Special Session 2: Social-Media Visual Summarization /
Large-Scale 3D Multimedia Analysis and Applications

ICMR’18, June 11-14, 2018, Yokohama, Japan

A LiDAR Point Cloud Generator: from a Virtual World to
Autonomous Driving

Xiangyu Yue, Bichen Wu, Sanjit A. Seshia, Kurt Keutzer and Alberto L. Sangiovanni-Vincentelli
EECS, University of California, Berkeley
{xyyue,bichen,sseshia,keutzer,alberto}@eecs.berkeley.edu

ABSTRACT

3D LiDAR scanners are playing an increasingly important role in au-
tonomous driving as they can generate depth information of the en-
vironment. However, creating large 3D LiDAR point cloud datasets
with point-level labels requires a significant amount of manual an-
notation. This jeopardizes the efficient development of supervised
deep learning algorithms which are often data-hungry. We present
a framework to rapidly create point clouds with accurate point-
level labels from a computer game. To our best knowledge, this is
the first publication on LiDAR point cloud simulation framework
for autonomous driving. The framework supports data collection
from both auto-driving scenes and user-configured scenes. Point
clouds from auto-driving scenes can be used as training data for
deep learning algorithms, while point clouds from user-configured
scenes can be used to systematically test the vulnerability of a neu-
ral network, and use the falsifying examples to make the neural
network more robust through retraining. In addition, the scene
images can be captured simultaneously in order for sensor fusion
tasks, with a method proposed to do automatic registration between
the point clouds and captured scene images. We show a significant
improvement in accuracy (+9%) in point cloud segmentation by aug-
menting the training dataset with the generated synthesized data.
Our experiments also show by testing and retraining the network
using point clouds from user-configured scenes, the weakness/blind
spots of the neural network can be fixed.

CCS CONCEPTS

« Computing methodologies — Simulation environments; «
Information systems — Extraction, transformation and loading;
- Software and its engineering — Software infrastructure; Simu-
lator / interpreter; Software verification;

KEYWORDS

LiDAR Point Cloud, Simulation Environment, Autonomous Driving,
Neural Network Analysis, Neural Network Retraining

ACM Reference Format:
Xiangyu Yue, Bichen Wu, Sanjit A. Seshia, Kurt Keutzer and Alberto L.
Sangiovanni-Vincentelli . 2018. A LiDAR Point Cloud Generator: from a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICMR 18, June 11-14, 2018, Yokohama, Japan

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5046-4/18/06. .. $15.00
https://doi.org/10.1145/3206025.3206080

458

Virtual World to Autonomous Driving. In ICMR ’18: 2018 International Con-
ference on Multimedia Retrieval, June 11-14, 2018, Yokohama, Japan, Jennifer
B. Sartor, Theo D’Hondt, and Wolfgang De Meuter (Eds.). ACM, New York,
NY, USA, Article 4, 7 pages. https://doi.org/10.1145/3206025.3206080

1 INTRODUCTION

Autonomous driving requires accurate and reliable perception of
the environment. As 3D data has some superiority in information
representation over 2D data [9, 12, 27, 28], 3D LiDAR (Light Detec-
tion And Ranging) sensors are playing an increasingly important
role of all the environment sensors for autonomous driving. On
the one hand, 3D LiDAR sensors can provide direct distance mea-
surements that allow detection of all kinds of obstacles, and their
resolution and field of view exceed radar and ultrasonic sensors [17].
On the other hand, LiDAR sensors are robust under a variety of
conditions: day or night, with or without glare and shadows [26].
While LiDAR point clouds contain accurate depth measurement of
the environment, navigation of autonomous vehicles also relies on
correct understanding of the semantics of the environment. Most
of the LiDAR-based perception tasks, such as semantic segmenta-
tion [3, 4, 26] and drivable area detection [8, 16], require significant
amount of point-level labels for training and/or validation. Such
annotation, however, is usually very expensive.

To facilitate the manual annotation process, much work has been
done on interactive annotation. Annotation methods have been
proposed for labeling 3D point clouds of both indoor scenes [21] and
outdoor driving scenes [10]. These methods utilize little computer
assistance during the annotation process and thus need a significant
amount of human effort. In [15, 23], approaches have been proposed
to enhance the human-machine interaction to improve annotation
efficiency. In [20, 25], annotation suggestions for indoor RGBD
scenes are proposed by the system that are interactively corrected
or refined by the user. In order to provide faster interactive labeling
rates, Boyko et al. [2] proposed a group annotation approach for
labeling objects in 3D LiDAR scans. Active learning has also been
introduced in the annotation process to train a classifier with fewer
interactions [14, 22], yet it requires users to interact with examples
one-by-one. Other frameworks further take into account the risk of
mislabeling and cost of annotation. In [24], Welinder et al. proposed
a model of the labeling process and dynamically chooses which
images will be labeled next in order to achieve a desired level of
confidence.

Recently, video games have been used for creating large-scale
ground truth data for training purposes. In [19], a video game
is used to generate ground truth semantic segmentation for the
synthesized in-game images. However, human effort is still required
in the annotation process. In [13], the same game engine is used to
generate ground truth 2D bounding boxes of objects in the images.

https://doi.org/10.1145/3206025.3206080
https://doi.org/10.1145/3206025.3206080

Special Session 2: Social-Media Visual Summarization /
Large-Scale 3D Multimedia Analysis and Applications

ICMR’18, June 11-14, 2018, Yokohama, Japan

(a)

(b)

()

Figure 1: Sample data extracted from an in-game scene. (a): Image of the scene; (b): Extracted point cloud from the same scene;
(c): Point cloud of car mapped to image after registration (Blue dots) matches car in image.

Richter et al. [18] further extended the work of [19] so that various
ground truth information (e.g. semantic segmentation, semantic
instance segmentation, and optical flow) can be extracted from the
game engine. In addition, many driving simulation environments [1,
5, 11] have been built in order to obtain various kinds of labeled
data for autonomous driving purposes. Many of these work [5, 13,
18, 19] show the effectiveness of synthetic data in image-based
learning tasks by showing improved performance after training
with additional synthetic data. However, little work has been done
on extracting annotated 3D LiDAR point clouds from simulators,
not to mention showing the efficacy of the synthetic point clouds
during the training process of neural networks.

Note that even if we could provide large amounts of training
data, it is still almost impossible for any algorithms to achieve 100%
accuracy. For Cyber-Physical Systems used for safety critical pur-
poses, such as autonomous driving, verifying neural networks is of
extreme importance [6]. In [7], a framework is proposed to system-
atically analyze Convolutional Neural Networks (CNNs) used in
objection detection in autonomous driving systems. However, the
framework only takes into account cars from direct front/back view
and thus has a very limited modification space. In addition, each
background image needs to be manually annotated, making it ex-
pensive to generate a dataset with large diversity. To the best of our
knowledge, no similar work has been done on LiDAR point clouds.
In this paper, we propose an extraction-annotation-CNN testing
framework based on a popular video game. The main contributions
of this paper are as follows:

o This is the first publication on LiDAR point cloud simulation
framework for autonomous driving.

o The framework can automatically extract point-cloud data
with ground truth labels together with the corresponding
image frame of the in-game scene, as shown in Figure 1.

o The framework can do automatic registration between col-
lected point clouds and images which can then be used to-
gether for sensor fusion tasks, e.g. inferring depth informa-
tion from RGB images.

e Users can construct specified scenarios in the framework
interactively and the collected data (point clouds and images)
can then be used to systematically test, analyze and improve
LiDAR-based and/or image-based learning algorithms for
autonomous driving.

459

We conduct experiments on a Convolutional Neural Network
(CNN)-based model for 3D LiDAR point cloud segmentation using
the data collected from the proposed framework. The experiments
show 1) significantly improved performance on KITTI dataset [10]
after retraining with additional synthetic LiDAR point clouds, and
2) efficacy of using the data collected from user-configured scenes
in the framework to test, analyze and improve the performance of
the neural network. The performance improvements come from
the fact that the data collected in the rich virtual world contains a
lot of information that the neural network failed to learn from the
limited amount of original training samples.

2 TECHNICAL APPROACH

2.1 In-Game Simulation Setup and Method for
Data Collection

We choose to utilize the rich virtual world in Grand Theft Auto V
(GTA-V), a popular video game, to obtain simulated point clouds as
well as captured in-game images with high fidelity®. Our framework
is based on DeepGTAV?, which uses Script Hook V? as a plugin.
In order to simulate realistic driving scenes, an ego car is used in
the game with a virtual LIDAR scanner mounted atop, and it is set
to drive autonomously in the virtual world with the Al interface
provided in Script Hook V. While the car drives on a street, the
system collects LIDAR point clouds and captures the game screen,
simultaneously. We place the virtual LiDAR scanner and the game
camera at the same position in the virtual 3D space. This set-up
offers two advantages: 1) a sanity check can be easily done on the
collected data, since point clouds and corresponding images must
be consistent; 2) registration between the game camera and the
virtual LIDAR scanner can be done automatically, and then collected
point clouds and scene images can be combined together as training
dataset for neural networks for sensor fusion tasks. Details of the
proposed registration method will be described in Section 2.2.
Ray casting is used to simulate each laser ray emitted by the
virtual LiDAR scanner. The ray casting API takes as input the 3D
coordinates of the starting and ending point of the ray, and returns
the 3D coordinates of the first point the ray hits. This point is used,
with another series of API function calls, to calculate, among other

The publisher of GTA-V allows non-commercial use of footage of gameplay [19].
2https://github.com/aitorzip/DeepGTAV
3http://www.dev-c.com/gtav/scripthookv/

https://github.com/aitorzip/DeepGTAV
http://www.dev-c.com/gtav/scripthookv/

Special Session 2: Social-Media Visual Summarization /
Large-Scale 3D Multimedia Analysis and Applications

% e ;\\B[//L

() (b)

Figure 2: Sample configurable parameters of the virtual Li-
DAR. (a) shows front view of the virtual LiDAR: black dotted
line is the horizontal line, « is the vertical field of view (FOV),
0 is the vertical resolution, o is the pitch angle; (b) shows top
view of the virtual LiDAR, f is the horizontal FOV, and ¢ is
the horizontal resolution.

data, the distance of the point, the category and instance ID of the
object hit by the ray, thus allowing automatic annotation on the
collected data.

In our framework, users can provide configurations of the LIDAR
scanner including vertical field of view (FOV), vertical resolution,
horizontal FOV, horizontal resolution, pitch angle, maximum range
of laser rays, and scanning frequency. Some of the configurable
parameters are shown in Figure 2.

2.2 Automatic Registration Method

The goal of the registration process is to find the corresponding
pixel in the image for each LiDAR point. In our framework, the
registration process can be done automatically by the system based
on the parameters of the camera and LiDAR scanner. In addition,
the centers of the camera and LiDAR scanner are set to the same
position in the virtual world, making the registration projection
similar to the camera perspective projection model, as shown in
Figure 3.

The problem is formulated as follows: for a certain laser ray
with azimuth angle ¢ and zenith angle 6, calculate the index (i, j)
of the corresponding pixel on image. ¢, %o, P, P’ and Py, are
3D coordinates of a) center of camera/LiDAR scanner, b) center of
camera near clipping plane. c) point first hit by the virtual laser ray
(in red), d) pixel on image corresponding to P, and e) a point far
away in the laser direction (required as an input argument to the
ray casting API), respectively. m and n are the width and height of
the near clipping plane. y is 1/2 vertical FOV of camera while ¢ is
1/2 vertical FOV of the LiDAR scanner. Note that LiDAR scanner
FOV is usually smaller than camera FOV, since there is usually no
object in the top part of the image, and thus emitting laser to open
space is not necessary. After a series of 3D geometry calculation,
we can get:

;)
j= 7” -(f -tany + f - tan),

where f = Hm

age/near clipping plane.

‘, and (R, Rp) is the pixel resolution of the im-

460

ICMR’18, June 11-14, 2018, Yokohama, Japan

Figure 3: Projection for Registration. 7, is the center of the
near clipping plane of the camera; 7, is the center of the
camera and of the LiDAR scanner; the red line is the laser
ray and P is the point hit by the ray; the calibrated on-image
point has pixel index (i, j) and 3D coordinates P’; y is 1/2 the
camera vertical FOV and ¢ is 1/2 the LiDAR vertical FOV; ¢
and 0 are the azimath and zenith angles of the laser ray.

Further, as an input argument to the ray casting API, the 3D
coordinates of Py, are also required. Using similar 3D geometry
calculations, we obtain:

! _ ._>_
Pr=Fesfoxe cos 6
Prar = Fo+ k- (P = o)

‘tang-yo — f - tanb - z¢,

()

where k is a large coefficient, and X, Je, Ze are unit vectors of the
camera axis in the world coordinate system.

An example of the registration result is shown in Figure 1. After
simulation, both image and point cloud of the specified in-game
scene are collected by the framework (Figure 1 (a, b)). Then with the
proposed registration method, we map all the points with category
"Car" to the corresponding image. As shown in Figure 1 (c), the
mapped car point cloud (blue dots) matches the car in the image
fairly accurately.

2.3 Configurable In-game Scene

Besides the auto-driving mode for large-scale data collection, our
framework offers a configurable mode, where the user can configure
desired in-game scenes and collect data from them. One advantage
of configurable scenes is generating training data of driving scenes
that are dangerous or rare in real world. Another advantage is that
we can systematically sample the modification space (e.g. number of
cars, position and orientation of a car) of an in-game scene. The data
can then be used to test a neural network, expose its vulnerabilities
and improve its performance through retraining. Our framework
offers a large modification space of the in-game scene. As shown
in Figure 4, the user can specify and change 8 dimensions of in-
game scene: car model, car location, car orientation, number of
cars, scene background, color of car, weather, and time of day. The
first 5 dimensions affect both LiDAR point cloud and scene image,
while the last three dimensions affect only the scene image. An
example of sampling is shown in Figure 5, where the scenes are
only sampled from the spatial dimensions (X, Y) with only one car
in each scene. X and Y are the location offset of the car relative to
the camera/LiDAR location in the left-right and forward-backward

Special Session 2: Social-Media Visual Summarization /
Large-Scale 3D Multimedia Analysis and Applications ICMR’18, June 11-14, 2018, Yokohama, Japan

Car Model Car Location Car Orientation

Reference

Car Color Weather Time of Day

Figure 4: Modification dimensions of the framework with image in center showing the reference scene.

(a) (b)
Figure 5: Scenes with one car sampled from spatial dimensions and corresponding point cloud. (a) shows the scene image while
changing the location of the car on X (left-right) and Y (forward-backward) directions; (b) shows point clouds (red for car and
blue for background) of scenes in (a).

_‘*mm

461

Special Session 2: Social-Media Visual Summarization /
Large-Scale 3D Multimedia Analysis and Applications

Ground truth segmentation

Predicted segmentation

Figure 6: LIDAR point cloud segmentation

directions. Figure5 (b) shows collected point cloud of the samples
shown in Figure5 (a). The red points represent car points while the
blue points represent the scene background. The collected point
clouds match the scenes well thus allowing the use of the data to
test neural networks systematically.

3 EXPERIMENTS AND RESULTS

We performed experiments to show the efficacy of our data syn-
thesis framework: 1) Data collected by the framework can be used
in the training phase and help improve the validation accuracy; 2)
Collected data can be used to systematically test a neural network
and improve its performance via retraining.

3.1 Evaluation Metrics

Our experiments are performed on the task of LIDAR point cloud
segmentation; specifically, given a point cloud detected by a LIDAR
sensor, we wish to perform point-wise classification, as shown in
Figure 6. This task is an essential step for autonomous vehicles to
perceive and understand the environment, and navigate accord-
ingly.

To evaluate the accuracy of the point cloud segmentation al-
gorithm, we compute Intersection-over-Union (IoU), Precision and
Recall as:

_ PN G|

_PenGel , PN Gel
e = ——2%

e P0G T P Gl
Here, ¢ denotes the set of points that our model predicted to be
of class-c, G, denotes the ground-truth set of points belonging to
class-c, and || denotes the cardinality of a set. Precision and Recall
measures accuracy with regard to false positives and false negatives,
respectively; while IoU takes both into account. For this, IoU is
used as the primary accuracy metric in our experiments.

,Reca

3.2 Experimental Setup

Our analysis is based on SqueezeSeg [26], a convolutional neural
network based model for point cloud segmentation. To collect the
real-word dataset, we used LiDAR point cloud data from the KITTI
dataset and converted its 3D bounding box labels to point-wise
labels. Since KITTI dataset only provides reliable 3D bounding
boxes for front-view LiDAR point clouds, we limit the horizontal
field of view (FOV) to the forward-facing 90°. This way, we ob-
tained 10,848 LiDAR scans with manual labels. We used 8,057 scans
for training and 2,791 scans for validation. Each point in a KITTI
LiDAR scan has 3 cartesian coordinates (x, y, z) and an intensity

462

ICMR’18, June 11-14, 2018, Yokohama, Japan

Table 1: Segmentation Performance Comparison on the Car
Category. Only data used in the first row has Intensity chan-
nel. All numbers are in percentage.

Precision Recall IoU

KITTI w/ Intensity 66.7 954 64.6

KITTI w/o Intensity 58.9 95.0 57.1

GTA-V only 30.4 86.6 29.0
KITTI w/o Intensity

+ GTAV 69.6 92.8 66.0

value, which measures the amplitude of the laser signal returned.
Although the intensity measurement as an extra input feature is
beneficial to improve the segmentation accuracy, simulating the
intensity measurement is very difficult and not supported in our
current framework. Therefore we excluded intensity as an input
feature to the neural network for GTA-V synthetic LIDAR data. We
use NVIDIA TITAN X GPUs for the experiments during both the
training and validation phases.

3.3 Experimental Results

Synthetic Data for Training: For the first set of experiments,
we used our data synthesis framework to generate 8,585 LIDAR
point cloud scans in autonomous-driving scenes. The generated
data contain (x, y, z) measurements but do not contain intensity.
The horizontal FOV of the collected point clouds are set to be 90°
to match the setting of KITTI point clouds described in Section 3.2.

To quantify the effect of training the model with synthetic data,
we first trained two models on the KITTI training set with intensity
included and excluded, and validated on the KITTI validation set.
The performance is shown in the first 2 rows of Table 1 as the
baseline. The model with intensity achieved better result. Then
we trained another model with only GTA-V synthetic data. As
shown in the third row of Table 1, the performance drops a lot.
This is mostly because the distributions of the synthetic dataset
and KITTI dataset are quite different. Therefore, through training
purely on synthetic dataset, it is hard for the neural network to
learn all the required details for the KITTI dataset, which might be
missing or insufficient in the synthetic training dataset. Finally, we
combined the KITTI data and GTA-V data together as the training
set and train another model. As shown in the last row of Table 1, the
performance gets improved significantly, almost 9% better than the
accuracy achieved only using real-world data. Despite the loss of
the intensity channel, the GTA+KITTI dataset gives better accuracy
(66.0%) than if intensity is included (64.6%). This demonstrates the
efficacy of the synthetic data extracted in our framework.

Neural Network Testing and Robustness Enhancement:
For the second set of experiments, we first used our framework
to systematically test SqueezeSeg. As an illustrative experiment,
we only performed sampling in the car location X-Y dimensions as
in Figure 5, rather than the whole modification space. 555 scenes
were sampled to test SqueezeSeg, with the IoU results shown in
Figure 7. The blue and green dots show the car locations resulting
in low IoU. Most of the "blind spot" are locations far from the LIiDAR
scanner, but there are also closer locations that result in low IoU
scores. Close locations with low IoUs are dangerous in autonomous

Special Session 2: Social-Media Visual Summarization /
Large-Scale 3D Multimedia Analysis and Applications

8004 D e _.‘

1000 4

1200
0

1000 1250 1500 1750

Figure 7: IoU scatter with the change of car location

1.0

° ° ° ° ° ° ° ° ° °
181 e ° ° ° ° ° ° ° ° °
° ° ° ° ° ° ° ° o8
16 L] L) L] [) L]
°
14 °
0.6
> 12
0.4
10 J
° °
8 ° e
0.2
°
6
[]
) -2 0 2) 00

X

Figure 8: mIoU map of the validation set before retraining

driving, since they can mislead the decision-making system of the
autonomous vehicles and result in immediate accident.

Further experiments are then done to show the efficacy of using
generated synthetic data to possibly improve performance and ro-
bustness of the network in the modification space. We synthesized
totally 2,250 LiDAR point cloud scans in 15 different scene back-
grounds. In each scene background, only one car is placed with the
same orientation as the camera view. We obtained 150 point cloud
scans in each scene background by changing the position of the
car (X,Y) in the sampled space: S = {(x,y) | x € {-5,---,4},y €
{5,---,19}}, where X, Y are respectively the left-right and forward-
backward offset relative to the position of the camera. For each
scene background, the position and orientation of the camera were
fixed.

We split the collected point cloud scans based on the scene back-
ground. 1200 point cloud scans in the first 8 backgrounds are used
as validation set ‘V, and the rest 1050 scans from the other 7 back-
grounds, which we call retraining set R, are used for retraining
purpose. First, we train a neural network with purely KITTI data
and do evaluation on the synthetic 1200 scans in the validation set
V. We define mean IoU (mloU) for each point in the 15X 10 X-Y mod-
ification space as averaging IoUs over all the scene backgrounds in
V:

1 n
mloU(i,j) = — > 10U, j, k),
k=1

463

ICMR’18, June 11-14, 2018, Yokohama, Japan

° ° ° ° ° ° ° ° ° °

18) o ° ° ° ° ° ° ° ° ° 08
° ° ° ° ° ° ° ° ° °
16{ ® ° ° ° ° ° ° ° ° °
° ° ° ° ° ° ° ° ° °

14 e ° ° ° ° ° ° ° ° ° 0.6
° ° ° ° ° ° ° ° ° °
>12] e ° ° « > ° ° ° °

° ° ° e ° ° ° ° ° ° 0.4
10 e c ° ° o ° ° ° °
° ° ° o ° ° ° o e

8 o ° ° ° ° ° ° ° ° ° o2
° ° ° ° ° ° ° ° ° °
6 o ° ° ° ° ° ° ° °
° ° ° ° ° ° ° ° °

2 = 5 5 3 0.0

X

Figure 9: mIoU map of the validation set after selection with
mloU less than 0.65 set to 0. All the point clouds in the re-
training set R corresponding to the blue positions in the new
mloU map will be added to the original training set.

1.0
18 %

0.8

0.6

0.4

L[]

LI)

[3N)

s 0 00

0.0
X

Figure 10: mIoU map of the validation set after retraining

where n is the number of scene backgrounds (n = 8 in this ex-
periment), (i,j) is in {(i,j) | i € [-5,4],j € [5,19],i,j € Z} and
IoU(i, j, k) refers to the IoU of the point cloud scan sampled at (i, j)
in the X-Y modification with the k;j scene background.

The mIoU map of the validation set is computed, as shown in
Figure 8. We can see that the pre-trained network performs poorly
on positions that are far away, at the boundary of the FOV. But
more surprisingly, we also observed that on some positions that
are fairly close to the ego-vehicle, e.g. (-3, 5), the mIoU scores are
also very low. Detection errors at such near distance can be very
dangerous.

Based on the mIoU map, we choose positions with an mIoU
smaller than a threshod to form a retraining set, as shown in Figure
9. Then all the point clouds in the retraining set R with a selected
position are added to the original training set. After the retraining
process, we re-evaluate the validation set V, with the new mloU
map shown in Figure 10. As the figure shows, at almost all the
close-to-center positions originally with low mloU, the neural net-
work performs much better than before the retraining. In order to
visualize the performance improvements better, we plot the mIoU
improvement after the retraining process for each position. The
mloU improvements are sorted and plotted in Figure 11. We see
that after retraining, performance on point clouds at most of the

Special Session 2: Social-Media Visual Summarization /
Large-Scale 3D Multimedia Analysis and Applications

0.8
0.8
0.6 0.6
k= i
@ I
s allll
50,4 it 0.4
g
||||||||““HM"” L
00 [|III||||||||||||I|| | .
0 20 40 60 100 120 140

80
Point Index

Figure 11: mIoU improvements in ascending order for all 150
positions

positions gets much better, with slightly degraded performance at
only a small fraction of positions. Meanwhile, the performance on
KITTI dataset remained almost the same with IoU changing from
60.8% to 60.6%. These experiments show the efficacy of using syn-
thetic data from user-configured scenes of the proposed framework
to test, analyze and improve the performance of neural networks
through retraining.

4 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a framework that synthesizes annotated
LiDAR point clouds from a virtual world in a game, with a method to
automatically calibrate the point cloud and scene image. Our frame-
work can be used to: 1) obtain a large amount of annotated point
cloud data, which can then be used to help neural network training;
2) systematically test, analyze and improve performance of neural
networks for tasks such as point cloud segmentation. Experiments
show that for a point cloud segmentation task, synthesized data
help improve the validation accuracy (IoU) by 9% on a real-world
benchmark. Furthermore, the systematical sampling and testing
framework can help us to identify potential weakness/blind spots of
our neural network model and fix them. Our future works will focus
on two directions: 1) Experiments show that the intensity channel
in LiDAR point clouds is crucial for LIDAR-based perception tasks,
but current framework does not support intensity synthesis. We
plan to explore techniques to simulate realistic LIDAR intensity.
2) The effectiveness of using synthetic data to train perception
algorithms is usually limited by domain shift. We plan to explore
domain adaptation methods to diminish the gap between virtual
world and real world.

ACKNOWLEDGEMENT

This work was partially supported by NSF, Award 1645964, together
with Berkeley Deep Drive. We thank Kostadin Ilov for providing
system assistance.

REFERENCES

[1] Daniel Biedermann, Matthias Ochs, and Rudolf Mester. 2016. Evaluating vi-
sual ADAS components on the COnGRATS dataset. In IEEE Intelligent Vehicles
Symposium. 986-991.

[2] Aleksey Boyko and Thomas Funkhouser. 2014. Cheaper by the Dozen: Group
Annotation of 3D Data. In ACM Symposium on User Interface Software and Tech-
nology. 33-42.

464

[10

[11

=
&

[13

[14

[15

=
&

(17]

[18

[19

[20

[21

[22

[23

[24

[25

[27

[28

ICMR’18, June 11-14, 2018, Yokohama, Japan

Ayush Dewan, Gabriel L Oliveira, and Wolfram Burgard. 2017. Deep Semantic
Classification for 3D LiDAR Data. arXiv preprint arXiv:1706.08355 (2017).
David Dohan, Brian Matejek, and Thomas Funkhouser. 2015. Learning hierar-
chical semantic segmentations of lidar data. In International Conference on 3D
Vision. 273-281.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Proceedings of the
Ist Annual Conference on Robot Learning. 1-16.

Tommaso Dreossi, Alexandre Donzé, and Sanjit A Seshia. 2017. Compositional
Falsification of Cyber-Physical Systems with Machine Learning Components. In
NASA Formal Methods Symposium. 357-372.

Tommaso Dreossi, Shromona Ghosh, Alberto Sangiovanni-Vincentelli, and San-
jit A. Seshia. 2017. Systematic testing of convolutional neural networks for
autonomous driving. arXiv preprint arXiv:1708.03309 (2017).

R. Fernandes, C. Premebida, P. Peixoto, D. Wolf, and U. Nunes. 2014. Road
Detection Using High Resolution LIDAR. In IEEE Vehicle Power and Propulsion
Conference. 1-6.

Yue Gao, Meng Wang, Dacheng Tao, Rongrong Ji, and Qionghai Dai. 2012. 3-D
object retrieval and recognition with hypergraph analysis. IEEE Transactions on
Image Processing 21, 9 (2012), 4290-4303.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. 2013. Vision
meets Robotics: The KITTI Dataset. International Journal of Robotics Research 32,
11 (2013), 1231-1237.

Vladimir Haltakov, Christian Unger, and Slobodan Ilic. 2013. Framework for
generation of synthetic ground truth data for driver assistance applications. In
German Conference on Pattern Recognition. 323-332.

Rongrong Ji, Ling-Yu Duan, Jie Chen, Tiejun Huang, and Wen Gao. 2014. Mining
compact bag-of-patterns for low bit rate mobile visual search. IEEE Transactions
on Image Processing 23, 7 (2014), 3099-3113.

Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nittur Srid-
har, Karl Rosaen, and Ram Vasudevan. 2017. Driving in the matrix: Can virtual
worlds replace human-generated annotations for real world tasks?. In IEEE Inter-
national Conference on Robotics and Automation. 746-753.

Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell. 2007.
Active learning with gaussian processes for object categorization. In IEEE Inter-
national Conference on Computer Vision. 1-8.

Regis Kopper, Felipe Bacim, and Doug A Bowman. 2011. Rapid and accurate 3D
selection by progressive refinement. In IEEE Symposium on 3D User Interfaces.
67-74.

Ziyi Liu, Siyu Yu, Xiao Wang, and Nanning Zheng. 2017. Detecting Drivable Area
for Self-driving Cars: An Unsupervised Approach. arXiv preprint arXiv:1705.00451
(2017).

Frank Moosmann, Oliver Pink, and Christoph Stiller. 2009. Segmentation of 3D
lidar data in non-flat urban environments using a local convexity criterion. In
IEEE Intelligent Vehicles Symposium. 215-220.

Stephan R Richter, Zeeshan Hayder, and Vladlen Koltun. 2017. Playing for
benchmarks. In IEEE International Conference on Computer Vision. 2232-2241.
Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. 2016. Playing
for data: Ground truth from computer games. In European Conference on Computer
Vision. 102-118.

Tianjia Shao, Weiwei Xu, Kun Zhou, Jingdong Wang, Dongping Li, and Baining
Guo. 2012. An Interactive Approach to Semantic Modeling of Indoor Scenes with
an RGBD Camera. ACM Transactions on Graphics 31, 6 (2012), 136:1-136:11.
Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. 2012. Indoor
segmentation and support inference from rgbd images. In European Conference
on Computer Vision. 746-760.

Andrew Top, Ghassan Hamarneh, and Rafeef Abugharbieh. 2011. Active learning
for interactive 3D image segmentation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention. 603-610.

Manuel Veit and Antonio Capobianco. 2014. Go’Then’Tag: A 3-D point cloud
annotation technique. In IEEE Symposium on 3D User Interfaces. 193-194.

Peter Welinder and Pietro Perona. 2010. Online crowdsourcing: rating annota-
tors and obtaining cost-effective labels. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops. 25-32.

Yu-Shiang Wong, Hung-Kuo Chu, and Niloy J Mitra. 2014. Smartannotator: An in-
teractive tool for annotating RGBD indoor images. arXiv preprint arXiv:1403.5718
(2014).

Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. 2018. SqueezeSeg:
Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Seg-
mentation from 3D LiDAR Point Cloud. In IEEE International Conference on
Robotics and Automation.

Sicheng Zhao, Lujun Chen, Hongxun Yao, Yanhao Zhang, and Xiaoshuai Sun.
2015. Strategy for dynamic 3D depth data matching towards robust action
retrieval. Neurocomputing 151 (2015), 533-543.

Sicheng Zhao, Hongxun Yao, Yanhao Zhang, Yasi Wang, and Shaohui Liu. 2015.
View-based 3D object retrieval via multi-modal graph learning. Signal Processing
112 (2015), 110-118.

	Abstract
	1 Introduction
	2 Technical Approach
	2.1 In-Game Simulation Setup and Method for Data Collection
	2.2 Automatic Registration Method
	2.3 Configurable In-game Scene

	3 Experiments and Results
	3.1 Evaluation Metrics
	3.2 Experimental Setup
	3.3 Experimental Results

	4 Conclusions and Future Work
	References

