
Timely Lossless Source Coding for Randomly

Arriving Symbols

Jing Zhong, Roy D. Yates and Emina Soljanin
Department of ECE, Rutgers University, {jing.zhong, ryates, emina.soljanin}@rutgers.edu

Abstract—We consider a real-time streaming source coding
system in which an encoder observes a sequence of randomly
arriving symbols from an i.i.d. source, and feeds binary code-
words to a FIFO buffer that outputs one bit per time unit to
a decoder. Each source symbol represents a status update by
the source, and the timeliness of the system is quantified by the
age of information (AoI), defined as the time difference between
the present time and the generation time of the most up-to-date
symbol at the output of the decoder. When the FIFO buffer is
allowed to be empty, we propose an optimal prefix-free lossless
coding scheme that minimizes the average peak age based on
the analysis of discrete-time Geo/G/1 queue. For more practical
scenarios in which a special codeword is reserved for indicating
an empty buffer, we propose an encoding scheme that assigns a
codeword to the empty buffer state based on an estimate of the
buffer idle time.

I. INTRODUCTION

Many ubiquitous computing applications share a common

need: the information update from the source has to be available

at the interested receivers as quickly as possible. A recently

developed timeliness metric, the age of information (AoI),

quantifies the information freshness of status updating systems

[1]–[8]. More specifically, age measures the time difference

between now and when the most recent update was generated.

If the receiver receives an update at some time t, and an update

was generated at time u(t), then the instantaneous age at the

receiver is t− u(t).
Real-time communication systems, such as live video stream-

ing and information update in vehicular networks, often require

efficient compression that enables the receiver to reconstruct

the source message in a timely manner under limited network

resources. The analysis of these systems can be simplified to a

real-time compression problem over a constrained data network.

In this work, we restrict our attention to the following baseline

problem: if every update by the source is transmitted to the

receiver through a binary channel with a fixed rate, what is

optimal compression scheme that keeps the information about

the source at the receiver as timely as possible? This problem

is different from the traditional source coding that focuses on

minimizing the average codeword length in order to approach

the Shannon entropy of the source.

The delay of streaming source coding has been studied in

different contexts. The end-to-end delay of streaming source

coding was first studied in [9]. Here, source symbols arrive

as a Poisson process, and the encoder maps them into binary

codewords and puts them in a finite size buffer that outputs

one bit per time unit. A variant of the Huffman code was

proposed to minimize the probability of buffer overflow. A

similar problem was studied in [10], in which source symbols

arrive at the encoder sequentially one per time unit, and the

receiver is required to reconstruct the source with a fixed

end-to-end delay constraint. It is necessary to distinguish our

timeliness requirement from measuring the end-to-end delay

in [9] and [10], since the age is a process that captures how

old the information about the source is at the receiver.

Our prior work [11] applied age analysis to a streaming

source coding system with a deterministic source symbol inter-

arrival times. We assumed that a prefix-free fixed-to-variable

encoder maps every block of N symbols to a binary codeword

that is sent through a bit pipe that outputs R bits per time

unit. We observed that the encoder must choose an appropriate

blocklength N to balance data compression delays against

network congestion deriving from insufficient compression.

Given a blocklength N , we proposed a coding scheme to

optimize average age. In [12], age analysis was extended to a

backlog-adaptive source coding model that makes the busy/idle

state at the channel interface available at the source encoder.

This enables the encoder to adjust the blocklength N based on

the state of the channel. In [13], each source symbol represents

a timely update message sent by the source, but the symbols that

arrive at the encoder while the channel is busy are skipped. An

optimal Shannon code was proposed to minimize the average

age of the freshest source symbol at the receiver.

In this paper, we consider the discrete-time streaming

source coding system with random arrivals shown in Fig. 1.

This system differs from other systems with deterministic

symbol arrivals in [11]–[13]. Here we assume a source symbol

arrives as a Bernoulli process with probability q at each time

unit. Unlike other status updating systems in which only the

freshness of the most recent update matters, here we require

the receiver to reconstruct the entire source message stream in

a lossless manner. Our objective is to design a lossless coding

scheme that minimizes the average peak age for randomly

arriving source symbols.

We start in Sec. II with an idealized system model that

provides an empty buffer signal to tell the decoder when

the channel buffer is empty. A prefix-free coding scheme

is proposed to minimize the average peak age. In practical

settings, however, the source or channel has to encode and the

empty buffer state for the decoder. We then investigate possible

encoding schemes for the empty buffer state in Sec. III. We

propose a predictive scheme that assigns a codeword to the

empty buffer message based on an estimate of the fraction
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Fig. 1: System diagram for streaming source coding.
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Fig. 2: An example of the output process of the FIFO buffer

and the corresponding age process for the prefix-free lossless

coding on random updates. A special symbol φ is transmitted

when the FIFO buffer is empty.

of time the buffer is idle. A numerical comparison between

different empty buffer encoding schemes is provided in Sec. IV.

II. AGE ANALYSIS WITH EMPTY BUFFER SIGNALING

Consider the streaming source coding system shown in Fig.1.

In each time slot (starting from t = 1), the source is eather idle

or it generates a discrete i.i.d. symbol Xk from a finite alphabet

X . The source is not idle with probability q. Each symbol Xk

has PMF PX(x) and is time-stamped when it is observed by

the encoder. Let N(t) denote the number of symbols observed

by the encoder by time t.

The lossless source encoder E maps every symbol into a

prefix-free binary sequence, i.e. E : X → {0, 1}∗, and feeds

the encoded sequence E(Xi) into a first-in-first-out (FIFO)

buffer that outputs R = 1 bit per time unit. The capacity of

the FIFO buffer is assumed to be infinite. A symbol Xk is

declared at the output of decoder D only after the entire bit

sequence E(Xk) is delivered to the input of D. At every time

t, the decoder reconstructs the source sequence up to XN(u(t)),

where u(t) < t is the time stamp of the most recent decoded

source symbol. We note that u(t) is advanced to a new time

index only if a new symbol is decoded. The age of the source

sequence XN(u(t)) at the receiver at time t is then given by

∆(t) = t− u(t).

TABLE I: Example of prefix-free codebook with |X | = 4.

X A B C D

E(X) 0 10 110 111

In this section, we assume that a special signal φ is sent

through the channel to indicate to the decoder that the buffer

was empty and no symbol arrived at the encoder one time unit

prior to receiving φ. Denoting Lk = l(Xk) as the encoded bit

sequence length of a symbol Xk, then the sequence Lk is also

i.i.d. with PMF PL(l).
Fig. 2 depicts an example of the FIFO buffer output process

and the age process. Source symbols X ∈ {A,B,C,D} arrive

at the input of the encoder sequentially, and each symbol is

encoded using the prefix-free codebook specified in Table I.

The first symbol X1 = C arrives at time t = 0, and the

corresponding bit sequence 110 is fed into the FIFO buffer and

output to the decoder after L1 = 3 time units. Thus, the age

∆(t) increases linearly from an initial value ∆0 = 1 and drops

to ∆(3) = 3 time units at time t = 3. The second symbol

X2 = B, which arrives at time t = 2, is deferred by one time

unit since the buffer is serving the codeword for the previous

symbol C, and delivered to the decoder at time t = 5. The age

is then reset to the waiting time plus the codeword transmission

time for symbol B. Afterwards, the buffer stays empty since

there is no new arriving symbol. The instantaneous age ∆(t)
increases linearly, and is reset to L3 = 1 time unit only after the

decoder receives the codeword for the third symbol X3 = A.

From a queueing perspective, we can view each source

symbol Xk as an arriving job to the system. The service time

Sk of the job Xk is then the time it takes to be transmitted to the

decoder, which is exactly the length of the encoded sequence

Lk. Thus the expected service time is E[S] = E[L] = 1/µ.

The job interarrival time Yk is geometrically distributed with

PMF PY (y) = (1−q)y−1q for all k, and thus the arrival rate is

λ = 1/E[Y ] = q. Since the system behaves as a discrete-time

Geo/G/1 queue, we have the following claim.

Lemma 1. The queue is stable if and only if E[L] < 1/q.

Note that the average codeword length E[L] is lower bounded

by the entropy of the source H(X). Hence, it is necessary to

have source entropy H(X) < 1/q for a stable queue.

We denote ∆k as the k-th peak value of the age process

∆(t). The average peak age (peak AoI) at the receiver is then

defined as [2]

∆P = lim
K→∞

1

K

K
∑

k=1

∆k. (1)

Theorem 1. For a stable streaming source coding system with
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Fig. 3: The illustration of convex hull algorithm and the

representation of codebooks in the coordinate.

code length distribution PL(l), the PAoI is given by

∆P =
E
[

L2
]

− E[L]

2(1/q − E[L])
+ E[L] +

1

q
. (2)

Proof. Evaluating Fig. 2 yields

∆P = lim
K→∞

1

K

K
∑

k=1

(Wk + Sk + Yk)

= E[W ] + E[S] + E[Y ], (3)

where Wk and Sk are the waiting time and service time for

source symbol Xk as shown in Fig. 2. We note that the expected

waiting time for discrete-time Geo/G/1 queue is given by [14]

E[W ] =
λE[S(S − 1)]

2(1− ρ)
, (4)

where ρ = λ/µ = E[S]/E[Y ] is the system offered load. Since

Sk = Lk for any k, the expected waiting time and service time

is rewritten as

E[W ] =
E
[

L2
]

− E[L]

2(1/q − E[L])
.. (5)

Theorem 1 follows by substituting (5) into (3).

We observe the PAoI in Thm. 1 is a function of both the

average code length E[L] and the second moment E
[

L2
]

. This

is similar to the bounds on the average age when encoding

deterministic arriving source symbols using lossless block-to-

variable codes in [11].

Corollary 1. For a given source X and encoder E with

moments of the codeword length E[L] and E
[

L2
]

, the optimal

arrival rate q∗ that minimizes the PAoI satisfies

1

q∗
=

√

E[L2]− E[L]

2
+ E[L]. (6)

The corresponding PAoI is given by

∆P (q∗) =
√

2(E[L2]− E[L]) + 2E[L]. (7)
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Fig. 4: An example of the output process of the FIFO buffer in

which the special codeword reserved for empty buffer signal ǫ
is 101.

Corollary 1 follows by letting z = 1/q and setting

∂∆P /∂z = 0 and E[L] < z in Theorem 1.

Next, we use the technique from [15], [16] to obtain the

optimal coding scheme that minimizes the PAoI in Theorem 1

given an arrival rate q. We refer to this coding scheme as the

age optimal code. It was shown in [15] that all the possible

prefix-free lossless codebooks form a convex hull in a two-

dimensional space with bases {E[L],E
[

L2
]

}. Fig. 3 depicts

an example of the space with the convex hull formed by all

possible codebooks. The goal is to search all the codebooks

at the boundary of the convex hull. Since ∆P in Thm. 1 is

convex in E[L] and E
[

L2
]

, we perform the search by first

defining a linear function

f(L) = αE[L] + β E[L2], (8)

and vary the parameters α, β ∈ [0, 1]. The problem is then

reduced to an inner sub-problem of finding the codebook that

minimizes the linear penalty function in (8). In [16], this sub-

problem is shown to be reduced to a coin collector’s problem,

which can be solved recursively by a Package-Merge algorithm

[17] in linear space and O(|X |2) time.

Given that the inner sub-problem can be solved efficiently,

the outer problem is solvable by an iterative algorithm that starts

from two extreme cases: (α, β) = (1, 0) and (α, β) = (0, 1).
We remark that (α, β) = (1, 0) corresponds to a penalty

function that returns a prefix code E1 that minimizes the

average code length, which is a Huffman code. Given any

two codebooks E1 and E2, the values of α and β are updated

as follows

α← E[L2](E1)− E[L2](E2) (9)

β ← E[L](E2)− E[L](E1). (10)

Next, we find the optimal code E3 that minimizes (8) for the

new values of α and β. Graphically, this step is equivalent to

drawing a line segment l that connects the points corresponding

to E1 and E2, and then searching for the lowest line l′ parallel

to l that touches the boundary of the convex hull consisting of

all possible codebooks. If l′ lies below l, then a new codebook

E3 is contained in the line l′. This algorithm repeats iteratively

by renewing the value of α and β by (9) and (10) at each

step for the line segments connecting any two consecutive

codebooks, until we find all the feasible codes at the boundary.

The details of this algorithm can be found in [15].



TABLE II: Example of codebook with empty buffer symbol ǫ.

X A B ǫ C D

E(X) 0 100 101 110 111

III. ENCODING THE EMPTY BUFFER STATE

In this section, we extend the age analysis to a more realistic

model where the null symbol φ is not allowed and the channel

can only output either bit 0 or 1. In this case, the source has to

send a special codeword, which differs from the codewords for

the source symbols Xk, to inform the decoder when the buffer

is empty. We refer to this special message as the null symbol ǫ.
The simplest way is to transmit a single bit “0” if the buffer is

empty, and otherwise transmit a “1” followed by an encoded

message. In this scheme, the “0” bit occupies only one time

slot and thus doesn’t affect the next incoming source symbol.

However, the length of every encoded sequence is increased

by 1, and we denote the new length of the message codeword

as LX = L+ 1. Substituting LX back into Theorem 1 yields

the following new PAoI

∆P
Naive =

E
[

L2
]

+ E[L]

2(1/q − E[L]− 1)
+ E[L] + 1 +

1

q
. (11)

We refer to this scheme as the naive scheme. For the naive

scheme, the system is stable if and only if E[L] + 1 < 1/q.

That is, for sources with entropy H(X) ≥ 1/q − 1, there is

no feasible source code for a stable system.

When the system is mostly idle, i.e. q ≪ E[L], the buffer

has to send the empty state protocol codeword “0” frequently.

Hence, assigning the shortest codeword to ǫ is the optimal

strategy. However, when the system is busy all the time, the

advantage of a short codeword for empty state will be forfeited

since the buffer is overloaded by serving longer codewords for

source messages. Reserving a codeword for an empty buffer

state is equivalent to adding a null symbol ǫ to the source

alphabet in the codebook. We then denote the probability of

the null symbol used in the codebook as pǫ. Our objective is

to find the optimal pǫ such that the PAoI is minimized.

Fig. 4 depicts an example of the FIFO buffer output process

with the same arrival process as Fig. 2 and an alternative empty

buffer encoding scheme as shown in Table II. When the FIFO

buffer becomes empty, the codeword 101 is transmitted to the

decoder. In this case, the codeword corresponding to symbol A
is deferred by 1 time slot since the buffer is busy sending the

last bit 1 of the codeword corresponding to the null symbol ǫ.

Let IE denotes the fraction of time that the buffer is empty

when the codebook E is used to compress the source. One

would expect that the choice of pǫ for encoding the null symbol

should be matched to IE . However, this is in general not true

since IE is the consequence of the encoding scheme E . Consider

an example in which the age optimal coding scheme is first

applied to generate the codebook for the source symbols, and

later the naive scheme is used to include the encoding of the

empty buffer state. The complete codebook with ǫ is denoted by

E1. For an infinite length source sequence, the fraction of time

that the buffer stays empty is the complement of the offered

load, which is denoted by IE1
= 1 − q(E[L] + 1). Suppose

now the encoder chooses an alternative coding scheme E2 that

assigns the null symbol ǫ with probability pǫ = IE1
. That is,

the probability of every source symbol P (X) is scaled by

1 − pǫ, and the length of the codeword is very likely to be

different. The changes to both the codeword length and the

length of the empty buffer codeword will potentially lead to a

new fraction of buffer idle time IE2
6= IE1

.

Although it’s difficult to obtain the optimal pǫ that minimizes

the PAoI, it would be reasonable to choose pǫ based on an

estimate of the fraction of buffer empty time IE . We propose a

simple predictive scheme which exploits the buffer offered load

ρ when empty buffer signaling is allowed. The fraction of time

for the empty buffer IE , which is 1− ρ = 1− qE[L] in this

case, is then used as pǫ for encoding. The detailed procedure

for the predictive scheme is shown as follows.

Algorithm 1 (Predictive Encoding).

1) Obtain the PAoI-optimal code E assuming empty buffer

signaling is allowed, i.e. E{ǫ} = φ. Denote the average

codeword length as E[L(E)].
2) Set the null symbol probability pǫ = 1 − qE[L(E)] and

set an alternative source PMF PX′(x) = (1− pǫ)PX(x)
for all x ∈ X and PX′(ǫ) = pǫ.

3) Generate the PAoI-optimal codebook for the source X ′

with PMF PX′(x).

When qE[L]≪ 1, pǫ is large and close to 1, this predictive

scheme is identical to the naive scheme since the encoder

assigns the most probable codeword to pǫ, which is a single

bit 0 or 1. We note that the age analysis for the predictive

scheme is relatively complicated since the waiting time of a

symbol includes the time waiting for the service of a possible

previous null symbol ǫ as shown in the example in Fig. 4.

Since every null symbol ǫ is inserted in the channel once the

buffer becomes empty, the arrival of ǫ depends on the buffer

state and thus the effective arrival process is not i.i.d..

IV. EVALUATIONS

Fig. 5 depicts PAoI for the two different empty buffer

encoding schemes by varying the symbol arriving rate q
between 0 and 1/H(X). In Fig. 5a, the source X has 20
symbols and all the symbols are uniformly distributed with

PX(x) = 1/20. For any given symbol arrival rate q, the naive

scheme first finds the age-optimal code when the empty buffer

signaling is allowed, and then pads a bit 1 before sending every

message codeword. When the source arrival rate q is small,

both scheme yield large PAoI, and the predictive scheme is

identical to the naive scheme as expected since the system

is mostly idle. In this case, the optimal encoding scheme is

to assign the shortest codeword to the null symbol ǫ. As q
increases, the PAoI first decreases and then begins to rise

since the system becomes unstable when the average length

of message codeword E[L] > 1/q. The curve corresponding

to the predictive scheme blows up later than that of the naive

scheme when the system load becomes large. This is mainly
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Fig. 5: PAoI versus the symbol arriving probability q.

because the predictive scheme assigns a longer codeword to

the null symbol ǫ and this shortens the average length of the

message codeword E[LX ].
Fig. 5b shows a similar experiment for source X following

the Zipf distribution with PMF

PX(x) =
1/xs

∑n

1 1/x
s
,

where we set n = |X | = 20 and the exponent s = 1. Similarly,

the predictive scheme is identical to the naive scheme when q
is small, and it leads to lower PAoI when the system load is

larger.

V. ADAPTIVE EMPTY BUFFER ENCODING: EXTENSIONS

We have restricted our attention to encoding the empty buffer

state using a prefix-free codeword. When the codeword length

for the null symbol ǫ is larger than 1, any new symbol arriving

during the transmission of codeword E(ǫ) will be backlogged

in the buffer. This is in fact inefficient since the receiver doesn’t

have to reconstruct the null symbol ǫ. Given that the symbol

arriving time is not required at the receiver, it is desired to

have an encoding scheme that can preempt the transmission of

the null symbol and switch the transmitting codeword when

a new symbol arrives. We show this can be achieved if the

codeword for the null symbol ǫ shares a common prefix with

the codeword for the new symbol.

Fig. 6 demonstrates an example of preempting the transmis-

sion of null symbol ǫ adaptively using the prefix-free codebook

in Table II. Starting from t = 0, no symbol arrives to the

encoder and the buffer remains empty. Thus, the buffer starts

sending the codeword 101 one by one starting from t = 0. At

t = 2, the first two bits 10 is delivered to the decoder and a new

1

𝜖

1 0

𝜖 𝐵

1 0 0

𝜖 𝐵

𝐵

𝑡 = 1 𝑡 = 2 𝑡 = 3

Fig. 6: An example of adaptive encoding of the empty buffer

state.

symbol B arrives at the same time. Since the codeword for B
is 100, which shares the common first two bits 10 with the null

symbol ǫ, the encoder can switch to the transmission of symbol

B and send the last bit 0 in the codeword E(B) = 100. In this

case, symbol B is decoded at t = 3 and the instantaneous age

is then reduced to 1.

We note that the switch between codewords occurs randomly

depending on the probability that ǫ and the new symbol are

placed in the same branch in the binary code tree. Since the null

symbol ǫ behaves as an estimate of the next arriving symbol,

it is expected to assign ǫ a long codeword such that it shares

a common prefix with most symbols. The design of such a

coding scheme allowing symbol switching that minimizes the

age metric remains as an open problem of interest.
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