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Abstract 

Multi-axis machining processes are often used to fabricate complex components with tight geometric tolerances. Thus, the need 
for highly accurate 5-axis machine tools is imperative in high precision industries such as aerospace and mold and die. Often, 
construction errors result in geometric errors within the machine tool. These errors must be identified and compensated in order to 
guarantee accuracy of the machine. In this work, kinematic equations of motion for a BC-style machine tool were derived while 
incorporating the 8 distinct kinematic error constants associated with a 5-axis machine tool. A method is presented to derive these 
kinematic error constants from eccentricity values obtained using 3-axis simultaneous tests for table-table style 5-axis machine 
tools. To validate this method, error constants were input into the kinematic simulation. Eccentricity values were then output from 
the simulation and error constants were derived and compared to the input values. It was shown that if the procedure is followed, 
the error constants can be correctly derived and compensated. This method was then implemented on a BC-style machine tool and 
error constants were derived. 
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1. Introduction 

While the accuracy requirement of a computer numerical 
control (CNC) machine tool component may change between 
jobs, typical machined components require feature tolerances 
on the order of 0.1 mm, which is achievable on a typical 
machine tool. However, certain industries demand significantly 
greater accuracy from their CNC machines. Manufacturers of 
molds and dies, optics, and medical implants require feature 
accuracies on the order of 10 μm and final surface roughness on 
the order of 10 nm. Moreover, manufacturers in these industries 
have turned to multi-axis machine tools to reduce the number 
of setups for complex parts and increase efficiency. 

The accuracy of a machine tool can be affected by several 
factors: machine tool construction, servo/drive position 
accuracy, thermal distortion, among others. These errors can be 

reduced by innovations in machine design, advanced control 
algorithms, and construction error identification and 
qualification [1]. The last of these is essential and can be done 
through measurements performed on the machine tool. 
Geometric errors in a machine tool can be separated into two 
categories: position dependent geometric errors (PDEGs) and 
position independent geometric errors (PIGEs) [2].  The value 
of a PDEGs will change from position to position within the 
volume of the machine tool and are often related to construction 
of individual components of the machine tool. However, PIGEs 
remain invariant throughout the entire machine volume and are 
often related to inaccuracies of the machine assembly process. 
Since PIGEs are invariant, they are often regarded as kinematic 
error constants which skew the geometry of the machine tool 
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from nominal by constant amounts. The path of the machine 
tool can then be compensated by these error constants to greatly 
improve the accuracy of the final product [3]. 

 As referenced in the work by Zhang et. al., there are 21 
characteristic errors of a three axis machine tool [4]. Six of 
these errors correspond to each individual axis of movement; 
positioning error in three orthogonal directions and three 
angular errors (commonly known as roll, pitch, and yaw). These 
values are often regarded as PDEGs, since they largely rely on 
the quality of the guide components along the axis. The final 
three errors relate to the relative squareness between the 
individual axes and are often regarded as PIGEs since they are 
largely affected by the assembly of the axes. 

One of the most widely used tools for identification of these 
errors is the double ballbar. These tools are used to check the 
roundness of circular paths within the volume of the machine 
tool. One ball cup is fixed to the table while the other cup is 
attached to the spindle of the machine tool. The ballbar is then 
magnetically affixed to these cups by a precision ground sphere 
at each end. The spindle is moved in an arc within a plane in the 
volume of the machine. Throughout the arc, the bar measures 
the variation in radius of this circular path by extending or 
contracting as the tool moves farther or closer to the fixed base. 
Figure 1 displays this device installed in a typical three axis 
machine tool and a typical measurement plot. Standards have 
been developed to govern how these tests are conducted and the 
interpretation of their results, making them common measuring 
devices within industry [5, 6].  

Tsutsumi et al. extended the use of these devices into the 
qualification of 5-axis machine tools which use two rotary axes 
to change the orientation of the component within the machine 
tool [7]. Their method used simultaneous movement of three 
axes, two linear and one rotary, to identify the eight additional 
error parameters present in a 5-axis machine tool. These eight 
parameters are comprised of two linear and two angular 
deviations for each of the rotary axes. The authors then 
extended their work into simultaneous movement of four axes 
and required the analysis of only two measurements to 

characterize all eight parameters [8]. Since these initial works, 
many others have presented their own methodology for solving 
these kinematic errors. Wang et al. presented a methodology for 
determining the kinematic errors which decouples the effects of 
individual error constants [9]. This method utilized single point 
measurements of the ballbar rather than utilizing the continuous 
capture of data. 

Others have attempted to utilize only the movement of the 
rotary axes, thus removing any deviations caused by 
inaccuracies of the linear position systems. Zhang et al. 
introduced a method which utilized actuation of only the C 
rotary axis, but was only able to determine 5 of the necessary 
error constants [10]. Lei et al. investigated the total dynamic 
effects of a 5-axis machine tool using ballbar measurements 
[11]. Their work examined the dynamic interaction of the rotary 
and linear axes by pairing axes to tune the velocity gains within 
the machine tool controller. Xiang et al. also introduced an 
experimental method and analysis which utilizes only rotary 
axis actuation to characterize the 5-axis kinematic error 
constants [12]. This method eliminates the need for actuation of 
the linear axes, However, this method is prone to setup errors 
which must be carefully characterized and compensated. Lee et 
al. introduced a device to minimize the runout of the ball which 
is attached to the spindle, thus greatly reducing the effect of 
setup error on the measurement process [13]. 

However, in previous literature there are few examples of 
machine kinematics and methods for the derivation of error 
constants for machine configurations other than the AC-type 
table-table 5-axis machines. This work presents a derivation for 
BC-style table-table 5-axis machine tool kinematics which 
incorporates the kinematic error constants associated with the 
rotary axes. A derivation for these constants is also presented 
using the eccentricity data obtained from 5-axis ballbar tests. 
Simulations with input error constants are developed and output 
eccentricity values are used to derive the original kinematic 
error constants to validate the performance of the methodology. 
Finally, the implementation of this method on a BC-style 
machine tool is discussed. 
  

Figure 1: A ballbar setup in a three-axis machine tool and an example result 
of typical X-Y plane test  

Figure 2: AC and BC 5-axis machine tool configurations 
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2. Methodology 

The structure of the BC-type 5-axis machine tool is shown 
in Figure 2 as shown in contrast to the AC-type machine.  These 
structures differ in the orientation of the rotary axis which is 
directly connected to the machine tool base. While the 
kinematic chain of the three translational axes may change 
based on machine construction, this work assumes that any 
errors associated with linear position are negligible. Therefore, 
the order these axes occur in the kinematic chain is irrelevant 
and the kinematics can be combined into a single linear 
positional move in three-dimensional space.  

2.1. Machine Kinematic Derivations 

Figure 3 depicts the error constants associated with the 
rotary axes of the BC kinematic configuration. Beginning at the 
base of the machine, there are two positional deviations, δBX 
and δBZ, which could shift the location of the B axis within the 
X-Z plane. There are also two angular errors which could 
change the direction of the axis vector in space. Angle βB 
represents a rotation of the B axis about the 𝚤𝚤̂ direction in space, 
while angle γB represents a rotation of the B axis about the 𝑘𝑘�  
direction. The location of the C axis center of rotation can also 
be shifted in with in the X-Y plane and can be represented as 
parameters δCX and δCY. The orientation of this axis in space 
can also differ from the intended direction and can be 
represented by two angular deviations. The first, αB, represents 
an angle of rotation about the 𝚥𝚥̂ direction. The final term, βC, 
represents and angle of rotation about the 𝚤𝚤̂ direction.  

Using four independent ballbar tests, these constants can be 
determined. The tests used in this work are the B radial, B axial, 
C radial, and C axial methods described in [7]. For a given 
ballbar test, the distance between the table cup and the spindle 
cup should remain the nominal length of the ballbar 𝐿𝐿𝑏𝑏 , 
assuming no error. Therefore, the error in the ballbar can be 
characterized by the spindle position, 𝑃𝑃𝑆𝑆, the table position 𝑃𝑃𝑇𝑇 , 
and 𝐿𝐿𝑏𝑏: 

 
𝑑𝑑𝑑𝑑 = 𝐿𝐿𝑏𝑏 −  |𝑃𝑃𝑆𝑆 − 𝑃𝑃𝑇𝑇| (1) 

Since we assume that no positioning errors occur in the 
linear axes, the spindle position will follow the desired circular 
trajectory at some radius from the center of axis rotation. This 
radius will change based on whether we are performing an axial 
or radial test, as this changes the position of the spindle cup 
relative to the table cup. Thus, the radius of the table cup from 
the center of rotation will also affect the location of the spindle. 
In these tests, the table cup is placed along the nominal location 
in X of the B axis, which eliminates the X component of the 
radius calculation. For the B axis, this radius will be defined as 
𝑅𝑅𝐵𝐵 and denotes the distance in the 𝑘𝑘�  of the table cup from the 
nominal position of the B axis. For the C axis, this radius will 
be defined as 𝑅𝑅𝐶𝐶 and denotes the distance in the 𝚥𝚥̂ direction of 
the table cup to the table center of rotation. Therefore, the 
nominal position of the table cup can be defined as: 

 
𝑃𝑃𝑁𝑁 =  �

0
𝑅𝑅𝐶𝐶
𝑅𝑅𝐵𝐵
� (2) 

The position of the spindle can then be written as a function 
of the angle of rotation of either the B or C axis and the spindle 
offset for the test being performed, which is defined as φ and θ, 
respectively: 

 𝑃𝑃𝑆𝑆 = 𝑅𝑅𝑍𝑍(θ)𝑅𝑅𝑌𝑌(φ)[𝑃𝑃𝑁𝑁 + ∆𝑆𝑆] (3) 

In Eq. 3, 𝑅𝑅𝑍𝑍 and 𝑅𝑅𝑌𝑌 are defined as simple rotations about the 
Z and Y axes: 

 
𝑅𝑅𝑧𝑧(θ) = �

cos (θ) −sin (θ) 0
sin (θ) cos (θ) 0

0 0 1
� (4) 

 

𝑅𝑅𝑌𝑌(φ) = �
cos (φ) 0 sin (φ)

0 1 0
−sin (φ) 0 cos (φ)

� (5) 

Note that in the case of the ballbar tests, only one rotational 
axis will be used at once, while keeping the other constant at 
zero. The spindle offset will also change based on the test 
performed. For the B radial and C axial tests, the offset occurs 
in the 𝑘𝑘�  direction (Eq. 6), while in the B axial and C radial tests 
the offset occurs in the 𝚥𝚥̂ direction (Eq. 7): 

 ∆𝑆𝑆= �
0
0
𝐿𝐿𝑏𝑏
� (6) 

 ∆𝑆𝑆= �
0
𝐿𝐿𝑏𝑏
0
� (7) 

The table cup position, 𝑃𝑃𝑇𝑇 , must also be written as a function 
of φ and θ while incorporating the kinematic error constants. 
The form of 𝑃𝑃𝑇𝑇  can generally be expressed as: 

 𝑃𝑃𝑇𝑇 = 𝑇𝑇𝐵𝐵𝑇𝑇𝐶𝐶 + ∆𝐿𝐿𝐵𝐵  (8) 

In Eq. 8, 𝑇𝑇𝐵𝐵 and 𝑇𝑇𝐶𝐶  generally represent the B and C rotary 
transformations, respectively and ∆𝐿𝐿𝐵𝐵  represents the linear 
deviations of the B axis. ∆𝐿𝐿𝐵𝐵  can be represented simply as: 

 ∆𝐿𝐿𝐵𝐵 =  �
δBX

0
δBZ

� (9) 

𝑇𝑇𝐵𝐵  can be defined as the combination of angular errors 
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Figure 3: Kinematic error terms associated with the BC type machine tool 
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associated with the B axis, as well as the rotation of the B axis 
itself. Since the error αB acts in the same direction as the 
rotation of B, it can be included as a static rotational offset. 
Thus, 𝑇𝑇𝐵𝐵 can be defined: 

 𝑇𝑇𝐵𝐵 = 𝛥𝛥β𝐵𝐵𝛥𝛥𝛾𝛾𝐵𝐵𝑅𝑅𝐵𝐵(θ) (10) 

where 𝛥𝛥βB , 𝛥𝛥𝐵𝐵, and 𝑅𝑅𝐵𝐵 are defined as: 

 𝛥𝛥β𝐵𝐵 = �
1 0 0
0 cos (β𝐵𝐵) −sin (β𝐵𝐵)
0 sin (β𝐵𝐵) cos (β𝐵𝐵)

� (11) 

 𝛥𝛥𝛾𝛾𝐵𝐵 = �
cos (γ𝐵𝐵) −sin (γ𝐵𝐵) 0
sin (γ𝐵𝐵) cos (γ𝐵𝐵) 0

0 0 1
� (12) 

 𝑅𝑅𝐵𝐵(θ) = �
cos (φ + α𝐵𝐵) 0 sin (φ + α𝐵𝐵)

0 1 0
−sin (φ + α𝐵𝐵) 0 cos (φ + α𝐵𝐵)

� (13) 

𝑇𝑇𝐶𝐶  includes angular deviations associated with the C axis, 
and must also include the linear deviations of the C axis and the 
rotation angle θ: 

 𝑇𝑇𝐶𝐶 = 𝛥𝛥β𝐶𝐶𝑅𝑅𝐶𝐶(θ)𝑃𝑃𝑁𝑁 +  ∆𝐿𝐿𝐶𝐶  (14) 

The terms in Eq. 14, with the exception of 𝑃𝑃𝑁𝑁 defined in Eq. 
2, are defined as: 

 𝛥𝛥β𝐶𝐶 =  �
1 0 0
0 cos (β𝐶𝐶) −sin (β𝐶𝐶)
0 sin (β𝐶𝐶) cos (β𝐶𝐶)

� (15) 

 𝑅𝑅𝐶𝐶(θ) = �
cos (θ) −sin (θ) 0
sin (θ) cos (θ) 0

0 0 1
� (16) 

 ∆𝐿𝐿𝐶𝐶 =  �
δCX
δCY

0
� (17) 

By altering φ and θ, simulations can be performed using 
input error constants and testing parameters. This is valuable 
for verification of ballbar results and estimation of positional 
deviation give specific error parameters. 

2.2. Machine Kinematic Derivations 

For the identification of errors in the ballbar tests, calculated 
eccentricity values from the individual tests can be used to 
systematically determine the kinematic error constants. This 
procedure was determined in a similar manner as listed in Ref. 
[7]. 

First, the B radial test will yield eccentricity values within 
the X-Z plane defined as 𝐵𝐵𝑟𝑟𝑟𝑟 and 𝐵𝐵𝑟𝑟𝑟𝑟. Assuming that angular 
deviations are small, any eccentricity seen can be related to the 
eccentricity of the B axis. Thus, the linear deviations in the B 
axis can be calculated: 

 δBX = −𝐵𝐵𝑟𝑟𝑟𝑟 (18) 

 δBZ = −𝐵𝐵𝑟𝑟𝑟𝑟  (19) 
Next, the B axial test will again provide eccentricity values 

within the X-Z plane that are defined as 𝐵𝐵𝑎𝑎𝑎𝑎 and 𝐵𝐵𝑎𝑎𝑎𝑎. These 
values can then be used to determine the angular deviations 
associated with the B axis: 

 γ𝐵𝐵 = sin−1
−𝐵𝐵𝑎𝑎𝑎𝑎
𝑅𝑅𝐵𝐵

 (20) 

 β𝐵𝐵 = sin−1
𝐵𝐵𝑎𝑎𝑎𝑎
𝑅𝑅𝐵𝐵

 (21) 

In the C axial test, eccentricity values 𝐶𝐶𝑎𝑎𝑎𝑎  and 𝐶𝐶𝑎𝑎𝑎𝑎  are 
found in the X-Y plane. Using these values and β𝐵𝐵 calculated 
in Eq. 21, the angular deviations associated with the C axis can 
be calculated as: 

 α𝐵𝐵 = sin−1
𝐶𝐶𝑎𝑎𝑎𝑎
𝑅𝑅𝐶𝐶

 (22) 

 β𝐶𝐶 = sin−1 �−
𝐶𝐶𝑎𝑎𝑎𝑎
𝑅𝑅𝐶𝐶

− sin β𝐵𝐵� (23) 

Finally, in the C radial test, eccentricity values 𝐶𝐶𝑟𝑟𝑟𝑟 and 𝐶𝐶𝑟𝑟𝑟𝑟 
are found in the X-Y plane. Using values calculated previously, 
the linear deviations associated with the C can be calculated: 

 δCX = −δBX − 𝐶𝐶𝑟𝑟𝑟𝑟 − 𝑅𝑅𝑏𝑏 sin α𝐵𝐵 (24) 

 δCY = −𝐶𝐶𝑟𝑟𝑟𝑟 + 𝑅𝑅𝐵𝐵 sinβ𝐶𝐶 + 𝑅𝑅𝐵𝐵 sinβ𝐵𝐵  (25) 
This method can then be used to determine the kinematic 

error constants associated with the rotary axes using 
eccentricity data extracted from the ballbar results.  

3. Results 

In order to validate the simplifications made to construct the 
error constant equations, simulations were performed using the 
derived machine kinematics equations. The B axis tests were 
simulated between 0° and -90° and the C axis tests were 
simulated from 0° to 360°. The simulation input parameters, 
including the table cup position and the kinematic error 
constants are listed in Table 1. 2121 

Table 1: Parameters used in BC simulations 

Input Parameter Value 

𝐿𝐿𝑏𝑏  150 mm 

𝑅𝑅𝐵𝐵  175 mm 

𝑅𝑅𝐶𝐶  100 mm 

δBX  0.010 mm 

δBZ  0.025 mm 

δCX  -0.025 mm 

δCY  -0.010 mm 

α𝐵𝐵   -0.0025° 

β𝐵𝐵  0.005° 

γ𝐵𝐵  0.0025° 

β𝐶𝐶   -0.005° 

 
The results from these simulations can be seen in Figure 4, 

which shows the nominal path of the simulated travel in black 
and the simulated result using the error constants in blue. For 
each of the four tests completed, eccentricities of the resultant 
path were determined by fitting circle segments to each and 
calculating the deviation between the fit and nominal arc 
centers. These resulting values are also displayed in each of the 
corresponding plots in Figure 4. 

In order to evaluate the ability of the identification 
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equations to correctly derive the error parameters from the 
eccentricity values reported in the four ballbar tests, these 
simulated values were then input in Eq. 18 through Eq. 25, 
along with the 𝑅𝑅𝐵𝐵 and 𝑅𝑅𝐶𝐶  values used in the simulation. The 
output error parameters were then reported and compared to the 
originally input values.  

The output error values from this test are shown in Table 2 
along with the deviation from the value input in the original 
simulation. These results show that the error constant 
calculation is able to successfully derive the angular deviations 
from the eccentricity data. The linear deviations in the C are 
also calculated fairly accurately. However, in the calculations 
for the B axis linear deviations, this method appears to be 
limited. This is most likely due to the simple assumption made 
in the first step of calculation.  

In order to mitigate these effects, the machine controller can 
be compensated for the angular deviations and the C axis linear 
deviations. Then if the tests are executed again, the angular 
deviations should no longer have an effect on the outcome of 
the B radial test. To test this, the error constants in the 
simulation were compensated by the calculated error constant 
with the exception of the B axis linear values. The simulation 
was then run once again to determine the eccentricity values. 
These values were then input into the error constant calculation 
to determine the final machine errors. 

Figure 5 shows the result of these final simulations and 
displays the calculated eccentricity values. For each of the four  

Table 2: Output of error constant calculation – initial 

Output Parameters Value Deviation 

δBX  0.0056 mm -0.0044 mm 

δBZ  0.0337 mm 0.0117 mm 

δCX  -0.0206 mm 0.0040 mm 

δCY  -0.0100 mm 0.0000 mm 

α𝐵𝐵   -0.0025° 0.0000° 

β𝐵𝐵  0.0049° -0.0001° 

γ𝐵𝐵  0.00249° -0.00001° 

β𝐶𝐶   -0.0049° 0.0001° 

tests shown, the compensation is shown to reduce the 
concentricity error of the resultant path. For both of the axial 
tests, the error is reduced almost completely. Both radial tests 
still show residual errors, but both have been reduced in 
magnitude, with the exception of the 𝐵𝐵𝑟𝑟𝑟𝑟 error. 

These new eccentricity values were then input into the error 
constant calculation. Table 3 displays the output error constants 
from these calculations. The angular deviations calculated from 
the simulation all show negligible error, which agrees with the 
compensation added from the previous test. While some 
compensation was added for the linear deviations of the C axis, 
deviations did still exist. In the second simulation, these errors 
were correctly identified. Most importantly, the imposed linear 
deviations on the B axis have now been correctly identified, 
resulting in a fully identified system. These results have shown 
that by implementing the proper compensation procedure, the 
error detection algorithm is capable of correctly identifying 
kinematic errors of a BC-style 5-axis machine tool. 

4. Discussion 

For further investigation, this error measurement procedure  
was implemented on a BC-style 5-axis machine (Mazak VCU-
500) shown in Figure 6. For simplicity of controlling the 
process within the limits of this machine, measurement limits 
of all four tests were changed. In B axis tests, the range of φ 
was set to begin at 35° and end at -55°. For C axis tests, the  

Table 3: Output of error constant calculation - final 

Output Parameters Value Deviation 

δBX  0.0100 mm 0.0000 mm 

δBZ  0.0248 mm -0.0002 mm 

δCX  0.0039 mm -0.0001 mm 

δCY  0.0000 mm 0.0000 mm 

α𝐵𝐵   0.0000° 0.0000° 

β𝐵𝐵  0.00009° 0.00009° 

γ𝐵𝐵  0.0000° 0.0000° 

β𝐶𝐶   0.0000° 0.0000° 

Figure 5: Simulation results with compensated error constants (magnified by 
1000x) 

B Axial Test 
Baz = -0.0003, Bax = 0.0000 

B Radial Test 
Brz = -0.02483, Brx = -0.0100 

C Radial Test 
Crx = -0.0139, Cry = 0.0000 

C Axial Test 
Cax = 0.0000, Cay = 0.0000 

B Axial Test 
Baz = 0.0153, Bax = -.0076  

B Radial Test 
Brz = -0.0337, Brx = -.0056  

C Radial Test 
Crx = 0.0226, Cry = 0.0100 

C Axial Test 
Cax = -0.0044, Cay = 0.0000 

Figure 4: Simulation results with input parameters with deviations (magnified 
by 1000x) 
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range of θ was set to begin at 110° and end at 260°. However, 
changing the limits of the test should not affect the results as 
these are still viable ranges from which eccentricity values can 
be calculated.  

A Renishaw QC20-W ballbar was used in the 
measurements. The ballbar was calibrated between each test 
with a measurement uncertainty of 0.1 μm, was run at a 
nominal feed rate of 1000 mm/min, and captured data at a 
sampling rate of 26.3 Hz. Using the nominal locations for the 
center of rotation for both the B and C axes which are provided 
in parameters of the machine controller, the table cup was 
positioned in X along the B rotational axis. The table cup 
location was then recorded and 𝑅𝑅𝐵𝐵 and 𝑅𝑅𝐶𝐶 were calculated to 
be 178.250 mm and 97.847 mm, respectively. 𝐿𝐿𝑏𝑏, the nominal 
ballbar length, used for these tests was 150 mm.  

Eccentricity values for each test were calculated and plots 
for each were saved for comparison. Eccentricity results were 
input into the kinematic error constant calculations. For the 
sake of verification, the derived error constants and testing 
parameters were also input for simulation. The resulting 
simulated paths were then compared to the measured plots to 
ensure agreement between the two systems. 
Table 4 shows the derived error constants for this set of 
machine tool tests. These constants show significant error in 
the linear and angular deviations of both rotary axes. If left 
uncompensated, these could cause significant deviations in a 
simultaneous 5-axis machining operation. Across a table 
diameter of 500 mm, an angular deviation of 0.0127° could 
result in a positioning error of up to 0.1108 mm. Combined 
with the linear deviations seen, the expected error could surpass 
0.14 mm, which for high precision components typically 
produced on a 5-axis machining center is unacceptable. 

Table 4: Derived error constants from machine tool test 

Input Parameter Value 

δBX  0.0185 mm 

δBZ  0.0244 mm 

δCX  -0.0529 mm 

δCY  -0.0325 mm 

α𝐵𝐵   -0.0040° 

β𝐵𝐵  0.0127° 

γ𝐵𝐵  -0.0003° 

β𝐶𝐶   -0.0108° 

However, by directly comparing the measurement data to 
the simulation, significant differences can be seen in the paths, 
as shown in Figure 7. By inspection, the measured deviation 
does not necessarily follow the expected circular arc. Because 
of this, the fit performed and the derived arc centers may not 
accurately represent the plot. In both radial measurements, the 
form observed is only slightly circular. Thus, the eccentricity 
values and the derived error constants may not necessarily 
accurately depict the phenomena observed. This can be seen in 
the simulations of each of these tests. For both of the radial 
tests, the simulation does not appear to closely follow the 
measured results. However, in the axial tests the simulations do 
appear to follow the measured results. 

If the measurement noise and form error were to be reduced, 
these tests show that the kinematic model and the derivation of 
error constants appear to be consistent with measurements 
acquired from tests. Proprietary control of machine parameters 
made it not possible to compensate the rotary axes in the 

Figure 7: Comparison of ballbar measurements to simulations using the 
derived error constants. (a.) C axial (b,) C radial (c.) B axial (d.) B radial 
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Figure 6: B radial test within a BC style 5-axis machine tool 
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present work. Future work would be include verification of the 
accuracy of these derived parameters through access to 
machine parameters or execution on a compatible controller. 
Further, these tests could be verified using artificial 
compensation within the programed path.  

5. Conclusions 

In this work, kinematic equations of motion for a BC-style 
machine tool were derived while incorporating the 8 distinct 
kinematic error constants associated with a 5-axis machine 
tool. A method was then presented to derive these kinematic 
error constants from eccentricity values obtained using 3-axis 
simultaneous tests for table-table style 5-axis machine tools 
using a double ballbar. To validate this method, error constants 
were input into the kinematic simulation and eccentricity 
values were then output from the simulation, and error 
constants were derived and compared to the input values. It was 
shown that using the procedure, error constants can be correctly 
derived and compensated. This method was then implemented 
on a BC-style machine tool and error constants derived. Future 
work will involve compensation of these errors and 
investigation of the effect of sensor noise and form error on the 
derivation of accurate eccentricity values. 
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