for wireless applications, such as re-
current, spiking, and deep neural networks. For each type,
we provide an introduction on their basic architectures
and a specific use-case example. Other ANNS that can be
used for wireless applications are also briefly mentioned
where appropriate.

e Then, we discuss a broad range of wireless applica-
tions that can make use of ANN. These applications
include drone-based communications, spectrum manage-
ment with multiple radio access technologies, wireless
virtual reality, mobile edge caching and computing, and
the IoT system, among others. For each application, we
first outline the main rationale for applying ANNs while
pinpointing illustrative scenarios. Then, we expose the
challenges and opportunities brought forward by the use
of ANNSs in the specific wireless application. We comple-
ment this discussion with a detailed example drawn from
the state-of-the-art and, then, we conclude by shedding
light on the potential future works within each specific
area.

The rest of this tutorial is organized as follows (Fig. 1).
In Section II, we introduce the basics of ANNSs. Section III
presents several key types of ANNs such as recurrent neural
networks (RNNs), spiking neural networks (SNNs), and deep
neural networks (DNNs). In Section IV, we discuss the use
of ANNs for wireless communication and the corresponding
challenges and opportunities. Finally, conclusions are drawn
in Section V.



TABLE I
COMPARISON OF THIS WORK WITH EXISTING SURVEY AND TUTORIAL PAPERS. HERE, “CC", “CR", “DT", “PL", AND “DA" REFER TO CACHING AND
COMPUTING, COGNITIVE RADIO NETWORK, DATA TRAFFIC DOMAIN, PHYSICAL LAYER DOMAIN, AND DATA ANALYTICS.

Existing Key Machine Learning Tools

Key Applications

Works FNN | RNN [ DNN [ ESN | SNN | DA | RL

UAV

VR | CC | SON | Multi-RAT | IoT | PL | CR | DT

[3]
[32]
[50]
[51]
[52]
(53]
[54]
[63]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]

Our tutorial
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Fig. 1. Organization of the tutorial.

II. ARTIFICIAL NEURAL NETWORKS: PRELIMINARIES

ML was born from pattern recognition and it is essentially
based on the premise that intelligent machines should be
able to learn from and adapt to their environment through
experience [19]-[24]. Due to the ever growing volumes of
generated data — across critical infrastructures, communication
networks, and smart cities — and the need for intelligent data
analytics, the use of ML algorithms has become ubiquitous
[64] across many sectors, such as in financial services, health
care, technology, and entertainment. Using ML algorithms to
build models that uncover connections and predict dynamic
system or human behavior, system operators can make intelli-
gent decisions without any human intervention. For example,
in a wireless system such as the IoT, ML tools can be used for
intelligent data analytics and edge intelligence. ML tasks often

depend on the nature of their training data. In ML, training is
the process that teaches the machining learning framework to
achieve a specific goal, such as for speech recognition. In other
words, training enables the ML framework to discover poten-
tial relationships between the input data and the output data of
this machine learning framework. There exist, in general, four
key classes of learning approaches [65]: a) supervised learning,
b) unsupervised learning, ¢) semi-supervised learning, and d)
reinforcement learning.

Supervised learning algorithms are trained using labeled
data [65]. When dealing with labeled data, both the input
data and its desired output data are known to the system.
Supervised learning is commonly used in applications that
have enough historical data. In contrast, the training of un-
supervised learning tasks is done without labeled data [65].



The goal of unsupervised learning is to explore the data
and infer some structure directly from the unlabeled data.
Semi-supervised learning is used for the same applications
as supervised learning but it uses both labeled and unlabeled
data for training [65]. This type of learning can be used
with methods such as classification, regression, and prediction.
Semi-supervised learning is useful when the cost of a fully-
labeled training process is relatively high. In contrast to the
previously discussed learning methods that need to be trained
with historical data, RL is trained by the data collected from
implementation of the RL [65]. The goal of RL is to learn
an environment and find the best strategies for a given agent,
in different environments. The RL algorithms are particularly
interesting in the context of wireless network optimization
[66]. To perform supervised, unsupervised, semi-supervised,
or RL learning tasks, several frameworks have been developed.
Among those frameworks, ANNs [54] are arguably the most
important, as they are able to mimic human intelligence.

ANNSs are inspired by the structure and functional aspects

of biological neural networks, that can learn from compli-
cated or imprecise data [54]. Within the context of wireless
communications, as it will be clearer from the later sections,
ANNs can be used to investigate and predict network and
user behavior so as to provide user information for solving
diverse wireless networking problems such as cell association,
spectrum management, computational resource allocation, and
cached content replacement. Moreover, recent developments
of smart devices and mobile applications have significantly
increased the level at which human users interact with mobile
systems. A trained ANN can be thought of as an “expert” in
dealing with human-related data. Therefore, using ANNs to
extract information from the user environment can provide a
wireless network with the ability to predict the users’ future
behaviors and, hence, to design an optimal strategy to improve
the resulting QoS and reliability.

There are various types of ANNs (see Fig. 2):

e Modular neural networks: A modular neural network
(MNN) is composed of several independent ANNs and an
intermediary. In an MNN, each ANN is used to complete
one subtask of the entire task that an MNN wants to
perform. An intermediary is used to process the output
of each independent ANN and generate the output of an
MNN.

o Recurrent neural networks: RNNs are ANN architectures
that allow neuron connections from a neuron in one layer
to neurons in previous layers. According to different acti-
vation functions and connection methods for the neurons
in an RNN, RNNs can be used to define several different
architectures: a) stochastic neural networks, b) bidirec-
tional neural networks (BNNs), ¢) fully recurrent neural
network (FRNN), d) neural Turing machines (NTMs),
e) long short-term memories (LSTMs), e) echo state
networks (ESNs), f) simple recurrent neural networks
(SRNNSs), and g) gated recurrent units (GRUs).

o Generative adversarial networks: Generative adversarial
networks (GANSs) consist of two neural networks. One

neural network is used to learn a map from a latent space
to a particular data distribution, while another neural
network is used to discriminate between the true data
distribution and the distribution mapped by the neural
network.

o Deep neural networks: All the ANNs that have multiple
hidden layers are known as DNNs.

o Spiking neural networks: The spiking neural networks
consist of spiking neurons that accurately mimic the
biological neural networks.

e Feedforward neural networks: In a feedforward neural
network (FNN), each neuron has incoming connections
only from the previous layer and outgoing connections
only to the next layer. FNNs can be used to define
more advanced architectures such as: a) extreme learn-
ing machines (ELMs), b) convolutional neural networks
(CNNs), c) time delay neural networks (TDNNs), d)
autoencoders, e) probabilistic neural networks (PNUs),
and e) radial basis functions (RBFs).

e Physical neural networks: In a physical neural network
(PNN), an electrically adjustable resistance material is
used to emulate the function of a neural activation.

Each type of ANN is suitable for a particular learning
task. For instance, RNNs are effective in dealing with time-
dependent data while SNNs are effective in dealing with
continuous data. It should be noted that most of the data
collected by wireless networks is time-dependent and con-
tinuous. In particular, in wireless networks, the user context
and behavior, the wireless signals, and the wireless channel
conditions are all time-dependent and continuous. RNNs and
SNNs are effective in dealing with such collected data. They
can exploit this data for various purposes, such as network
control and user behavior predictions. However, since RNNs
or SNNs can record only a limited size of historical data, they
may not be able to solve all of the wireless communication
problems. To solve complex wireless problems that cannot
be solved by shallow RNNs and SNNs, one can use DNNs
which have a high memory capacity for data analytics and
can separate the complex problem that needs to be learned
into a composition of several simpler problems thus making
the learning process effective. In consequence, in Section III,
we specifically introduce RNNs, SNNs, and DNNs that are
most suited for wireless network use cases.

III. TYPES OF ARTIFICIAL NEURAL NETWORKS

In this section, we specifically discuss three types of ANNs:
RNNSs, SNNs, and DNNG, that have a promising potential for
wireless network design, as will become clear in Section IV.
For each kind of ANN, we briefly introduce its architecture,
advantages, and properties. Then, we present specific example
architectures.

A. Recurrent Neural Networks

1) Architecture of Recurrent Neural Networks: In a tradi-
tional ANN, it is assumed that all the inputs or all the outputs
are independent from each other. However, for many tasks,
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Fig. 3. Recurrent neural network architecture.

the inputs (outputs) are related. For example, for predicting the
mobility patterns of wireless devices, the input data, that is the
users’ locations, are certainly related. To this end, recurrent
neural networks [67], which are ANN architectures that allow
neuron connections from a neuron in one layer to neurons in
previous layers [67], as shown in Fig. 3, have been introduced.
This seemingly simple change enables the output of a neural
network to depend, not only on the current input, but also on
the historical input, as shown in Fig. 4. This allows RNNs
to make use of sequential information and exploit dynamic
temporal behaviors such as those faced in mobility prediction
or speech recognition. For example, an RNN can be used to
predict the mobility patterns of mobile devices and wireless
users. These patterns are related to the historical locations that
the wireless users have visited. This task cannot be done in
one step without combing historical locations from previous
steps. Therefore, the ANNs whose output depends only on

the current input, such as FNNs, cannot perform such highly
time-dependent tasks. A summary of the key advantages and
disadvantages of RNNs for wireless applications is presented
in Table II. Note that, in theory, RNNs can make use of
historical information in arbitrarily long sequences, but in
practice they are limited to only a subset of the historical
information [68]. For training RNNs, the most commonly used
algorithms include the backpropagation through time (BPTT)
algorithm [69]. However, RNNs require more time to train
compared to traditional ANNs (e.g., FNNs) since each value
of the activation function depends on the series data recorded
in RNNs. To reduce the training complexity of RNNs, one
promising solution is to develop an RNN that needs to only
train the output weight matrix. Next, we specifically introduce
this type of RNNs, named echo state networks (ESNs) [70].

2) Example RNN - Echo State Networks: ESNs are
known to be a highly practical type of RNNs due to their
effective approach for training [71]. In fact, ESNs reinvig-
orated interest in RNNs [72] by making them accessible to
wider audiences due to their apparent simplicity. In an ESN,
the input weight matrix and the hidden weight matrix are
randomly generated without any specific training. Therefore,
ESN needs to only train the output weight matrix. ESNs can, in
theory, approximate any arbitrary nonlinear dynamical system
with any arbitrary precision, they have an inherent tempo-
ral processing capability, and are therefore a very powerful
enhancement of the linear blackbox modeling techniques in
nonlinear domain. Due to the ESN’s appealing properties such
as training simplicity and ability to record historical informa-
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Fig. 4. Architecture of an unfolded recurrent neural network.
TABLE II

SUMMARY OF THE ADVANTAGES AND DISADVANTAGES OF ANNS FOR WIRELESS APPLICATIONS

Typical type of input data Advantages Drawbacks
o Effectiveness in processing time-related data e Training complexity due to the loop connections
such as wireless traffic between neurons
RNNs Time-dependent data e Ability to capture dynamic temporal behaviors e Limited memory to record historical data
such as content requests or device mobility
e Ability to make use of sequential information
such as sequential symbols received by a user
e Effectiveness in processing continuous data e Training complexity due to dynamic neurons
such as amplitudes of wireless signals e Specific training method is needed for each type of SNN
. e Large memory available for data collection e Need to sample the states of neurons
SNNs Continuous data = . . . .
e Ability to cope with rapidly changing, dynamic
network behavior (e.g., dynamic traffic)
e Ability to perform multiple learning tasks
e Inherent ability to find low-dimensional e Hard to tune for practical applications
representations (features) of high-dimensional data e Large training dataset is required
DNNs High-dimensional data such as images and wireless traffic pattern o Computationally intensive to train
e Better learning capability compared to shallow ANNs
o Effective in learning very complex functions

tion, it has been widely applied for supervised learning tasks,
RL tasks, classification, and regression. In wireless networks,
ESNs have been applied for various natural applications, such
as content prediction, resource management, and mobility
pattern estimation, as it will be clear in Section IV. Next,
the specific architecture and training methods for ESNs are
introduced.

o Architecture of an Echo State Network: ESNs use an RNN
architecture with only one hidden layer’>. We define that the
input vector of an ESN as &; = [z;1,... ,:ct,Nin]T and the
output vector of an ESN as ¢, = [ys.1,-- -, YN - An ESN
model consists of the input weight matrix Wi, € RN*Nn,
the recurrent weight matrix W € RV*(V+1)  the leaking rate
o, and the output weight matrix W, € RNowx(1+N+Nu)
where N is the number of neurons in the hidden layer. The
leaking rate o must be chosen to match the speed of the
dynamics of the hidden states s; = [s;1,.. .,st7N]T, where
s¢; represents the state of neuron ¢ at time ¢, and output y,. To
allow ESNs to store historical information, the hidden state s;
should satisfy the so-called echo state property, which means
that the hidden state s; should be uniquely defined by the

2Deep generalizations of ESNs also exist [73]

fading history of the input xg,x1,...,x;. This is in contrast
to traditional ANNs, such as FNNs, that need to adjust the
weight values of the neurons in the hidden layers, ESNs only
need to guarantee the echo state property. Typically, in order
to guarantee the echo state property of an ESN, the spectral
radius of W should be smaller than 1. The setting of other
ESN components to guarantee the echo state property and to
optimize ESN performance can be found in [70].

Having described the main components of ESNs, we now
describe the activation value of each neuron. Even though the
input and the hidden weight matrices are fixed (randomly), all
the neurons of an ESN will have their own activation values
(hidden state). As opposed to the classical RNNs in which the
hidden state depends only on the current input, in ESNs, the
hidden state will be given by:

8= f(WIl; 8] + Wizt), (1)
st =(1—a)si—1 + asy, )
where f(z) = i’i:: and [;-] represents a vertical vector

(or matrix) concatenation. The model is also sometimes used
without the leaky integration, which is a special case for « = 1
yielding s, = s;. From (1), we can see that the scaling of W,




and W determines the proportion of how much the current
state s; depends on the current input ; and how much on
the previous state s;_;. Here, a feedback connection from
y,_; to s¢ can be applied to the ESNs, defined as a weight
matrix Wy, € RY>*Now Hence, (1) can be rewritten as §; =
FWILsi1] 4+ Wiz, + Wy, ).

Based on the hidden state s;, the output signal of the ESN
can be given by:

Y = Wou [1; St mt] . 3

Here, an additional nonlinearity can be applied to (3), i.e.,
y, = tanh (W [1; 8¢5 @4]).

e Training in Echo State Networks: The training process in
ESNs seeks to minimize the mean square error (MSE) between
the targeted output and the actual output. When this MSE is
minimized, the actual output will be the target output which
can be given by y? = W [1; 8;; z;] where y? is the targeted
output. Therefore, the training goal is to find an optimal W
such that Wy [1; s¢;x¢] = yP. In contrast to conventional
RNNSs that require gradient-based learning algorithms to adjust
all the inputs, the hidden, and the output weight matrices,
ESNs only need to train the output weight matrix with simple
training methods such as ridge regression. The most universal
and stable solution to this problem is via the so-called ridge
regression approach, also known as regression with Tikhonov
regularization [74], which is given by:

-1
Wou =f issa]" (sl [Lissad” +01) . @)

where I is an identity matrix and 6 is a regularization
coefficient which should be selected individually for a concrete
reservoir based on validation data. When 6 = 0, the ridge
regression will become a generalization of a regular linear
regression. However, ridge regression is an offline training
method for ESNs. In fact, ESNs can be also trained by
using online methods such as the least mean squares (LMS)
algorithm [75], or the recursive least squares (RLS) algorithms
[76].

B. Spiking Neural Networks

Another important type of ANNs is the so-called spiking
neural networks. In contrast to FNNs and RNNs that simply
use a single value to denote the activations of neurons, SNNs
use a more accurate model of biological neural networks to
denote the activations of neurons. In the following, we first
briefly introduce the architecture of SNNs. Then, we give an
example for SNNs, the so-called liquid state machine.

1) Architecture of a Spiking Neural Network: The archi-
tecture of SNNs is similar to the neurons in the biological
neural networks. Therefore, we first discuss how the neurons
operate in a real-world biological neural network. Then, we
discuss the model of neurons in SNNs.

In biological neural networks, the neurons use spikes to
communicate with each other. The incoming signals alter the
voltage of a neuron and when the voltage exceeds a threshold
value, the neuron sends out an action potential which is a short
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Fig. 5. Architecture of a LSM.

(1 ms) and sudden increase in voltage that is created in the
cell body or soma. Due to the form and the nature of this
process, we refer to it as a spike or a pulse. For SNNs, the
use of such spikes can significantly improve the dynamics of
the network. Therefore, SNNs can model a central nervous
system and study the operation of biological neural circuits.
Since the neurons in SNNs are modeled based on the spike,
SNNs have two major advantages over traditional ANNs: fast
real-time decoding of signals and high information carriage
capacity by adding a temporal dimension. Therefore, an SNN
can use fewer neurons to accomplish the same task compared
to traditional ANNs and it can also be used for real-time
computations on continuous streams of data, which means
that both the inputs and outputs of an SNN are streams of
data in continuous time. However, the training of SNNs is
more challenging (and potentially more time-consuming) than
that of traditional ANNs due to their complex spiking neural
models. A summary of the key advantages and disadvantages
of SNNs for wireless applications is presented in Table II. To
reduce the training complexity of SNNs and keep the dynamics
of spiking neurons, one promising solution is to develop a
spiking neuron network that needs to only train the output
weight matrix, like ESNs in RNNs. Next, we specifically
present this type of SNNs, named liquid state machine.

2) Example SNN - Liquid State Machine: The architecture
of an LSM consists of only two components: the liquid and
the readout function, as shown in Fig. 5. Here, the liquid
represents a spiking neural network with leaky-integrate-and-
fire (LIF) model neurons and the readout function is a number
of FNNs. For an LSM, the connections between the neurons
in the liquid is randomly generated, allowing LSM to possess
a recurrent nature that turns the time-varying input into a
spatio-temporal pattern. In contrast to the general SNNs that
need to adjust the weight values of all neurons, LSMs need
to only train the comparatively simple FNN of the readout
function. In particular, simple training methods for FNNs such
as the feedforward propagation algorithm can be used for
training SNNs to minimize the errors between the desired
output signal and the actual output signal, which enables LSM
to be widely applied for practical applications such as [77]
and [78]. Due to the LSM’s spiking neurons, it can perform
ML tasks on continuous data like general SNNs but, it is also
possible to train it using effective and simple algorithms. In
wireless networks, this can be suitable for signal detection and
nonlinear audio prediction. Next, we specifically introduce the
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LSM architecture.

o Liquid Model: In LSM, the liquid is made up of a large
number of spiking LIF model neurons, located in a virtual
three-dimensional column. The liquid has two important func-
tions in the classification of time-series data. First, its fading
memory is responsible for collecting and integrating the input
signal over time. Each one of the neurons in the liquid keeps
its own state, which gives the liquid a strong fading memory.
The activity in the network and the actual firing of the neurons
can also last for a while after the signal has ended, which
can be viewed as another form of memory. Second, in the
liquid of an LSM, the different input signals are separated,
allowing for the readout to classify them. This separation is
hypothesized to happen by increasing the dimensionality of the
signal. For example, if the input signal has 20 input channels,
this is transformed into 135 (3 x 3 x 15) signals and states
of neurons in the liquid. For every pair of input signal and
liquid neuron, there is a certain chance of being connected,
e.g., 30% in [79]. The connections between the neurons are
allocated in a stochastic manner (e.g., see [79, Appendix B]).
All neurons in a liquid will connect to the readout functions.
e Readout Model: The readout of an LSM consists of one
or more FNNs that use the activity state of the liquid to
approximate a specific function. The purpose of the readout
is to build the relationship between the dynamics of the
spiking neurons and the desired output signals. The inputs
of the readout networks are called readout-moments. These
are snapshots of the liquid activity taken at a regular interval.
Whatever measure is used, the readout represents the state
of the liquid at some point in time. In general, in LSM,
FNNs are used as the readout function. FNNs will use the
liquid dynamics (i.e., spikes) as their input and the desired
output signals as their output. Then, the readout function can
be trained using traditional training methods used for FNNs,
mainly backpropagation. Once the readout function has been
trained, the LSM can be used to perform the corresponding
tasks.

C. Deep Neural Networks

Thus far, all of the discussed ANNs, including ESNs and
LSMs, have assumed a single hidden layer. Such an architec-
ture is typically referred to as a shallow ANN. In contrast, a
deep neural network is an ANN with multiple hidden layers

between the input and the output layers [80], as shown in Fig.
6. Therefore, a DNN models high-level abstractions in data
through multiple nonlinear transformations to learn multiple
levels of representation and abstraction [80]. Several types of
DNNSs exist such as deep CNNs, deep ESNs, deep LSMs, and
LSTM [80]. The main reasons that have enabled a paradigm
shift from conventional, shallow ANNs, towards DNN, include
recent advances in computing capacity due to the emergence
of capable processing units, the wide availability of data for
DNN training, and the emergence of effective DNN training
algorithms [81]. As opposed to shallow ANNs that have only
one hidden layer, a DNN having multiple layers is more
beneficial due to the following reasons:

e Number of neurons: Generally, a shallow ANN would
require a lot more neurons than a DNN for the same
level of performance. In fact, the number of units in a
shallow ANN grows exponentially with the complexity
of the task.

o Task learning: While the shallow ANNs can be effective
to solve small-scale problems, they can be ineffective
when dealing with more complex problems, such as
wireless environment mapping. In fact, the main issue
is that shallow ANNSs are very good at memorization, but
not so good at generalization. As such, DNNs are more
suitable for many real-world tasks which often involve
complex problems that are solved by decomposing the
function that needs to be learned into several simpler
functions so as to improve the efficiency of the learning
process.

It is worth noting that, although DNNs have a large capacity
to model a high degree of nonlinearity in the input data, a
central challenge is that of overfitting. In DNNs, overfitting
becomes particularly acute due to the presence of a very
large number of parameters. To overcome this issue, several
advanced regularization approaches, such as dataset augmen-
tation and weight decay [82] have been proposed. These
methods modify the learning algorithm so that the test error is
reduced at the expense of increased training errors. A summary
of key advantages and disadvantages of DNNs for wireless
applications are presented in Table II.

Next, we elaborate more on LSTM, a special kind of DNN
that is capable of storing information for long periods of
time by using an identity activation function for the memory
cell. This, in turn, makes LSTM suitable for various wireless
communication problems such as channel selection.

1) Example DNN - Long Short Term Memory: LSTMs
that typically consist of three hidden layers are a special kind
of “deep learning” RNNs that are capable of storing infor-
mation for either long or short periods of time. In particular,
the activations of an LSTM network correspond to short-term
memory, while the weights correspond to long-term memory.
Therefore, if the activations can preserve information over
long periods of time, then this makes them long-term short-
term memory. Although both ESNs and LSTMs are good at
modeling time series data, LSTM cells have the capability
of dealing with long term dependencies. An LSTM contains
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TABLE III
VARIOUS BEHAVIORS OF AN LSTM CELL

Behavior
remember the previous value
1 1 add to the previous value
0 0 erase the value
1 0 overwrite the value

Input gate | Forget gate
0 1

LSTM units each of which having a cell with a state ¢, at time
t. Access to this memory unit, as shown in Fig.7, for reading
or modifying information is controlled via three gates:

o Input gate (i;): controls whether the input is passed on
to the memory cell or ignored.

o Output gate (04): controls whether the current activation
vector of the memory cell is passed on to the output layer
or not.

o Forget gate (f;): controls whether the activation vector
of the memory cell is reset to zero or maintained.

Therefore, an LSTM cell makes decisions about what to
store, and when to allow reads, writes, and erasures, via gates
that open and close. At each time step ¢, an LSTM receives
inputs from two external sources, the current frame x; and the
previous hidden states of all LSTM units in the same layer
h¢—1, at each of the four terminals (the three gates and the
input). These inputs get summed up, along with the bias factors
by, bi, by, and b.. The gates are activated by passing their total
input through the logistic functions. Table III summarizes the
various behaviors an LSTM cell can achieve depending on
the values of the input and the forget gates. Moreover, the
update steps of a layer of LSTM units are summarized in the
following equations:

gt = fg(Wisxy +Uypsi_1 + by), )
i = fg(W,zy +U;8,_1 + b;), (6)
or = f[q((Woxy + Uysi—1 + b,), (7N

ct=9:0¢c-1+4 0 fe(Wexe + Uchyi—1 +b:), (8)
8t = 0; © fn(ce), )

where g¢, i, and o, are the forget, the input, and the output
gate vectors at time ¢, respectively. x; is the input vector,
h; is the hidden/output vector, and c; is the cell state vector
(i.e., internal memory) at time ¢. W and U y are the weight
and transition matrices of the forget gate, respectively. W,
and U, are the weight and transition matrices of the input
gate, respectively. W, and U, are the weight and transition
matrices of the output gate, respectively. W, and U, are the
weight and transition matrices of the cell state, respectively.
fg» fc, and fp are the activation functions, corresponding
respectively to the sigmoid and the tanh functions. ® denotes
the Hadamard product. Compared to a standard RNN, LSTM
uses additive memory updates and separates the memory c
from the hidden state s, which interacts with the environment
when making predictions. To train an LSTM network, the
stochastic gradient descent algorithm can be used.

Finally, another important type of DNNs is the so-called
convolutional neural networks that were recently proposed
for analyzing visual imagery [84]. CNNs are essentially a
class of deep, FNNs. In CNNs, the hidden layers have neu-
rons arranged in three dimensions: width, height, and depth.
These hidden layers are either convolutional, pooling, or fully
connected, and, hence, if one hidden layer is convolutional
(pooling/fully connected), then it is called convolutional (pool-
ing/fully connected) layer. The convolutional layers apply a
convolution operation to the input, passing the result to the
next layer. The pooling layers are mainly used to simplify the
information from the convolutional layer while fully connected
layers connect every neuron in one layer to every neuron in
another layer. As opposed to LSTM, that are good at temporal
modeling, CNNs are appropriate at reducing frequency vari-
ations which therefore makes them suitable for applications
that deal with spatial data such as interference identification
in wireless networks [85]. Moreover, CNNs can be combined
with LSTM, resulting in a CNN LSTM architecture that can
be used for sequence prediction problems with spatial inputs,
like images or videos [86].

In summary, different types of ANNs will have different



architectures, activation functions, connection methods, and
data storage capacities. Each specific type of ANNSs is suitable
for dealing with a particular type of data. For example, RNNs
are good at dealing with time-related data while SNNs are
good at dealing with continuous data. Moreover, each type
of ANNSs has its own advantages and disadvantages in terms
of learning tasks, specific tasks such as time-related tasks or
space-related tasks, training data size, training time, and data
storage space. Given all of their advantages, ANNs are ripe to
be exploited in a diverse spectrum of applications in wireless
networking, as discussed in the following section.

IV. APPLICATIONS OF NEURAL NETWORKS IN WIRELESS
COMMUNICATIONS

In this section, we first overview the motivation behind
developing ANN solutions for wireless communications and
networking problems. Then, we introduce the use of ANNs
for various wireless applications. In particular, we discuss how
to use ANNs for unmanned aerial vehicles (UAVs), wireless
virtual reality (VR), mobile edge caching and computing,
multiple radio access technologies, and the IoT.

A. Artificially Intelligent Wireless Networks using ANNs: An
Overview

Recently, ANNs have started to attract significant attention
in the context of wireless communications and networking [4],
[25] and [32], since the development of smart devices and
mobile applications has significantly increased the autonomy
of a wireless network, as well as the level at which human
users interact with the wireless communication system. More-
over, the development of mobile edge computing and caching
technologies makes it possible for base stations to store and
analyze the behavior of the users of a wireless network. In
addition, the emergence of the Internet of Things motivates
the use of ANNs to improve the way in which wireless
data is processed, collected, and used for various sensing and
autonomy purposes.

In essence, within the wireless communication domains,
ANNs have been proposed for two major applications. First,
they can be used for prediction, inference, and the intelligent
and predictive data analytics purposes. Within this application
domain, the ANN-based ML algorithms enable the wireless
network to learn from the datasets generated by its users,
environment, and network devices. For instance, ANNs can
be used to analyze and predict the wireless users’ mobility
patterns and content requests therefore allowing the BSs to
optimize the use of their resources, such as frequency, time,
or the files that will be cached across the network. Moreover,
predictions and inference will be a primary enabler of the
emerging IoT and smart cities paradigms. Within an IoT or
within a smart city ecosystem, sensors will generate massive
volumes of data that can be used by the wireless network to
optimize its resources usage, understand its network operation,
monitor failures, or simply deliver smart services, such as
intelligent transportation. In this regard, the use of ANNs
for optimized predictions is imperative. In fact, ANNs will

equip the network with the capability to process massive
volumes of data and to parse useful information out of this
data, as a pre-cursor to delivering smart city services. For
example, road traffic data gathered from IoT sensors can be
processed using ANN tools to predict the road traffic status
at various locations in the city. This can then be used by the
wireless network that connects road traffic signals, apparatus,
and autonomous/connected vehicles to inform the vehicles of
the traffic state and to potentially re-route some traffic to
respond to the current state of the system. Furthermore, ANNs
can be beneficial for integrating different data from multiple
sensors thus facilitating more interesting and complex wireless
communication applications. In particular, ANNs can identify
nonintuitive features largely from cross-sensor correlations
which can result in a more accurate estimation of a wireless
network’s conditions and an efficient allocation of the available
resources. Finally, the wireless network can use ANNs to learn
about faults, infrastructure failure, and other disruptive events,
S0 as to improve its resilience to such events.

Second, a key application of ANNSs in wireless networks is
for enabling self-organizing network operation by instilling
ANN-based ML at the edge of the network, as well as
across its various components (e.g., base stations and end-
user devices). Such edge intelligence is a key enabler of self-
organizing solutions for resource management, user associa-
tion, and data offloading. In this context, ANNs can serve as
RL tools [87] that can be used by a wireless network’s devices
to learn the wireless environment and to make intelligent
decisions. An ANN-based RL algorithm also can be used to
learn the users’ information such as their locations and data
rate, and determine the UAV’s path based on the learned in-
formation. Traditional learning algorithms, such as Q-learning,
that use tables or matrices to record historical data, do not scale
well for dense wireless networks. On the other hand, ANNs
recently use a nonlinear function approximation method to find
the relationship using historical information. Therefore, ANN-
based RL algorithms can learn complex relationships between
wireless users and their networking environments to provide
solutions for the notoriously challenging problems of network
performance optimization and resource management.

ANNs can be simultaneously employed for both predic-
tion and intelligent/self-organizing operation, for scenarios in
which two functions are largely interdependent. For instance,
data can help in decision making, while decision making can
generate new data. For example, when considering virtual
reality applications over wireless networks, one can use ANNs
to predict the behavior of users, such as head movement
and content requests. These predictions can help an ANN-
based RL algorithm to allocate computational and spectral
resources to the users hence improving their QoS. Next,
we discuss specific applications that use ANNs for wireless
communications.

B. Wireless Communications and Networking with Unmanned
Aerial Vehicles



Fig. 8. UAV-enabled wireless networks. In this figure, UAVs can be used as
BSs to serve users in hotspot areas due to special events such as a sport game
or a disaster scenarios.

1) UAVs for Wireless Communications: Providing connec-
tivity from the sky to ground wireless users is an emerging
trend in wireless networking [88] (Fig. 8). Compared to
terrestrial communications, a wireless system with low-altitude
UAVs is faster to deploy, more flexibly reconfigured, and
likely to experience better communication channels due to the
presence of short-range, line-of-sight (LoS) links. The use of
highly mobile and energy-constrained UAVs for wireless com-
munications also introduces many new challenges [88], such as
the need of network modeling, backhaul (fronthaul) limitations
for UAV-to-UAV communication when the UAVs act as flying
BSs, optimal deployment, air-to-ground channel modeling,
energy efficiency, path planning, and security. In particular,
compared to the deployment of terrestrial BSs that are static,
mostly long-term, and two-dimensional, the deployment of
UAVs is flexible, short-term, and three-dimensional. There-
fore, there is a need to investigate the optimal deployment
of UAVs for coverage extension and capacity improvement.
Moreover, UAVs can be used for data collection, delivery,
and transmitting telematics. Hence, there is a need to develop
intelligent self-organizing control algorithms to optimize the
flying path of UAVs. In addition, the scarcity of the wireless
spectrum, that is already heavily used for terrestrial networks,
is also a big challenge for UAV-based wireless communication.
Due to the UAVs’ channel characteristics (less blockage and
high probability for LoS link), the use of mmWave spectrum
bands and visible light [89] will be a promising solution
for UAV-based communication. Therefore, one can consider
resource management problems in the context of mmW-
equipped UAVs, given their potential benefits for air-to-ground
communications. Finally, one must consider the problems
of resource allocation, interference management, and routing
when the UAVs act as users.

2) Neural Networks for UAV-Based Wireless Communi-
cation: Due to the flying nature of UAVs, they can track
the users’ behavior and collect information related to the
users and the UAVs within any distance, at any time or
any place, which provides an ideal setting for implementing
ANN techniques. ANNs have two major use cases for UAV-
based wireless communication. First, using ANN-centric RL
algorithms, UAVs can be operated in a self-organizing manner.
For instance, using ANNs as a RL, UAVs can dynamically
adjust their locations, flying directions, resource allocation

decisions, and path planning to serve their ground users and
adapt to the users’ dynamic environment. Second, UAVs can
be used to map the ground environment as well as the wireless
environment itself to collect data and take advantage of ANN
algorithms to exploit the collected data and perform data
analytics to predict the ground users’ behavior. For example,
ANNs can exploit the collected mobility data to predict the
users’ mobility patterns. Based on the behavioral patterns of
the users, battery-limited UAVs can determine their optimal
locations and design an optimal flying path to service ground
users. Meanwhile, using ANNs enables more advanced UAV
applications such as environment identification. Clearly, within
a wireless environment, most of the data of interest, such as
that pertaining to the human behavior, UAV movement, and
data collected from wireless devices, will be time related. For
instance, certain users will often go to the same office for work
at the same time during weekdays. ANNSs can effectively deal
with time-dependent data which makes them a natural choice
for the applications of UAV-based wireless communication.

Using ANNs for UAVs faces many challenges, such as
the limited flight time to collect data, the limited power and
the computational resources for training ANNSs, as well as
the data errors due to the air-to-ground channel. First, the
limited battery life and the limited computational power of
UAVs can significantly constrain the use of ANNs. This stems
from the fact that ANNs require a non-negligible amount of
time and computational resources for training. For instance,
UAVs must consider a tradeoff between the energy used for
training ANNs and that used for other applications such as
servicing users. Moreover, due to their flight time constraints
[90], UAVs can only collect data within a limited time period.
In consequence, UAVs may not have enough collected data
for training ANNs. In addition, the air-to-ground channels
of UAVs will be significantly affected by the weather, the
environment, and their movement. Therefore, the collected
data can include errors that may affect the accuracy of the
outcomes of the ANNs.

The existing literature has studied a number of problems
related to using ANNs for UAVs [91]-[98]. In [91], the authors
used a deep RL algorithm to efficiently control the coverage
and connectivity of UAVs. The authors in [92] studied the
use of ANNs for UAV assignment to meet the high traffic
demands of ground users. The work in [93] investigated
the use of ANNs for UAV detection. In [94], the authors
studied the use of ANNs for trajectory tracking of UAVs.
The work in [95] proposed a multilayer perceptron based
learning algorithm that uses aerial images and aerial geo-
referenced images to estimate the positions of UAVs. In
[96], an ESN based RL algorithm is proposed for resource
allocation in UAV based networks. In [98], we proposed an
RL algorithm that uses LSM for resource allocation in UAV-
based LTE over an unlicensed band (LTE-U) network. For
UAV-based wireless communications, ANNs can be also used
for many applications such as path planning [99], as mentioned
previously. Next, we explain a specific ANN application for
UAV-based wireless communication.



3) Example: An elegant and interesting use of ANNs for
UAV-based communication systems is presented in [97] for
the study of the proactive deployment of cache-enabled UAVs.
The model in [97] considers the downlink of a wireless cloud
radio access network (CRAN) servicing a set of mobile users
via terrestrial remote radio heads and flying cache-enabled
UAVSs. The terrestrial remote radio heads (RRHs) transmit over
the cellular band and are connected to the cloud’s pool of
the baseband units (BBUs) via capacity-constrained fronthaul
links. Since each user has its own QoOE requirement, the
capacity-constrained fronthaul links will directly limit the data
rate of the users that request content from the cloud. Therefore,
the cache-enabled UAVs are introduced to service the mobile
users along with terrestrial RRHs. Each cache-enabled UAV
can store a limited number of popular content that the users
request. By caching the predicted content, the transmission
delay from the content server to the UAVs can be significantly
reduced as each UAV can directly transmit its stored content
to the users.

A realistic model for periodic, daily, and pedestrian mobility
patterns is considered according to which each user will
regularly visit a certain location of interest. The QoE of each
user is formally defined as function of each user’s data rate,
delay, and device type. The impact of the device type on the
QoE is captured by the screen size of each device. The screen
size will also affect the QoE perception of the user, especially
for video-oriented applications. The goal of [97] is to find
an effective deployment of cache-enabled UAVs to satisfy the
QoE requirements of each user while minimizing the transmit
powers of the UAVs. This problem involves predicting, for
each user, the content request distribution and the periodic
locations, finding the optimal contents to cache at the UAVs,
determining the users’ associations, as well as adjusting the
locations and transmit power of the UAVs. ANNs can be
used to solve the prediction tasks due to their effectiveness in
dealing with time-varying data (e.g., mobility data). Moreover,
ANNS can extract the relationships between the user locations
and the users’ context information such as gender, occupation,
and age. In addition, ANN-based RL algorithms can find the
relationship between the UAVs’ location and the data rate of
each user, enabling UAVs to find the locations that maximize
the users’ data rates.

A prediction algorithm using the framework of ESN with
conceptors is developed to find the users’ content request
distributions and their mobility patterns. The predictions of
the users’ content request distribution and their mobility pat-
terns are then used to find the user-UAV association, optimal
locations of the UAVs and content caching at the UAVs. Since
the data of the users’ behaviors such as mobility and content
request are time-related, an ESN-based approach, as previously
discussed in Subsection III-A2, can quickly learn the mobility
pattern and content request distributions without requiring
significant training data. Conceptors, defined in [100], enable
an ESN to perform a large number of predictions of mobility
and content request patterns. Moreover, new patterns can
be added to the reservoir of the ESN without interfering

with the previously acquired ones. The architecture of the
conceptor ESN-based prediction approach is based on the ESN
model specified in Subsection III-A2. For the content request
distribution prediction, the cloud’s BBUs must implement one
conceptor ESN algorithm for each user. The input is defined
as each user’s context that includes gender, occupation, age,
and device type. The output is the prediction of a user’s
content request distribution. The generation of the reservoir
is done as explained in Subsection III-A2. The conceptor is
defined as a matrix that is used to control the learning of an
ESN. For predicting mobility patterns, the input of the ESN-
based algorithm is defined as the user’s context and current
location. The output is the prediction of a user’s location
in the next time slots. Ridge regression is used to train the
ESNs. The conceptor is also defined as a matrix used to
control the learning of an ESN. During the learning stage, the
conceptor will record the learned mobility patterns and content
request distribution patterns. When the conceptor ESN-based
algorithm encounters a new input pattern, it will first determine
whether this pattern has been learned. If this new pattern has
been previously learned, the conceptor will instruct the ESN
to directly ignore it. This can allow the ESN to save some of
its memory only for the unlearned patterns.

Based on the users’ mobility pattern prediction, the BBUs
can determine the user association using a /-mean clustering
approach. By implementing a K-mean clustering approach,
the users that are close to each other are grouped into one
cluster. In consequence, each UAV services one cluster and the
user-UAV association is determined. Then, based on the UAV
association and each user’s content request distribution, the
optimal contents to cache at each UAV and the optimal UAVs’
locations can be found. When the altitude of a UAV is much
higher (lower) than the size of its corresponding coverage, the
optimal location of the UAV can be found [97, Theorems 2 and
3]. For more generic cases, it can be found by the ESN-based
RL algorithm [101].

In Fig. 9, based on [97], we show how the memory of the
conceptor ESN reservoir changes as the number of mobility
patterns that were learned varies. The used mobility data is
gathered from Beijing University of Posts and Telecommuni-
cations by recording the students’ locations during each day.
In Fig. 9, one mobility pattern represents the users’ trajectory
in one day and the colored region is the memory used by the
ESN. Fig. 9 shows that the usage of the memory increases
as the number of the learned mobility patterns increases. Fig.
9 also shows that the conceptor ESN uses less memory for
learning mobility pattern 2 compared to pattern 6. In fact,
compared to pattern 6, mobility pattern 2 has more similarities
to mobility pattern 1, and, hence, the conceptor ESN requires
less memory to learn pattern 2. This is because the proposed
approach can be used to only learn the difference between the
learned mobility patterns and the new ones rather than to learn
the entirety of every new pattern.

Fig. 10 shows how the total transmit power of the UAVs
changes as the number of users varies. From Fig. 10, we can
observe that the total UAV transmit power resulting from all
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the algorithms increases with the number of users. This is due
to the fact that the number of users associated with the RRHs
and the capacity of the wireless fronthaul links are limited.
Therefore, the UAVs must increase their transmit power to
satisfy the QoE requirement of each user. From Fig. 10, we can
also see that the conceptor based ESN approach can reduce the
total transmit power of the UAVs by about 16.7% compared
to the ESN algorithm used to predict the content request and
the mobility for a network with 70 users. This is because the
conceptor ESN, that separates the users’ behavior into multiple
patterns and uses the conceptor to learn these patterns, can
predict the users’ behavior more accurately compared to the
ESN algorithm.

Resource allocation problems in UAV-based wireless net-
works can also be addressed using LSMs, as explained in [98].
In particular, in [98], an LSM-based RL algorithm is used for
resource and cache management in LTE over unlicensed (LTE-
U) UAV networks. The LSM-based RL algorithm in [98] can
find the appropriate policies for user association and resource
allocation as well as the contents to cache at UAVs, as the
users’ content requests change dynamically. This is due to

the fact that an LSM can record the dynamic user content
requests as well as the policies of the user association, resource
allocation, and content caching due to its large memory (com-
pared to ESN). Based on the recorded information, the LSM
algorithm can build a relationship between content requests,
user association, resource allocation and caching content.

4) Lessons learned: From this example, we have demon-
strated that the conceptor ESN can be used for effective
data analytics in wireless networks that integrate UAV base
stations, particularly, for mobility pattern and content request
distribution predictions (and UAV-level caching). The ML
angle in this application stems from the fact that predictions
are used for intelligently determining the user association,
optimal caching, and optimal UAV locations. The key lessons
learned here include:

e The advantage of the conceptor ESN for UAV-based
networks is that it provided the network with an ability to
proactively determine the deployment of UAVs and the
optimal content stored at UAVs. Since UAVs are flexible
in their deployment (unlike terrestrial base stations), such
a proactive approach is desirable. The analysis in [97]
also revealed that the use of a conceptor in the ESN
scheme allows it to separate a user’s weekly mobility
into several patterns and use various non-linear systems
for predictions thus improving accuracy. Moreover, the
conceptor ESNs enable the cloud to add new patterns
to the ESN without interfering with previously acquired
ones and, hence, they can improve the usage of an ESN’s
memory (i.e., its capacity to store past data).

o The conceptor ESN algorithm that we presented in this
section is able to perform its predictions over a long
period of time. In this case, the conceptor ESN can be
trained in a completely offline manner and its training
process can be implemented at the cloud, thus leveraging
its computational power. Once trained at the cloud, the
UAVs can then directly use the cloud-trained conceptor



ESNs for predictions and deployment. Thus, this re-
sults energy savings which is particularly important for
resource-limited UAVs. Another reason to train conceptor
ESNs at the cloud is that the cloud is better positioned
in the network to collect mobility information. Due to
this implementation, one can neglect the overhead for the
training of the conceptor ESNs.

o From this work, we have observed that, for mobility
prediction, a shallow conceptor ESN learning algorithm
can achieve the same prediction accuracy compared to a
deep learning algorithm (e.g., similar to the one that will
be introduced in the multi-RAT application of Subsection
IV-E). This is mainly due to the fact that the future
locations of each user depend only on a small number
of the locations that the user has previously visited. In
consequence, a shallow conceptor ESN is sufficient to
record these visited locations and perform reasonable
predictions.

e One disadvantage of using a conceptor ESN learning
algorithm for intelligent and predictive data analytics is
that the conceptor will increase the training complexity
of each ESN. This is due to the fact that, during the
training process, the conceptor needs to identify the input
data of a given ESN and also needs to find appropriate
memory space of the ESN for data recording. This further
motivates the need to train the conceptor ESNs at the
cloud so as to save the UAV energy.

Note that, observations in the third and fourth bullets above
can be generalized to other shallow RNNs.

5) Future Works: Clearly, ANNs are an important tool
for addressing key challenges in UAV-based communication
networks. In fact, different types of ANNs can be suitable for
various UAV applications. For instance, given their effective-
ness in dealing with time-dependent data, RNNs can be used
for predicting user locations and traffic demands. This allows
UAVs to optimize their location based on the dynamics of the
network. DNN-based RL algorithms can be used to determine
the time duration that the UAVs need to service the ground
users and how to service the ground users (e.g., stop or fly to
service the users). Since DNNs have the ability to store large
amount of data, DNN-based RL algorithms can also be used to
store the data related to the users’ historical context and, then,
predict each ground user’s locations, content requests, and
latency requirement. Based on these predictions, the UAVs can
find their optimal trajectory and, as a result, determine which
area to serve at any given time. In addition, SNNs can be used
for modeling the air-to ground channel, in general, and over
mmWave frequencies, in particular. This is because SNNs are
good at dealing with continuous data and the wireless channel
is time-varing and continuous [102]. For instance, UAVs can
use SNNs to analyze the data that they can collect from the
radio environment, such as the received signal strength, UAVs’
positions, and users’ positions, and then generate an air-to-
ground channel model to fit the collected data. Finally, SNNs
are a good choice for the prediction of UE UAVs’ trajectories.
Then, the networks can select the appropriate BSs to service
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Fig. 11. Wireless VR networks. In this figure, BSs that are acted as VR
controllers generate and transmit VR videos to VR users according to the
tracking information collected from VR users.

UE UAVs. A summary of key problems that can be solved by
using ANNs for UAV-based communications is presented in
Table VI along with the challenges and future works.

C. Wireless Virtual Reality

1) Virtual Reality over Wireless Networks: Recently, the
wireless industry such as Qualcomm [130] and Nokia [131],
has rated VR as one of the most important applications in
5G and beyond networks. Moreover, 3GPP is standardizing
wireless VR, called extended reality (XR) [12]. In addition,
several industrial players such as HTC Vive [132], and Oculus
[133], and Intel [134] are all developing wireless VR devices
that can operate over wireless cellular networks. These recent
developments motivate us to analyze wireless VR as a key use
case of ANNSs in future wireless networks.

When a VR device is operated over a wireless link, the users
must send the tracking information that includes the users’
locations and orientations to the BSs and, then, the BSs will
use the tracking information to construct 360° images and
send these images to the users. Therefore, for wireless VR
applications, the uplink and downlink transmissions must be
jointly considered. Moreover, in contrast to traditional video
that consists of 120° images, a VR video consists of high-
resolution 360° vision with three-dimensional surround stereo.
This new type of VR video requires a much higher data rate
than that of traditional mobile video. In addition, as the VR
images are constructed according to the the users’ movement
such as their head or eye movement, the tracking accuracy
of the VR system will directly affect the user experience. In
summary, the challenges of operating VR devices over wireless
networks [38] include tracking accuracy, low delay, high data
rate, user experience modeling, effective image compression
as well as VR content and tracking information transmission
over wireless links.

2) Neural Networks for Wireless Virtual Reality: The use
of ANNSs is a promising solution for a number of problems
related to wireless VR. This is due to the fact that, compared to
other applications such as UAV or caching, VR applications
depend more on the users’ environment and their behavior
vis-a-vis the VR environment. In a wireless VR network, the
head and eye movements will significantly affect resource
management and network control. This is a very new challenge
for wireless networks. For instance, ANNs are effective at
identifying and predicting the users’ movements and their
actions. Based on the predictions of the users’ environment,
actions, and movements, the BSs can improve the generation



TABLE IV

SUMMARY OF THE USE OF ANNS FOR SPECIFIC APPLICATION

Applications Existing Works Challenges Future Works and Suggested Solutions
e UAV control [91], [94] e Limited power and computation | e UAV path planning = RNN-based RL algorithm
e Position estimation [95] for training ANNs o Resource management = DNN-based RL algorithm
UAV e UAV detection [93] e Limited time for data collection | e Channel modeling for air-to-ground = SNN-based algorithm
e Deployment and caching [92], e Errors in training data e Handover for UE UAVs = RNN-based algorithm
[96], and [97] e Design multi-hop aerial network = CNN-based algorithm
o UE UAV trajectory prediction = SNN-based algorithm
e Resource allocation [103], [104] e Errors in collected data e VR users’ movement = RNNs prediction algorithm
e Head movement prediction [105] e Limited computational resources | o Content correlation = CNN-based algorithm
e Gaze prediction [106] e Limited time for training ANNs | e VR video coding and decoding = CNN-based algorithm
VR e Content caching and transmission [107] e Correction of inaccurate VR images = CNN-based algorithm

e Viewing video prediction = SNN-based algorithm

e Joint wireless and VR user environment prediction
= RNNSs prediction algorithm

e Manage computational resources and video formats
= DNN-based RL algorithm

Caching and

e Architecture for caching [108]
e Cache replacement [109]-[111]
e Content popularity prediction

e Data cleaning
e Content classification
e Limited storage of ANNs for

e Analysis of content correlation = CNN-based RL algorithm
e Content transmission methods = RNN-based RL algorithm
o Clustering of users and tasks = CNN-based algorithm

e Image detection [126]
e Data sampling [127]

e Errors in collected data
e Real-time training for ANNs

Computing [112] and [113] recording all types of contents e Computational demand prediction = SNN-based algorithm
e Content request distribution e Computing time prediction = SNN-based algorithm
prediction [97] and [114] e Computational resource allocation = RNN-based RL approach
e Computational caching = RNN-based RL algorithm
e Resource management [115], [101] e Channel selection e Detection of LoS links = CNN-based algorithm
o RAT selection [116] e Mobility predictions o Antenna tilting = DNN-based RL algorithm
Multi-RAT e Transmission technology e Channel load estimation o Channel estimation = SNN-based algorithm
classification [117] e Load balancing e Handover among multi-RAT BSs = RNN-based algorithm
e Multi-radio packet scheduling [118] o MmWave links for multi-RAT = DNN-based algorithm
e Mode selection [119], [120] o MmWave channel modeling = SNN-based algorithm
e Model IoT as ANNs [121] e Massive amounts of data and e Data compression and recovery = CNN-based algorithm
e Failure detection [122], [123] large number of devices e Resource management = RNN-based RL algorithm
e User activities classification [124] e Limited computation and energy | e User identification = DNN-based algorithm
IoT e Tracking accuracy improvement [125] resources o IoT devices management = SNN-based algorithm

e Data relationship extraction = RNN-based RL algorithm
e Modeling autonomous M2M communication

e Entity state prediction [128]
o Target surveillance [129]

= FNN and SNN based algorithm

of the VR images and optimize the resource management for
wireless VR users. ANNs have two major applications for
wireless VR. First, ANNs can be used to predict the users’
movement as well as their future interactions with the VR
environment. For example, a user displays only the visible
portion of a 360° video and, hence, transmitting the entire
360° video frame can waste the capacity-limited bandwidth.
Since all the images are constructed based on the users’ move-
ments, using ANNs, one can predict the users’ movement and,
hence, enable the wireless BSs to generate only the portion
of the VR image that a user wants to display. Moreover,
the predictions of the users’ movement can also improve the
tracking accuracy of the VR sensors. In particular, the BSs will
jointly consider the users’ movement predicted by ANNs and
the users’ movements collected by VR sensors to determine
the users’” movements.

Second, ANNs can be used to develop self-organizing
algorithms to dynamically control and manage the wireless VR
network thus addressing problems such as dynamic resource
management. In particular, ANNs can be used for adaptively
optimizing the resource allocation and adjusting the quality
and format of the VR images according to the cellular network
environment.

Using ANNs for VR faces many challenges. First, in

wireless VR networks, the data collected from the users may
contain errors that are unknown to the BSs. In consequence,
the BSs may need to use erroneous data to train the ANNs and,
hence, the prediction accuracy of the ANN will be significantly
affected. Second, due to the large data size of each 360° VR
image, the BSs must spend a large amount of computational
resources to process VR images. Meanwhile, the training
of ANNs will also require a large amount of computational
resources. Thus, how to effectively allocate the computational
resources for processing VR images and training ANNSs is an
important challenge. In addition, the VR applications require
ultra-low latency while the training of ANNs can be time-
consuming. Hence, how to effectively train ANNs in a limited
time is an important question for wireless VR. In this regard,
training ANNs in an offline manner or using ANNs that
converge quickly can be two promising solutions for speeding
up the training process of ANNs.

The existing literature has studied a number of problems
related to using ANNs for VR such as in [103]-[107]. The
work in [105] proposed an ESN based distributed learning
algorithm to predict the users’ head movement in VR ap-
plications. In [106], a decision forest learning algorithm is
proposed for gaze prediction. The work in [103] developed
a neural network based transfer learning algorithm for data




correlation aware resource allocation. 360° content caching
and transmission is optimized in [107] using an ESN and SSN
based deep RL algorithm. Table V summarizes the type of
ANNSs and learning algorithms used for each existing work in
virtual reality networks. In essence, the existing VR literature
such as [103]-[107] has used ANNSs to solve a number of
VR problems such as hand gestures recognition, interactive
shape changes, video conversion, head movement prediction,
and resource allocation. However, with the exception of our
works in [104] and [105], all of the other works that use ANNs
for VR applications are focused on wired VR. Therefore, they
do not consider the challenges of wireless VR such as scarce
spectrum resources, limited data rates, and how to transmit
the tracking data accurately and reliably. In fact, ANNs can
be used for wireless VR to solve the problems such as users
movement prediction, spectrum management, and VR image
generation. Next, a specific ANNs’ application for VR over
wireless network is introduced.

3) Example: One key application of using ANNs for
wireless VR systems is presented in [104] for the study of
resource allocation in cellular networks that support VR users.
In this model, the BSs act as the VR control centers that collect
the tracking information from the VR users over the cellular
uplink and then send the generated images (based on the
tracking information) and accompanying surround stereo audio
to the VR users over the downlink. Therefore, this resource
allocation problem in wireless VR must jointly consider both
the uplink and the downlink transmissions. To capture the
VR users’ QoS in a cellular network, the model in [104]
jointly accounts for VR tracking accuracy, processing delay,
and transmission delay. The tracking accuracy is defined as the
difference between the tracking vector transmitted wirelessly
from the VR headset to the BS and the accurate tracking
vector obtained from the users’ force feedback. The tracking
vector represents the users’ positions and orientations. The
transmission delay consists of the uplink transmission delay
and the downlink transmission delay. The uplink transmission
delay represents the time that a BS uses to receive the tracking
information while the downlink transmission delay is the time
that a BS uses to transmit the VR contents. The processing
delay is defined as the time that a BS spends to correct
the VR image from the image constructed based on the
inaccurate tracking vector to the image constructed according
to the accurate tracking vector. In [104], the relationship
between the delay and the tracking is not necessarily linear
nor independent and, thus, multi-attribute utility theory [135]
is used to construct a utility function assigns a unique value
to each tracking and delay components of the VR QoS.

The goal of [104] is to develop an effective resource block
allocation scheme to maximize the users’ utility function that
captures the VR QoS. This maximization jointly considers
the coupled problems of user association, uplink resource
allocation, and downlink resource allocation. Moreover, the
VR QoS of each BS depends not only on its resource allocation
scheme but also on the resource allocation decisions of other
BSs. Consequently, the use of centralized optimization for

such a complex problem is largely intractable and yields
significant overhead. In addition, for VR resource allocation
problems, we must jointly consider both uplink and downlink
resource allocation, and, thus, the number of actions will be
much larger than conventional scenarios that consider only
uplink or downlink resource allocation. Thus, as the number
of actions significantly increases, each BS may not be able
to collect all the information needed to calculate the utility
function.

To overcome these challenges, an ANN-based RL algorithm
can be used for self-organizing VR resource allocation. In par-
ticular, an ANN-based RL algorithm can find the relationship
between the user association, resource allocation, and the user
data rates, and, then, it can, directly select the optimal resource
allocation scheme after the training process. For the downlink
and uplink resource allocation problem in [104], an ANN-
based RL algorithm can use less exploration time to build
the relationship between the actions and their corresponding
utilities and then optimize resource allocation.

To simplify the generation and training process of an ANN-
based RL algorithm, an ESN-based RL algorithm is selected
for VR resource allocation. The ESN-based learning algorithm
enables each BS to predict the value of VR QoS resulting from
each resource allocation scheme without having to traverse all
the resource allocation schemes. The architecture of the ESN-
based self-organizing approach is based on the ESN model
specified in Subsection III-A2. To use ESNs for RL, each row
of the ESN’s output weight matrix is defined as one action.
Here, one action represents one type of resource allocation.
The input of each ESN is the current action selection strategies
of all BSs. The generation of the ESN model follows Subsec-
tion III-A2. The output is the estimated utility value. In the
learning process, at each time slot, each BS will implement
one action according to the current action selection strategy.
After the BSs perform their selected actions, they can get the
actual utility values. Based on the actual utility values and
the utility values estimated by ESN, each BS can adjust the
values of the output weight matrix of an ESN according to (4).
As time elapses, the ESN can accurately estimate the utility
values for each BS and can find the relationship between the
resource allocation schemes and the utility values. Based on
this relationship, each BS can find the optimal action selection
strategy that maximizes the average VR QoS for its users.

Fig. 12 shows how average delay of each user varies as the
number of BSs changes. From Fig. 12, we can see that, as
the number of BSs increases, the transmission delay for each
served user increases. This is due to the fact that, as the number
of BSs increases, the number of users located in each BS’s
coverage decreases and, hence, the average delay increases.
However, as the number of BSs increases, the delay increase
becomes slower due to the additional interference. This stems
from the fact that, as the number of BSs continues to increase,
the number of the users associated with each BS decreases
and more spectrum will be allocated to each user. Hence, the
delay of each user will continue to decrease. However, as the
number of the BSs increases, the increasing interference will
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Fig. 12. Delay for each served user vs. the number of BSs [104].

limit the reduction in the delay. Fig. 12 also shows that the
ESN-based algorithm achieves up to a 19.6% gain in terms
of average delay compared to the Q-learning algorithm for
the case with 6 BSs. Fig. 12 also shows that the ESN-based
approach allows the wireless VR transmission to meet the
VR delay requirement that includes both the transmission and
processing delay (typically 20 ms [136]). These gains stem
from the adaptive nature of ESNs.

From this example, we illustrated the use of ESN as
an RL algorithm for self-organizing resource allocation in
wireless VR. An ESN-based RL algorithm enables each BS
to allocate downlink and uplink spectrum resource in a self-
organizing manner that adjusts the resource allocation accord-
ing to the dynamical environment. Moreover, an ESN-based
RL algorithm can use an approximation method to find the
relationship between each BS’s actions and its corresponding
utility values, and, hence, an ESN-based RL algorithm can
speed up the training process. Simulation results show that an
ESN-based RL algorithm enables each BS to achieve the delay
requirement of VR transmission.

4) Lessons learned: Clearly, we have demonstrated that
ESNs can be an effective tool for resource management in a
wireless VR network that needs to jointly consider the uplink
and downlink resource block allocation. Some key outcomes
learned from this application include the following:

« In non-wireless applications such as speech recognition,
ESNs are used for data analytics. In this VR application,
ESNs are used as a reinforcement learning algorithm for
downlink and uplink resource block management. The
advantage of the ESN based RL algorithm is that it
provided the network with an ability to predict the value
of the VR QoS that results from each action (instead
of relying on a Q-table to record the observed utility
values as done in Q-learning) and, hence, it can find the
optimal action selection strategy that can maximize the
individual (per SBS) VR QoS utilities without having
to traverse all actions. As a result, ESN-based RL is
suitable for wireless VR resource management problems
in which both uplink and downlink resources must be
managed jointly, thus increasing the search space for
the wireless VR QoS optimization problem, compared to

standard wireless resource management problems. This
was a novel use case of ESNs that is motivated by the
underlying wireless system, rather than by the need to
process some data as done in computer vision.

e Compared to most of the existing DNN-based RL algo-
rithms that cannot analytically guarantee convergence to
a final equilibrium or optimization solution, in this ap-
plication, we have proved that ESN-based RL algorithms
will finally converge to the expected VR QoS utilities if
the learning parameters are appropriately set.

e Due to the limited memory capacity of each ESN, the
application of an ESN-based RL algorithm depends on
the complexity of the underlying wireless problems. ESN-
based RL algorithms can be used to solve the opti-
mization problem with a moderate number of optimized
variables while DNN-based algorithms can be used to
solve more complex optimization problems. In this work,
the ESN-based RL algorithms can achieve the same per-
formance for resource block allocation as DNN-based RL
algorithms. However, the time needed for training DNNs
such as LSTMs will be much higher than the time needed
for training ESNs. In consequence, one must choose an
appropriate ANN architecture for RL depending on the
complexity of the wireless optimization problems. In the
wireless VR application, it could be more suitable to use
a shallow ANN in the RL algorithm for problems such as
channel selection and user association, while DNN-based
RL algorithms are more suitable for power allocation.
This is due to the fact that, in power allocation problems,
the optimized variables are continuous and, thus, the
number of actions needed for RL will be much larger
than those used in other problems (e.g., user association).

Here, we note that, the above lesson learned can be gener-
alized to other shallow ANNs.

5) Future Works: Clearly, ANNs are a promising tool to
address challenges in wireless VR applications. In fact, the
above application of ANNs for spectrum resource allocation
can be easily extended to manage other types of resources
such as computational resources, and video formats. Moreover,
SNNs can be used for the prediction of the viewing VR video
which is the VR video displayed at the headset of one user.
Then, the network can reduce the data size of each transmitted
VR video and pre-transmit each viewing VR video to the
users. This is because SNNs are good at processing the rapidly
changing, dynamic VR videos. Furthermore, RNNs can be
used to predict and detect the VR users’ movement such as eye
movement and head movement and their interactions with the
environment. Then, the network can pre-construct VR images
based on these predictions which can reduce the time spent to
construct the VR images. The user-VR system interactions are
all time-dependent and, hence, RNNs are a good choice for
performing such tasks. Note that, the prediction of the users’
movement will directly affect the VR images that are sent to
the users at each time slot and, hence, the learning algorithm
must complete the training process during a short time period.
In consequence, we should use RNNGs that are easy to train for
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Fig. 13. Mobile edge caching and computing wireless networks.

the prediction of the users’ movement. Finally, CNNs can be
used for VR video compression and recovery so as to reduce
the data size of each transmitted VR video and improve the
QoS for each VR user. This is because CNNs are good at
storing large amount of data in spatial domain and learn the
features of VR images. A summary of key problems that can
be solved by using ANNs in wireless VR system is presented
in Table VI along with the challenges and future works.

D. Mobile Edge Caching and Computing

1) Mobile Edge Caching and Computing: Caching at the
edge of the wireless networks, as shown in Fig. 13, enables
the network devices (BSs and end-user devices) to store the
most popular content to reduce the data traffic (content trans-
mission), delay, and bandwidth usage, as well as to improve
the energy efficiency and the utilization of the users’ context
and social information [137]. Recently, it has become possible
to jointly consider cache placement and content delivery, using
coded caching [138]. Coded caching enables network devices
to create multicasting opportunities for specific content, via
coded multicast transmissions, thus significantly improving
the bandwidth efficiency [139]. However, designing effective
caching strategies for wireless networks faces many challenges
[137] such as solving optimized cache placement, cache up-
date, and content popularity analytics problems.

In addition to caching, the wireless network’s edge devices
can be used for performing effective and low-latency computa-
tions using the emerging paradigm of mobile edge computing
[140]. The basic premise of mobile edge computing is to
exploit local resources for computational purposes (e.g., for
VR image generation or for sensor data processing), in order to
avoid high-latency transmission to remote cloud servers. Mo-
bile edge computing, which includes related concepts such as
fog computing [141], can decrease the overall computational
latency by reducing the reliance on the remote cloud while
effectively offloading computational resources across multiple
local and remote devices. The key challenge in mobile edge
computing is to optimally allocate computational tasks across
both the edge devices (e.g., fog nodes) and the remote data
servers, in a way to optimize latency. Finally, it is worth

noting that some recent works [142] have jointly combined
caching and computing. In this case, caching is used to store
the most popular and basic computational tasks. Based on the
caching results, the network will have to determine the opti-
mal computational resource allocation to globally minimize
latency. However, optimizing mobile edge computing faces
many challenges such as computing placement, computational
resource allocation, computing tasks assignment, end-to-end
latency minimization, and minimization of the energy con-
sumption for the devices.

2) Neural Networks for Mobile Edge Caching and Com-
puting: ANNs can play a central role in the design of the
new mobile edge caching and computing mechanisms. For
instance, the problems of optimal cache placement and cache
update are all dependent on the predictions of the users’
behaviors such as the users’ content request problems. For
example, the cache placement depends on the users’ locations
while the cache update depends on the frequency with which
a user requests a certain content. Since human behavior can
be predicted by ANNs, ANNs are a promising solution for
effective mobile edge caching and computing.

In essence, ANNs can play a vital role in three major
applications for mobile edge caching and computing. First,
ANNs can be used for prediction and inference purposes. For
example, ANNs can be used to predict the users’ content re-
quest distributions and content request frequency. The content
request distribution and content request frequency can be used
to determine which content to store at the end-user devices or
BSs. Furthermore, ANNSs can also be used to find social infor-
mation from the collected data. In particular, ANNs can learn
the users’ interests, activities, and interactions. By exploiting
the correlation between the users’ data, their social interests,
and their common interests, the accuracy of predicting future
events such as the users’ geographic locations, the next visited
cells, and the requested contents can be dramatically improved
[143]. For example, ANNs can be used to predict the users’
interests. The users that have the same interests are highly
likely to request the same content. Therefore, the system
operator can cluster the users that have the same interests and
store the popular contents they may request. Similarly, ANNs
can be used to predict the computational requirements of tasks
which in turn enables the network devices to schedule the
computational resources in advance thus minimizing latency.

Second, ANNs can be used as an effective clustering al-
gorithm to classify the users based on their activities such
as content request, which enables the system operator to
determine which contents to store at a storage unit and,
thus, improve the usage of cached contents. For instance,
the content requests of users can change over time while
the cached content will be updated for a long time (i.g.,
one day) and, hence, the system operator must determine
which content to cache by reviewing all the collected content
requests. ANNs, such as CNNs, can be used to store the
content request information and classify the large amount of
content requests for cache update. In fact, predictions and
clustering are interrelated and, therefore, ANNs can be used



for both applications simultaneously. For example, ANNs can
first be used to predict the users’ content request distributions,
and, then, ANNs can be used to classify the users that have
similar content request distributions. Meanwhile, ANN-based
clustering algorithms can be used to classify the computing
tasks. Then, the computing tasks that are clustered into a group
can be assigned to a certain computing center. In this case,
each computing center will process one type of computing
tasks thus reducing the computational time. Finally, ANNs can
also be used for intelligently scheduling the computing tasks to
different computing centers. In particular, ANNs can be used
as an RL algorithm to learn each computing center’s state such
as its computational load, and then, allocate computing tasks
based on the learned information to reduce the computational
time.

Using ANNSs for mobile edge caching and computing faces
many challenges. Data cleaning is an essential part of the data
analysis process for mobile edge processing. For example,
to predict the users’ content requests, the data processing
system should be capable of reading and extracting useful data
from huge and disparate data sources. For example, one user’s
content request depends on this user’s age, job, and locations.
In fact, the data cleaning process usually takes more time than
the learning process. For instance, the type and volume of
content that users may request can be in the order of millions
and, hence, the data processing system should select appropri-
ate content to analyze and predict the users’ content request
behaviors. For caching, the most important use of ANNSs is to
predict the users’ content requests which directly determines
the caching update. However, each user may request a large
volume of content types such as video, music, and news, each
of which having different formats and resolutions. Hence, for
each user, the total number of the requested content items
will be significantly large. However, the memory of an ANN
is limited and, hence, each ANN can record only a limited
number of requested contents. In consequence, an ANN must
be able to select the most important content for content request
prediction so as to help the network operator determine which
content to store at mobile edge cache. Similarly, for computing
tasks predictions, the limited-memory ANNs can only store a
finite number of the computing tasks and, hence, they must
select suitable computing tasks to store and predict. Moreover,
as opposed to mobile edge caching that requires a long period
of time to update the cached contents, mobile edge computing
needs to process the tasks as soon as possible. Therefore, the
ANNSs used for mobile edge computing must complete their
training process in a short period time.

The existing literature has studied a number of problems
related to the use of ANNs for caching [97], [108], [109],
[114], and [110]-[113]. The authors in [108] proposed a
big data-enabled architecture to investigate proactive content
caching in 5G wireless networks. In [109]-[111], ANNs are
used to determine the cache replacement and content delivery.
The authors in [112] developed a data extraction method using
the Hadoop platform to predict content popularity. In [113],
an extreme-learning machine neural network is used to predict

content popularity. The works in [97] and [114] developed an
ESN-based learning algorithm to predict the users’ mobility
patterns and content request distributions. In general, existing
works such as in [97], [108], [109], [114], and [110]-[113]
have used ANNs to solve the caching problems such as
cache replacement, content popularity prediction, and content
request distribution prediction. For mobile edge computing, in
general, there is no existing work that uses ANNs to solve
these relevant problems. Next, we explain a specific ANNs’
application for mobile edge caching.

3) Example: One illustrative application for the use of
ANNs for mobile edge caching is presented in [114] which
studies the problem of proactive caching in CRANSs. In this
model, the users are served by the RRHs which are connected
to the cloud pool of the BBUs via capacity-constrained wired
fronthaul links. The RRHs and the users are all equipped
with storage units that can be used to store the most popular
content that the users request. The RRHs which have the
same content request distributions are grouped into a virtual
cluster and serve their users using zero-forcing method. The
content request distribution for a particular user represents the
probabilities with which the user requests different content.
Virtual clusters are connected to the content servers via
capacity-constrained wired backhaul links. Since the backhaul
(fronthaul) links are wired, we assume that the total transmis-
sion rate of the backhaul (fronthaul) links is equally allocated
to the content that must be transmitted over the backhaul
(fronthaul) links. Each user has a periodic mobility pattern and
regularly visits a certain location. Since cache-enabled RRHs
and BBUs can store the requested content, this content can be
transmitted over four possible links: a) content server-BBUs-
RRH-user, b) cloud cache-BBUs-RRH-user, ¢) RRH cache-
RRH-user, and d) remote RRH cache-remote RRH-BBUs-
RRH-user. The notion of effective capacity’ [144] was used to
capture the maximum content transmission rate of a channel
under a certain QoS requirement. The effective capacity of
each content transmission depends on the link that is used to
transmit the content and the actual link capacity between the
user and the associated RRHs.

The goal of [114] is to develop an effective framework for
content caching and RRH clustering in an effort to reduce the
network’s interference and to offload the traffic of the backhaul
and of the fronthaul based on the predictions of the users’
content request distributions and mobility patterns. To achieve
this goal, a QoS and delay optimization problem is formulated,
whose objective is to maximize the long-term sum effective
capacity of all users. This optimization problem involves
the prediction of the content request distribution and of the
periodic location for each user, and the finding of the optimal
content to cache at the BBUs and at the RRHs. To predict
the content request distribution and mobility patterns for each
user, an ESN-based learning algorithm is used, similarly to

3The effective capacity is a link-layer channel model that can be used to
measure a content transmission over multiple hops. In particular, the effective
capacity can be used to measure a content transmission from the BBUs to the
RRHs, then from RRHs to the users.
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Fig. 14. Sum effective capacity as function of the number of RRHs [114].

the one described in Subsection III-A2. For each user, the
BBUs must implement one ESN algorithm for content request
distribution prediction and another ESN algorithm for mobility
pattern prediction.

For the content request distribution prediction, the input of
the developed ESN is a user’s context which includes content
request time, week, gender, occupation, age, and device type.
The output is the predicted content request distribution. The
ESN model consists of the input weight matrix, the output
weight matrix, and the recurrent weight matrix (see Subsection
III-A2). A linear gradient descent approach is used to train the
output weight matrix. For mobility pattern prediction, the input
of the developed ESN is the current location of each user and
the output is the vector of locations that a user is predicted to
visit for the next steps. In contrast to the recurrent matrix that
is a sparse matrix and generated randomly, the recurrent matrix
of the ESN used for mobility prediction contains only W non-
zero elements, where W is the dimension of the recurrent
matrix. This simplified recurrent matrix can speed up the
training process of the ESNs. An offline manner using ridge
regression is used to train the output weight matrix.

Based on the users’ content request distribution and lo-
cations, the cloud can estimate the users’ RRH association,
determine each RRH’s content request distribution, and, then,
cluster the RRHs into several groups. Finally, the content
that must be cached at the cloud and at the RRHs can be
determined. The analysis result proved that the ESN-based
algorithm will reach an optimal solution to the content caching
problem.

Fig. 14 shows how the sum of the effective capacities
of all the users in a period changes with the number of
RRHs. As the number of the RRHs increases, the effective
capacities of all the algorithms increase as the users become
closer to their RRHs. The ESN approach can yield up to
21.6% and 24.4% of improvements in the effective capacity
compared to random caching with clustering and random
caching without clustering, respectively, for a network with
512 RRHs. This stems from the fact that the ESN-based
algorithm can effectively use the predictions of the ESNs to
determine which content to cache.

4) Lessons learned: The presented example of the mobile
edge caching and computing application demonstrated that

ESNs are effective for the prediction of the users’ mobility
patterns and content request distribution, based on which the
cloud can determine the content stored at the cloud and at
the RRHs. Some key outcomes learned from this application
include:

« Even though analyzing the memory capacity of an ESN is
generally challenging, in this application, we were able
to derive the memory capacity for an ESN that uses a
linear activation function. Based on this analysis, we can
accurately set the size of the matrices and the memory
capacity of each ESN that can precisely predict the users’
mobility and content request distributions. Here, we need
to note that, as the memory capacity increases, the
training complexity of an ESN will significantly increase.
In this context, for mobility prediction in this application,
we build an ESN model with minimum memory capacity
that can accurately predict the users’ mobility patterns
and quickly converge. In fact, for different prediction
tasks, one can adjust the memory capacity of each ESN
using the obtained results to enable the ESNs to record
all of the information needed for the predictions.

o This example also showed that ESN-based learning algo-
rithms can be trained to predict only one mobility pattern
for each user. For example, to predict the weekly mobility
pattern of each user, an ESN-based learning algorithm
cannot separate the mobility pattern in a week into several
days and use a specific non-linear system to predict the
users’ mobility in each day. In fact, as we discussed in the
UAV application in Subsection IV-B, using a unique non-
linear system to predict the mobility of each user each
day can significantly improve the accuracy of weekly
mobility pattern prediction. Learning using ESNs is more
appropriate for predicting a single task, rather than for
multiple prediction tasks. To overcome this challenge,
one can use the conceptor notion that was discussed
in Subsection IV-B. Note that, this observation can be
generalized to other shallow RNNs and SNNs.

o Compared to conceptor ESNs, ESN based learning algo-
rithms have a lower training complexity and faster con-
vergence speed. However, as already mentioned, ESNs
cannot separate the users’ contexts for multiple mobility
pattern predictions which will affect the prediction accu-
racy. In consequence, one must choose between standard
ESN or a conceptor ESN depending on the number of pre-
diction tasks needed and their complexity. In Subsection
IV-D, the predictions are used to determine the cached
content whose prediction is somewhat less challenging
compared to other metrics that require more precise
predictions such as the UAV locations in Subsection
IV-B. Therefore, we choose the ESN based prediction
algorithms for mobility and content request distribution
predictions.

5) Future Works: Clearly, ANNs will be an important tool
for solving challenges in mobile edge caching and computing
applications, especially for content request prediction and



computing tasks prediction. In fact, CNNs, that are good at
storing voluminous data in spatial domains, can be used to in-
vestigate the content correlation in the spatial domains. Based
on the content correlation, each BS can store the contents
that are the most related to other contents to improve the
caching efficiency and hit ratio. Moreover, RNNs can be used
as self-organizing RL algorithms to allocate computational
resources. RNNs are suitable here because they can record the
utility values resulting from different computational resources
allocation schemes as time elapses. Then, the RNN-based
RL algorithms can find the optimal computational resource
allocation after several implementations. Meanwhile, in con-
trast to the user association in cellular network where each
user can only associate with one BS, one computing task can
be assigned to several computing centers and one computing
center can process different computing tasks. Therefore, the
problem of computing task assignment is a many-to-many
matching problem [145]. RNN-based RL algorithms can also
be used to solve the computing task assignment problem due
to their advantages in analyzing historical data pertaining to
past assignments of computing tasks. In addition, DNN-based
RL algorithms can be used to jointly optimize the cache
replacement and the content delivery. To achieve this purpose,
each action of the DNN-based RL algorithm must contain one
content delivery method as well as one cache update scheme.
This is because DNNs are good at storing large amounts of
utility values resulting from different content delivery and
cache update schemes. Last but not as least, SNNs can be
used to predict the dynamic computational resource demands
for each user due to their advantages in dealing with highly
dynamic data. A summary of the key problems of using ANNs
for mobile edge caching and computing is presented in Table
VI along with the challenges and future works.

E. Co-existence of Multiple Radio Access Technologies

1) Co-existence of Multiple Radio Access Technologies:
To cope with the unprecedented increase in mobile data traffic
and realize the envisioned 5G services, a significant enhance-
ment of per-user throughput and overall system capacity is
required [146]. Such an enhancement can be achieved through
advanced PHY/MAC/network technologies and efficient meth-
ods of spectrum management. In fact, one of the main ad-
vancements in the network design for 5G networks relies on
the integration of multiple different radio access technologies
(RATSs) [147]. Multi-RAT based networks encompass several
technologies in which spectrum sharing is important. These
include cognitive radio networks, LTE-U networks, as well
as heterogeneous networks that include both mmWave and
sub-6 GHz frequencies. With the multi-RAT integration, a
mobile device can potentially transmit data over multiple radio
interfaces such as LTE and WiFi [148], at the same time,
thus improving its performance [149]. Moreover, a multi-
RAT network allows fast handover between different RATs
and, thus, it provides seamless mobility experience for users.
Therefore, the integration of different RATs results in an
improvement in the utilization of the available radio resources

and, thus, in an increase in the system’s capacity. It also
guarantees a consistent service experience for different users
irrespective of the served RAT and it facilitates the network
management.

Spectrum management is also regarded as another key
component of Multi-RAT based networks [150]. Unlike early
generations of cellular networks that operate exclusively on
the sub-6 GHz (microwave) licensed band, Multi-RAT based
networks are expected to transmit over the conventional sub-6
GHz band, the unlicensed spectrum and the 60 GHz mmWave
frequency band [151], [152]. We note that, on the other
hand, the classical LTE microwave licensed band is reliable,
however, limited and hence is a scarce resource. On the other
hand, the unlicensed bands can be used to serve best effort
traffic only since the operation over this spectrum should
account for the presence of other coexisting technologies.
Therefore, a multi-mode BS operating over the licensed,
unlicensed, and mmWave frequency bands can exploit the
different characteristics and availability of the frequency bands
thus providing robust and reliable communication links for the
end users [152]. However, to reap the benefits of multi-mode
BSs, spectrum sharing is crucial.

2) Neural Networks for Spectrum Management and
Multi-RAT: ANNs are an attractive solution approach for
tackling various challenges that arise in multi-RAT scenarios.
To leverage the advantages of such multi-RAT networks,
ANNSs can allow the smart use of different RATs wherein a
BS can learn when to transmit on each type of frequency band
based on the underlying network conditions. For instance,
ANNs may allow multi-mode BSs to steer their traffic flows
between the mmWave, the microwave, and the unlicensed band
based on the availability of a LoS link, the congestion on
the licensed band and the availability of the unlicensed band.
Moreover, in LTE-WiFi link aggregation (LWA) scenarios,
ANNs allow cellular devices to learn when to operate on each
band or utilize both links simultaneously.

Moreover, ANNs can provide multi-mode BSs with the
ability to learn the appropriate resource management proce-
dure over different RATs or spectrum bands in an online
manner and, thus, to offer an autonomous and self-organizing
operation with no explicit communication among different
BSs, once deployed. For instance, ANNs can be trained over
large datasets which take into account the variations of the
traffic load over several days for scenarios in which the traffic
load of WiFi access points (WAPs) can be characterized based
on a particular traffic model [153]. It should be noted that
cellular data traffic networks exhibit statistically fluctuating
and periodic demand patterns, especially for applications such
as file transfer, video streaming, and browsing [153]. ANNs
can also accommodate the users’ mobility patterns to predict
the availability of a LoS link, thus, allowing the transmission
over the mmWave band. In particular, they can be trained
to learn the antenna tilting angle based on the environment
changes in order to guarantee a LoS communication link with
the users and, thus, to enable an efficient communication over
the mmWave spectrum. Moreover, ANNs may enable multiple



BSs to learn how to form multi-hop, mmWave links over
backhaul infrastructure, while properly allocating resources
across those links in an autonomous manner [154], [155].
To cope with the changes in the traffic model and/or the
users’ mobility pattern, ANNs can be combined with online
ML [156] by properly re-training the weights of the developed
learning mechanisms. Multi-mode BSs can, thus, learn the
traffic patterns over time and, thus, predict the future channel
availability status. With proper network design, ANNs can
allow operators to improve their network’s performance by re-
ducing the probability of congestion occurrence while ensuring
a degree of fairness to the other corresponding technologies
in the network.

A proactive resource management of the radio spectrum
for multi-mode BSs can also be achieved using ANNs. In
a proactive approach, rather than reactively responding to
incoming demands and serving them when requested, multi-
mode BSs can predict traffic patterns and determine future oft-
peak times on different spectrum bands so that the incoming
traffic demand can be properly allocated over a given time
window. In an LTE-U system, for instance, a proactive co-
existence mechanism may enable future delay-intolerant data
demands to be served within a given prediction window ahead
of their actual arrival time thus avoiding the underutilization of
the unlicensed spectrum during off-peak hours [157]. This will
also lead to an increase in the LTE-U transmission opportunity
as well as to a decrease in the collision probability with WAPs
and other BSs in the network.

Several existing works have adopted various learning tech-
niques in order to tackle a variety of challenges that arise in
multi-RAT networks [62], [101], [115]-[120]. The problem
of resource allocation with uplink-downlink decoupling in an
LTE-U system has been investigated in [101] in which the
authors propose a decentralized scheme based on ESNs. The
authors in [115] propose a fuzzy-neural system for resource
management among different access networks. The work in
[116] used an ANN-based learning algorithm for channel
estimation and channel selection. The authors in [117] pro-
pose a supervised ANN approach, based on FNNs, for the
classification of the users’ transmission technology in a multi-
RAT system. In [118], the authors propose a hopfield neural
network scheme for multi-radio packet scheduling. In [119],
the authors propose a cross-system learning framework in
order to optimize the long-term performance of multi-mode
BSs, by steering delay-tolerant traffic towards WiFi. The work
in [120] used a deep RL algorithm for mode selection and
resource management in a fog radio access network. Other
important problems in this domain include root cause analysis
issues as the ones are studied in [62]. Nevertheless, these prior
works [62], [101], [115]-[120] consider a reactive approach
in which the data requests are first initiated and, then, the
resources are allocated based on their corresponding delay
tolerance value. In particular, existing works do not consider
the predictable behavior of the traffic and, thus, they do not
account for future off-peak times during which data traffic
could be distributed among different RATs.

Here, note that, ANNs are suitable for learning the data
traffic variations over time and, thus, to predict the future
traffic load. In particular, since LSTM cells are capable of
storing information for long periods of time, they can learn the
long-term dependency within a given sequence. Predictions at
a given time step are influenced by the network activations
at previous time steps, thus, making LSTMs an attractive
solution for proactively allocating the available resources in
multi-RAT systems. In what follows, we summarize our work
in [158], in which we developed a deep RL scheme, based on
LSTM memory cells, for allocating the resources in an LTE-U
network over a fixed time window 7.

3) Example: An interesting application of DNNs in the
context of LTE-U and WiFi coexistence is presented in [158].
The work in [158] considers a network composed of several
LTE-U BSs belonging to different LTE operators, several
WAPs and a set of unlicensed channels on which LTE-U BSs
and WAPs can operate on. The LTE carrier aggregation fea-
ture, using which the BSs can aggregate up to five component
carriers belonging to the same or different operating frequency
bands, is adopted. We consider a time domain divided into
multiple time windows of duration 7", each of which consisting
of multiple time epochs t. Our objective is to proactively
determine the spectrum allocation vector for each BS att = 0
over T' while guaranteeing long-term equal weighted airtime
share with WLAN. In particular, each BS learns its channel
selection, carrier aggregation, and fractional spectrum access
over T' while ensuring long-term airtime fairness with the
WLAN and the other LTE-U operators. A contention-based
protocol is used for channel access over the unlicensed band.
The exponential backoff scheme is adopted for WiFi while the
BSs adjust their contention window size (and, thus, the channel
access probability) on each of the selected channels based on
the network traffic conditions while also guaranteeing a long-
term equal weighted fairness with WLAN and other BSs.

The proactive resource allocation scheme in [158] is for-
mulated as a noncooperative game in which the players are
the BSs. Each BS must choose which channels to transmit
on along with the corresponding channel access probabilities
at ¢t = 0 for each t of the next time window 71'. This, in
turn, allows the BSs to determine future off-peak hours of the
WLAN on each of the unlicensed channels thus transmitting
on the less congested channels. Each BS can therefore max-
imize its total throughput over the set of selected channels
over T' while guaranteeing long-term equal weighted fairness
with the WLAN and the other BSs. To solve the formulated
game (and find the so-called Nash equilibrium solution), a
DNN framework based on LSTM cells was used. To allow
a sequence-to-sequence mapping, we considered an encoder-
decoder model as described in Section III-C. In this model,
the encoder network maps an input sequence to a vector of a
fixed dimensionality and then the decoder network decodes the
target sequence from the vector. In this scheme, the input of the
encoder is a time series representation of the historical traffic
load of the BSs and WAPs on all the unlicensed channels.
The learned vector representation is then fed into a multi-layer
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Fig. 15. The average throughput gain for LTE-U upon applying a proactive
approach (with varying T") as compared to a reactive approach [158].

perceptron (MLP) that summarizes the input vectors into one
vector, thus accounting for the dependency among all the input
time series vectors. The output of the MLP is then fed into
different separate decoders, allowing each BS to reconstruct
its predicted action sequence.

To train the proposed network, the REINFORCE algorithm
[159] is used to compute the gradient of the expected reward
with respect to the policy parameters, and the standard gradient
descent optimization algorithm [160] is adopted to allow the
model to generate optimal action sequences for input history
traffic values. In particular, we considered the RMSprop gradi-
ent descent optimization algorithm [161], an adaptive learning
rate approach, wherein the learning rate of a particular weight
is divided by a running average of the magnitudes of the recent
gradients for that weight.

The proposed proactive resource allocation scheme was
compared with a reactive approach for three different network
scenarios. Fig. 15 shows that for very small values of T,
the proposed scheme does not yield any significant gains.
However, as T increases, the BSs have additional opportunities
for shifting part of the traffic into the future and, thus, the gains
start to become more pronounced. For example, we can see
that, for 4 BSs and 4 channels, the proposed proactive scheme
achieves an increase of 17% and 20% in terms of the average
airtime allocation for LTE-U as compared to the reactive
approach. Here, note that the gain of the proposed scheme,
with respect to the reactive approach, keeps on increasing until
it reaches a maximum achievable value, after which it remains
almost constant.

4) Lessons learned: In the aforementioned application,
we have demonstrated that LSTM can be an effective tool
for resource management in an LTE-U system that needs to
maintain a fair co-existence between WiFi and LTE. The key
benefit brought forward by LSTM in this application is that
it enabled the cellular system to accurately predict future off-
peak hours of WiFi, so as to seize the channels on which to

transmit. This, in turn, led to a better co-existence between
the two systems, owing to the predictive ability of LSTM
that provided the system with the ability to use historical
WiFi traffic data to determine future traffic and, thus, make
anticipatory resource management decisions. The main lessons
learned here include:

o LSTM has mostly been used for data analytics. In the
aforementioned application, the network needed LSTM as
a part of a RL algorithm that can determine the solution
of a game-theoretic setting, which can be thought of as
the solution of a series of optimization problems that are
solved at the level of each BS. In this context, LSTM
enabled the RL algorithm to estimate future utilities
(rather than just observe them from the environment as
done in Q-learning) and, hence, be able to seek bet-
ter optimization problem solutions (equivalent to game-
theoretic equilibria). This was a novel use case of LSTM
that is motivated by the underlying wireless system, rather
than by the need to process some data.

o Even though proving the optimality properties of the
LSTM output itself is difficult, in this application, we
have shown that by combining LSTM with a game-
theoretic framework, we can ensure that, whenever the
RL algorithm converges, it is guaranteed to be at a Nash
equilibrium (i.e., as a point at which none of the RL
algorithms can find a better outcome). However, guaran-
teeing convergence analytically is much more challenging
than, for example, the ESN-based approaches we used in
the VR and the UAV problems, due to the deep nature
of LSTM. We do note that our thorough simulations
(for many simulation parameters and settings), showed
that the algorithm will actually always converge, even
though that is not ascertained analytically. An interesting
future research to address in this context is to analyze the
convergence for LSTM-based RL in an LTE-U context,
or more generally, in a multi-RAT resource management
context. This difficulty in analyzing the convergence of
LSTM can also be encountered when dealing with other
types of ANN-based RL schemes.

¢ In this LTE-U scenario, the network operator can train
the LSTM in a completely offline manner since all that
is needed for this training is to use past observations
of WiFi traffic and, it is generally known that, within a
geographic area, over long periods of time, the wireless
data traffic parameters are more or less consistent. This
is a key motivation for using a deep architecture here.

o This work has demonstrated that, even though deep learn-
ing based on LSTM can provide significant improvements
in the predictions of time-stamped sequences of data
(here being the time-varying WiFi traffic), in a practical
wireless application, one does need to use many layers. In
fact, through our simulations, we observed that increasing
the number of hidden layers has a very small impact
on the achieved performance. This is mainly due to
the fact that the WiFi traffic that is used as input to



LSTM in this work, is much less time-varying than the
datasets that are used in other, non-wireless fields, such
as in natural language processing, where multiple layers
provide more gains. However, we do note that, in this
work, we wanted to predict a future sequence of WiFi
traffic data based on a significant history of data and,
therefore, using shallow networks like ESN (e.g., as done
in the UAV and VR applications) would not have been
as effective as using LSTM that has both short and long
term memory (as explained in Subsection III-C) and can
more effectively handle predictions of future sequences
that require significant historical data, as is the case for
WiFi traffic. That said, in our simulations, we only needed
three hidden layers to reap the benefits of LSTM.

e As it is evident from the previous point, whether or
not one adopts a deep architecture or a very advanced
type of ANN depends on the type of application that
is being addressed. For WiFi traffic prediction, a deep
architecture was appropriate. Meanwhile, for prediction
of mobility data and user-based content in the VR and
UAV applications that were previously discussed, the use
of a shallow RNN by itself provided significant gains,
even without using a deep architecture. That said, as we
will see later in Section IV, in some applications like IoT,
one can solve meaningful wireless problems by resorting
to very simple ANNSs, such as FNNs, without the need for
deep architectures or more advanced structures. This is a
major contrast to other ML application domains such as
computer vision, where oftentimes a complex, deep ANN
is needed to obtain meaningful results.

e One disadvantage of using an ANN within a RL al-
gorithm is that the prediction errors may affect the
performance of the outcome. In some sense, within the
aforementioned game-theoretic context, the efficiency of
the reached equilibrium can be impacted by the prediction
errors. While this is true for all of the applications in
which we used ANNS as part of a RL algorithm, the effect
of the prediction errors may be more pronounced for the
LTE-U application because it may lead to the LTE seizing
more or less WiFi slots than needed, which can directly
impact the operation of the WiFi user. Naturally, this is
a more serious drawback than in scenarios where the
network is simply using ANNs to cache data (e.g., as in
the previously discussed UAV application) or perform cell
association (in which case, if a prediction error occurs, the
network can simply resort back to known cell association
algorithms).

5) Future Works: The above application of ANNs to LTE-
U systems can be easily extended to a multi-mode network
in which the BSs transmit on the licensed, the unlicensed,
and the mmWave spectrum. In fact, given their capability of
dealing with time series data, RNNs can enhance mobility and
handover in highly mobile wireless environments by learning
the mobility patterns of users thus decreasing the ping-pong ef-
fect among different RATs. For instance, a predictive mobility

management framework can address critical handover issues,
including frequent handovers, handover failures, and excessive
energy consumption for seamless handovers in emerging dense
multi-RAT wireless cellular networks. ANNs can also predict
the QoS requirements, in terms of delay and rate, for the
future offered traffic. Moreover, they can predict the trans-
mission links’ conditions and, thus, schedule users based on
the links’ conditions and QoS requirements. Therefore, given
the mobility patterns, transmission links’ conditions and QoS
requirements for each user, BSs can learn how to allocate
different users on different bands such that the total network
performance, in terms of delay and throughput, is optimized.

An interesting future work of the use of DNNs for mmWave
communication is antenna tilting. In particular, DNNs are
capable of learning several features of the network environ-
ment and thus predicting the optimal tilt angle based on the
availability of a LoS link and data rate requirements. This
in turn improves the users’ throughput thus achieving high
data rate. Moreover, LSTMs are capable of learning long time
series and thus can allow BSs to predict the link formation for
the mmWave backhaul network. In fact, the formation of this
backhaul network is highly dependent on the network topology
and the traffic conditions. Therefore, given the dynamics
of the network, LSTMs enable BSs to dynamically update
the formation of the links among each others based on the
changes in the network. Moreover, SNNs can be used for
mmWave channel modeling since they can process and predict
continuous-time data effectively. A summary of key problems
that can be solved by using ANNs in multi-RAT system is
presented in Table VI along with the challenges and future
works.

F. Internet of Things

1) The Internet of Things: In the foreseeable future, it
is envisioned that trillions of machine-type devices such as
wearables, sensors, connected vehicles, or mundane objects
will be connected to the Internet, forming a massive IoT
ecosystem [162]. The IoT will enable machine-type devices
to connect with each other over wireless links and operate
in a self-organizing manner [163]. Therefore, IoT devices
will be able to collect and exchange real-time information
to provide smart services. In this respect, the IoT will allow
delivering innovative services and solutions in the realms of
smart cities, smart grids, smart homes, and connected vehicles
that could provide a significant improvement in people’s lives.
However, the practical deployment of an IoT system still faces
many challenges [163] such as data analytics, computation,
transmission capabilities, connectivity, end-to-end latency, se-
curity [164], and privacy. In particular, how to provide massive
device connectivity with stringent latency requirement will be
one of the most important challenges. The current centralized
communication models and the corresponding technologies
may not be able to provide such massive connectivity. There-
fore, there is a need for a new communication architecture,
such as fog computing models for IoT devices connectivity.
Moreover, for each IoT device, energy and computational



resources are limited. Hence, how to allocate computational
resources and power for all the IoT devices to achieve the
data rate and latency requirements is another challenge.

2) Neural Networks for the Internet of Things: ANNs
can be used to address some of the key challenges within
the context of the IoT. So far, ANNs have seen four major
applications for the IoT. First, ANNs enable the IoT system
to leverage intelligent data analytics to extract important
patterns and relationships from the data sent by the IoT
devices. For example, ANNs can be used to discover important
correlations among data to improve the data compression and
data recovery. Second, using ANN-based RL algorithms, IoT
devices can operate in a self-organizing manner and adapt their
strategies (i.e., channel selection) based on the wireless and
users environments. For instance, an IoT device that uses an
ANN-based RL algorithm can dynamically select the most
suitable frequency band for communication according to the
network state. Third, the IoT devices that use ANN-based
algorithms can identify and classify the data collected from
the IoT sensors. Finally, one of the main goals of the IoT is to
improve the life quality of humans and reduce the interaction
between human and IoT devices. Thus, ANNs can be used to
predict the users behavior to provide advanced information for
the IoT devices. For example, ANNs can be used to predict
the time that an individual will come home, and, hence, adjust
the control strategy for the IoT devices at home.

Using ANNs for IoT faces many challenges. First, in
IoT, both energy and computational resources are limited.
Therefore, one should consider the tradeoff between the energy
and computational needs of training ANNs and the accuracy
requirement of a given ANN-based learning algorithm. In
particular, the higher the required accuracy, the higher the
computational and energy requirements. Second, within an IoT
ecosystem, the collected data may have different structure and
even contain several errors. Therefore, when data are used to
train ANNSs, one should consider how to classify the data and
deal with the flaws in the data. In other words, the ANNs in
IoT must tolerate erroneous data. Third, in the IoT system,
ANNs can exploit thousands of types of data for prediction
and self-organizing control. For a given task, the data collected
from the IoT devices may not all be related to the task. Hence,
ANNs must select suitable data for the task.

The existing literature [121]-[129] has studied a number
of problems related to using ANNs for IoT. In [121], the
authors use a framework to treat an IoT network as an ANN to
reduce delivery latency. The authors in [122] and [123] used
a backpropagation neural network for sensor failure detection
in an IoT network. In [124], eight ML algorithms, including
DNNs and FNNs, are tested for human activities classification
and robot navigation as well as body postures and movements.
In [125], the authors used the Laguerre neural network-based
approximate dynamic programming scheme to improve the
tracking efficiency in an IoT network. The authors in [126]
develped a streaming hardware accelerator for CNNs to im-
prove the accuracy of image detection in an [oT network. The
work in [127] used a denoising autoencoder neural network

for data sampling in an IoT network. In [128], a deep belief
network is used for entity state prediction. The authors in
[129] used ANNS for target surveillance. In summary, the prior
works used ANNSs to solve a number of IoT problems such
as IoT network modeling, failure detection, human activities
classification, and tracking accuracy improvement. However,
ANNSs can also be used to analyze the data correlation for data
compression and data recovery, to identify humans, to predict
human activities, and to manage the resources of devices. Next,
we explain a specific ANNs’ application for IoT.

3) Example: One illustrative application for the use of
ANNs within the context of the IoT is presented in [121]
which studies how to improve the communication quality
by mapping IoT networks to ANNs. The considered IoT
network is primarily a wireless sensor network. Two objective
functions are considered : a) minimizing the overall cost of
communication between the devices mapped to the neurons
in the input layer and the devices mapped to the neurons in
the output layers. Here, the overall cost represents the total
transmit power of all devices used to transmit the information
signals, and b) minimizing the expected transmission time to
deliver the information signals.

To minimize the total transmit power and the expected
transmit time for the IoT, the basic idea of [121] is to train an
ANN so as to approximate the objective functions discussed
above and, then, map the IoT network to the ANN. FNNs, are
used for this mapping since they transmit the information in
only one direction, forward, from the input nodes, through the
hidden nodes, and to the output nodes. First, one must identify
the devices that want to send signals as well as the devices that
will receive signals. The IoT devices that want to send signals
are mapped to the neurons in the input layers. The IoT devices
that want to receive signals are mapped to the neurons in the
output layers. The other IoT devices are mapped to the neurons
in the hidden layers. Some of the devices that are mapped to
the hidden layers will be used to forward the signals. Then,
the FNN is trained in an offline manner to approximate the
objective functions. The IoT network devices are mapped into
neurons and wireless links into connections between neurons,
and, hence, a method is needed to map the trained FNN to
the IoT network. Since the computational resources of each
IoT device is limited, IoT devices with different computational
resources will map to a different number of neurons. For
example, an IoT device that has more computational resources
can map to a larger number of neurons. Moreover, to ensure
the integrity of the mapping model, each neuron can only
map to one of the IoT devices. Given that there are several
ways to map the IoT network to the trained FNN, the optimal
mapping is formulated as an integer linear program which
is then solved using CPLEX. When the optimal mapping
between the IoT network and the trained FNN is found, the
optimal connections between the IoT devices are built. Hence,
if the IoT network can find the optimal connections for all
devices based on the objective functions, the transmit power
and expected transmit time can be reduced. Simulation results
show that the mapping algorithm can achieve significant gains



in terms of total transmit power and expected transmit time
compared to a centralized algorithm. This is because the IoT
network uses FNNs to approximate the objective functions and
find the optimal device connections.

4) Lessons learned: This IoT application has shown that
FNNs are an effective tool for network mapping in IoTs so as
to find the optimal transmission links from the transmitters to
the receivers through the relays. We can summarize the main
lessons learned here as follows:

o The advantage of FNNs for the studied IoT application
is that it enabled the IoT devices to optimally build the
transmission links between the receivers and the trans-
mitters so as to reduce the transmission delay without
any communications among the IoT devices. In this
application, the wireless network only consists of the
receivers, the transmitters, and the relays, and, the data
in this wireless network will only be transmitted from
the transmitters to the relays, then from the relays to the
receivers. The use of FNNs to map this network is ap-
propriate as it allows one to find the optimal transmission
links between the transmitters and the receivers, through
the relays. This was a novel use case of FNNs that is
motivated by the underlying wireless system.

o FNNs are very simple neural networks with little training
overhead, which makes them suitable for implementa-
tion in IoT systems in which the devices are resource-
constrained.

e One disadvantage of using FNNs for mapping wireless
networks is that they can be only used for a network
with a small number of transmitters and receivers. This
is due to the fact that, as the number of transmitters and
receivers increases, the number of neurons in the input,
output, and hidden layers increases. Since FNNs need to
calculate the gradients of all of the neurons (in contrast to
ESNs that only need to update the output weight matrix),
the training complexity will significantly increase.

o The presented IoT application is restricted to a very
simple mapping of IoT devices via an FNN. However, the
IoT domain is much richer than this application and one
can envision a plethora of resource management, physical
layer enhancement, and network optimization problems
that can be addressed using more elaborate ANNs such
as those presented in Section III (and in the previous
applications).

Note that, the first, second, and third bullets observations above
can be generalized to other works that rely on FNNs for
solving wireless communication problems.

5) Future Works: ANNs are undoubtedly an important tool
for solving a variety of problems in the IoT, particularly in
terms of intelligent data analytics and smart operation. In fact,
beyond using FNNs to map the IoT devices hence optimizing
the connections between the IoT devices as discussed above,
FNNs can also be used to map other systems. For example,
one can map the input layer of an FNN to the IoT devices
and the output layer to the computing centers. Then, one can
find an optimal allocation of computational tasks via FNN

mapping. Moreover, ANNs can be used for data compression
and recovery so as to reduce both the size of the transmitted
data and end-to-end devices latency. To compress the data,
an ANN needs to extract the most important features from
the data and, then, these features can be used to present
the compressed data. In particular, CNNs can be used for
data compression and recovery in the spatial domain while
RNNs can be used for data compression and recovery in
the time domain. This is because CNNs are effective at
extracting patterns and features from large amounts of data
while RNNs are suitable for extracting the relationships from
time-dependent series data. In addition, DNNs can be used
for human identification. An IoT ecosystem that can identify
different individuals can pre-allocate spectral or computational
resources to the IoT devices that a certain individual often
uses. DNNs are suitable here because they have multiple
hidden layers to store more information related to a user
compared to other ANNs and, hence, DNNs can use one user’s
information such as hairstyle, clothes, and oral patterns to
identify that individual so as to provide services tailored to
this user. A summary of key problems that can be solved by
using ANNs in IoT system is shown in Table VI along with
the challenges and future works.

G. Summary

In summary, for wireless communications, ANNs have
two important use cases: 1) ANN-based RL algorithms for
network control, resource management, user association, and
interference alignment, and 2) intelligent data analytics for
signal detection, spectrum sensing, channel state detection,
energy prediction, as well as user behavior predictions and
classifications. In this subsection, we first summarize the
advantages, challenges, and limitations of ANN based RL
algorithms for wireless communication applications. Then, we
introduce the advantages, challenges, and limitations of using
ANNSs for data analytics in wireless networks.

1) Advantages of ANN-based RL Algorithms: In general,
RL algorithms based on ANNs can be used for wireless
network control and resource management as the wireless
network states and conditions are unknown, as shown in the
example of co-existence of multiple radio access technologies.
Moreover, RL algorithms can be used to solve non-convex
optimization problems or problems in which the optimization
variables are coupled, as shown in the example of wireless
virtual reality.

2) Challenges and Limitations of ANN-based RL Algo-
rithms: Implementing ANN-based RL algorithms in wireless
networks also faces many challenges. First, for RL algorithms,
the training complexity increases quickly as the number of
BSs or users that implement RL algorithms increases. In
consequence, one needs to find a smart training method to
decrease the training complexity. Moreover, the complexity
and convergence of RL algorithms that rely on ANNs can
be challenging to characterize analytically. Recently, most of
the existing works use models based on Markov decision
processes (MDPs) and game theory to analyze the convergence



TABLE V
SUMMARY OF THE USE OF ANN-BASED LEARNING ALGORITHMS FOR EXISTING WORKS IN SPECIFIC APPLICATION

Existing Works

Data Analytics

Applications Problems Reference ANN Tool Supervised | Unsupervised RL
e [91] o FNNs. IV
e UAV control. o [94] o FNN's v
e Position estimation. e [95] e FNNs V4
UAV e UAV detection. e [93] ® RNNGs. VA
e Resource allocation * [%] * RNNs. v
’ ) e [98] e SNNG. v
* [92] o INNGs.
e UAV deployment. o [97] o RNNs. \‘; V.
e Head movement prediction. e [105] ® RNNG. v Vv
VR e Resource allocation. e [103], [104] | e RNNs. V.
e VR content caching and transmission. e [107] o DNNG. V.
e [109] o FNNs. Vv
Caching and e Cache replacement. e [110] e DNNs. V4
Computing - — o [111] © DNNs. Vv
e Content popularity prediction. o [113] o FNNs. V4
e Content request distribution prediction. | e [97], [114] o RNNs. v
e Resource management o [115] ® DNNs. v
. e [101] o RNNSs. v
o RAT selection. o [116] o CNNG. V4
Multi-RAT e Transmission technology classification. | e [117] o FNNs. V4
e Multi-radio packet scheduling. e [118] e RNN. v
e Mode selection. e [120] o FNNG. v
e Automatic root cause analysis. e [62] o RNNs. v
e Model IoT as ANNSs. e [121], [123] | e FNNs. VA V4
o Failure detection. e [122] o FNNGs. VA
e User activities classification. o [124] o DNNs. v
IoT e Tracking accuracy improvement. e [125] e DNNs. v
e Image detection. e [126] e CNNs. v
e Data sampling. e [127] e PNNs. Vv
e Entity state prediction. o [128] e DNNs. v
e Target surveillance. e [129] o FNNs. v

of RL algorithms. In fact, RL algorithms can also be used for
the problems that cannot be modeled by MDP or game theory
models. However, the convergence of these problems is often
challenging to ascertain analytically and, thus, one has to rely
on simulations. In addition, one must reduce the computational
resources and power needed for the ANN-based RL algorithms
that must be implemented at wireless devices. In fact, for
ANN-based RL algorithms, the number of actions and states
must be finite. In this case, ANN-based RL algorithms need
to be carefully designed if they are to be used to solve the
problems that have continuous states and actions.

3) Advantages of ANN-based Data Analytics Algorithms:
The second important use case of ANNs in wireless networks
is data analytics. In wireless networks, most of the collected
data will be time-dependent. For example, mobile user behav-
iors, wireless signals, and novel energy are all time-dependent.
In consequence, wireless operators can use RNNs for user
behavior prediction, signal detection, channel modeling, and
energy prediction. In particular, due to the unique neuron
connection method (each neuron in one layer can connect to
the neurons in previous layers) of RNNSs, they are effective
in dealing with time-dependent data. Moreover, one can use
CNN:ss, a type of DNNSs, for modulation classification, as done
in [32]. CNNs can also be used to analyze the images captured
by the mobile devices such as VR devices and UAVs so as to
extract the features of captured images. The features extracted
by CNNs can be used for the users movement identification,

environment identification, and data compression and recovery
which can be used for wireless network control and data traffic
offloading. For example, one can use CNNs for data compres-
sion at the transmitters and data recovery at the receivers so as
to reduce the traffic load over the transmission links between
transmitters and receivers. Meanwhile, since SNNs consist of
spiking neurons, they are effective in dealing with continuous
data. In consequence, one can use SNNs for signal detection,
channel modeling, channel state detection, and wireless device
(aerial or ground) identification. For example, one can use
both continuous flying trajectory and radio frequency signals
as the input of SNNs to identify UAVs and then tweak their
transmission parameters.

4) Challenges and Limitations of ANN-based Data Ana-
Iytics Algorithms: Implementing ANNs for data analytics in
wireless networks also faces many challenges. First, the data
related to the behavior of mobile users is not easy to collect
due to privacy concerns. For instance, a network operator
such as Verizon can collect only partial datasets related to the
mobile users. Due to this partial availability of datasets, the
prediction accuracy of ANNs can be compromised. Second,
for data analytics, existing ANN-based learning algorithms
cannot be readily implemented at the mobile devices such
as smartphones due to high training complexity and energy
consumption. In fact, small IoT or wearable devices such as
watches and IoT sensors, or even smartphones, can record
more data related to the users’ environment compared to BSs



TABLE VI

SUMMARY OF THE USE OF ANNS FOR SPECIFIC WIRELESS PROBLEMS

Wireless networking Challenzes ANN Use Case Relevant all)\}[)llll]?tmns S
related problems g Tools DA RL | UAV | VR | MECC RAT IoT L;,yer
e Large networks and action spaces.
o Need for self-organizing solutions. RNNs
Resource allocation e Resource allocation variables are coupled. DNN‘ v 4 V4 4 4 4 4
. . . s
e Need for self-organizing solution.
e Non-convex optimization problems.
Wi e Involves time-dependent locations.
ireless-aware path . .
planning for autonomous e Driven by enVqunmental data.. . RNNs v N
systems (e.g., UAVs) e Need for adaptation to dynamic settings. DNNs
y & e Require distributed solutions.
e Unknown relationship between the
Channel modeling and received and transmitted signals.
estimation e Need for estimation of wireless channels. SNNs 4 4 4 4 4 4
e Need for modeling solutions that
can adapt to time-varying channels.
e Handover often involves dynamic
mobility thus requiring adaptive solutions.
Handover o Need for on-the-fly decisions. RNNs 4 4 4 4 4
e Optimized variables are binary.
e User behavior is correlated in time.
Wireless user behavior o User behavior involves underlying RNNs
estimation factors that must be characterized. DNNs 4 4 v v 4 4 4
o User behaviors vary across time scales.
e Content is time and user dependent. SNNs
Wireless content prediction | e Content requests is often arbitrary. DNN Vv Vv Vv Vv Vv
" e . s
e Predictions is focused on data analytics.
Content delivery format e Need to consider users’ requirements. RNNs
and method (e.g., 360° or e Optimized variables are discrete. DNN vV Va Vv Vv
5 . . s
120° contents) e Content requests are time varying.
Users and computational e High complexity to scan all of users and
tasks clustering computational tasks. CNNs v v v v v
. . e Computational time and demands are
Computational time and . .
. time-dependent and continuous.
demand predictions of each Predictions driven by users’ oth SNNs Vv v
task requested by each user o rrecictions criven by users - other
behaviors and information.
e LoS links are dynamic and time-varying. SNNs
Detection of LoS links e Need to observe the physical channel. DNNs 4 4 Vv 4 4 4
e Need to track users’ mobility.
e Must estimate the angle of the receiver’s
antennas.
Antenna tilting e Requires intelligent tracking of SNNs Vv Vv Vv
transmitter-receiver coupling.
e Must be executed in a short time.
Data compression and e High complexity of data scanning.
recovery for data e Correlation among user data. CNNs 4 4 Vv V4 4
transmission and caching e Lack of prior models on user identities.
e A large amount of input data..
User and device e Large-scale nature of the network.
identifications e Presence of large volumes of data. DNNs 4 v
e High churn and dynamics
e Diversity of IoT devices.
IoT device management e Large-scale nature of the IoT system. DNNs Vv 4 Vv 4
e High churn and dynamics in IoT.
e Diversity of mobile devices.
Wireless network modeling | e Need to identify various mobile devices. DNNs v Vv v Vv
e Need to adapt to dynamic environment.
e A UAV’s trajectory is continuous.
Autonomous vehicle (e.g., e Trajectory is time-dependent. SNNs V v
UAV) trajectory prediction e Trajectory depends on wireless
parameters (e.g., interference).
e Data is correlated in time and space RNNs
Wireless data correlation domain. CNN Vv Vv VA vV v
. s
e Need to process large sized data.




that are located far away from the users. In consequence, if
an ANN learning algorithm can be implemented at wearable
and carriable devices, it can use more data related to the
users’ behaviors for training purpose and, hence, the prediction
accuracy can be improved, while also alleviating privacy
concerns. One possibility to overcome this challenge is to train
at a BS or cloud then implement the trained ANNs at the
users’ device. Third, distributed ANN learning algorithms are
needed for wireless networks. In particular, mobile users will
connect to the different BSs as they move from one cell to
another. In this case, the data related to such mobile user may
be located at different BSs and the BSs may not be able to
exchange the collected data due to limited capacity of backhaul
links. In consequence, a distributed ANN learning algorithm
is needed for data analytics as the users’ data is located at
different BSs. One possibility to overcome this challenge is
to leverage the emerging idea of federated learning [165] that
enables distributed learning. Moreover, the training complexity
of ANN-based data analytics algorithms can be higher than
other ML tools such as ridge regression. In consequence, one
must balance the tradeoff between prediction accuracy and
training complexity. Finally, training ANNs may require a
large amount of training data (depending on the application)
and such data may not be always readily available in a wireless
network.

Table V summarizes the type of ANNs and learning algo-
rithms used for each existing work in each application. Based
on this table, one can identify the advantages, disadvantages,
and limitations of each learning algorithm for all types of
problems encountered in the literature. Table VI provides a
summary of the key wireless networking problems that can be
solved by using ANNSs along with the challenges and relevant
applications.

V. CONCLUSION

In this paper, we have provided one of the first comprehen-
sive tutorials on the use of artificial neural networks-based
machine learning for enabling a variety of applications in
tomorrow’s wireless networks. In particular, we have presented
an overview of a number of key types of neural networks
such as recurrent, spiking, and deep neural networks. For each
type, we have overviewed the basic architecture as well as
the associated challenges and opportunities. Then, we have
provided a panoramic overview of the variety of wireless
communication problems that can be addressed using ANNS.
In particular, we have investigated many emerging applications
including unmanned aerial vehicles, wireless virtual reality,
mobile edge caching and computing, Internet of Things, and
multi-RAT wireless networks. For each application, we have
provided the main motivation for using ANNs along with their
associated challenges while also providing a detailed example
for a use case scenario. Last, but not least, for each application,
we have provided a broad overview on future works that
can be addressed using ANNSs. Clearly, the future of wireless
networks will inevitably rely on artificial intelligence and, thus,
this paper provides a stepping stone towards understanding the

analytical machinery needed to develop such a new breed of
wireless networks.
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