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Abstract—We consider a real-time streaming source coding
system in which an encoder observes a sequence of randomly
arriving symbols from an i.i.d. source, and feeds binary code-
words to a FIFO buffer that outputs one bit per time unit to
a decoder. Each source symbol represents a status update by
the source, and the timeliness of the system is quantified by the
age of information (Aol), defined as the time difference between
the present time and the generation time of the most up-to-date
symbol at the output of the decoder. When the FIFO buffer is
allowed to be empty, we propose an optimal prefix-free lossless
coding scheme that minimizes the average peak age based on
the analysis of discrete-time Geo/G/1 queue. For more practical
scenarios in which a special codeword is reserved for indicating
an empty buffer, we propose an encoding scheme that assigns a
codeword to the empty buffer state based on an estimate of the
buffer idle time.

I. INTRODUCTION

Many ubiquitous computing applications share a common
need: the information update from the source has to be available
at the interested receivers as quickly as possible. A recently
developed timeliness metric, the age of information (Aol),
quantifies the information freshness of status updating systems
[1]-[8]. More specifically, age measures the time difference
between now and when the most recent update was generated.
If the receiver receives an update at some time ¢, and an update
was generated at time u(t), then the instantaneous age at the
receiver is ¢ — u(t).

Real-time communication systems, such as live video stream-
ing and information update in vehicular networks, often require
efficient compression that enables the receiver to reconstruct
the source message in a timely manner under limited network
resources. The analysis of these systems can be simplified to a
real-time compression problem over a constrained data network.
In this work, we restrict our attention to the following baseline
problem: if every update by the source is transmitted to the
receiver through a binary channel with a fixed rate, what is
optimal compression scheme that keeps the information about
the source at the receiver as timely as possible? This problem
is different from the traditional source coding that focuses on
minimizing the average codeword length in order to approach
the Shannon entropy of the source.

The delay of streaming source coding has been studied in
different contexts. The end-to-end delay of streaming source
coding was first studied in [9]. Here, source symbols arrive
as a Poisson process, and the encoder maps them into binary
codewords and puts them in a finite size buffer that outputs
one bit per time unit. A variant of the Huffman code was

proposed to minimize the probability of buffer overflow. A
similar problem was studied in [10], in which source symbols
arrive at the encoder sequentially one per time unit, and the
receiver is required to reconstruct the source with a fixed
end-to-end delay constraint. It is necessary to distinguish our
timeliness requirement from measuring the end-to-end delay
in [9] and [10], since the age is a process that captures how
old the information about the source is at the receiver.

Our prior work [11] applied age analysis to a streaming
source coding system with a deterministic source symbol inter-
arrival times. We assumed that a prefix-free fixed-to-variable
encoder maps every block of N symbols to a binary codeword
that is sent through a bit pipe that outputs R bits per time
unit. We observed that the encoder must choose an appropriate
blocklength N to balance data compression delays against
network congestion deriving from insufficient compression.
Given a blocklength N, we proposed a coding scheme to
optimize average age. In [12], age analysis was extended to a
backlog-adaptive source coding model that makes the busy/idle
state at the channel interface available at the source encoder.
This enables the encoder to adjust the blocklength N based on
the state of the channel. In [13], each source symbol represents
a timely update message sent by the source, but the symbols that
arrive at the encoder while the channel is busy are skipped. An
optimal Shannon code was proposed to minimize the average
age of the freshest source symbol at the receiver.

In this paper, we consider the discrete-time streaming
source coding system with random arrivals shown in Fig. 1.
This system differs from other systems with deterministic
symbol arrivals in [11]-[13]. Here we assume a source symbol
arrives as a Bernoulli process with probability ¢ at each time
unit. Unlike other status updating systems in which only the
freshness of the most recent update matters, here we require
the receiver to reconstruct the entire source message stream in
a lossless manner. Our objective is to design a lossless coding
scheme that minimizes the average peak age for randomly
arriving source symbols.

We start in Sec. II with an idealized system model that
provides an empty buffer signal to tell the decoder when
the channel buffer is empty. A prefix-free coding scheme
is proposed to minimize the average peak age. In practical
settings, however, the source or channel has to encode and the
empty buffer state for the decoder. We then investigate possible
encoding schemes for the empty buffer state in Sec. III. We
propose a predictive scheme that assigns a codeword to the
empty buffer message based on an estimate of the fraction
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Fig. 1: System diagram for streaming source coding.
TABLE I: Example of prefix-free codebook with |X| = 4.
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Fig. 2: An example of the output process of the FIFO buffer
and the corresponding age process for the prefix-free lossless
coding on random updates. A special symbol ¢ is transmitted
when the FIFO buffer is empty.

of time the buffer is idle. A numerical comparison between

different empty buffer encoding schemes is provided in Sec. IV.

II. AGE ANALYSIS WITH EMPTY BUFFER SIGNALING

Consider the streaming source coding system shown in Fig.1.

In each time slot (starting from ¢ = 1), the source is eather idle
or it generates a discrete i.i.d. symbol X, from a finite alphabet
X. The source is not idle with probability q. Each symbol X,
has PMF Py (z) and is time-stamped when it is observed by
the encoder. Let N (¢) denote the number of symbols observed
by the encoder by time ¢.

The lossless source encoder £ maps every symbol into a
prefix-free binary sequence, i.e. £ : X — {0,1}*, and feeds
the encoded sequence £(X;) into a first-in-first-out (FIFO)
buffer that outputs R = 1 bit per time unit. The capacity of
the FIFO buffer is assumed to be infinite. A symbol X, is
declared at the output of decoder D only after the entire bit
sequence &(X}) is delivered to the input of D. At every time
t, the decoder reconstructs the source sequence up to X N (“(t)),
where u(t) < t is the time stamp of the most recent decoded
source symbol. We note that u(¢) is advanced to a new time
index only if a new symbol is decoded. The age of the source
sequence X N(“()) at the receiver at time ¢ is then given by
A(t) =t —u(t).

In this section, we assume that a special signal ¢ is sent
through the channel to indicate to the decoder that the buffer
was empty and no symbol arrived at the encoder one time unit
prior to receiving ¢. Denoting Lj, = [(X},) as the encoded bit
sequence length of a symbol X}, then the sequence Ly is also
i.i.d. with PMF P (1).

Fig. 2 depicts an example of the FIFO buffer output process
and the age process. Source symbols X € {A, B,C, D} arrive
at the input of the encoder sequentially, and each symbol is
encoded using the prefix-free codebook specified in Table 1.
The first symbol X; = C arrives at time ¢t = 0, and the
corresponding bit sequence 110 is fed into the FIFO buffer and
output to the decoder after L; = 3 time units. Thus, the age
A(t) increases linearly from an initial value Ag = 1 and drops
to A(3) = 3 time units at time ¢ = 3. The second symbol
X, = B, which arrives at time ¢ = 2, is deferred by one time
unit since the buffer is serving the codeword for the previous
symbol C, and delivered to the decoder at time ¢ = 5. The age
is then reset to the waiting time plus the codeword transmission
time for symbol B. Afterwards, the buffer stays empty since
there is no new arriving symbol. The instantaneous age A(t)
increases linearly, and is reset to L = 1 time unit only after the
decoder receives the codeword for the third symbol X5 = A.

From a queueing perspective, we can view each source
symbol X}, as an arriving job to the system. The service time
Sy of the job X is then the time it takes to be transmitted to the
decoder, which is exactly the length of the encoded sequence
Lj.. Thus the expected service time is E[S] = E[L] = 1/u.
The job interarrival time Y is geometrically distributed with
PMF Py (y) = (1—q)¥~'q for all k, and thus the arrival rate is
A =1/E[Y] = ¢. Since the system behaves as a discrete-time
Geo/G/1 queue, we have the following claim.

Lemma 1. The queue is stable if and only if E[L] < 1/q.

Note that the average codeword length E[L] is lower bounded
by the entropy of the source H(X). Hence, it is necessary to
have source entropy H(X) < 1/q for a stable queue.

We denote Ay, as the k-th peak value of the age process
A(t). The average peak age (peak Aol) at the receiver is then
defined as [2]
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Theorem 1. For a stable streaming source coding system with
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Fig. 3: The illustration of convex hull algorithm and the
representation of codebooks in the coordinate.

code length distribution Pp(l), the PAol is given by
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Proof. Evaluating Fig. 2 yields
1K
AP = Klg)noo I ;(Wk + Sk +Yy)
= E[W] + E[S] + E[Y], 3)

where W, and Sy are the waiting time and service time for
source symbol X, as shown in Fig. 2. We note that the expected
waiting time for discrete-time Geo/G/1 queue is given by [14]
_ AE[S(S - 1)
2(1-p)
where p = A/ = E[S]/ E[Y] is the system offered load. Since

Sk = Ly, for any k, the expected waiting time and service time
is rewritten as

E[W] 4)

E[W] = M (5)
~ 2(1/¢—E[L])"
Theorem 1 follows by substituting (5) into (3). O

We observe the PAol in Thm. 1 is a function of both the
average code length E[L] and the second moment E[L?]. This
is similar to the bounds on the average age when encoding
deterministic arriving source symbols using lossless block-to-
variable codes in [11].

Corollary 1. For a given source X and encoder £ with
moments of the codeword length E[L] and E[L?|, the optimal
arrival rate q* that minimizes the PAol satisfies

1 [E[L?-E[]

=T L (©)
The corresponding PAol is given by
AP(¢*) = 2(E[L?] - E[L]) +2E[L]. @)
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Fig. 4: An example of the output process of the FIFO buffer in

which the special codeword reserved for empty buffer signal €
is 101.
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Corollary 1 follows by letting z = 1/q¢ and setting
OAF /92 =0 and E[L] < z in Theorem 1.

Next, we use the technique from [15], [16] to obtain the
optimal coding scheme that minimizes the PAol in Theorem 1
given an arrival rate g. We refer to this coding scheme as the
age optimal code. It was shown in [15] that all the possible
prefix-free lossless codebooks form a convex hull in a two-
dimensional space with bases {E[L], E[L?]}. Fig. 3 depicts
an example of the space with the convex hull formed by all
possible codebooks. The goal is to search all the codebooks
at the boundary of the convex hull. Since A in Thm. 1 is
convex in E[L] and E[L?], we perform the search by first
defining a linear function

f(L) = aE[L] + BE[L?, (8)

and vary the parameters «, 3 € [0,1]. The problem is then
reduced to an inner sub-problem of finding the codebook that
minimizes the linear penalty function in (8). In [16], this sub-
problem is shown to be reduced to a coin collector’s problem,
which can be solved recursively by a Package-Merge algorithm
[17] in linear space and O(]X|?) time.

Given that the inner sub-problem can be solved efficiently,
the outer problem is solvable by an iterative algorithm that starts
from two extreme cases: («,8) = (1,0) and («, 8) = (0, 1).
We remark that (o, ) = (1,0) corresponds to a penalty
function that returns a prefix code & that minimizes the
average code length, which is a Huffman code. Given any
two codebooks &; and &, the values of « and [ are updated
as follows

€))
(10)

o« E[L?](&)) — B[L?](&)
B« E[L](&) — E[L](&1).

Next, we find the optimal code &5 that minimizes (8) for the
new values of « and (3. Graphically, this step is equivalent to
drawing a line segment [ that connects the points corresponding
to £1 and &5, and then searching for the lowest line I’ parallel
to [ that touches the boundary of the convex hull consisting of
all possible codebooks. If I’ lies below I, then a new codebook
&3 is contained in the line {’. This algorithm repeats iteratively
by renewing the value of o and 5 by (9) and (10) at each
step for the line segments connecting any two consecutive
codebooks, until we find all the feasible codes at the boundary.
The details of this algorithm can be found in [15].



TABLE II: Example of codebook with empty buffer symbol e.

X A| B € C D
E(X) | 0] 100 | 101 | 110 | 111

III. ENCODING THE EMPTY BUFFER STATE

In this section, we extend the age analysis to a more realistic
model where the null symbol ¢ is not allowed and the channel
can only output either bit O or 1. In this case, the source has to
send a special codeword, which differs from the codewords for
the source symbols X}, to inform the decoder when the buffer

is empty. We refer to this special message as the null symbol e.

The simplest way is to transmit a single bit “0” if the buffer is
empty, and otherwise transmit a “1” followed by an encoded
message. In this scheme, the “0” bit occupies only one time

slot and thus doesn’t affect the next incoming source symbol.

However, the length of every encoded sequence is increased
by 1, and we denote the new length of the message codeword
as Lx = L + 1. Substituting Lx back into Theorem 1 yields
the following new PAol
E[L?] + E[L]
2(1/q = E[L] - 1)

We refer to this scheme as the naive scheme. For the naive

Abe =

Naive

+mu+1+é. (11)

scheme, the system is stable if and only if E[L] + 1 < 1/q.

That is, for sources with entropy H(X) > 1/q — 1, there is
no feasible source code for a stable system.
When the system is mostly idle, i.e. ¢ < F[L], the buffer

has to send the empty state protocol codeword “0” frequently.

Hence, assigning the shortest codeword to € is the optimal
strategy. However, when the system is busy all the time, the
advantage of a short codeword for empty state will be forfeited
since the buffer is overloaded by serving longer codewords for
source messages. Reserving a codeword for an empty buffer
state is equivalent to adding a null symbol ¢ to the source
alphabet in the codebook. We then denote the probability of
the null symbol used in the codebook as p.. Our objective is
to find the optimal p. such that the PAol is minimized.

Fig. 4 depicts an example of the FIFO buffer output process
with the same arrival process as Fig. 2 and an alternative empty
buffer encoding scheme as shown in Table II. When the FIFO
buffer becomes empty, the codeword 101 is transmitted to the
decoder. In this case, the codeword corresponding to symbol A
is deferred by 1 time slot since the buffer is busy sending the

last bit 1 of the codeword corresponding to the null symbol e.

Let I¢ denotes the fraction of time that the buffer is empty
when the codebook &£ is used to compress the source. One
would expect that the choice of p, for encoding the null symbol
should be matched to I¢. However, this is in general not true
since I¢ is the consequence of the encoding scheme £. Consider
an example in which the age optimal coding scheme is first
applied to generate the codebook for the source symbols, and
later the naive scheme is used to include the encoding of the
empty buffer state. The complete codebook with € is denoted by
&;. For an infinite length source sequence, the fraction of time

that the buffer stays empty is the complement of the offered
load, which is denoted by Ig, = 1 — ¢(E[L] + 1). Suppose
now the encoder chooses an alternative coding scheme &> that
assigns the null symbol e with probability p. = I¢,. That is,
the probability of every source symbol P(X) is scaled by
1 — p., and the length of the codeword is very likely to be
different. The changes to both the codeword length and the
length of the empty buffer codeword will potentially lead to a
new fraction of buffer idle time I¢, # I¢,.

Although it’s difficult to obtain the optimal p, that minimizes
the PAol, it would be reasonable to choose p. based on an
estimate of the fraction of buffer empty time Ig. We propose a
simple predictive scheme which exploits the buffer offered load
p when empty buffer signaling is allowed. The fraction of time
for the empty buffer I¢, which is 1 — p =1 — g E[L] in this
case, is then used as p. for encoding. The detailed procedure
for the predictive scheme is shown as follows.

Algorithm 1 (Predictive Encoding).

1) Obtain the PAol-optimal code &£ assuming empty buffer
signaling is allowed, i.e. E{e} = ¢. Denote the average
codeword length as E[L(E)].

2) Set the null symbol probability p. = 1 — qE[L(E)] and
set an alternative source PMF Px/(z) = (1 — pe) Px ()
forall x € X and Px:(€) = pe.

3) Generate the PAol-optimal codebook for the source X'
with PMF PX/(JE).

When ¢ E[L] < 1, p, is large and close to 1, this predictive
scheme is identical to the naive scheme since the encoder
assigns the most probable codeword to p., which is a single
bit 0 or 1. We note that the age analysis for the predictive
scheme is relatively complicated since the waiting time of a
symbol includes the time waiting for the service of a possible
previous null symbol € as shown in the example in Fig. 4.
Since every null symbol € is inserted in the channel once the
buffer becomes empty, the arrival of ¢ depends on the buffer
state and thus the effective arrival process is not i.i.d..

IV. EVALUATIONS

Fig. 5 depicts PAol for the two different empty buffer
encoding schemes by varying the symbol arriving rate ¢
between 0 and 1/H(X). In Fig. 5a, the source X has 20
symbols and all the symbols are uniformly distributed with
Px (x) = 1/20. For any given symbol arrival rate g, the naive
scheme first finds the age-optimal code when the empty buffer
signaling is allowed, and then pads a bit 1 before sending every
message codeword. When the source arrival rate ¢ is small,
both scheme yield large PAol, and the predictive scheme is
identical to the naive scheme as expected since the system
is mostly idle. In this case, the optimal encoding scheme is
to assign the shortest codeword to the null symbol €. As ¢
increases, the PAol first decreases and then begins to rise
since the system becomes unstable when the average length
of message codeword E[L] > 1/q. The curve corresponding
to the predictive scheme blows up later than that of the naive
scheme when the system load becomes large. This is mainly
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Fig. 5: PAol versus the symbol arriving probability g.

because the predictive scheme assigns a longer codeword to
the null symbol e and this shortens the average length of the
message codeword E[Lx].

Fig. 5b shows a similar experiment for source X following
the Zipf distribution with PMF

o 1/a

TS

where we set n = |X'| = 20 and the exponent s = 1. Similarly,
the predictive scheme is identical to the naive scheme when ¢

is small, and it leads to lower PAol when the system load is
larger.

Px(l‘)

V. ADAPTIVE EMPTY BUFFER ENCODING: EXTENSIONS

We have restricted our attention to encoding the empty buffer
state using a prefix-free codeword. When the codeword length
for the null symbol ¢ is larger than 1, any new symbol arriving
during the transmission of codeword &(e) will be backlogged
in the buffer. This is in fact inefficient since the receiver doesn’t
have to reconstruct the null symbol e. Given that the symbol
arriving time is not required at the receiver, it is desired to
have an encoding scheme that can preempt the transmission of
the null symbol and switch the transmitting codeword when
a new symbol arrives. We show this can be achieved if the
codeword for the null symbol e shares a common prefix with
the codeword for the new symbol.

Fig. 6 demonstrates an example of preempting the transmis-
sion of null symbol e adaptively using the prefix-free codebook
in Table II. Starting from ¢ = 0, no symbol arrives to the
encoder and the buffer remains empty. Thus, the buffer starts
sending the codeword 101 one by one starting from ¢t = 0. At
t = 2, the first two bits 10 is delivered to the decoder and a new

Fig. 6: An example of adaptive encoding of the empty buffer
state.

symbol B arrives at the same time. Since the codeword for B
is 100, which shares the common first two bits 10 with the null
symbol e, the encoder can switch to the transmission of symbol
B and send the last bit 0 in the codeword £(B) = 100. In this
case, symbol B is decoded at ¢ = 3 and the instantaneous age
is then reduced to 1.

We note that the switch between codewords occurs randomly
depending on the probability that ¢ and the new symbol are
placed in the same branch in the binary code tree. Since the null
symbol e behaves as an estimate of the next arriving symbol,
it is expected to assign € a long codeword such that it shares
a common prefix with most symbols. The design of such a
coding scheme allowing symbol switching that minimizes the
age metric remains as an open problem of interest.
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