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Abstract

Multi-axis machining processes are often used to fabricate complex components with tight geometric tolerances. Thus, the need
for highly accurate 5-axis machine tools is imperative in high precision industries such as aerospace and mold and die. Often,
construction errors result in geometric errors within the machine tool. These errors must be identified and compensated in order to
guarantee accuracy of the machine. In this work, kinematic equations of motion for a BC-style machine tool were derived while
incorporating the 8 distinct kinematic error constants associated with a 5-axis machine tool. A method is presented to derive these
kinematic error constants from eccentricity values obtained using 3-axis simultaneous tests for table-table style 5-axis machine
tools. To validate this method, error constants were input into the kinematic simulation. Eccentricity values were then output from
the simulation and error constants were derived and compared to the input values. It was shown that if the procedure is followed,
the error constants can be correctly derived and compensated. This method was then implemented on a BC-style machine tool and

error constants were derived.
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1. Introduction

While the accuracy requirement of a computer numerical
control (CNC) machine tool component may change between
jobs, typical machined components require feature tolerances
on the order of 0.1 mm, which is achievable on a typical
machine tool. However, certain industries demand significantly
greater accuracy from their CNC machines. Manufacturers of
molds and dies, optics, and medical implants require feature
accuracies on the order of 10 pm and final surface roughness on
the order of 10 nm. Moreover, manufacturers in these industries
have turned to multi-axis machine tools to reduce the number
of setups for complex parts and increase efficiency.

The accuracy of a machine tool can be affected by several
factors: machine tool construction, servo/drive position
accuracy, thermal distortion, among others. These errors can be
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reduced by innovations in machine design, advanced control
algorithms, and construction error identification and
qualification [1]. The last of these is essential and can be done
through measurements performed on the machine tool.
Geometric errors in a machine tool can be separated into two
categories: position dependent geometric errors (PDEGs) and
position independent geometric errors (PIGEs) [2]. The value
of a PDEGs will change from position to position within the
volume of the machine tool and are often related to construction
of individual components of the machine tool. However, PIGEs
remain invariant throughout the entire machine volume and are
often related to inaccuracies of the machine assembly process.
Since PIGEs are invariant, they are often regarded as kinematic
error constants which skew the geometry of the machine tool
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Figure 1: A ballbar setup in a three-axis machine tool and an example result
of typical X-Y plane test

from nominal by constant amounts. The path of the machine
tool can then be compensated by these error constants to greatly
improve the accuracy of the final product [3].

As referenced in the work by Zhang et. al., there are 21
characteristic errors of a three axis machine tool [4]. Six of
these errors correspond to each individual axis of movement;
positioning error in three orthogonal directions and three
angular errors (commonly known as roll, pitch, and yaw). These
values are often regarded as PDEGs, since they largely rely on
the quality of the guide components along the axis. The final
three errors relate to the relative squareness between the
individual axes and are often regarded as PIGEs since they are
largely affected by the assembly of the axes.

One of the most widely used tools for identification of these
errors is the double ballbar. These tools are used to check the
roundness of circular paths within the volume of the machine
tool. One ball cup is fixed to the table while the other cup is
attached to the spindle of the machine tool. The ballbar is then
magnetically affixed to these cups by a precision ground sphere
at each end. The spindle is moved in an arc within a plane in the
volume of the machine. Throughout the arc, the bar measures
the variation in radius of this circular path by extending or
contracting as the tool moves farther or closer to the fixed base.
Figure 1 displays this device installed in a typical three axis
machine tool and a typical measurement plot. Standards have
been developed to govern how these tests are conducted and the
interpretation of their results, making them common measuring
devices within industry [5, 6].

Tsutsumi et al. extended the use of these devices into the
qualification of 5-axis machine tools which use two rotary axes
to change the orientation of the component within the machine
tool [7]. Their method used simultaneous movement of three
axes, two linear and one rotary, to identify the eight additional
error parameters present in a 5-axis machine tool. These eight
parameters are comprised of two linear and two angular
deviations for each of the rotary axes. The authors then
extended their work into simultaneous movement of four axes
and required the analysis of only two measurements to

characterize all eight parameters [8]. Since these initial works,
many others have presented their own methodology for solving
these kinematic errors. Wang et al. presented a methodology for
determining the kinematic errors which decouples the effects of
individual error constants [9]. This method utilized single point
measurements of the ballbar rather than utilizing the continuous
capture of data.

Others have attempted to utilize only the movement of the
rotary axes, thus removing any deviations caused by
inaccuracies of the linear position systems. Zhang et al.
introduced a method which utilized actuation of only the C
rotary axis, but was only able to determine 5 of the necessary
error constants [10]. Lei et al. investigated the total dynamic
effects of a 5-axis machine tool using ballbar measurements
[11]. Their work examined the dynamic interaction of the rotary
and linear axes by pairing axes to tune the velocity gains within
the machine tool controller. Xiang et al. also introduced an
experimental method and analysis which utilizes only rotary
axis actuation to characterize the S5-axis kinematic error
constants [12]. This method eliminates the need for actuation of
the linear axes, However, this method is prone to setup errors
which must be carefully characterized and compensated. Lee et
al. introduced a device to minimize the runout of the ball which
is attached to the spindle, thus greatly reducing the effect of
setup error on the measurement process [13].

However, in previous literature there are few examples of
machine kinematics and methods for the derivation of error
constants for machine configurations other than the AC-type
table-table 5-axis machines. This work presents a derivation for
BC-style table-table 5-axis machine tool kinematics which
incorporates the kinematic error constants associated with the
rotary axes. A derivation for these constants is also presented
using the eccentricity data obtained from 5-axis ballbar tests.
Simulations with input error constants are developed and output
eccentricity values are used to derive the original kinematic
error constants to validate the performance of the methodology.
Finally, the implementation of this method on a BC-style
machine tool is discussed.

Figure 2: AC and BC 5-axis machine tool configurations
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2. Methodology

The structure of the BC-type 5-axis machine tool is shown
in Figure 2 as shown in contrast to the AC-type machine. These
structures differ in the orientation of the rotary axis which is
directly connected to the machine tool base. While the
kinematic chain of the three translational axes may change
based on machine construction, this work assumes that any
errors associated with linear position are negligible. Therefore,
the order these axes occur in the kinematic chain is irrelevant
and the kinematics can be combined into a single linear
positional move in three-dimensional space.

2.1. Machine Kinematic Derivations

Figure 3 depicts the error constants associated with the
rotary axes of the BC kinematic configuration. Beginning at the
base of the machine, there are two positional deviations, dpx
and dpz, which could shift the location of the B axis within the
X-Z plane. There are also two angular errors which could
change the direction of the axis vector in space. Angle s
represents a rotation of the B axis about the i direction in space,
while angle yg represents a rotation of the B axis about the k
direction. The location of the C axis center of rotation can also
be shifted in with in the X-Y plane and can be represented as
parameters dcx and dcy. The orientation of this axis in space
can also differ from the intended direction and can be
represented by two angular deviations. The first, ag, represents
an angle of rotation about the j direction. The final term, Pc,
represents and angle of rotation about the i direction.

Using four independent ballbar tests, these constants can be
determined. The tests used in this work are the B radial, B axial,
C radial, and C axial methods described in [7]. For a given
ballbar test, the distance between the table cup and the spindle
cup should remain the nominal length of the ballbar L, ,
assuming no error. Therefore, the error in the ballbar can be
characterized by the spindle position, Ps, the table position Py,
and Lj:

dL =L, — |Ps = Pr| (1)

Since we assume that no positioning errors occur in the
linear axes, the spindle position will follow the desired circular
trajectory at some radius from the center of axis rotation. This
radius will change based on whether we are performing an axial
or radial test, as this changes the position of the spindle cup
relative to the table cup. Thus, the radius of the table cup from
the center of rotation will also affect the location of the spindle.
In these tests, the table cup is placed along the nominal location
in X of the B axis, which eliminates the X component of the
radius calculation. For the B axis, this radius will be defined as
Rj and denotes the distance in the k of the table cup from the
nominal position of the B axis. For the C axis, this radius will
be defined as R, and denotes the distance in the j direction of
the table cup to the table center of rotation. Therefore, the
nominal position of the table cup can be defined as:

0
R¢
Rp

Py = 2)

Figure 3: Kinematic error terms associated with the BC type machine tool

The position of the spindle can then be written as a function
of the angle of rotation of either the B or C axis and the spindle
offset for the test being performed, which is defined as ¢ and 9,
respectively:

Ps = R;(B)Ry(@)[Py + AS] 3)

In Eq. 3, R and Ry are defined as simple rotations about the
Z and Y axes:

[cos(B) —sin(B) O

R,(6) = [sin(8) cos(®) Ol (4)
L0 0 1
[ cos(p) 0 sin(y)

Re@=| 0 1 0 (5)
| —sin(p) 0 cos(p)

Note that in the case of the ballbar tests, only one rotational
axis will be used at once, while keeping the other constant at
zero. The spindle offset will also change based on the test
performed. For the B radial and C axial tests, the offset occurs
in the k direction (Eq. 6), while in the B axial and C radial tests
the offset occurs in the j direction (Eq. 7):

0

As= [ 0 l (6)
Ly
0

Ag= Lbl @)
0

The table cup position, Py, must also be written as a function
of ¢ and 6 while incorporating the kinematic error constants.
The form of Py can generally be expressed as:

PT = TBTC + ALB (8)

In Eq. 8, T and T generally represent the B and C rotary
transformations, respectively and ALy represents the linear
deviations of the B axis. ALy can be represented simply as:

Spx

ALy =10 9)
8pz

Tg can be defined as the combination of angular errors
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associated with the B axis, as well as the rotation of the B axis
itself. Since the error op acts in the same direction as the
rotation of B, it can be included as a static rotational offset.
Thus, Tg can be defined:

T = Ag,4,,R5(0) (10)
where Ag,,, Ap, and Ry are defined as:
r1 0 0
Ag, = [0 cos(Bg) —sin(Bp) (11
[0 sin(Bg) cos(Bg) |
cos(ys) —sin(yz) O]
4yp = |sin(yp) cos(yp) O (12)
L0 0 11

cos(p+ag) O sin(e+ap)
Rg(0) = 0 1 0 (13)
—sin(p +ag) 0 cos(p+ ag)

T includes angular deviations associated with the C axis,
and must also include the linear deviations of the C axis and the
rotation angle 0:

TC = ABCRc(e)PN + ALC (14)

The terms in Eq. 14, with the exception of Py defined in Eq.
2, are defined as:

1 0 0
Ag, = [O cos(B¢) —sin(Bc)] (15)
0 sin(Bc) cos(Bc)
cos(B) —sin(B) O
RC(6)=[sin(6) cos(e) ol (16)
1
8cx
AL, = [acyl (17)

By altering ¢ and 0, simulations can be performed using
input error constants and testing parameters. This is valuable
for verification of ballbar results and estimation of positional
deviation give specific error parameters.

2.2. Machine Kinematic Derivations

For the identification of errors in the ballbar tests, calculated
eccentricity values from the individual tests can be used to
systematically determine the kinematic error constants. This
procedure was determined in a similar manner as listed in Ref.
[7].

First, the B radial test will yield eccentricity values within
the X-Z plane defined as B,x and B,;. Assuming that angular
deviations are small, any eccentricity seen can be related to the
eccentricity of the B axis. Thus, the linear deviations in the B
axis can be calculated:

8gx = —Brx (18)

SBZ = _BTZ (19)

Next, the B axial test will again provide eccentricity values
within the X-Z plane that are defined as B,y and B,;. These
values can then be used to determine the angular deviations
associated with the B axis:

-B
VE = sin—lR—“" (20)
B
B
Bp = sin—lRLZ @21
B

In the C axial test, eccentricity values C,x and C,y are
found in the X-Y plane. Using these values and Bz calculated
in Eq. 21, the angular deviations associated with the C axis can
be calculated as:

CaX

R¢

-1

ag = sin (22)

C
B = sin~ (— 29 _ i BB) (23)
Re
Finally, in the C radial test, eccentricity values C,x and C,y

are found in the X-Y plane. Using values calculated previously,
the linear deviations associated with the C can be calculated:

SCX = _SBX - C‘I"X - Rb sin (XB (24)

Scy - _CTY + RB Sln BC + RB Sln BB (25)
This method can then be used to determine the kinematic

error constants associated with the rotary axes using
eccentricity data extracted from the ballbar results.

3. Results

In order to validate the simplifications made to construct the
error constant equations, simulations were performed using the
derived machine kinematics equations. The B axis tests were
simulated between 0° and -90° and the C axis tests were
simulated from 0° to 360°. The simulation input parameters,
including the table cup position and the kinematic error
constants are listed in Table 1. 2121

Table 1: Parameters used in BC simulations

Input Parameter Value

L, 150 mm
Rp 175 mm
R¢ 100 mm
Spx 0.010 mm
Sgz 0.025 mm
Scx -0.025 mm
Scy -0.010 mm
og -0.0025°
Bs 0.005°

Ys 0.0025°

Be -0.005°

The results from these simulations can be seen in Figure 4,
which shows the nominal path of the simulated travel in black
and the simulated result using the error constants in blue. For
each of the four tests completed, eccentricities of the resultant
path were determined by fitting circle segments to each and
calculating the deviation between the fit and nominal arc
centers. These resulting values are also displayed in each of the
corresponding plots in Figure 4.

In order to evaluate the ability of the identification
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C Axial Test
Cax = -0.0044, Cay = 0.0000

B Axial Test
Baz=0.0153, Bax = -.0076
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Figure 4: Simulation results with input parameters with deviations (magnified
by 1000x)

equations to correctly derive the error parameters from the
eccentricity values reported in the four ballbar tests, these
simulated values were then input in Eq. 18 through Eq. 25,
along with the Rp and R values used in the simulation. The
output error parameters were then reported and compared to the
originally input values.

The output error values from this test are shown in Table 2
along with the deviation from the value input in the original
simulation. These results show that the error constant
calculation is able to successfully derive the angular deviations
from the eccentricity data. The linear deviations in the C are
also calculated fairly accurately. However, in the calculations
for the B axis linear deviations, this method appears to be
limited. This is most likely due to the simple assumption made
in the first step of calculation.

In order to mitigate these effects, the machine controller can
be compensated for the angular deviations and the C axis linear
deviations. Then if the tests are executed again, the angular
deviations should no longer have an effect on the outcome of
the B radial test. To test this, the error constants in the
simulation were compensated by the calculated error constant
with the exception of the B axis linear values. The simulation
was then run once again to determine the eccentricity values.
These values were then input into the error constant calculation
to determine the final machine errors.

Figure 5 shows the result of these final simulations and
displays the calculated eccentricity values. For each of the four

Table 2: Output of error constant calculation — initial

Output Parameters Value Deviation
Spx 0.0056 mm -0.0044 mm
Sgz 0.0337 mm 0.0117 mm
Scx -0.0206 mm 0.0040 mm
Scy -0.0100 mm 0.0000 mm
ag -0.0025° 0.0000°

Bs 0.0049° -0.0001°

Vs 0.00249° -0.00001°
Be -0.0049° 0.0001°

C Axial Test
Cax = 0.0000, Cay = 0.0000

B Axial Test
Baz =-0.0003, Bax = 0.0000

Nominal
Actual

C Radial Test
Crx =-0.0139, Cry = 0.0000

B Radial Test
Brz =-0.02483, Brx =-0.0100

Figure 5: Simulation results with compensated error constants (magnified by
1000x)
tests shown, the compensation is shown to reduce the
concentricity error of the resultant path. For both of the axial
tests, the error is reduced almost completely. Both radial tests
still show residual errors, but both have been reduced in
magnitude, with the exception of the B,y error.

These new eccentricity values were then input into the error
constant calculation. Table 3 displays the output error constants
from these calculations. The angular deviations calculated from
the simulation all show negligible error, which agrees with the
compensation added from the previous test. While some
compensation was added for the linear deviations of the C axis,
deviations did still exist. In the second simulation, these errors
were correctly identified. Most importantly, the imposed linear
deviations on the B axis have now been correctly identified,
resulting in a fully identified system. These results have shown
that by implementing the proper compensation procedure, the
error detection algorithm is capable of correctly identifying
kinematic errors of a BC-style 5-axis machine tool.

4. Discussion

For further investigation, this error measurement procedure
was implemented on a BC-style 5-axis machine (Mazak VCU-
500) shown in Figure 6. For simplicity of controlling the
process within the limits of this machine, measurement limits
of all four tests were changed. In B axis tests, the range of ¢
was set to begin at 35° and end at -55°. For C axis tests, the

Table 3: Output of error constant calculation - final

Output Parameters Value Deviation
Spx 0.0100 mm 0.0000 mm
Sz 0.0248 mm -0.0002 mm
Scx 0.0039 mm -0.0001 mm
Scy 0.0000 mm 0.0000 mm
ag 0.0000° 0.0000°

Bz 0.00009° 0.00009°
Y 0.0000° 0.0000°

B¢ 0.0000° 0.0000°
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Figure 6: B radial test within a BC style 5-axis machine tool

range of 6 was set to begin at 110° and end at 260°. However,
changing the limits of the test should not affect the results as
these are still viable ranges from which eccentricity values can
be calculated.

A Renishaw QC20-W ballbar was used in the
measurements. The ballbar was calibrated between each test
with a measurement uncertainty of 0.1 pm, was run at a
nominal feed rate of 1000 mm/min, and captured data at a
sampling rate of 26.3 Hz. Using the nominal locations for the
center of rotation for both the B and C axes which are provided
in parameters of the machine controller, the table cup was
positioned in X along the B rotational axis. The table cup
location was then recorded and R and R, were calculated to
be 178.250 mm and 97.847 mm, respectively. L;, the nominal
ballbar length, used for these tests was 150 mm.

Eccentricity values for each test were calculated and plots

for each were saved for comparison. Eccentricity results were
input into the kinematic error constant calculations. For the
sake of verification, the derived error constants and testing
parameters were also input for simulation. The resulting
simulated paths were then compared to the measured plots to
ensure agreement between the two systems.
Table 4 shows the derived error constants for this set of
machine tool tests. These constants show significant error in
the linear and angular deviations of both rotary axes. If left
uncompensated, these could cause significant deviations in a
simultaneous 5-axis machining operation. Across a table
diameter of 500 mm, an angular deviation of 0.0127° could
result in a positioning error of up to 0.1108 mm. Combined
with the linear deviations seen, the expected error could surpass
0.14 mm, which for high precision components typically
produced on a 5-axis machining center is unacceptable.

Table 4: Derived error constants from machine tool test

Input Parameter Value

Spx 0.0185 mm
Spz 0.0244 mm
Scx -0.0529 mm
Scy -0.0325 mm
ag -0.0040°

Bs 0.0127°

Yz -0.0003°

Be -0.0108°

Simulated

Measured

Figure 7: Comparison of ballbar measurements to simulations using the
derived error constants. (a.) C axial (b,) C radial (c.) B axial (d.) B radial

However, by directly comparing the measurement data to
the simulation, significant differences can be seen in the paths,
as shown in Figure 7. By inspection, the measured deviation
does not necessarily follow the expected circular arc. Because
of this, the fit performed and the derived arc centers may not
accurately represent the plot. In both radial measurements, the
form observed is only slightly circular. Thus, the eccentricity
values and the derived error constants may not necessarily
accurately depict the phenomena observed. This can be seen in
the simulations of each of these tests. For both of the radial
tests, the simulation does not appear to closely follow the
measured results. However, in the axial tests the simulations do
appear to follow the measured results.

If the measurement noise and form error were to be reduced,
these tests show that the kinematic model and the derivation of
error constants appear to be consistent with measurements
acquired from tests. Proprietary control of machine parameters
made it not possible to compensate the rotary axes in the
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present work. Future work would be include verification of the
accuracy of these derived parameters through access to
machine parameters or execution on a compatible controller.
Further, these tests could be verified using artificial
compensation within the programed path.

5. Conclusions

In this work, kinematic equations of motion for a BC-style
machine tool were derived while incorporating the 8 distinct
kinematic error constants associated with a 5-axis machine
tool. A method was then presented to derive these kinematic
error constants from eccentricity values obtained using 3-axis
simultaneous tests for table-table style 5-axis machine tools
using a double ballbar. To validate this method, error constants
were input into the kinematic simulation and eccentricity
values were then output from the simulation, and error
constants were derived and compared to the input values. It was
shown that using the procedure, error constants can be correctly
derived and compensated. This method was then implemented
on a BC-style machine tool and error constants derived. Future
work will involve compensation of these errors and
investigation of the effect of sensor noise and form error on the
derivation of accurate eccentricity values.
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