
Minimizing Content Staleness in Dynamo-Style

Replicated Storage Systems

Jing Zhong, Roy D. Yates and Emina Soljanin
Dept. of ECE, Rutgers University, {jing.zhong, ryates, emina.soljanin}@rutgers.edu

Abstract—Consistency in data storage systems requires any
read operation to return the most recent written version of
the content. In replicated storage systems, consistency comes at
the price of delay due to large-scale write and read operations.
Many applications with low latency requirements tolerate data
staleness in order to provide high availability and low operation
latency. Using age of information as the staleness metric, we
examine a data updating system in which real-time content
updates are replicated and stored in a Dynamo-style quorum-
based distributed system. A source sends updates to all the nodes
in the system and waits for acknowledgements from the earliest
subset of nodes, known as a write quorum. An interested client
fetches the update from another set of nodes, defined as a read
quorum. We analyze the staleness-delay tradeoff in replicated
storage by varying the write quorum size. With a larger write
quorum, an instantaneous read is more likely to get the latest
update written by the source. However, the age of the content
written to the system is more likely to become stale as the
write quorum size increases. For shifted exponential distributed
write delay, we derive the age optimized write quorum size that
balances the likelihood of reading the latest update and the
freshness of the latest update written by the source.

I. INTRODUCTION

In modern distributed storage systems, data is often replicated

across multiple machines or datacenters to support fault

tolerance due to server failures, and provide high availability

by delivering data through replica servers. In order to overcome

asynchrony in distributed storage systems, quorum-based

algorithms [1]–[4] are well studied and widely used in practice

to ensure write and read consistency of replicated data. In a

quorum system, either a write or read of the data goes to a

subset of nodes. More specifically, the data source or writer

sends replicas of the data to all the nodes but only waits for the

response from a subset of nodes known as the write quorum W .

The client or reader fetches the data from a possibly different

subset of nodes, which is called the read quorum R. In order

to guarantee strict consistency that every read operation returns

the most recent written content, a traditional quorum system

requires the write quorum W and read quorum R to overlap in

at least one element. This is known as a strict quorum. When

a quorum is randomly selected by the writer and reader, a

strict quorum requires that the write quorum size w and read

quorum size r satisfy w + r > n, where n is the number of

servers/nodes in the system.

However, as the write or read operation to a set of nodes

experiences varying random delays, consistency of the storage

system comes at the price of delay. A wide range of applications

have crucial delay requirements, e.g., every 100ms of extra

latency cost Amazon 1% in sales, and an extra 0.5s delay in

search results cuts Google’s traffic by 20% [5]. It has been

shown that a non-strict or partial quorum of reduced size is

widely used in practice because of the latency benefit despite

a minor loss in consistency [6]. Amazon’s Dynamo database

[7], and a variety of subsequent database implementations such

as Apache Cassandra [8], use a non-strict quorum as the data

replication mechanism in order to maintain a balance between

consistency and latency.

Since strict consistency is not guaranteed in partial quorum

systems, the level of consistency is quantified by data staleness.

The definition of data staleness falls into two categories: 1)

staleness in time [9] [10] and 2) staleness in data version [6]. In

[9], a read is considered stale if the value returned was written

more than δ time units before the most recent write, where δ is

a pre-determined threshold. In a slightly different time-based

staleness definition [10], the data is considered fresh if it was

generated no more than δ time units ago or it’s the most recent

written data in the system. On the other hand, [6] measures

the staleness by how many versions the value returned by a

read lags behind the most recent write.

In this work, we characterize data staleness from a strictly

time-based perspective. We examine data monitoring and

gathering systems in which real-time content updates generated

by a source are stored in a quorum-based distributed database,

and a client connects to the database and requests the most

recent data update. Since the stored data in a node is desired to

be as recent as possible, a write operation to a quorum of nodes

can be seen as an information update by the source. In these

applications, the freshness/staleness of the information updates

is measured by an “Age of Information” (AoI) timeliness metric

[11]–[15]. If a client reads data by fetching from a set of nodes

at some time t, and the data has a version time-stamped u(t),
then the age of the data at the client is t−u(t). We note that the

age in time differs from other staleness metrics in distributed

storage systems, since we take the age of the most recent

written content into account. We start by first considering the

baseline problem: in a distributed storage system with n nodes,

how does the size of the write quorum w and read quorum r
affect the average age of the content returned by a read?

II. SYSTEM MODEL AND METRIC

A. Staleness in Dynamo-style Systems

In a Dynamo-style replicated quorum system, a write/read

request by a user will be replicated and sent to all the nodes

in the system. The write operation is considered completed
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Fig. 3: Sample path of the age ∆(w,r)(t) with non-strict quorum
w + r ≤ n: successful updates (at times marked by •) occur in
intervals 1, j − 1, j, and j + 3.

Since the read operation is instantaneous by assumption, this

is equivalent to evaluating the time-averaged minimum age of

any set of r nodes, where r ∈ {1, 2, . . . , n}.

With a write quorum of size w ∈ {1, 2, . . . , n}, the source

considers the current write committed and initiates the next

write operation only after the current update is successfully

written to w out of n nodes. In this case, we denote the write

delay for node i and content update j as Xij , and the total

write delay for update j as Yj . Note that Yj is statistically

identical to Xw:n If one node gets the content earlier than any

of the other nodes, it has to wait for an idle period until that

content is written to w − 1 other nodes. Otherwise, if update

j is not written to a node i, the node waits for time Yj until

the source starts the next write, and we refer to this random

waiting time as a write interval for w nodes.

For a strict quorum system with r+w > n, there is at least

one overlapping node between the read quorum R and the

write quorum W , thus every update will be eventually written

to at least one nodes in the read quorum R. That is, if the client

reads the data content right after the most recent committed

write, it is guaranteed to receive the most up-to-date update

committed by the source. On the other hand, it is also possible

that a read operation returns the most recent write even before

the commitment since the client selects the freshest content

from all nodes in the read quorum.

Fig. 2 depicts a sample path of the minimum age of a random

set of r nodes which satisfies the strict quorum requirement.

The start and end time of the j-th write interval are marked

as Tj−1 and Tj = Tj−1 + Yj , respectively. For update j, let’s

denote the earliest node to complete the write process in the

read quorum as node i. The instantaneous age ∆(t) drops to

exactly the write delay for node i, denoted by Xij , when the

earliest node i receives the update j. This also implies at time

Tj when update j is written to the write quorum W , the age

of the read quorum is ∆(Ti) = Yj .

For a non-strict or partial quorum system with r + w ≤ n,

an update by the source may not be successfully read by

the client because the random sets W and R can be disjoint.

Suppose an update is written to at least one node in the read

quorum R during write interval j and the next successful write

to read quorum R is in write interval j + M . In this case,

M is a geometric r.v. with probability mass function (PMF)

PM (m) = (1− p)m−1p,m ≥ 1. Thus M has first and second

moments

E[M ] =
1

p
, E

[

M2
]

=
2− p

p2
. (6)

A fresh update fails to be written to the client during a write

interval if and only if the write quorum W and read quorum R
do not overlap. Let’s denote the probability of a write failure

as q = 1− p, then

q = Pr{R ∩W = ∅} =

{

0, r + w > n
(

n−w

r

)

/
(

n

r

)

, r + w ≤ n.
(7)

A similar example of the age process is shown in Fig. 3. We

represent the area under the age sawtooth as the concatenation

of the polygons A1, . . . , Ak as shown in Figs. 2 and 3. The

update j is written to the read quorum R in the write interval

j, and the read quorum waits for Mk = 3 write intervals until

the next successful write. Note that a strict quorum can be

viewed as a special case with deterministic Mk = 1. Denote

the random variable X̃ as the write delay of a successful update

written to at least one node in the read quorum r. Evaluating

Fig. 3 gives the area

Ak =
1

2





j+Mk−1
∑

l=j

Yl + X̃k





2

−
1

2
X̃2

k . (8)

Lemma 2. The average area Ak as shown in Fig. 3 is

E[A] = E
[

X̃
]

E[M ] E[Y ]

+
1

2
E
[

M2
]

(E[Y ])2 +
1

2
E[M ] Var[Y ].

Proof. Defining W =
∑j+Mk−1

l=j Yl, (8) can be rewritten as

Ak =
1

2

[

W 2 + 2X̃k−1W + X̃2
k

]

−
1

2
X̃2

k .

Since Mk and the Yj are independent, E[W ] = E[M ] E[Y ]. It

follows that

E[Ak] =
1

2
E
[

W 2
]

+ E[X̃] E[M ] E[Y ]. (9)

The random sum of random variables W has second moment

E
[

W 2
]

= (E[W ])2 +Var[W ]

= (E[M ])2(E[Y ])2 + E[M ] Var[Y ] + Var[M ](E[Y ])2

= E
[

M2
]

(E[Y ])2 + E[M ] Var[Y ].

Substituting E
[

W 2
]

back into (9) completes the proof.

It follows from Fig. 3 that the average age is given by

∆(w,r) =
E[A]

E[M ] E[Y ]
. (10)

Theorem 1. Consider a Dynamo-style n-node quorum system

with write quorum size w and read quorum size r. The source

sequentially writes content updates to the system. Assuming
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the freshest content is selected from the read quorum and the

read operation is instantaneous, the average age of the content

observed by the client is

1) for w + r > n,

∆(w,r) =
w
∑

i=1

E[Xi:n]

(

n−i

r−1

)

(

n

r

) +
1

2

E
[

X2
w:n

]

E[Xw:n]
;

2) for w + r ≤ n,

∆(w,r) =
w
∑

i=1

E[Xi:n]

(

n−i

r−1

)

(

n

r

)

−
(

n−w

r

)

+
1

2

(

n

r

)

+
(

n−w

r

)

(

n

r

)

−
(

n−w

r

) E[Xw:n] +
1

2

Var[Xw:n]

E[Xw:n]
.

Proof. Substituting Lemma 2 into (10) yields

∆(w,r) = E[X̃] +
E
[

M2
]

2E[M ]
E[Y ] +

1

2

Var[Y ]

E[Y ]
, (11)

where M is the number of write intervals between successful

writes to the read quorum. With p = 1− q, it follows from (6)

and (7) that

E
[

M2
]

2E[M ]
=

1 + q

2(1− q)
=







1
2 , r + w > n

1
2

(nr)+(
n−w

r )
(nr)−(

n−w

r )
, r + w ≤ n.

(12)

Thus, for strict quorum w + r > n, (11) can be written as

∆(w,r) = E[X̃] +
1

2
E[Y ] +

1

2

Var[Y ]

E[Y ]

= E[X̃] +
1

2

E
[

Y 2
]

E[Y ]
. (13)

Denote the node iR as the node with least write delay in the

read quorum R, i.e.,

iR = argmin
i∈R

Xi.

In addition, we rewrite the write quorum set as

W = {i1, i2, . . . , iw}, (14)

where Xik = Xk:n is the k-th smallest write delay in the write

quorum.

For strict quorum w + r > n, the average write delay for a

successful update read by the client is given by

E
[

X̃
]

= E
[

Xi
R
| iR ∈ W

]

(15a)

=
w
∑

k=1

E[Xk:n] Pr{iR = ik | iR ∈ W}, (15b)

=
w
∑

k=1

E[Xk:n]
Pr[iR = ik]

1− q
, (15c)

=

w
∑

k=1

E[Xk:n]

(

n−k

r−1

)

(

n

r

) . (15d)

In (15a), the expectation of X̃ is defined as the expectation of

the minimum of all the write delays Xi in the read quorum R,

given that this minimum is also in the write quorum W . (15b)

is obtained by averaging over the conditional expectation of all

possible order statistics Xk:n. And the complementary event

of the condition iR ∈ W is that both subsets do not overlap,

R∩W = ∅, which yields (15c). From (15c) to (15d), it follows

from (7) that q = 0. And we have Pr[iR = ik] =
(

n−k

r−1

)

/
(

n

r

)

,

since Xk:n is smallest in the read quorum R with size r, and

the remaining r−1 values are randomly chosen from the subset

{Xk+1:n, . . . , Xn:n}.

Similarly, for the non-strict quorum with w + r ≤ n,

E[X̃] = E
[

Xi
R
| iR ∈ W

]

(16a)

=
n−r+1
∑

k=1

E[Xk:n] Pr{iR = ik | iR ∈ W}, (16b)

=
n−r+1
∑

k=1

E[Xk:n]
Pr[iR = ik]

1− q
, (16c)

=
n−r+1
∑

k=1

E[Xk:n]

(

n−k

r−1

)

(

n

r

)

−
(

n−w

r

) . (16d)

From (16c) to (16d), we apply q =
(

n−w

r

)

/
(

n

r

)

in (7) for the

case r + w ≤ n. Note that the length of a write interval is

Y = Xw:n. To get Theorem 1, we substitute (15d) back to

(13) for w+ r > n, and substitute (12) and (16d) back to (11)

for w + r ≤ n.

Corollary 1. Let β = 1−α = 1−w/n. For shifted exponential

(λ, c) write delay X and a given read quorum size r, the

average age at the client can be approximated for large n as:

1) for w + r > n,

∆(w,r) ≈
1− 2βr

2λ
log

1

β
+ (1− βr)(c+

1

λr
) +

c

2
.

2) for w + r ≤ n,

∆(w,r) ≈
1

λr
+

1

2λ
log

1

β
+ c+

c(1 + βr)

2(1− βr)
.

Corollary 2. Denote ω = βr, the optimal ω∗ that minimizes

Corollary 1 for positive λ and c is

ω∗ = (λcr + 1)−
√

(λcr + 1)2 − 1. (17)

Proofs for both corollaries are provided in the appendix.

IV. EVALUATION

Figure 4 compares the simulation results of the average

age ∆(w,r) as a function of the write quorum size w given

different pre-determined read quorum r. In this experiment,

the total number of nodes n = 100, and every write to a

node has shifted exponential delay with c = 1 and different λ.

The approximation in Corollary 1 is marked with ×, and the

near-optimal write quorum size w∗ in Corollary 2 is marked

with ◦. By looking at the three curves in a single figure, We

observe that for a given c and n, the optimal write quorum size
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(a) read quorum r = 1, n = 100.
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(b) read quorum r = 5, n = 100.
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(c) read quorum r = 20, n = 100.

Fig. 4: Average age as a function of write quorum w for shifted

exponential write delay. × marks the approximate average age,

and ◦ marks the minimized approximate age ∆̂(w∗).

w∗ increases as the exponential rate λ increases. Comparing

across figures with different read quorum r, we observe that

the average age decreases as r increases, and the optimal write

quorum size w also decreases significantly. For example, the

client reads the data from only a single node in Fig. 4a. In

this case, in order to minimize the staleness of the content

update, the source should consider a write operation to be

complete once the update is written to 60 out of 100 nodes

when λ = 0.5. However, if the client is connected to 5 nodes

as shown in Fig. 4b, it is best for the source to only write to

around 30 nodes. This observation also implies that choosing

a partial/non-strict quorum is usually a winning strategy to

minimize the content staleness in replicated storage system.

Although strict quorum guarantees that any read after the write

commit can return the most recent write, the content written to

the system is more likely to become stale due to larger write

delay.

V. CONCLUSION

We have examined a real-time data replicated storage system

in which content updates are replicated and stored in a dynamo-

style quorum systems. Either a write or read request goes to

all the nodes in the system, and it is considered complete once

there are at least w or r responses. Assuming that the write

delay dominates the latency, the freshness of the replicated

storage system is measured by the average age of the content

returned by a read at any time t. As the write quorum size

w increases, an instantaneous read from a read quorum with

predetermined size r is more likely to get the latest version

generated by the source. However, the age of the content

also increases as the write quorum size w increases. We have

derived the optimal w given a read quorum size r such that

the average age of the content returned by a read is minimized,

and showed by experiment that the optimal w satisfies the

non-strict quorum w + r ≤ n.

The analysis presented in this work is based on the as-

sumption that the read delay is negligible compared to the

write delay, and the feedback channels from the nodes are

instantaneous. We are also aware of more general cases where

the read delay is also significant and random such that the

content may become stale during the read process. Under this

scenario, a different write quorum w should be chosen to deal

with the possibility of stale data due to the read delay.
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APPENDIX

Proof of Corollary 1: For shifted exponential r.v. X ,

E
[

X2
w:n

]

E[Xw:n]
= E[Xw:n] +

Var[Xw:n]

E[Xw:n]

= E[Xw:n] +
Hn2 −H(n−w)2

2λ2c+ 2λ(Hn −Hn−w)
. (18)

Note that the sequence Hn2 is monotonically increasing and

limn→∞ Hn2 = π2/6, thus Hn2 −H(n−w)2 is negligible and

lim
n→∞

Var[Xw:n]

E[Xw:n]
= 0, (19)

It follows from (19) that

lim
n→∞

E
[

X2
w:n

]

E[Xw:n]
= E[Xw:n]. (20)

With large n, we also approximate the harmonic number by

Hi ≈ log i+ γ, thus

E[Xw:n] ≈ c+
1

λ
(log n− log(n− w))

= c+
1

λ

(

log
n

n− w

)

. (21)

Note that this approximation only holds when w < n.

Let’s substitute (19) and (21) into Theorem 1, and approx-

imate the binomial coefficient by
(

n

k

)

≈ nk

k! . For w + r > n,

Theorem 1 is then rewritten as

∆ ≈
w
∑

i=1

E[Xi:n]
(n− i)r−1r

nr
+

1

2
E[Xw:n] (22a)

≈
w
∑

i=1

(

1

λ
log

(

n

n− i

)

+ c

)

(n− i)r−1r

nr

+
1

2λ
log

(

n

n− w

)

+
c

2
(22b)

≈ r

∫ α=w

n

x=0

(

1

λ
log

(

1

1− x

)

+ c

)

(1− x)r−1dx

+
1

2λ
log

(

1

1− α

)

+
c

2
(22c)

=

(

1− (1− α)r(1− r log(1− α))
)

λr
+ c (1− (1− α)r)

+
1

2λ
log

(

1

1− α

)

+
c

2
(22d)

=
1− 2(1− α)r

2λ
log

1

1− α

+ (1− (1− α)r)(c+
1

λr
) +

c

2
. (22e)

In (22b), we use the limit in (20) as an approximate. In (22c),

we denote α = w/n and approximate the sum
∑w

i=1 f(i) by

the integral
∫ w

i=0
f(i)di.

For w + r ≤ n,

∆ ≈
w
∑

i=1

E[Xi:n]
(n− i)r−1r

nr − (n− w)r

+
nr + (n− w)r

2(nr − (n− w)r)
E[Xw:n] (23a)

≈
w
∑

i=1

(

1

λ
log

(

n

n− i

)

+ c

)

(n− i)r−1r

nr − (n− w)r

+
nr + (n− w)r

2(nr − (n− w)r)

(

1

λ
log

(

n

n− w

)

+ c

)

(23b)

≈

∫ α

x=0

(

1

λ
log

(

1

1− x

)

+ c

)

(1− x)r−1r

1− (1− α)r
dx

+
1 + (1− α)r

2(1− (1− α)r)

(

1

λ
log

(

1

1− α

)

+ c

)

(23c)

=
1

λc
−

(1− α)r

λ(1− (1− α)r)
log

(

1

1− α

)

+ c

+
(1 + (1− α)r)

2λ(1− (1− α)r)
log

(

1

1− α

)

+
c(1 + (1− α)r)

2(1− (1− α)r)
(23d)

=
1

λr
+

1

2λ
log

(

1

1− α

)

+ c+
c(1 + (1− α)r)

2(1− (1− α)r)
. (23e)

To obtain (23a), we use the limit in (19) as an approximate

and substitute it back to Theorem 1. To simplify the expression

we further denote β = 1− α to complete the proof.

Proof of Corollary 2: We first prove by contradiction that

the optimal β doesn’t fall into strict quorum region. For w+r >
n, taking the derivative of the approximation 1) in corollary 1

gives

d∆

dβ
=

βr−1(λcr − r log β)

λ
. (24)

Thus we have the optimal β∗ = eλc by setting (24) to zero.

Since λ and c are positive, eλc > 1 contradicts β ∈ (0, 1).
For non-strict quorum w + r ≤ n, we let the derivative of the

approximation 2) to be zero, i.e.,

d∆

dβ
=

β2r − 2(λcr + 1)βr + 1

λβ(βr − 1)
= 0 (25)

Since β ∈ (0, 1), it is equivalent that

β2r − 2(λcr + 1)βr + 1 = 0. (26)

We define ω = βr, and the solution to (26) is given by

ω∗ = (λcr + 1)−
√

(λcr + 1)2 − 1. (27)
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