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Abstract—In this paper, the problem of 360° image transmis-
sion is studied for a wireless network of virtual reality (VR)
users that communicate with cellular base stations (BSs). The
VR users will send their uplink tracking information to the
BS and receive the VR images in the downlink. To satisfy VR
users’ delay target, the BSs can change the image transmission
format for each image requested by users so as to reduce the
downlink traffic load. Meanwhile, the VR users can directly
rotate the already received VR image and use the rotated VR
images at a later time to further reduce the downlink traffic
load. This 360° image transmission and image rotation problem
is then formulated as an optimization problem whose goal is to
maximize the users’ successful transmission probability which is
defined as the probability that the delay of tracking information
and image transmission for each VR user satisfies the VR
delay requirement. A liquid state machine (LSM) based transfer
learning algorithm is proposed to solve this optimization problem.
The proposed LSM-based transfer learning algorithm enables
each BS to transfer the already learned successful transmission
to the new successful transmission that must be learned so as to
increase the convergence speed. Simulation results show that the
proposed algorithm achieves 14.9% gain in terms of successful
transmission probability compared to Q-learning.

I. INTRODUCTION

Virtual reality (VR) services are one of the most important
applications of tomorrow’s wireless 5G networks [1]. By
leveraging wireless communications, a whole new range of VR
applications can be developed. However, the data size of each
360° VR image will exceed 50 Mbits and the transmission
delay requirement of each VR image must be less than 20 ms.
In consequence, these VR requirements exceed the capacity
of wireless cellular networks. One promising approach to
meet the high data rate and low delay requirements of VR
services is to transform the standard 360° VR images into
cubic, pyramidal, or visible images [2] that have smaller data
size compared to 360° images. To leverage such VR image
transformations and effectively transmit VR data over wireless
networks, many challenges need to be overcome [1], such as
the extraction of cubic, pyramidal, and visible image, spectrum
and computing resource allocation for VR users as well as the
prediction of users’ locations and orientations used for VR
image extraction.

The existing literature has studied a number of problems
related to VR image transmission in wireless VR systems
such as in [3]-[7]. The authors in [3] developed a VR image
transmission scheme that delivers only the visible portion of a
360° VR video based on the VR users’ movement prediction.
The work in [4] used a machine learning algorithm to guide
a user’s movement in a VR immersive application. However,
the works in [3] and [4] focus on wired VR systems and do
not consider any challenges of deploying VR systems over

wireless cellular networks. In [5], the authors implemented
a WiFi experiment for a single wireless VR user. However,
the work in [5] that uses WiFi connectivity to service only
one wireless VR user within a single room may not be able to
provide VR services for a network of outdoor VR users. In [6],
the authors proposed a model for wireless VR networks and
a machine learning approach for VR resource management.
The work in [7] investigated the spectrum resource allocation
problem with a brain-aware QoS constraint. However, most of
these existing works in [3]-[7] do not consider the cubic, pyra-
midal, or visible image transmission which can significantly
reduce the VR image data size that each base station (BS)
needs to transmit so as to reduce the traffic load over BS-
users links. Moreover, none of these existing works [3]-[7]
consider the image rotation for VR image transmission. For
instance, a VR image can be directly obtained by the rotation
of a previously received VR image and, hence, the BSs will
not need to transmit that VR image. For example, a given user
changes its orientation and requests a new VR image. If the
user received a 360° VR image before changing orientation,
the user can directly rotate the 360° VR image without the
VR image transmission from the BSs.

The main contribution of this paper is to propose a new
transfer learning [8] approach for VR image transmission so as
to maximize the users’ successful transmission probability. 7o
our best knowledge, this is the first work that jointly considers
the VR image transmission format with VR image rotation. Our
contributions of this work can be given as follows:

e We propose an image transmission method for wireless
VR cellular networks using which BSs can transmit
360° standard, cubic, pyramidal, or visible images to
the users. Meanwhile, the users can directly rotate an
already received VR image to obtain a new VR image
requested by users at a later time slot so as to reduce
the traffic load over BS-users links. Therefore, the BSs
must determine the image transmission format for each
image that users request considering image rotation and
VR delay requirement.

o We formulate this joint uplink tracking information trans-
mission, downlink 360° image transmission, and image
rotation problem as an optimization problem whose goal
is to maximize the users’ successful transmission proba-
bility.

o To solve this problem, we propose a liquid state ma-
chine (LSM) [9] based transfer learning algorithm to
maximize the users’ successful transmission probability.
The proposed transfer learning algorithm can transform
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Fig. 1. A wireless VR network that consists of multiple BSs and VR users.
In this model, the BSs can transmit various types of VR images to the users
which, in turn, will transmit tracking informations to the BSs.

the already learned successful transmission into the new
successful transmission that must be learned due to the
change of users’ image requests.

o Simulation results show that the proposed LSM-based

learning algorithm can yield up to 14.9% gain of to-
tal successful transmission probability compared to Q-
learning.

The rest of this paper is organized as follows. The system
model and problem formulation are presented in Section II.
The LSM-based transfer learning algorithm for image trans-
mission is introduced in Section III. In Section IV, simulation
results are presented and analyzed. Finally, Section V con-
cludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink of a wireless cellular network that
consists of a set B of B BSs servicing a set U of U wireless
VR users. Each VR user will associate with its nearest BS. The
BSs will transmit VR images to the users and the users will
transmit the tracking information including users’ locations
and orientations to the BSs so as to generate the VR images
requested by users, as shown in Fig. 1. We assume that all of
the bandwidth of each BS will be allocated to its associated
users.

A. VR Image Transmission Format

To enable the BSs to satisfy the VR users’ delay target, we
must reduce the data size of each VR image. The standard
transmission format of a VR image is equirectangular [1].
To reduce the data size of a VR image, a VR image can
be transformed from the standard equirectangular format into
cubic, pyramidal, or visible formats as shown in Fig. 1. Using
the cube, pyramid, or visible formats can reduce, respectively,
25%, 75%, and 90% of data size compared to using the
standard format [2]. However, reducing the data size of a VR
image will increase the number of VR images that need to
be sent by the BS. This is due to the fact that as the data
size of a VR image decreases, the number of the pixels used
to construct a VR image decreases. In consequence, the users
cannot rotate the VR image as their locations and orientations
change. We use a set C = {co,c1,¢a,c3} to represent the
formats of a VR image. Here, c; to c4, respectively, represent
the standard, cube, pyramid, and visible transmission formats.

Based on the above formulation, the data size of each VR
image a that user i requests is S (f,,) where f,, € C.

B. VR Image Transmission Model

In a VR network, the downlink is used to transmit VR
images while the uplink is used to transmit users’ tracking
information. The data rate of VR image transmission from BS
j to user ¢ at time ¢ can be given by:
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where Pg is the transmit power of each BS j which is assumed
to be equal for all BSs, h;; is the channel gain between
BS j and user i, and o2 is the variance of the Gaussian
noise. BP is the total bandwidth of each BS j used for VR
image transmission. U; (t) is the number of users that request
VR images at time ¢. Similarly, the data rate of tracking
information transmission from user ¢ to BS j at time ¢ is:
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where Py is the transmit power of each user ¢ which is
assumed to be equal for all users and BY is the total bandwidth
of BS j’s users used for tracking information transmission.

C. Transmission Delay Model

In the studied system, since VR images and tracking in-
formation are transmitted over downlink and uplink, respec-
tively, the transmission delay over the uplink and downlink
will directly affect the users’ quality-of-experience. Next, we
introduce the time used for VR image and tracking information
transmission. In our model, a VR image that each user requests
at time ¢ can be obtained using one of two ways: a) the BS
transmits the VR image to the user and b) the user can directly
rotate the VR image that has been received at previous time.
Let a;; be the VR image that user ¢ requests at time t. We
assume that a¥ is the VR image that has been received before
time slot ¢ and fagif is the image format of a¥. We also assume
that each VR user can only store one VR image that has
been received at nearest previous time slot. We can define

R (ait, faRt) € {0,1} as the image rotation from VR image
a?t to a;¢. Here, R (am falgf> = 1 indicates that image a;; can
be obtained by the image rotation from image af, otherwise,
R (ait, faygt) = 0. Let A be the data size of each user’s
tracking information. For user 7 associated with BS 7, the time

used for VR image and tracking information transmission can
be given by:
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where EXGAG)) represents the time that BS j needs to transmit

W represents the time that
user ¢ needs to transmit tracking information to BS j. In (3),
R (ait, fa]ﬁ) = 1 indicates that the VR image a;; that user ¢
has requeéted at time ¢ can be obtained by the rotation of
the VR image af that user i received before time slot t.
In consequence, BS j does not need to transmit VR image
a;+ to user ¢ and, hence, the time used for VR image and
tracking information transmission will be 0. (3) shows that
the transmission delay depends not only on the number of
users that request images from BS j, user ¢’s data rates, and
transmission format f,,, but depends also on the transmission

format fur .
D. Problem Formulation

Given the defined system, we formulate an optimization
problem whose goal is to maximize the successful transmis-
sion of users at each time ¢. This optimization problem is:
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where vp is the maximum tolerable latency for each VR user
(maximum supported by the VR system being used). N is
the set of all of contents that the VR users can request. (4a)
indicates that each BS can transmit standard equirectangular,
cube, pyramid, and visible images to the users. From (4),

we can see that + Z ]l{D”t( is the
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successful transmlssmn probablhty of each user i. Meanwhile,
the image transmission format f,,, is discrete. Moreover, at
each time slot ¢, the transmission delay of each user ¢ depends
not only on the image that user ¢ requests at time ¢ but also
on the image af that user i received at previous time slot.
In consequence, conventional optimization algorithms cannot
be used to solve the problem in (4). Thus, a transfer learning
[8] algorithm can be used to solve (4). This is due to the fact
that the transfer learning algorithm can adaptively adjust the
image transmission formats of each user as the users’ image
requests change. Moreover, the transfer learning algorithm can
transform the already learned image transmission formats to
the new image transmission formats that must be learned. For
instance, a transfer learning algorithm can learn the change
of the users’ image requests between time slots ¢ and ¢ + 1
and, hence, it can directly find the optimal image transmission
format at time ¢ + 1 using the learned image transmission
format at time ¢.

III. LI1QUID STATE MACHINE BASED TRANSFER
LEARNING FOR IMAGE TRANSMISSION

In this section, a transfer learning algorithm based on the
machine learning framework of liguid state machine [10]
is proposed. The proposed LSM-based transfer learning al-
gorithm will equip each BS with the ability to select an
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Fig. 2. The components of the LSM-based transfer learning approach.

appropriate image transmission format for each image that
users request so as to maximize the successful transmission
probability of each user. Moreover, the proposed LSM-based
transfer learning algorithm can use the already learned infor-
mation such as the actions that have been used and their cor-
responding value of successful transmission to directly learn
the actions and the successful transmission values as the users’
image requests change. In consequence, the proposed transfer
learning algorithm can increase the convergence speed. Next,
we first introduce the components of an LSM-based transfer
learning algorithm. Then, we specify the entire procedure of
each BS j using LSM-based transfer learning algorithm to
solve the problem in (4).

A. Components of LSM-based Transfer Learning Algorithm

In the studied system, each BS j will implement one LSM-
based algorithm that consists of four components: a) inputs,
b) liquid model, c) actions, and d) output, as shown in Fig. 2.
The components of the proposed LSM-based transfer learning
algorithm are thus given as follows:

e Input: The LSM input is the the users’ image requests
T

at time ¢, which is a; (t) = [au, e where
U} is the number of users associated with BS j.
e Action: The action of the LSM-based transfer learning

algorithm is the image transmission format which can

) aUJ‘?“axti|

be given by v; = |vij,v2;,..., where v;; €
{0, co, 1,2, c3}. Here, v;; = 0 indicates that BS j will
not send any images to user ¢ at time ¢ while v;; = co,
v;; = c1, Vi = C2, and v;; = c3, respectively, indicate
that BS j will transmit standard, cube, pyramid, and
visible images to user ¢. To improve the convergence
speed of the proposed algorithm, action selection must

be implemented based on the following rule:

’(}U]grxaxj:|

Lemma 1. Given the image requests a; (¢) of the users
associated with BS j, the image transmission format of
user ¢ can be given by:

i If R (ait,faa) =1, v =0.
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Proof. For i), the image that user ¢ requests can be
obtained by the rotation of the image that user ¢ already
received. In consequence, BS ¢ has no need to transmit
a VR image to user 4. For ii), , fs,,, = co indicates
that BS j transmits the standard image to user 7 and
Uj (t) = U™ indicates that all of the users associated
with BS j request image at time t. In consequence,

D (Co, fa';t U

] is the maximum transmission

y At

delay for user <. Dijt <Co, fallg“ (]J’{T‘ax7 aﬁ) <7D indicates
that the delay of user ¢ will always meet the delay
requirement regardless of image transmission format.
Therefore, if Dyj¢(co, fur , U]m‘“,ait) <~p, BS j will
transmit the standard image to user ¢ so as to increase
the probability that the image that user ¢ will request at
a later time slot can be obtained via the image rotation.
This completes the proof. O

From Lemma 1, we can see that the image transmission
format at time ¢ will affect the image transmission format
at time ¢+ 1. This is due to the fact that at time ¢, if each
BS transmits a large sized VR image, then the probability
that user ¢ can directly rotate this image and use it at time
t + 1 increases.
Output: The LSM-based transfer learning algorithm has
two outputs: a) predicted successful transmission prob-
ability and b) predicted deviation of the successful
transmission as the users’ image requests vary. The
output a) of the proposed transfer learning algorithm
can be used to build the relationship between the
users’ image requests a;, actions v;, and users’ suc-
cessful transmission probability > P,;;, where P;; =
i€U;
1 Xt: 1 is th ful
) {D”n (fam,fa%,Uj(n),am)gfm} is the successfu
transmission probability of user 7 at time t. Let y; (t) =
T
[ijﬂ (t) s 7yj'vijU (t)]
Yjv,, (t) represents the predicted total successful trans-
mission probability of BS j using action vj,. Nj;
represents the total number of actions of BS j.

be the output a) where

The output b) is used to find the relationship
between i;j S CMNANITORI P S
>l as BS
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implies that the proposed algorithm can transfer the
value of total successful transmission that has been
learned at time ¢ to the new successful transmission
that will be learned at time ¢ + 1. Therefore, we define
the output b) of the proposed LSM-based transfer
leaning algorithm at time ¢ as the predicted deviation
of the total successful transmission when the users’
image requests change. The output b) can be given by

This

T
U (1) = [Uuy, (), b, ()] where
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e LSM Model: An LSM model that consists of a liquid
model and output functions is used to find the relationship
between the input a; (t) and the output y; (¢) as well as
output y; (t). The liquid model consists of leaky integrate
and fire neurons that are arranged in a three dimensional-
column. The information state of each neuron n at time
t can be given by ¢;,, (t) which can be given by [9]:

+ )
Zp
(&)
where Z represents the neuron resistance, I; (t — 1) is the
input of neuron n, and p is a constant that captures the

neuron state. Here, the probability that neurons ¢ and j
are connected with each other can be given by [9]:

Pjn () = @jn (t — 1)

Py = cem 0DV, (©)

where ¢ € {<gE, SE1, SIE, S} 1S @ constant which depends
on the type of neurons. In the studied liquid model, we
consider two types of neurons: inhibitory neurons and
excitatory neurons [9]. Here, <gg, Sgr, Sig, and gy, respec-
tively, represent an excitatory-excitatory connection, an
excitatory-inhibitory connection, an inhibitory-excitatory
connection, and an inhibitory-inhibitory connection.

The output function consists of two output weight matri-
ces. We assume that each time slot ¢ consists of N, time
intervals and an LSM will record the information states
of the neurons at each interval. Then, the output weight
matrices can be given by F;, F; € RYViw X (NuNae+U™)
where N, is the number of the neurons in the liquid
model.

B. LSM-based Transfer Learning for Image Transmission

At each time slot £, each BS j will receive the users’ image
requests and set the input a; (t) of the LSM-based transfer
learning algorithm. Based on the input, the LSM will calculate
the information states of the neurons located in the liquid
model. The information states of the neurons during time
t can be given by ¢, (t) = [gojl (t),...,goj.vm (t)}
@5 (t) = [@h (t),..., ¢}y, ()] represents the information
states of all of the neurons at interval n and ¢7; (t) is the
information state of neuron k at interval n of time slot ¢. Based
on the input a; (t) and the information states ¢ (t) of neurons
located in the liquid model, the LSM-based transfer learning
algorithm will output the predicted successful transmission
probability resulting from the actions of each BS, which is:

where

w@ﬂ@[zg], ™



TABLE I
LSM-BASED TRANSFER LEARNING FOR IMAGE TRANSMISSION

for each time ¢ do.
(a) Estimate the value of successful transmission probability
>~ Pyt based on (7).
1EU;
if’ t =1
(b) Set the action selection policy uniformly.
else
(c) Set the action selection policy based on e-greedy [11].
end if
(e) Receive the users’ image requests and set the input a; ().
(f) Implement one action based on the e-greedy policy.
(g) Calculate the actual successful transmission probability.
(h) Calculate the information states of the neurons based on (5).
(i) Update the output weight matrix F'; according to (9).
ift>1
(j) Estimate deviation of successful transmission based on (8).
(k) Calculate the actual deviation of the successful transmission.
(1) Update the output weight matrix F; according to (10).
end if
end for

where F'; () is the output weight matrix a) at time ¢. Similarly,
the LSM-based transfer learning algorithm will also need to
learn the deviation of the successful transmission as the users’
image requests vary at time ¢. Then, the output b) of the LSM-
based transfer learning algorithm can be given by:

(1)
ﬁtF’,t{“"J( } ®)
Y; (t) j (t) a; (t)

where F; (t) is the output weight matrix b) at time ¢. To enable
the LSM can predict the outputs a) and b), the output weight
matrices F'; (t) and F; (t) must be updated as follows:

Fj(t4+1)=Fjn(t)+0 Z]Pn — Y, () | [, (2) a; (1)],
=
©)
and
F;n (t+1) :F;n (t) + & Z H{Dijt(vjn)é’m} [90]' (t) a; (t)]
€U

a; (t)],

(10)

Z ]]'{Dijt—l(vjn)S'YD} + y;v,n (t) [ij (t)
iEUj

where F';,, (t + 1) and F'j,, (t + 1) represent the row n of out-
put weight matrices F'; (t + 1) and F; (t + 1), respectively. §
and ¢’ are the learning rates. According to the above formu-
lations, the distributed LSM-based transfer learning algorithm
implemented by each BS j is summarized in Table 1.

In this algorithm, the BSs can find the relationship be-
tween the image transmission strategy and its corresponding
successful transmission probability. During each iteration, the
LSM-based transfer learning algorithm will first record the
actions that each BS takes and the corresponding successful
transmission probability. Then, the LSM-based transfer learn-
ing algorithm can approximate the deviation of the successful
transmission when the users’ image requests change so as
to increase the convergence speed. As time elapses, each
BS j’s output resulting from action ¢ will converge to two

TABLE 11
SYSTEM PARAMETERS
Parameter | Value | Parameter Value
Bp 1000 Bp 20 dBm
Py 4 Ps 55
Nu 100 o? -105 dBm
T 1000 S 13.5 mV
Z 20 dB p 30 ms
SEE 0.3 SEI 0.4
SIE 0.2 [Sil 0.1
A 2 NAag 10
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Fig. 3. Total successful transmission probability as the number of BSs
changes.
final values ) IP; and Z YD, <oy — 2o YDii<o}
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When the proposed LSM based transfer learmng algorithm

converges, it can find the optimal image transmission policy
for the VR users with different image requests.

IV. SIMULATION RESULTS

For our simulations, we consider a cellular network de-
ployed in a circular area with radius = 500 m. U = 20 users
and B = 4 BSs are uniformly distributed in this area. The
delay requirement yp of VR users will be 20 ms. The detailed
parameters are listed in Table II. For comparison purposes, we
use a baseline Q-learning algorithm in [11]. For this Q-learning
algorithm, the input of Q-learning is the LSM’s input a;, the
actions of Q-learning are the actions defined in our LSM-based
transfer learning algorithm, and the reward function r (a;, v;)
is the successful transmission probability IP;;.

In. Fig. 3, we show how the total successful transmission
probability changes as the number of BSs changes. From
Fig. 3, we can see that, as the number of BSs increases,
the total successful transmission probability increases. This
is because, as the number of BSs increases, the users have
more connection choices and the number of users associated
with each BS decreases. Fig. 3 also shows that the proposed
transfer learning algorithm can achieve up to 14.9% gain
of total successful transmission probability compared to Q-
learning for a network with 8 BSs. This gain stems from
the fact that the proposed transfer learning algorithm has a
larger memory capacity to record users’ historical content
requests, the actions that each BS uses, and their corresponding
successful transmission compared to Q-learning that uses Q-
table to record the historical informations. In consequence,
the proposed algorithm can accurately predict the successful
transmission probability of each BS.
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Fig. 4 shows how the successful transmission probability of
each BS changes as time elapses. From Fig. 4, we can see that,
each BS’s successful transmission probability resulting from
both the proposed algorithm and Q-learning changes as time
elapses. This is due to the fact that as time elapses, the users’
content requests change and, hence, the BS may not satisfy
the delay requirement of each user at each time slot. Fig. 4
also shows that the deviation between the proposed transfer
learning algorithm and Q-learning increases as time elapses.
This is due to the fact that, as time elapses, the proposed
transfer learning algorithm can transfer the already learned
successful transmission to the new successful transmission
that must be learned. However, as time continues to elapse,
the deviation between the proposed algorithm and Q-learning
remain a constant, this is because the training procedure of
both the proposed transfer learning algorithm and Q-learning
have finished and the gain stems from the prediction accuracy
of the considered algorithms.

In Fig. 5, we show how the image transmission format of
a given user changes as time elapses. In this figure, 36°, 72°,
270°, and 360° respectively, represent the visible, pyramid,
cube, and standard image transmission format. O indicates that
the user can directly rotate an already received VR image and,
hence, the BS will not transmit any VR images to the user at
that time slot. From Fig. 5, we can see that as time elapses,
the BS transmits different format VR images to the user. This
is due to the fact that, as time elapses, the number of users
that request VR images varies. In consequence, the bandwidth
allocated to each user will be changed. To satisfy the delay
requirement, the BS needs to change the image transmission
format for each user at each time slot. Fig. 5 also shows that, at

time 5, the BS using the proposed transfer learning algorithm
transmits a standard VR image to the user while the BS using
Q-learning transmits a cube image to the user. Therefore, at
time slots 6 and 7, the BS using the proposed algorithm has
no need to transmit VR images to the user while the BS using
Q-learning needs to transmit a visible VR image to the user at
time slot 7. This is due to the fact that the proposed transfer
learning algorithm enables each BS to select the optimal image
transmission format and, hence, the user can rotate the VR
image received at time slot 5 and directly use the rotated VR
images at time slots 6 and 7.

V. CONCLUSION

In this paper, we have developed a novel VR image trans-
mission scheme that jointly consider various image formats
and image rotation for optimizing the successful transmission
probability of all VR users. We have formulated the problem
as an optimization problem. To solve this problem, we have
developed a novel transfer learning algorithm based on the
liquid state machine. The proposed LSM-based transfer learn-
ing algorithm enables each BS adapts its image transmission
scheme based on the users’ image requests so as to maximize
the users’ successful transmission probability. Moreover, the
proposed transfer learning algorithm can transfer the already
learned successful transmission into the new successful trans-
mission that must be learned as the users’ VR image requests
change. Simulation results have shown that the proposed trans-
fer learning algorithm yields significant performance gains in
terms of successful transmission probability of all VR users
compared to Q-learning.
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