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Abstract— This paper considers optimization problems of
energy demand networks including aggregators and investigates
strategic behavior of the aggregators. The participants of the
network are a utility company, who plays a role of energy supply
source, aggregators and a large number of consumers. We
suppose that the network will be optimized by price response
based or, in other words, market based optimization processes.
We also suppose that the aggregator has a strategic parameter
in its cost function and, by choosing the parameter strategically,
the aggregator will try to pursue its own benefit. This general
problem formulation will apply to a specific problem setting,
where the aggregator possess battery storage with different
specifications: The one is high-performance and expensive and
the other is low-performance and cheap. The aggregator will
choose total capacity of storage to be installed and a ratio of
high-performance storage to low-performance storage as the
strategic parameters and try to increase its own benefit. By
using numerical examples, we show that the strategic decision
making by the aggregator could provide useful insights in
qualitative analysis of energy demand networks.

I. INTRODUCTION

In recent years, researches on decentralized control archi-
tectures based on price responses by the participants of the
power supply/demand networks are increasing because of the
liberalization of energy market and increasing share of dis-
tributed energy sources such as renewable energy [1], [2], [3],
[4], [5], [6]. Designing of market based control associated
with consumers may include significant challenges because
the network includes a large number of consumers and each
consumer only has negligible ability to affect the price.
One promising approach is to consider a hierarchical market
architecture and introduce aggregators, who are new entities
in the electricity market which act as mediators between
the energy supply sources and consumers [7], [8], [9]. The
aggregators are expected to solve the scalability issue of the
network and make the negotiation power of demand side
large.

There seems to be a few works that try to clarify the
fundamental role the aggregators play in the market from
economic point of view or quantitatively evaluate the impact
of the aggregators. For example, in economics literature [10],
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[11], impact or power of a market participant might be eval-
uated by market power. Market power indicates the ability
to alter profitably price away from competitive levels [10].

Motivated by the concept of market power, in [12], the
authors have formulated the three-layered, including the
utility company, multiple aggregators and many consumers,
price response based optimization problem and proposed
a specific market power index for the aggregators. In this
problem, the aggregator is supposed to be a strategic agent
and will try to pursue the benefit as well as market power.
Specifically, the aggregator has a design or, in other words,
strategic parameter in its cost function and, by strategically
choosing the parameter, will try to increase its own benefit.
The strategic decision making by the aggregator may provide
useful insights in qualitative analysis of the large energy
demand network.

In the present paper, the three-layered price response based
optimization problem formulated in [12] will apply to the
specific setting. We suppose that the aggregator possesses
battery storage with different specifications: The one is high-
performance and expensive and the other is low-performance
and cheap. The aggregator will strategically decide the total
capacity of storage to be installed and the ratio of high-
performance storage to low-performance storage and try to
increase its own benefit. The strategic decision making by the
aggregator may provide useful insights in qualitative analysis
of energy demand networks as we will see in the numerical
example.

The remainder of the paper is organized as follows.
Section II formulates the three-layered price response based
optimization problem in which the aggregator possess bat-
tery storage. Section III briefly reviews the price response
based optimization processes proposed in [12], where the
aggregators can contribute to mitigate a scalability issue
in solving a large size optimization problem. A numerical
example in Section IV considers strategic decision making
of the aggregator, and the aggregator will try to pursue the
additional benefit by choosing a design parameter in its cost
function. Section V gives concluding remarks.

II. ENERGY DEMAND NETWORK WITH AGGREGATORS

Fig. 1 illustrates a concept of future energy market where
several generation companies and aggregators are connected
to each other, and many consumers are associated with each
aggregator. The utility company may play a coordination
role for energy transactions between the multiple generation
companies and aggregators. Although the energy demand
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market depicted in Fig. 1 may be realistic enough, a sim-
plified setting as shown in Fig. 2 is still enough for the main
purpose of this paper such as analyze and clarify an impact
of strategic behavior of the aggregators who have batteries.

Fig. 1: A conceptual model of energy market.

Fig. 2 illustrates a model of energy demand network
including aggregators. In Fig. 2, a single utility company
play a role of energy supply source. The utility company
is connected to the wholesale market, and multiple aggre-
gators are connected to the utility company. Consumers are
connected to the utility company through the aggregators.
This paper considers the energy demand network depicted
in Fig. 2 and investigates market based optimization through
pricing with the supply/demand balancing constraints. Under
this optimization process, our main interest is on strategic
behavior of the aggregators.

We suppose that the time horizon for optimization is
divided into P time-slots. If one considers a day-ahead
market, the time horizon may be 24 hours and P could be 48
that corresponds to 30 minutes time-slot. If one is interested
in a short term energy scheduling and considers minute-by-
minute optimization horizon, each time-slot could be a few
seconds.

A. The utility company

The utility company purchases electricity from the whole-
sale market directly and sells it to the aggregators on price
p0 ∈ RP . The generation cost generally follows a convex
function [13]. In this paper, we consider the following
quadratic cost function:

J]0(u0) = uT
0Q0u0 +R0u0 + C0,

where u0 ∈ RP is the amount of electricity purchased
by the utility company. For a given price p0, the benefit-
maximization problem of the utility company is formulated

Fig. 2: A model of energy demand network.

as:
max
u0

J]0(u0) + pT
0 u0. (1)

B. Aggregators

Aggregators Ai, i ∈ N = {1, . . . , n} purchase electricity
on price p0 from the utility company and sell it to the
consumers on price pi ∈ RP . We assume that the opera-
tional cost of the aggregator is also a convex function with
respect to the purchased amount of electricity. Especially,
we suppose that the cost function of aggregator Ai can be
expressed as:

Ji(ui) = uT
i Qiui +Riui + Ci, (2)

where ui ∈ RP is the amount of electricity purchased by
aggregator Ai.

In addition to aggregating the consumers’ demands, an
aggregator has batteries and operates them strategically. The
impacts of having batteries by a strategical aggregator are
discussed later. We assume that an aggregator can choose
from two types of batteries: Expensive ones that have high
performance and cheap ones that have low performance.
Both types of batteries have similar dynamics, but parameters
are different. The dynamics of the expensive batteries are
follows:

xibH [t+ 1] = ηiHxibH [t] +
uibH [t]
HiH

, (3)

where xibH [t] is state of charge of the high-performance
battery at time t, ηiH is the value which indicates the
volatility of the battery, HiH is the capacity of the battery,
and uibH [t] is the energy charged into the battery at time t.
Likewise, the dynamics of the low-performance batteries are
follows:

xibL[t+ 1] = ηiLxibL[t] +
uibL[t]
HiL

, (4)

where the parameters are analogous to the high-performance
battery. In this research, we assume that an aggregator has
these two batteries, and tries to find the optimal ratio of
having these two types of batteries. In reality, batteries have
physical constraints, but for simplicity, we do not consider
inequality constraints in this research.

The cost functions of the high-performance and low-
performance battery are as follows:

J]ibH(uibH) =
P∑
t=1

{− zi1
H2
iH

u2
ibH [t]− zi2(xibH [t]− xrefibH)2}

−HiHη
2
iHzi3, (5)

J]ibL(uibL) =
P∑
t=1

{− zi1
H2
iL

u2
ibL[t]− zi2(xibL[t]− xrefibL)2}

−HiLη
2
iLzi3, (6)

where
HiH = αiHiT , HiL = (1− αi)HiT . (7)
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xrefibH and xrefibL is the desired set-point of state of charge
and zi1, zi2, zi3 are weighting coefficients, respectively.
The first term of right-hand side represents the cost of fast
charging and discharging. This is proportional to quadratic
of charging/discharging amount. In order to normalize the
scale with respect to battery capacity, the penalty is divided
by quadratic of the capacity. The second term is the penalty
to the deviation from the desired set-point. The penalty is
proportional to quadratic of the deviation. The third term
represents the initial cost of installing a battery. We assume
that the price of battery is proportional to its capacity and
quadratic of its quality, which is represented by the volatility.

Strategic aggregators choose the total capacity of batteries
HiT and ratio of high-quality batteries αi when they install
the batteries. We define these parameters as strategic param-
eter:

ri = {HiT , αi}. (8)

For given prices p0 and pi, the benefit-maximization
problem of aggregator Ai is formulated as:

max
ui,uibH ,uibL

Ji(ui) + J]ibH(ri;uibH) + J]ibL(ri;uibL)

+ pT
i (ui − uibH − uibL)− pT

0 ui. (9)

By defining the total utility function of aggregator Ai as

J]i (ri;ui, uibH , uibL)

= Ji(ui) + J]ibH(ri;uibH) + J]ibL(ri;uibL), (10)

the benefit-maximiztion problem (9) is written as

max
ui,uibH ,uibL

J]i (ri;ui, uibH , uibL)

+ pT
i (ui − uibH − uibL)− pT

0 ui. (11)

C. Consumers

Consumers Aij , i ∈ N , j ∈ Ni = {1, . . . , ni} purchase
electricity from aggregator Ai on price pi and consume it
by using appliances. The cost function of consumer Aij is
convex and can be expressed in a quadratic form [4], [14].
Examples of the explicit representation of the cost function
including both of the dynamic and static appliances can be
found in [15]. We use

J]ij(uij) = uT
ijQijuij +Rijuij + Cij ,

as the cost function of consumer Aij , where uij ∈ RP is the
amount of electricity purchased and consumed by consumer
Aij . For a given price pi, the benefit-maximization problem
of consumer Aij is formulated as:

max
uij

J]ij(uij)− p
T
i uij . (12)

D. Social Welfare Maximization

The market is designed so that the social welfare will be
maximized through pricing. Specific optimization processes
will be considered in the next Section III. We define the
social welfare as the sum of the cost functions of the utility
company, aggregators and consumers. We also consider

the linear constraints which represent the supply/demand
balance.

The social welfare maximization problem is expressed as:

max
u0

ui,uibH ,uibL i∈N
uij j∈Ni

J]0(u0) +
∑
i∈N

J]i (ri;ui, uibH , uibL)

+
∑
i∈N
j∈Ni

J]ij(uij) (13a)

subject to u0 =
∑
i∈N

ui (13b)

ui = uibH + uibL +
∑
j∈Ni

uij i ∈ N.

(13c)

We denote by u∗0, u∗i , u∗ibH , u∗ibL and u∗ij the optimal solution
to (13).

We note that the cost function (13a) of the social welfare
maximization problem can also be recognized as the sum of
the cost functions of the benefit maximization problems in
(1), (9) and (12), since the terms depend on the prices will be
cancelled-out under the supply/demand balance constraints in
(13b) and (13c). The benefit-maximization problems in (1),
(9) and (12) are selfish and do not concern supply/demand
balancing. Supply/demand balance should be enforced by an
appropriate pricing.

III. OPTIMIZATION OF ENERGY DEMAND NETWORKS

This section considers market based welfare maximization
through pricing. The aggregators are expected to moderate
difficulties arisen in a large scale energy demand network
optimization. Optimization can be utilized in a decentralized
way by using dual decomposition. We propose an optimiza-
tion process unitizing information exchange or aggregation
by the aggregators, which is based on the well-known method
of supply function bidding.

A. Dual Decomposition

Let us consider the dual problem of (13) given as:

min
λ0

λi i∈N

max
u0

ui,uibH ,uibL i∈N
uij j∈Ni

J]0(u0)

+
∑
i∈N
j∈Ni

J]ij(uij) + λT
0 (u0 −

∑
i∈N

ui)

+
∑
i∈N

J]i (ri;ui, uibH , uibL)

+
∑
i∈N
{λT

i (ui − uibH − uibL −
∑
j∈Ni

uij)},

(14)

where λ0 ∈ RP and λi ∈ RP denote Lagrange multipliers.
It is known in optimization literature [16] that Lagrange

multipliers can be interpreted as the shadow prices. Let λ∗0
and λ∗i denote the dual optimal. By using λ∗0 and λ∗i , the so-
cial welfare maximization problem (13) can be decomposed

446



into the sub-problems of the utility company, aggregators and
consumers. The utility company can maximize the benefit
by solving (1) with p0 = λ∗0 and obtain u∗0. Similarly, the
aggregator Ai can maximize the benefit by solving (9) with
p0 = λ∗0 and pi = λ∗i and obtain u∗i , u∗ibH , u∗ibL and
consumer Aij can maximize the benefit by solving (12) with
pi = λ∗i and obtain u∗ij .

Then the dual problem (14) can be decomposed to the
benefit of each market participant as follows:

Utility company A0 : max
u0

J]0(u0) + pT
0 u0 (15)

Aggregator Ai : max
ui,uibH ,uibL

J]i (ri;ui, uibH , uibL)

− p0ui

+ pT
i (ui − uibH − uibL)

(16)

Consumer Aij : max
uij

J]ij(uij)− p
T
i uij (17)

B. Information Exchange via Aggregators

We propose an information exchange or aggregation pro-
cedure by the aggregators which moderate the amount of
information exchange as well as computational burden. In
this procedure, the aggregators will define the cost function
of their own local sub-network and submit it to the utility
company.

Consumer Aij submits the cost function J]ij to aggregator
Ai. When aggregator Ai gathered the cost functions of all the
consumer Aij , j ∈ Ni, the aggregator determines the utility
function of the sub-network associated with aggregator Ai.
We define the cost function J]]i (·) of the sub-network as:

J]]i (ri;ui) = Ji(ui)

+ max
uibH ,uibL
uij j∈Ni

J]ibH(ri;uibH) + J]ibL(ri;uibL)

+
∑
j∈Ni

J]ij(uij) (18a)

subject to ui = uibH + uibL +
∑
j∈Ni

uij . (18b)

The function J]]i (ri;ui) decides the optimal allocation of
energy when the purchased amount ui by aggregator Ai is
specified. For general convex functions Ji and J]ij , it may not
be easy to obtain an explicit representation of J]]i . However,
in our problem settings, the cost function of the sub-network
is also given in a quadratic form as:

J]]i (ri;ui) = uT
i Q

]]
i ui +R]]i ui + C]]i ,

and the coefficients Q]]i , R]]i and C]]i will be determined
by algebraic manipulations considering the Karush-Kuhn-
Tucker (KKT) conditions for (18).

The cost function J]]i (·) of the sub-network will be sub-
mitted by aggregator Ai to the utility company. The utility
company determines the optimal price p0 = λ∗0 by using the
submitted cost functions. The social welfare maximization

problem (13) can be rewritten as:

max
u0

ui i∈N
J]0(u0) +

∑
i∈N

J]]i (ri;ui) (19a)

subject to u0 =
∑
i∈N

ui. (19b)

The dual problem of (19) can be expressed as:

min
λ0

max
u0

ui i∈N
J]0(u0) +

∑
i∈N

J]i (ui)− λ
T
0 (−u0 +

∑
i∈N

ui). (20)

By solving this problem, the utility company decides the
optimal price p0 = λ∗0 and broadcast it to the aggregators.
The utility company can maximize the benefit by solving
(1) with p0 = λ∗0 and obtain u∗0. The aggregator Ai can
maximize the benefit by solving

max
ui i∈N

J]]i (ri;ui)− pT
0 ui, (21)

with p0 = λ∗0 and obtain u∗i .
Another task of aggregator Ai is to determine the price

pi for the sub-network. Once u∗i is obtained as a solution to
(21), aggregator Ai can determine the optimal price pi = λ∗i
by solving the dual problem of

max
uij j∈Ni

J]ibH(uibH) + J]ibL(uibL) +
∑
j∈Ni

J]ij(uij)

subject to u∗i = uibH + uibL +
∑
j∈Ni

uij ,

that is

min
λi

max
uij

i∈N j∈Ni

J]ibH(uibH) + J]ibL(uibL) +
∑
j∈Ni

J]ij(uij)

−λT
i (−u∗i + uibH + uibL +

∑
j∈Ni

uij).

(22)

This process also determines the amount of charge/discharge
of batteries owned by aggregator Ai.

Finally, aggregator Ai broadcasts the optimal price pi =
λ∗i to the consumers, and consumer Aij can maximize the
benefit by solving (12) with pi = λ∗i and obtain u∗ij .

Fig. 3: Exchanges of information.

Fig. 3 illustrates the information exchange according to
the proposed optimization process. By comparing (14) and
(20), it can be seen that: the number of cost functions which
should be gathered to the utility company is reduced to 1+n
from 1 + n +

∑
i∈N ni; the dimension of dual variable is

also reduced to P from (1 + n)P . The remaining tasks are
equitably shared by n aggregators and solved in (18) and
(22) in a decentralized manner. In addition, the proposed
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optimization process does not require any communications
between the utility company and aggregators/consumers due
to iterative computations, thus it may be applicable to a
short term energy scheduling problem. Other optimization
processes in which the aggregators moderate the tasks of
the utility company has been considered [8], [9]. In [8], a
hierarchical optimization structure combines supply function
bidding and tâtonnement process. In [9], a bidding of pa-
rameters which locally approximate the supply function was
used to apply the Newton method for price updating rule,
which accelerates the convergence of tâtonnement process.

IV. NUMERICAL EXAMPLES

We suppose that the energy demand network will be
optimized through price response based optimization prosess
described in Section III, while the aggregator Ai will choose
the parameter HiT , the total capacity of the battery storage,
and αi, the ratio of the capacity of the high-performance
storage. In this section, we indicate the results of numerical
examples and show that at some point there exists the optimal
parameter that maximizes the benefit of aggregator.

A. Results

In this example, we have one utility company, three aggre-
gators, and ten consumers for each aggregator. We assume
only aggregator A1 has batteries. A1 seeks optimal ratio
of high-performance battery and low-performance battery,
which is represented by αi, for variety of total battery
capacities HiT . Fig. 4 shows the 3D-plot of the benefit
of aggregator A1: J]i (ri;ui, uibH , uibL) +pT

i (ui − uibH −
uibL)−p0ui. Since we do not use inequality constraints, we
set zi1 = 50000, zi2 = 50000 and zi3 = 100 in order to
make xibH and xibL in realistic value.

Figs. 5, 6, 7, 8 indicate the benefit when HiT is fixed to
8000, 10000, 13000, 20000, respectively. These figures are
the cut-planes of Fig. 4.

Fig. 4: Profit of aggregator

The results of Figs. 5-8 show that, with the appropri-
ate ratio of high-performance storages, the aggregator can
maximize its benefit. We can see that with different HiT s,
aggregator has to choose different αi in order to maximize

Fig. 5: HiT = 8000

Fig. 6: HiT = 10000

Fig. 7: HiT = 13000

benefit. The highest point of the benefit is achieved with the
combination of parameters αi = 0, HiT = 7200, which is
the best strategy of the aggregator in this numerical example.

Fig. 9 shows the 3D-plot of the social welfare of the energy
demand network in (13).

From Fig. 9, it can be seen that the some combination of
HiT and αi can actually increase the social welfare of the
energy demand network. This means that the network or, in
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Fig. 8: HiT = 20000

Fig. 9: Social welfare

other word, the society may accept strategic behavior of the
aggregator Ai. However, the combination of HiT and αi that
maximize the social welfare may not necessarily maximize
aggregator Ai’s personal benefit, as we can see in Fig. 4. A
strategic aggregator Ai may try to increase its own benefit
not the social welfare, and it is not a desired behavior for
the other participants in the network. From the market or
society design point of view, it may be important to align
the maximization of aggregator Ai’s personal benefit and the
social welfare. If it was realized, the society should accept the
strategic behavior of aggregator Ai. This problem, aligning
the maximization of the aggregator’s personal benefit and
the social welfare, may be formulated as the problem of
mechanism design [17], [15], [18], where a suitable transfer
cost or, in other word, incentive should be designed to
alter aggregator’s decision making so as to align selfish
optimization and social welfare optimization. An extension
of the current work in this direction is under investigation.

V. CONCLUSIONS

This paper considered optimization problems of the energy
demand networks including aggregators and investigated
strategic behavior of the aggregators. We formulated the en-
ergy demand networks including aggregators and considered

optimization process through pricing. The aggregator acts as
intermediate between the utility company and a large number
of consumers and is expected to moderate tasks of the utility
company to solve a large scale optimization problem. We
also formulated the model of battery that is possessed by
the aggregators. With the numerical example, we showed
that the best strategy of aggregators does not maximize the
social benefit. Therefore, in this network, the society has
to accept the selfish behavior of the aggregator, or design an
incentive that makes the aggregator’s best strategy maximizes
the social welfare.
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