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Abstract—Consistency in data storage systems requires any
read operation to return the most recent written version of
the content. In replicated storage systems, consistency comes at
the price of delay due to large-scale write and read operations.
Many applications with low latency requirements tolerate data
staleness in order to provide high availability and low operation
latency. Using age of information as the staleness metric, we
examine a data updating system in which real-time content
updates are replicated and stored in a Dynamo-style quorum-
based distributed system. A source sends updates to all the nodes
in the system and waits for acknowledgements from the earliest
subset of nodes, known as a write quorum. An interested client
fetches the update from another set of nodes, defined as a read
quorum. We analyze the staleness-delay tradeoff in replicated
storage by varying the write quorum size. With a larger write
quorum, an instantaneous read is more likely to get the latest
update written by the source. However, the age of the content
written to the system is more likely to become stale as the
write quorum size increases. For shifted exponential distributed
write delay, we derive the age optimized write quorum size that
balances the likelihood of reading the latest update and the
freshness of the latest update written by the source.

I. INTRODUCTION

In modern distributed storage systems, data is often replicated
across multiple machines or datacenters to support fault
tolerance due to server failures, and provide high availability
by delivering data through replica servers. In order to overcome
asynchrony in distributed storage systems, quorum-based
algorithms [1]-[4] are well studied and widely used in practice
to ensure write and read consistency of replicated data. In a
quorum system, either a write or read of the data goes to a
subset of nodes. More specifically, the data source or writer
sends replicas of the data to all the nodes but only waits for the
response from a subset of nodes known as the write quorum V.
The client or reader fetches the data from a possibly different
subset of nodes, which is called the read quorum R. In order
to guarantee strict consistency that every read operation returns
the most recent written content, a traditional quorum system
requires the write quorum )}V and read quorum R to overlap in
at least one element. This is known as a strict quorum. When
a quorum is randomly selected by the writer and reader, a
strict quorum requires that the write quorum size w and read
quorum size r satisfy w + r > n, where n is the number of
servers/nodes in the system.

However, as the write or read operation to a set of nodes
experiences varying random delays, consistency of the storage
system comes at the price of delay. A wide range of applications
have crucial delay requirements, e.g., every 100ms of extra

latency cost Amazon 1% in sales, and an extra 0.5s delay in
search results cuts Google’s traffic by 20% [5]. It has been
shown that a non-strict or partial quorum of reduced size is
widely used in practice because of the latency benefit despite
a minor loss in consistency [6]. Amazon’s Dynamo database
[7], and a variety of subsequent database implementations such
as Apache Cassandra [8], use a non-strict quorum as the data
replication mechanism in order to maintain a balance between
consistency and latency.

Since strict consistency is not guaranteed in partial quorum
systems, the level of consistency is quantified by data staleness.
The definition of data staleness falls into two categories: 1)
staleness in time [9] [10] and 2) staleness in data version [6]. In
[9], a read is considered stale if the value returned was written
more than ¢ time units before the most recent write, where 9§ is
a pre-determined threshold. In a slightly different time-based
staleness definition [10], the data is considered fresh if it was
generated no more than ¢ time units ago or it’s the most recent
written data in the system. On the other hand, [6] measures
the staleness by how many versions the value returned by a
read lags behind the most recent write.

In this work, we characterize data staleness from a strictly
time-based perspective. We examine data monitoring and
gathering systems in which real-time content updates generated
by a source are stored in a quorum-based distributed database,
and a client connects to the database and requests the most
recent data update. Since the stored data in a node is desired to
be as recent as possible, a write operation to a quorum of nodes
can be seen as an information update by the source. In these
applications, the freshness/staleness of the information updates
is measured by an “Age of Information” (Aol) timeliness metric
[11]-[15]. If a client reads data by fetching from a set of nodes
at some time ¢, and the data has a version time-stamped w(t),
then the age of the data at the client is t—u(t). We note that the
age in time differs from other staleness metrics in distributed
storage systems, since we take the age of the most recent
written content into account. We start by first considering the
baseline problem: in a distributed storage system with n nodes,
how does the size of the write quorum w and read quorum r
affect the average age of the content returned by a read?

II. SYSTEM MODEL AND METRIC

A. Staleness in Dynamo-style Systems

In a Dynamo-style replicated quorum system, a write/read
request by a user will be replicated and sent to all the nodes
in the system. The write operation is considered completed
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Source

Fig. 1: Dynamo-style distributed storage: the source sequen-
tially writes content updates to multiple nodes with random
write delays. The next write j + 1 is initiated right after update
j is written to w out of n nodes. The client reads the content
through a random set of 7 nodes and selects the freshest version.

only if the user receives at least w acknowledgements from the
n nodes in the system, where w is the pre-determined write
quorum size. Similarly, the read operation is successful only
if the user gets r responses from the system, where r is the
read quorum size. In this paper, we consider a Dynamo-style
replicated quorum system with a writing source and a reading
client as shown in Fig. 1. The source writes a time-stamped
data item by replicating it to n different nodes in the system
with independent random write delays. An update takes time
X; to be written to node 7. We refer to X; as the write delay
for node 7. We assume that the X; are i.i.d. shifted exponential
(A, ¢) random variables. Consequently, each X; has CDF

Fx(z) = 1—e 79 2>¢

)]

The constant time shift ¢ > 0 captures the delay produced by
the update generation and assembly process. On the other
hand, ¢ can also represent a propagation delay on top of
an exponential network delay if the source and database
are geographically separated. When freshest received data
at time ¢ at node 7 is time-stamped time wu;(t), the age of
information or simply the age at node ¢, is the random process
A;(t) =t — u;(t). When a data item reaches node i, u;(t) is
advanced to the timestamp of the new content and the node
sends an acknowledgement to the source through a feedback
channel that is assumed to be instantaneous. Assuming that the
data item is a time-sensitive content update, the source then
obeys a zero-wait policy and initiates a new write request as
soon as the current write is completed. At the same time, the
write operation to the remaining n — w nodes are canceled.

To read data, a client connects to a random set of r nodes
in the system, and selects the freshest content among all r
nodes. In [6], the average read latency in Basho Riak [16], a
commercial distributed database, is shown to be an order of
magnitude smaller than the average write latency. Hence, we
assume the read process is instantaneous with zero delay in
this work. Under this model, the age at the read client at time
t is defined as the minimum age over all the nodes in the read
quorum R, i.e.

A(t) = min A(t).

2)

Since the write delays are i.i.d. for each node 7 and content

A(w,r) (t)

Y;
i

Ty T, 1

Fig. 2: Sample path of the age A, (t) with strict quorum w+7r >
n. Update delivery instances are marked by e.

update j, the A;(¢) processes at each node are statistically
identical. The age processes for different read quorum R are
also statistically identical since R is randomly chosen. The
time average of age process at the client is then given by

T

1
A= lim —

T—00 T

A(t). 3)

t=0

The mathematical model we consider is also relevant to other
status updating systems, e.g., multicast with HARQ, where
single source transmits coded update packets to multiple clients
[17]. In related work [18], update messages are replicated and
sent to the receiver through multiple servers; given a general
packet arrival process and memoryless packet service times, it
was shown that Last-Generated First-Serve scheduling policy is
age-optimal. In [19], a pull-based updating system is considered,
in which the arriving source updates are sent to multiple servers
and the interested user fetches the update by sending replicated
requests to all the servers. Similar to this work, it was shown
there exists an optimal number of responses k from n servers
for the user to wait for. The problem considered in this work
differs from [19] by allowing the source to control when to
submit an update based on the delivery feedback.

B. Order Statistics

We first introduce the notion of order statistics for i.i.d.
random variables which plays a key role in our analysis.
We denote the k-th order statistic of the random variables
Xi,...,X,, ie., the k-th smallest variable, as X.,,.

Lemma 1. [20] For shifted exponential random variable X
with CDF Fx(z) =1—e MN*7¢) 2 > ¢, the expectation and
variance of the order statistics Xy., are given by

1
E[ka,] =c+ X(Hn — Hn—k) (4)
1
Var[Xp.n| = Vi (Hpz — Hinpy2) (5)

where H, and H,:> are the generalized harmonic numbers

defined as H, = 5" % and Hy> =370, J%

j=1
ITII. AGE ANALYSIS

Our objective is to obtain the average of the age (2) of the
data content given by a read at any time ¢, which is determined
by the minimum age over all nodes in the read quorum .
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Fig. 3: Sample path of the age A, ,(t) with non-strict quorum
w + r < n: successful updates (at times marked by e) occur in
intervals 1, j — 1, j, and j + 3.

Since the read operation is instantaneous by assumption, this
is equivalent to evaluating the time-averaged minimum age of
any set of r nodes, where r € {1,2,...,n}.

With a write quorum of size w € {1,2,...,n}, the source
considers the current write committed and initiates the next
write operation only after the current update is successfully
written to w out of n nodes. In this case, we denote the write
delay for node ¢ and content update j as X;;, and the total
write delay for update j as Y;. Note that Y; is statistically
identical to X,,.,, If one node gets the content earlier than any
of the other nodes, it has to wait for an idle period until that
content is written to w — 1 other nodes. Otherwise, if update
J is not written to a node i, the node waits for time Y; until
the source starts the next write, and we refer to this random
waiting time as a write interval for w nodes.

For a strict quorum system with r +w > n, there is at least
one overlapping node between the read quorum R and the
write quorum W, thus every update will be eventually written
to at least one nodes in the read quorum R. That is, if the client
reads the data content right after the most recent committed
write, it is guaranteed to receive the most up-to-date update
committed by the source. On the other hand, it is also possible
that a read operation returns the most recent write even before
the commitment since the client selects the freshest content
from all nodes in the read quorum.

Fig. 2 depicts a sample path of the minimum age of a random
set of r nodes which satisfies the strict quorum requirement.
The start and end time of the j-th write interval are marked
as Tj 1 and T; = T; 1 + Y}, respectively. For update j, let’s
denote the earliest node to complete the write process in the
read quorum as node i. The instantaneous age A(t) drops to
exactly the write delay for node 4, denoted by X;;, when the
earliest node ¢ receives the update j. This also implies at time
T; when update j is written to the write quorum WV, the age
of the read quorum is A(T;) =Y.

For a non-strict or partial quorum system with r + w < n,
an update by the source may not be successfully read by
the client because the random sets V' and R can be disjoint.
Suppose an update is written to at least one node in the read
quorum R during write interval j and the next successful write

to read quorum R is in write interval j + M. In this case,
M is a geometric r.v. with probability mass function (PMF)
Py(m) = (1 —p)™ 1p,m > 1. Thus M has first and second
moments

B[] = 22
p p

A fresh update fails to be written to the client during a write
interval if and only if the write quorum }V and read quorum R
do not overlap. Let’s denote the probability of a write failure
as ¢ = 1 — p, then

(6)

0, r+w>n
("_“’)/(”), r+w <n.

s T

q:Pr{RﬂWZQ]}:{ (7

A similar example of the age process is shown in Fig. 3. We
represent the area under the age sawtooth as the concatenation
of the polygons Ay,..., Ay as shown in Figs. 2 and 3. The
update j is written to the read quorum R in the write interval
7, and the read quorum waits for M, = 3 write intervals until
the next successful write. Note that a strict quorum can be
viewed as a special case with deterministic M = 1. Denote
the random variable X as the write delay of a successful update
written to at least one node in the read quorum r. Evaluating
Fig. 3 gives the area

2
J+Mp—1

1 - 1=
Ap=5| D Yit+Xe| - 3XE ®)
I=j

Lemma 2. The average area Ay, as shown in Fig. 3 is

E[A] = E[X]| E[M]E[Y]

+ %E[MQ] (E[Y])® + % E[M] Var[Y].

Proof. Defining W = Z{;M’“*l Y7, (8) can be rewritten as

1 ~ ~ 1.
A =3 [WQ F2X W+ X,%] - 5 xR
Since M), and the Y; are independent, E[W] = E[M]E[Y]. It
follows that

E[4;] = % E[W?] + E[X|E[M]E[Y]. )

The random sum of random variables W has second moment
E[W?] = (E[W])* + Var[W]
= (E[M])*(E[Y])? + E[M] Var[Y] + Var[M](E[Y])?
= E[M?|(E[Y])? + E[M] Var[Y].
Substituting E[WZ] back into (9) completes the proof. O

It follows from Fig. 3 that the average age is given by

E[A]
Apr) = =————. 10
(o) = B[MIE[Y] (4
Theorem 1. Consider a Dynamo-style n-node quorum system
with write quorum size w and read quorum size r. The source

sequentially writes content updates to the system. Assuming
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the freshest content is selected from the read quorum and the
read operation is instantaneous, the average age of the content
observed by the client is

1) forw+r>n,
1E[X2

w:n] .

T B

2) forw+r<n,

A,y = ZE[Xi:n](n)(_r(ln)w)

T T

L)) e

Jr P n n—w
2(7) = (")
Proof. Substituting Lemma 2 into (10) yields
E[M?] 1 Var[Y]
ElY|+ =
s P s B
where M is the number of write intervals between successful

writes to the read quorum. With p = 1 — ¢, it follows from (6)
and (7) that

lVar[me]
2 E[Xym]

Awry = E[X] + (11)

r+w>n

12
r+w<n. (12)

E[M?]
2E[M]

1+¢

2(1 - Gr(er).
SN G G
Thus, for strict quorum w + r > n, (11) can be written as

o 1 1 Var[Y]
A =EX]+=-E[Y]+ =

N= N

= E[X] + ;EE[E;]]

Denote the node 75 as the node with least write delay in the
read quorum R, i.e.,

. (13)

1> — arg min Xj;.
R & iER ¢
In addition, we rewrite the write quorum set as

W = {i1,i2,..., 0w},

where X;, = X., is the k-th smallest write delay in the write
quorum.

(14)

For strict quorum w + 7 > n, the average write delay for a
successful update read by the client is given by

E{X] — B[X,,_ |ig € W] (152)
= E[Xpw|Priig =ik |ig € W}, (15b)
k=1
=3 B[X,,| ZolR = ] (15¢)
1-g¢
k=1
< ()
= E[Xy) : (15d)

(7

In (15a), the expectation of X is defined as the expectation of

~—

el
I
—

the minimum of all the write delays X in the read quorum R,
given that this minimum is also in the write quorum W. (15b)
is obtained by averaging over the conditional expectation of all
possible order statistics Xj.,. And the complementary event
of the condition i € WV is that both subsets do not overlap,
RNW = ), which yields (15¢). From (15¢) to (15d), it follows
from (7) that ¢ = 0. And we have Prlip = i) = ("_1)/("),
since Xy, is smallest in the read quorum R with size r, and
the remaining r — 1 values are randomly chosen from the subset

{XIH—l:nv e ,Xn:n}~
Similarly, for the non-strict quorum with w 4+ r < n,
EX]=E[X;, |ir € W] (16a)
n—r+1
= Y E[Xgw|Pr{ig =iy |ip € W}, (16b)
k=1
n—r+1 . .
P =
= E[X,m]im72 i) (16¢)
1—gq
k=1
n—r+1 (n—k)
= E[Xken) 7 - (16d)
k=1 (r) - ( r )

From (16¢) to (16d), we apply ¢ = (") /() in (7) for the
case r + w < n. Note that the length of a write interval is
Y = X,.,. To get Theorem 1, we substitute (15d) back to
(13) for w 4 r > n, and substitute (12) and (16d) back to (11)
forw+1r <n.

O

Corollary 1. Let § = 1—a = 1—w/n. For shifted exponential
(A ¢) write delay X and a given read quorum size v, the
average age at the client can be approximated for large n as:

1) forw+r >n,

1—-28" 1 . 1, ¢
Apw,ry = 3\ logB—F(l—ﬁ )(e+ ﬁ)—i_i
2) forw+r<n,
1 1 1 c(1+447)
A ~—+ —log — _—
A VI T I Ty T

Corollary 2. Denote w = 37, the optimal w* that minimizes
Corollary 1 for positive X and c is

w'=Aer+1)—+v(Aer+1)2—-1. (17)

Proofs for both corollaries are provided in the appendix.

IV. EVALUATION

Figure 4 compares the simulation results of the average
age Ay, as a function of the write quorum size w given
different pre-determined read quorum r. In this experiment,
the total number of nodes n = 100, and every write to a
node has shifted exponential delay with ¢ = 1 and different \.
The approximation in Corollary 1 is marked with x, and the
near-optimal write quorum size w* in Corollary 2 is marked
with o. By looking at the three curves in a single figure, We
observe that for a given c and n, the optimal write quorum size
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Fig. 4: Average age as a function of write quorum w for shifted
exponential write delay. x marks the approximate average age,
and o marks the minimized approximate age A(w*).

w* increases as the exponential rate A increases. Comparing
across figures with different read quorum 7, we observe that
the average age decreases as r increases, and the optimal write
quorum size w also decreases significantly. For example, the
client reads the data from only a single node in Fig. 4a. In
this case, in order to minimize the staleness of the content
update, the source should consider a write operation to be
complete once the update is written to 60 out of 100 nodes
when A = 0.5. However, if the client is connected to 5 nodes
as shown in Fig. 4b, it is best for the source to only write to
around 30 nodes. This observation also implies that choosing
a partial/non-strict quorum is usually a winning strategy to
minimize the content staleness in replicated storage system.
Although strict quorum guarantees that any read after the write
commit can return the most recent write, the content written to
the system is more likely to become stale due to larger write
delay.

V. CONCLUSION

We have examined a real-time data replicated storage system
in which content updates are replicated and stored in a dynamo-
style quorum systems. Either a write or read request goes to
all the nodes in the system, and it is considered complete once
there are at least w or r responses. Assuming that the write
delay dominates the latency, the freshness of the replicated
storage system is measured by the average age of the content
returned by a read at any time t. As the write quorum size
w increases, an instantaneous read from a read quorum with
predetermined size r is more likely to get the latest version
generated by the source. However, the age of the content
also increases as the write quorum size w increases. We have
derived the optimal w given a read quorum size r such that
the average age of the content returned by a read is minimized,
and showed by experiment that the optimal w satisfies the
non-strict quorum w + r < n.

The analysis presented in this work is based on the as-
sumption that the read delay is negligible compared to the
write delay, and the feedback channels from the nodes are
instantaneous. We are also aware of more general cases where
the read delay is also significant and random such that the
content may become stale during the read process. Under this
scenario, a different write quorum w should be chosen to deal
with the possibility of stale data due to the read delay.
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APPENDIX
Proof of Corollary 1: For shifted exponential r.v. X,

E[X2.] Var[X .n]
w:n — E X . w:n
IE o I R 5
Hy:- H(n —w)?

= E[Xu:n] +

. 18
2X2¢+ 2M(H,, — Hp—w) (18)

Note that the sequence H,,2 is monotonically increasing and
lim,, 00 Hy,2 = 72/6, thus H,,> — H(,—y)2 is negligible and

Var[X,,.,]

i EXwm] 0, (19)
It follows from (19) that
lim M = E[Xy:n]- (20)
n—00 E[Xyn] o

With large n, we also approximate the harmonic number by
H; =~ logi + +, thus

1
E[Xym] ~c+ X (logn — log(n — w))

=C b\ Ogn_w .

Note that this approximation only holds when w < n.

Let’s substitute (19) and (21) into Theorem 1, and approx-
imate the binomial coefficient by (Z) ~ %T For w+1r > n,
Theorem 1 is then rewritten as

21

T (22a)
n
i=1
w _ ar—1
- <1log( n > —|—c> (n—49)""1r
pt A n—i n’
n c
b log (n_w>+2 (220)
a:% 1 1 r—1
Nr/w_o ()\log<1_x>+c (I1—-2)""dx
1 1 c
+2)\10g<1_a>+2 (22¢)
(1 —(1-a)" (1 —rlog(l — a)))
= g +c(l-(1-a)")

1 1 c
+2/\10g<1_a>+2 224)
1-201-a)
- 2 log 1—
+(1-01=a))(c+ )\1 )—|—§ (22e)

In (22b), we use the limit in (20) as an approximate. In (22c¢),
we denote @ = w/n and approximate the sum »_;* | f(i) by
the integral [;” f(i)di
For w+7r <mn,

~1

A~ ZE ] n—z) r

=y
Q&T‘L((n_ w))) E[Xuin] (23a)
<3 (e () + o) ey
T () )
() )
R G 1)

1 (1-a) 1
T MI-(1-a)) IOg(l—oz)+c
(1+(1-a)) L\ e+ (1-a))
toi—(—a)) 1Og(1—a) +

21-(1-a))
(23d)

1 1 1 c(1+(1—a)7)
_AT+2)\log(1—a)+C+2(1—(1—a)T)' (23e)

To obtain (23a), we use the limit in (19) as an approximate
and substitute it back to Theorem 1. To simplify the expression
we further denote 5 = 1 — « to complete the proof.

Proof of Corollary 2: We first prove by contradiction that
the optimal 8 doesn’t fall into strict quorum region. For w+r >
n, taking the derivative of the approximation 1) in corollary 1
gives

dA  p"~ Y(Aer —rlog ﬂ)
dag A
Thus we have the optimal ﬁ* = e by setting (24) to zero.
Since A and c are positive, e*® > 1 contradicts 5 € (0,1).

For non-strict quorum w + r < n, we let the derivative of the
approximation 2) to be zero, i.e.,

dA  B* —2(Xer +1)8" 41

(24)

=0 25
BT W) =)

Since 5 € (0,1), it is equivalent that
B2 —2(Aer +1)B" +1=0. (26)

We define w = ", and the solution to (26) is given by

=Aer+1)—+v(Aer+1)2—-1. 27
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