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Abstract— We consider a game in which one player (the
principal) seeks to incentivize another player (the agent) to
exert effort that is costly to the agent. Any effort exerted leads
to an outcome that is a stochastic function of the effort. The
amount of effort exerted by the agent is private information for
the agent and the principal observes only the outcome; thus, the
agent can misreport his effort to gain higher payment. Further,
the cost function of the agent is also unknown to the principal
and the agent can also misreport a higher cost function to gain
higher payment for the same effort. We pose the problem as
one of contract design when both adverse selection and moral
hazard are present. We show that if the principal and agent
interact only finitely many times, it is always possible for the
agent to lie due to the asymmetric information pattern and
claim a higher payment than if he were unable to lie. However,
if the principal and agent interact infinitely many times, then
the principal can utilize the observed outcomes to update the
contract in a manner that reveals the private cost function of
the agent and hence leads to the agent not being able to derive
any rent. The result can also be interpreted as saying that the
agent is unable to keep his information private if he interacts
with the principal sufficiently often.

I. INTRODUCTION

Many problems in smart infrastructure networks can be
expressed in the following form. A system operator wishes
to incentivize one or multiple users to expend costly effort
in order to take an action that is aligned with the operator
(or the system) performance, but may not optimize the utility
of the user directly. Each user is associated with an intrinsic
parameter that determines both the cost that he incurs to
expend a given effort and the quality of the output that
results from a given effort that he expends. Since the intrinsic
parameter as well as the amount of effort expended are
unknown to the operator, the user may try to expend the
least effort possible and falsify any reports of his parameter
upon being asked. Designing a suitable incentive scheme for
such agents has been considered in the literature with various
assumptions and motivated by different application systems
(see, e.g., [1]-[6] and the references therein).

Among the many possible applications to motivate the
problem, we point out two. The first is that of the crowd-
sensing or participatory sensing (see, e.g., [1]) in which an
operator employs multiple sensors to generate and trans-
mit measurements about an unknown value and uses these
measurements to estimate the unknown value. The sensors
expend energy or time to take these measurements. However,

This work is partly supported by the National Science Foundation through
Awards CCF-1617889, CNS-1544724, ECCS-1550016, and CNS-1739295

Parv Vekitasubramaniam is with the Department of Electrical Engineer-
ing, Lehigh University, PA, USA pav309@lehigh.edu

Vijay Gupta is with the Department of Electrical Engineering, University
of Notre Dam, IN, USA vgupta2@nd.edu

sensors may not directly benefit from ensuring that the opera-
tor generates an accurate estimate. To compensate the sensors
for their effort cost, the sensors must be rewarded based
on the accuracy of the information they provide. However,
both the accuracy of the measurement and the effort cost are
usually an increasing function of the intrinsic quality of the
sensor, and both this intrinsic quality as well as the level of
effort exerted by the sensors are private information for the
sensors. Thus, the sensors have an incentive to expend little
effort, yet misreport their effort and intrinsic quality in order
to receive higher compensation [7].

The second application is that of demand response, in
which an aggregator incentivizes customers to curtail their
power usage in response to high peaks in demand or increase
in transmission congestion increases [8]-[11]. The Federal
Energy Regulatory Commission (FERC) defines demand
response as the change in electric usage by end-use cus-
tomers from their normal consumption patterns in response to
changes in the price of electricity or any other incentive [12].
The effort put in by each customer puts to reduce her load is
costly since it causes her discomfort. Each customer may be
associated with an internal flexibility that characterizes the
effort cost. Further, the amount of effort expended is private
knowledge for each customer and the load reduction is only
a noisy reflection of this amount of effort due to the effect
of variables such as external temperature, actions of other
users, and intrinsic characteristics of the customer himself.
To incentivize the customer to put in ample effort even
though it is costly, the aggregator must pay each customer
proportional to the effort that the customer puts in. However,
each customer can misreport his cost function and the amount
of effort put in to gain more financial reward for the same
load reduction [13]-[17].

Intuitively, designing an appropriate contract in this frame-
work is difficult due to two reasons: (i) the agents do not
benefit directly from taking the actions that the operator
desires them to take, and (ii) the operator does not have
access to either the intrinsic parameters or the amount of
effort expended by the agent. The operator needs to design
incentive mechanisms that mitigate both moral hazard (i.e.,
incentivizing desired actions by the agents when effort is
costly and not observed by the principal, see, e.g., [18,
Chapter 4]) and adverse selection (i.e., incentivizing agents
to report their intrinsic parameters or ‘types’ truthfully,
see, e.g., [18, Chapter 3]). While an extensive literature in
contract theory (see, e.g., [1], [18], [19] and the references
therein for an overview of the subject) has focused on
resolving either moral hazard or adverse selection separately,
or even moral hazard followed by adverse selection [20]—



[23], the problem we consider features adverse selection fol-
lowed by moral hazard. This problem has received much less
attention in the literature with the few existing examples [18,
Chapter 7.2] or [24] considering a static setting in which the
principal and the agent interact only once. In a static setting,
given that the operator does not have additional measure-
ments and must rely solely on the information transmitted
by the sensor, he must rely on some form of verification of
the outcomes generated by the agents to constrain the agents
not to expend the least possible effort and gain compensation
corresponding to the highest effort cost function. It is known
that verification can mitigate the information asymmetries
of moral hazard and adverse selection (see e.g., [25]-[27],
in which verification is similarly proposed) and many of
the recent works have considered the problem with noisy,
delayed, or infrequent verification [20]-[23], [28].

As against most of these works, we consider the problem
when the principal and the agents interact repeatedly. Thus,
our problem features adverse selection followed by moral
hazard in a repeated setting. The repeated setting intro-
duces new challenges since agents may adopt time-varying
strategies and the operator may introduce a time-varying
contract. If verification of the agent type or effort is done at
every time step, one can devise a reputation-based scheme
in which agents are paid based on both current outputs
and reputations that summarize past interactions with the
operator. Indeed, using reputation for mitigating information
asymmetry, particularly in repeated games, is a popular
strategy in the literature, see e.g. [29]-[35]. However, we do
not assume verification of the agent type or effort at every
time step. Instead, we use a data-driven approach in which
we use only the history of the observed outputs to update
the contract offered by the operator. With only the observed
outputs, it is not immediate if the operator can even limit,
let alone eliminate, the incentive for the agent to either lie or
not put in the desired effort. Perhaps somewhat surprisingly,
we show that in the limit of infinitely many interactions, the
operator can indeed do so. For a finite number of interactions,
we characterize the rent that an agent can derive from the
absence of verification. The basic insight on which the proofs
are based is that the history of outputs provides knowledge of
the ‘quality’ of the work that an agent does, and hence limits
the amount of falsification he can introduce. However, since
the agent can always degrade his effort, care must be taken to
use this knowledge in identifying the type or the parameters
of the agent correctly. The result can also be interpreted as
a privacy result in that it says that private information from
an agent will always be revealed to the operator in the limit
of infinitely many interactions (unless the agent is willing to
suffer an infinite amount of loss).

The paper is organized as follows. The mathematical
formulation of the leader-follower game is described in
Section II. The one-shot version of the game is studied in
Section III . The dynamic game is studied in Section IV with
particular emphasis on the asymptotic behavior. A special
case of the problem, when quality of work is not impacted
by adverse selection, is showcased in Section V where it is

shown that rent cannot be eliminated entirely. Finally, some
concluding remarks are presented in Section VI.

II. MATHEMATICAL FORMULATION

We consider a repeated leader follower game played
between a risk-neutral principal and a risk-neutral agent
whose attributes are described in the following.

Principal The principal is the leader whose action is to issue
a contract defined by a function w : R — R, where w(x)
is the payment offered to the agent for his effort when the
observable output is given by x € R. In a single instance of
the game, the principal’s utility, should the agent accept the
contract, is measured by a function S : R — R where S(x)
is the utility from the observable output. The payoff for the
principal is then given by S(x) — w(z) should the contract
be accepted by the agent, and 0 if rejected.

Agent The agent is the follower who responds to the issued
contract, by accepting or rejecting it, and if accepted, takes an
effort a € A, a compact subset of R™. Prior to the start of the
repeated game, the agent obtains private information defined
by a type variable § € © which influences his utility and the
produced output. More specifically, the output X is a random
variable given by the function gx : A x © x R — R, where
gx(a,0, N) depends on, aside from the effort and type, a
random noise variable N distributed according to pdf gy
The payoff for the agent, should he accept the contract, is
given by w(z) — h(a,6) where h : A x © — R is the cost
incurred as a function of the agent’s type and effort.

Game Formulation The game is played over several time
steps, and our work primarily looks into the equilibria as the
time horizon approaches infinity. The format of the multi-
period game is described below:

1) t = 0: Agent obtains value of 6. Let k = 0.

2) t = 3k + 1: Principal issues a contract defined by a

function w(+).

3) t = 3k + 2: The agent chooses to accept or reject the
contract. If he accepts, exerts an effort a; which could
be the realization of a random variable A,.

4) t = 3k + 3: If contract wy(-) was accepted, the effort
Ay, results in an output Xy = gx(Ag, 0, Ni) where the
random noise variables { N;} are independent and iden-
tically distributed according to g,y. Based on the output,
the principal and agent receive their respective payoffs
Uzlf = S(X;c) — w(Xk) and U(]; = w(Xk) — h(Ak79).
If the contract were rejected, both parties receive zero
payoff.

5) k =k +1 and repeat steps 2-4 if k < K.

K is the horizon of the game. The case of K = 1 is the
single step game. K is finite for a finite horizon game and
— oo for an infinite horizon game.

The principal is not privy to the agent’s private information
# except through a prior distribution py over ©, which for
the purposes of this work is assumed to be finite. The
objective of the principal is to design a sequence of contracts
w1 (+),wa(+),- - to maximize the expected cumulative payoff

E (X Up)

Uy = —=h 2o (1)



where the expectation is over the noise, action and type
variables. For an agent of type 6, the objective is to choose
acceptance and rejection of each contract, and the conse-
quent action Ay upon acceptance, such that the conditional
expected cumulative payoff is maximized:

E (32, Us16)
K

In this work, we study the achievable equilibria in this
problem, such that both principal and agent satisfy their
individual rationality conditions. In the subsequent sections,
we investigate different facets of this problem by making
specific assumptions on the output, cost and utility functions
as follows:

e S(x)=1x

. h(a,0) =%

o Xy = Ap + Q(0) Ny, where Ny ~ N(0,0?) and Q(-)

is an increasing function

Uy = 2

These assumptions, while specific to enable explicit charac-
terization of equilibria, are representative of key qualitative
aspects of the problem namely, the principal’s utility is an
increasing function of the produced output, the agent’s cost
is an increasing function of the effort, and a decreasing
function of the type variable which inversely relates to
quality. Consequently, higher the value of 6, higher the noise
variance exemplifying a lower quality of produced output.

Under these assumptions, in Section III we derive the
equilibrium strategies for the players and show that in
the single step game, some agents can extract rent (gain
additional reward by exploiting the principal’s incomplete
information) and it is impossible for the principal to eliminate
the loss due to the adverse selection problem. Although we
present the result and the proof for a single step game, it can
readily be extended to any finite horizon game. In Section
IV, we study the infinite horizon version of the game, and
demonstrate that as long as the produced output is impacted
by the agent’s type, the principal can in the long run learn
the type through observable outputs — a noisy verification
process — and incentivize the agent to exert the desired effort
at asymptotically negligible rent. If, however, the quality
of work is independent of type, in other words Q(-) is
independent of 6, it is possible for an agent of a higher type
to impersonate one of a lower type without being detected
and continue to extract infinite rent asymptotically.

III. ONE SHOT CONTRACT

The one shot game between the principal and agent can be
formulated using standard individual rationality and incentive
compatibility constraints as:

max,,(.) E(S(X) — w(X))
P s.t. IC: E(w(X)|0) — h(a*,0) >0
where IR: a* = arg max, E(w(X)|0) — h(a*,0)
Since © is finite, without loss of generality we assume
O = {91,92,"' ,QM} where 91 < 92 < 9]\4.
Contracts in general can take any functional form that
depends on the observed output. We limit ourselves to a

standard linear form w(x) = x — d where d is a constant.
The goal of the principal is to then characterize the optimal
value of d that solves (3). Were the principal to be aware of
the type 6 of the agent (i.e. no adverse selection), then it is
easily shown that the optimal contract:

w(x)za:—g

where the agent’s IC condition is satisfied and the optimal
effort ¢ = 6 which is also equal to the first best effort
from the principal’s perspective thus allowing zero rent.
Under adverse selection however, it is not always possible to
completely avoid rent, as is shown in the following theorem.

Theorem 1: In the one shot game, the optimal linear
contract offered by the principal is given by:

M
w(x) :x—mgx%n Zpg(&i) 4)
i=m
and agents whose type 6; satisfies ¢ >
arg max,, 0, Zf\im pe(0;) choose to accept the contract
and exert an effort a = 6;
Proof: The proof is an application of standard first order
conditions and is available in the Appendix. (]
Under the optimal contract, amongst the types of agents
who accept the contract, those whose type 6; satisfy i >
arg max,, 0, Zf\im po(0;) are able to extract rent. The
loss L; from the principal’s perspective due to the adverse
selection and moral hazard in the one-shot game is then:

E(@) — maXy, 07”« Zi]\im Po (91)
2

Note that the above argument can be generalized to any
finite horizon game at the expense of more notation. In the
subsequent section we consider the infinite horizon game and
present the argument that the loss LTK for K repeated games
goes to zero as K — oo as long as the agent’s type impacts
the quality of output.

Ly =

IV. DYNAMIC CONTRACT

We now focus our attention to the infinite horizon frame-
work and build an argument that continually observed out-
puts allows the principal to learn about the agent’s private
information and consequently offer the contract that extracts
the first best effort at zero rent. We will consider two
scenarios to illustrate the impact of noisy verification; first
when the quality of work factor )(6) is an increasing one-
one function of ¢, and second when Q(6) = 1,V6. In the
former, since the agent’s type impacts the observed variance
in output, the principal can use a hypothesis test to detect
(asymptotically accurately) the type, and eliminate the rent
by offering the best contract for the agent of the detected

(3yype. In the latter, since verification is impossible, we will

show in the subsequent section that it is possible for agents
to fake their types and secure infinite rent across the horizon.

Consider the dynamic contracting problem when Q(6) =
0, in other words, the produced output for contract wy/(+) is:

Xy = A + 0Ny



where Ny ~ N(0,02). This is not a limiting assumption;
were (Q() to be defined as any increasing one-one function,
the proofs can be easily modified, and the results would hold.
We divide the principal’s strategy into two phases, a detection
phase, and an execution phase. During the detection phase,
the principal uses the following hypothesis test on a sequence
of n observations of the produced outputs Xq,--- , X,:

H,, m:min{i:’X—9i|<€

S(X1,eee ) Xo) = and [0 —670%| < ¢}

Hys ﬂi:|X—9i}<e
and |ox” — 020%| < e
)]
where
g = kX o N (X - X
n n—1

and H,, refers to the hypothesis that the agent’s type is 60,,.
During the detection phase & < n, the principal offers the
contract

01

2

to incentivize participation from every type of agent. Fol-
lowing the detection phase, based on the observed outputs,
the principal uses the above rule to pick a hypothesis, let’s
say H,,, and for the rest of the horizon n < ¢t < K offers a
contract

07774

W = — —
2

The two-phase dynamic contract strategy is also detailed
in Algorithm 1. In the following theorem we show that this
strategy enables the principal to extract the first best effort
from every type of agent at asymptotically negligible rent.
Theorem 2: Under the two-phase dynamic contract strat-
egy specified in Algorithm 1, if Q(6) is a one-one function
of 6, the average cumulative payoff for the principal over K
repeated games, as K — oo is given by:
Ziee1 E(UR)

: E(6)
Up = [lim K -

wi(z) =z

Proof: The proof relies on the fact that as K grows larger, as
long as the length of the detection phase n € o(K), the sta-
tistical measures of the observed outputs should concentrate
around the true measures of the underlying distribution which
are sufficiently separated for different values of . Since the
default hypothesis is the “worst” contract, it disincentivizes
agents to fake their type. The mathematical details of the
proof are available in the Appendix. (]

Consequent to Theorem 2, we can state that in the long
run, the ability of the principal to learn private information
implicitly through the observed outputs allows her to elimi-
nate the effect of adverse selection and thus extract first best
efforts at zero rent. The observed outputs in this scenario
play the role of a noisy verification channel which in the long
run is increasingly accurate. In the subsequent section, we
underline this idea further by considering an output process
independent of type, and show that in that setup, it is possible
for agents to fake their types forever.

Algorithm 1 Two Phase Dynamic Contracting Strategy
1 k+1
2: for k < n do
3:  Principal issues contract wy(z) =z — 971
4. if Agent accepts contract and performs action Ay

then
5 Xy, < Ay, + 0Ny where 6 is type of agent
6: end if
7. k+k+1
8: end for
9: if Agent rejected any contract wy(-) for k < n then
10: 0=0y
11: else
122 Hp < 0( X1, -, Xn)
132 0=20,,
14: end if

15: for k£ > n do .
16:  Principal issues contract wi(z) =z — &
17 if Agent accepts contract and performs action Ay

then
18: Xy < Ay + 0N, where 0 is true type of agent
19:  end if
20 k<« k+1
21: end for

V. RENT THROUGH PRETENSE

In this section, we limit ourselves to binary private infor-
mation © = {004, Onign} such that ;. < Opign. and let
p9(01ow) = p. From Theorem 1, we know that the optimal
contract in the one-shot game is given by:

elow > ahigh(]- _p)
oW

z — Yo

w(sc):{ _ Ouan

T 2

(6)

In this one shot game, when the condition 6, >
Onigh(1 — p) is satisfied (and consequently both types of
agents accept the contract), the principal’s payoff is % and
the 05,45, agent is able to extract rent equal to w.
The following theorem will demonstrate that, when quality
of output is not impacted by private information ie Q(6) = 1,
the rent does not completely vanish even in the infinite
horizon case by virtue of the 0};4, agent pretending to have
a type 0., Without ever being detected.

Theorem 3: In a repeated leader-follower game between
a principal and agents with binary types © = {0j0u, Onign }
if Q(0) = 1, the equilibrium average cumulative payoff for
the principal is given by:

o S EBUR) iow
Up = Jim === ==

(7

and the optimal strategy for both types of agents is to exert
effort Ay, = 0, in every time step.

Proof: It is easy to see that as long as both type of agents
adopt identical strategies, the observed outputs are statis-
tically indistinguishable between the two types of agents.
Since the agent of type 6, has no incentive to alter his one-
shot strategy, the only was the agent of type 04, obtains



rent is by faking his type. It only remains to be seen what the
optimal contractual strategy is for the principal that results
in an equilibirium with these agent strategies. The key idea
is to use a repeated hypothesis test to ensure that the agents
do not deviate from the strategy Ay = 6;. Further details are
available in the appendix. ]

Consequent to Theorem 3, the principal’s expected payoff
per contract is unchanged between the single step and
infinite horizon frameworks. The payoff of the agent of type
Onign per contract is slightly reduced (from w to
elﬁw (1 — g}fﬁ)) due to the need for pretense. In other
words, even ytyh(/)ugh the availability of data does not improve
the per contract payoff of the principal it does reduce the rent
extracted. We do state a caveat here that the fact that long
term observations does not improve the principal’s payoff is
a consequence of the linear payment form which results in a
payoff independent of output. Were the payment formulated
differently, we believe it would improve the payoff even
though the rent would not be eliminated entirely as long
as pretense is profitable to the agent.

Theorems 1 and 2 together suggest a tradeoff between
privacy and efficiency, albeit using the two extreme scenar-
ios (one-shot and infinite horizon). In general, for a finite
horizon model, complete analytical characterization of the
equilibria is intractable even for the simplest assumptions
on parameters. In Figure 1, we plot the agent’s reward
as a function of the horizon using numerical stochastic
optimization (assuming © = {1,2},0 = 1) by limiting
ourselves to deterministic agent policies. The effect of data
on the efficiency (rent reduction), in other words the privacy-
efficiency tradeoff, and the importance of the quality factor,
are visibly demonstrated in the plot.

Agent Average Reward
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VI. CONCLUDING REMARKS

In this paper, we considered the problem of contract design
when a principal and an agent interact repeatedly in the
presence of adverse selection followed by moral hazard. We
show that there is a fundamental difference in situations when
the intrinsic type of the agent also determines the quality

of the output of the effort and when they do not, as also
when the game is played over a finite horizon versus an
infinite horizon. Specifically, we show that the principal must
pay a rent to derive the first best outcome if the quality of
the output of the effort is independent of the type or if the
game is played over a finite horizon. On the other hand, if
the quality of the output depends on the type of the agent
and if the agent and principal interact infinitely often, then
any private information of the agent must be revealed to the
principal and the agent cannot derive any rent.

The work can be extended along multiple lines. One
direction is to apply these results to specific examples
by considering any additional constraints imposed by the
application. Another direction is to consider the situation
when multiple agents are present, who may collude to hide
information from the principal. For instance, a high quality
agent can pretend to be low quality so that the principal
cannot differentiate among the agents and must pay rent. It
will be interesting to characterize the rent that such coalitions
can produce.
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APPENDIX

Proof of Theorem 1

Due to individual rationality of the agent and the specific
linear form of the contract, if an agent accepts the contract,
then he will take an action a* that satisfies:

a2
= E(x—d-%
a® = arg max < d 29|9>

Since E(X) = a, the optimal action for the agent is given by
a* = 6. The incentive compatibility criterion then reduces to
thecondition g > d and the principal’s optimization problem
takes the form:

0
dPr{- >d
max r{ 5 > d}
which for a finite © reduces to the expression in (4). O

Proof of Theorem 2

Since Q(0) is an increasing one-one function independent
of the time horizon n, without loss of generality we can
assume that Q(f) = 6. If the detection phase results in
accurately identifying the type of the agent, then the contract
issued by the principal in the execution phase secures first
best effort from the agent at zero rent. It remains to be
seen how the probability of incorrect detection falls as the
horizon K — oo. The key to the proof is bounding the
probabilities of the following events for the true and any
alternate hypotheses:

B, ‘L?;X’“ fﬁm’ <€}

n—1 m

oy M,9202‘<6

More specifically, we will show that if the true type 6 = 0,,,
then Pr{Ef  (JES,} < % (missed detection) for some
constant k1, and if 6 > 6,,, then Pr{E,,J For} < °F
(false alarm).

When the true type 6 = 0,,, applying standard Chebyshev
inequalities on the Gaussian random variable 2 Xk and the

Chi-squared variable Z(ikffhz we can bound the missed

detection probability as:
Pr{Ef,, | B} < PriBf,}+Pr{E;,}
02,0 204 o4 K1

< + <2 ¥

- n en—1) ~ n

for some constant .

When 6 = 0; > 6,,, we will assume that condition E1,,
is satisfied with probability 1, and bound the probability that
E5,, is also true. Since false alarm in this case can only
lead to a loss for the principal, the payoff computed under
this assumption will serve as a lower bound for the actual
expected payoff. Let Ay, .-, A, be the random variables
denoting the sequence of actions taken by the 6#; agent in
response to the received sequence of contracts in the learning
phase. For large n, we bound Pr{Fy,,} as

<€
R

)2
= Pr{ 2 (Ap + Nie = X) — 02,07 <e}
n—1
Pr{m >6}+PI‘{‘M >€}
n n

A2 + N2 - X?
+P1r{’Z E ’; — 02,0 <€}
n_

_ Y)2
Pr{ > (X — X) _ 02 52
n—1

— 0252

IN




Since Nj are iid zero mean Gaussian, for large n, the first
two probabilities in the above equation fall exponentially
with n. We use a one sided Chebyshev inequality to bound
the third term. Let

> Af — A2

~2
g =
n—1 s YN

54 =
Then for n large enough

Pr{ S AZ 4+ NE-X?

_92 2
n—1 m?

®

< Pr{|o} +5% — 0?05, | < 2¢}
< Pr{o¥ < o607 + 2¢}
.
= Pr %ﬁ—(n—l)d”‘l)(eg;_(l_i’?)
L k2
n

for n large enough using the Chebyshev-Cantelli Theorem
(one-sided Chebyshev) on the sample variance of an iid
Gaussian sequence. In other words, regardless of the actions
of the agent, the probability that he can pretend to be of type
0, falls as o(1/n).

Equations (8) and (9) guarantee that as n — oo, the
probability of incorrect detection falls as zero. Therefore,
as long the length of the detection phase n satisfies the
conditions n € o(K) and n — oo as K — oo, the loss
incurred by the principal due to issuing an incorrect contract
in the execution phase falls to 0 as the total horizon K — co.
O

Proof of Theorem 3

We only consider the scenario ;5. > Opign(1l — p) when
it is in the principal’s best interest to incentivize both types
of agents to accept the contract. Let K be the length of
the horizon, we shall eventually let ' — oco. The principal
adopts the following strategy.

1) For n € o(K) time steps, the principal offers the

contract P(z) = x — %, and observes the sequence

of outputs.

Assuming that the actions taken by the agent were

identical across steps and equal to the optimal action in

the single step game, ie A = 6, the principal performs

a hypothesis test on the sequence of outputs to conclude

if 6 = elow or Ghigh.

If the hypothesis test resulted in the type being identified

as 0.y, the principal continues to offer the contract

P(z)=2— 9’5“’ for a further n steps, else the principal
offers the contract P(x) = x —
further n steps.

4) Steps 2 and 3 are repeated till the end of the horizon
K

Note that as K — oo, were the agents to stick to their
optimal one-shot strategy repeatedly, a = € through an o(N)
phase, the hypothesis test yields asymptotically a perfect
identification of the agent’s type.

2)

3)

Onigh

52+ to the agent for a

For the agent of type 0j,,, since only two possible
contracts are on offer, it is in his best interest to stick to
the action Ay = 0, at all time steps.

For the agent of type 0p;qp, there are two possibilities,
reveal his type by taking action A, = 0Op,q, forever, or
pretend to be an agent of type 6., by taking action A, =
010 forever. As it turns out, the honest strategy fetches zero
rent for this agent, whereas the pretense strategy secures a

which would then

S it Olow _ biow
limiting average rent of Zg« (1 )

Onigh
be the best choice. It is easy to see that given the chosen

strategies of the agents, the principal has no reason to change
her strategy thus guaranteeing equilibrium. ]



