
Scenic: A Language for Scenario Specification and
Scene Generation

Daniel J. Fremont
University of California, Berkeley

USA
dfremont@berkeley.edu

Tommaso Dreossi∗
University of California, Berkeley

USA
tommasodreossi@berkeley.edu

Shromona Ghosh∗
University of California, Berkeley

USA
shromona.ghosh@berkeley.edu

Xiangyu Yue∗
University of California, Berkeley

USA
xyyue@berkeley.edu

Alberto L.
Sangiovanni-Vincentelli

University of California, Berkeley
USA

alberto@berkeley.edu

Sanjit A. Seshia
University of California, Berkeley

USA
sseshia@berkeley.edu

Figure 1. Three scenes generated from a single ∼20-line Scenic scenario representing bumper-to-bumper traffic.

Abstract
We propose a new probabilistic programming language for
the design and analysis of perception systems, especially
those based on machine learning. Specifically, we consider
the problems of training a perception system to handle rare
events, testing its performance under different conditions,
and debugging failures. We show how a probabilistic pro-
gramming language can help address these problems by
specifying distributions encoding interesting types of inputs
and sampling these to generate specialized training and test
sets. More generally, such languages can be used for cyber-
physical systems and robotics to write environment models,
an essential prerequisite to any formal analysis. In this pa-
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per, we focus on systems like autonomous cars and robots,
whose environment is a scene, a configuration of physical
objects and agents. We design a domain-specific language,
Scenic, for describing scenarios that are distributions over
scenes. As a probabilistic programming language, Scenic
allows assigning distributions to features of the scene, as
well as declaratively imposing hard and soft constraints over
the scene. We develop specialized techniques for sampling
from the resulting distribution, taking advantage of the struc-
ture provided by Scenic’s domain-specific syntax. Finally,
we apply Scenic in a case study on a convolutional neural
network designed to detect cars in road images, improving
its performance beyond that achieved by state-of-the-art
synthetic data generation methods.

CCS Concepts • Software and its engineering → Do-
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ging; Specification languages; • Computing methodolo-
gies → Machine learning; Computer vision.
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1 Introduction
Machine learning (ML) is increasingly used in safety-critical
applications, thereby creating an acute need for techniques
to gain higher assurance in ML-based systems [1, 39, 41]. ML
has proved particularly effective at perceptual tasks such as
speech and vision. Thus, there is a pressing need to tackle
several important problems in the design of such ML-based
perception systems, including:
• training the system so that it correctly responds to events
that happen only rarely,

• testing the system under a variety of conditions, especially
unusual ones, and

• debugging the system to understand the root cause of a
failure and eliminate it.

The traditional ML approach to these problems is to gather
more data from the environment, retraining the system until
its performance is adequate. The major difficulty here is that
collecting real-world data can be slow and expensive, since
it must be preprocessed and correctly labeled before use.
Furthermore, it may be difficult or impossible to collect data
for corner cases that are rare but nonetheless necessary to
train and test against: for example, a car accident. As a result,
recent work has investigated training and testing systems
with synthetically generated data, which can be produced in
bulk with correct labels and giving the designer full control
over the distribution of the data [21, 22, 24, 44].
A challenge to the use of synthetic data is that it can be

highly non-trivial to generate meaningful data, since this
usually requires modeling complex environments [41]. Sup-
pose we wanted to train a network on images of cars on a
road. If we simply sampled uniformly at random from all
possible configurations of, say, 12 cars, we would get data
that was at best unrealistic, with cars facing sideways or
backward, and at worst physically impossible, with cars in-
tersecting each other. Instead, we want scenes like those in
Fig. 1, where the cars are laid out in a consistent and real-
istic way. Furthermore, we may want scenes that are not
only realistic but represent particular scenarios of interest
for training or testing, e.g., parked cars, cars passing across
the field of view, or bumper-to-bumper traffic as in Fig. 1.
In general, we need a way to guide data generation toward
scenes that make sense for our application.

We argue that probabilistic programming languages (PPLs)
provide a natural solution to this problem. Using a PPL, the
designer of a system can construct distributions representing
different input regimes of interest, and sample from these
distributions to obtain concrete inputs for training and test-
ing. More generally, the designer can model the system’s
environment, with the program becoming a specification of

the distribution of environments under which the system
is expected to operate correctly with high probability. Such
environment models are essential for any formal analysis: in
particular, composing the systemwith the model, we obtain a
closed program which we could potentially prove properties
about to establish the correctness of the system.
In this paper, we focus on designing and analyzing sys-

tems whose environment is a scene, a configuration of ob-
jects in space (including dynamic agents, such as vehicles).
We develop a domain-specific scenario description language,
Scenic, to specify such environments. Scenic is a proba-
bilistic programming language, and a Scenic scenario de-
fines a distribution over scenes. As we will see, the syntax
of the language is designed to simplify the task of writing
complex scenarios, and to enable the use of specialized sam-
pling techniques. In particular, Scenic allows the user to
both construct objects in a straightforward imperative style
and impose hard and soft constraints declaratively. It also
provides readable, concise syntax for common geometric re-
lationships that would otherwise require complex non-linear
expressions and constraints. In addition, Scenic provides a
notion of classes allowing properties of objects to be given
default values depending on other properties: for example,
we can define a Car so that by default it faces in the direc-
tion of the road at its position. More broadly, Scenic uses
a novel approach to object construction which factors the
process into syntactically-independent specifiers which can
be combined in arbitrary ways, mirroring the flexibility of
natural language. Finally, Scenic provides an easy way to
generalize a concrete scene by automatically adding noise.
Generating scenes from a Scenic scenario requires sam-

pling from the probability distribution it implicitly defines.
This task is closely related to the inference problem for im-
perative PPLs with observations [20]. While Scenic could
be implemented as a library on top of such a language, we
found that clarity and concision could be significantly im-
proved with new syntax (specifiers in particular) difficult to
implement as a library. Furthermore, while Scenic could be
translated into existing PPLs, using a new language allows
us to impose restrictions enabling domain-specific sampling
techniques not possible with general-purpose PPLs. In par-
ticular, we develop algorithms which take advantage of the
particular structure of distributions arising from Scenic pro-
grams to dramatically prune the sample space.
Finally, we demonstrate the utility of Scenic in training,

testing, and debugging perception systems with a case study
on SqueezeDet [48], a convolutional neural network for ob-
ject detection in autonomous cars. For this task, it has been
shown [24] that good performance on real images can be
achieved with networks trained purely on synthetic images
from the video game Grand Theft Auto V (GTAV [14]). We
implemented a sampler for Scenic scenarios, using it to gen-
erate scenes which were rendered into images by GTAV. Our
experiments demonstrate using Scenic to:
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• evaluate the accuracy of the ML system under particular
conditions, e.g. in good or bad weather,

• improve performance in corner cases by emphasizing
them during training: we use Scenic to both identify a
deficiency in a state-of-the-art car detection data set [24]
and generate a new training set of equal size but yielding
significantly better performance, and

• debug a known failure case by generalizing it in many
directions, exploring sensitivity to different features and
developing a more general scenario for retraining: we
use Scenic to find an image the network misclassifies,
discover the root cause, and fix the bug, in the process
improving the network’s performance on its original test
set (again, without increasing training set size).

These experiments show that Scenic can be a very useful
tool for understanding and improving perception systems.

While our main case study is performed in the domain of
visual perception for autonomous driving, and uses one par-
ticular simulator (GTAV), we stress that Scenic is not specific
to either. In Sec. 3 we give an example of a different domain
(robotic motion planning) and simulator (Webots [30]), and
we are currently also using Scenic with the CARLA driv-
ing simulator [5] and the X-Plane flight simulator [35] (see
Sec. 8). Generally, Scenic can produce data of any desired type
(e.g. RGB images, LIDAR point clouds, or trajectories from
dynamical simulations) by interfacing it to an appropriate
simulator. This requires only two steps: (1) writing a small
Scenic library defining the types of objects supported by
the simulator, as well as the geometry of the workspace; (2)
writing an interface layer converting the configurations out-
put by Scenic into the simulator’s input format. While the
current version of Scenic is primarily concerned with geom-
etry, leaving the details of rendering up to the simulator, the
language allows putting distributions on any parameters the
simulator exposes: for example, in GTAV the meshes of the
various car models are fixed but we can control their overall
color. We have also used Scenic to specify distributions over
parameters on system dynamics.

In summary, the main contributions of this work are:
• Scenic, a domain-specific probabilistic programming
language for describing scenarios: distributions over
configurations of physical objects and agents;

• a methodology for using PPLs to design and analyze
perception systems, especially those based on ML;

• domain-specific algorithms for sampling from the dis-
tribution defined by a Scenic program;

• a case study using Scenic to analyze and improve
the accuracy of a practical deep neural network for
autonomous driving beyond what is achieved by state-
of-the-art synthetic data generation methods.

The paper is structured as follows: we begin with an
overview of our approach in Sec. 2. Section 3 gives examples

highlighting the major features of Scenic and motivating
various choices in its design. In Sec. 4 we describe the Scenic
language in detail, and in Sec. 5 we discuss its formal seman-
tics and our sampling algorithms. Section 6 describes the
experimental setup and results of our car detection case
study. Finally, we discuss related work in Sec. 7 and conclude
in Sec. 8 with a summary and directions for future work.
An early version of this paper appeared as [11]. For the

Appendices and our implementation code, see [13].

2 Using PPLs to Design and Analyze
Perception Systems

Scenic
Sampler

Scenic
Program

Training
Data

Test
Data

SimulatorScenes System

Failure 
Cases

Figure 2. Tool flow using Scenic to train, test, and debug a
perception system.

We propose a methodology for training, testing, and de-
bugging perception systems using probabilistic program-
ming languages. The core idea is to use PPLs to formalize
general operation scenarios, then sample from these distri-
butions to generate concrete environment configurations.
Putting these configurations into a simulator, we obtain im-
ages or other sensor data which can be used to test and train
the perception system. The general procedure is outlined
in Fig. 2. Note that the training/testing datasets need not
be purely synthetic: we can generate data to supplement
existing real-world data (possibly mitigating a deficiency in
the latter, while avoiding overfitting). Furthermore, even for
models trained purely on real data, synthetic data can still be
useful for testing and debugging, as we will see below. Now
we discuss the three design problems from the Introduction
in more detail.
Testing under Different Conditions. The most straight-
forward problem is that of assessing system performance
under different conditions. We can simply write scenarios
capturing each condition, generate a test set from each one,
and evaluate the performance of the system on these. Note
that conditions which occur rarely in the real world present
no additional problems: as long as the PPL we use can encode
the condition, we can generate as many instances as desired.
Training on Rare Events. Extending the previous applica-
tion, we can use this procedure to help ensure the system
performs adequately even in unusual circumstances or par-
ticularly difficult cases. Writing a scenario capturing these
rare events, we can generate instances of them to augment or
replace part of the original training set. Emphasizing these
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instances in the training set can improve the system’s per-
formance in the hard case without impacting performance
in the typical case. In Sec. 6.3 we will demonstrate this for
car detection, where a hard case is when one car partially
overlaps another in the image. We wrote a Scenic program
to generate a set of these overlapping images. Training the
car-detection network on a state-of-the-art synthetic dataset
obtained by randomly driving around inside the simulated
world of GTAV and capturing images periodically [24], we
find its performance is significantly worse on the overlapping
images. However, if we keep the training set size fixed but
increase the proportion of overlapping images, performance
on such images dramatically improves without harming per-
formance on the original generic dataset.

Debugging Failures. Finally, we can use the same proce-
dure to help understand and fix bugs in the system. If we find
an environment configuration where the system fails, we can
write a scenario reproducing that particular configuration.
Having the configuration encoded as a program then makes
it possible to explore the neighborhood around it in a variety
of different directions, leaving some aspects of the scene
fixed while varying others. This can give insight into which
features of the scene are relevant to the failure, and eventu-
ally identify the root cause. The root cause can then itself
be encoded into a scenario which generalizes the original
failure, allowing retraining without overfitting to the partic-
ular counterexample. We will demonstrate this approach in
Sec. 6.4, starting from a single misclassification, identifying
a general deficiency in the training set, replacing part of the
training data to fix the gap, and ultimately achieving higher
performance on the original test set.

For all of these applications we need a PPL which can
encode a wide range of general and specific environment
scenarios. In the next section, we describe the design of a
language suited to this purpose.

3 The Scenic Language
We use Scenic scenarios from our autonomous car case
study to motivate and illustrate the main features of the
language, focusing on features that make Scenic particularly
well-suited for the domain of generating data for perception
systems.

Basics: Classes, Objects, Geometry, and Distributions.
To start, suppose we want scenes of one car viewed from
another on the road. We can simply write:
1 import gtaLib
2 ego = Car
3 Car

First, we import a library gtaLib containing everything spe-
cific to our case study: the class Car and information about
the locations of roads (from now on we suppress this line).
Only general geometric concepts are built into Scenic.

The second line creates a Car and assigns it to the special
variable ego specifying the ego object which is the reference
point for the scenario. In particular, rendered images from
the scenario are from the perspective of the ego object (it is
a syntax error to leave ego undefined). Finally, the third line
creates an additional Car. Note that we have not specified
the position or any other properties of the two cars: this
means they are inherited from the default values defined in
the class Car. Object-orientation is valuable in Scenic since
it provides a natural organizational principle for scenarios
involving different types of physical objects. It also improves
compositionality, since we can define a generic Car model
in a library like gtaLib and use it in different scenarios. Our
definition of Car begins as follows (slightly simplified):
1 class Car:
2 position: Point on road
3 heading: roadDirection at self.position

Here road is a region (one of Scenic’s primitive types) de-
fined in gtaLib to specify which points in the workspace are
on a road. Similarly, roadDirection is a vector field spec-
ifying the prevailing traffic direction at such points. The
operator F at X simply gets the direction of the field F at
point X , so the default value for a car’s heading is the road
direction at its position. The default position, in turn, is a
Point on road (we will explain this syntax shortly), which
means a uniformly random point on the road.

The ability to make random choices like this is a key aspect
of Scenic. Scenic’s probabilistic nature allows it to model
real-world stochasticity, for example encoding a distribution
for the distance between two cars learned from data. This
in turn is essential for our application of PPLs to training
perception systems: using randomness, a PPL can generate
training data matching the distribution the system will be
used under. Scenic provides several basic distributions (and
allows more to be defined). For example, we can write
1 Car offset by (-10, 10) @ (20, 40)

to create a car that is 20–40 m ahead of the camera. The
interval notation (X, Y) creates a uniform distribution on
the interval, and X @ Y creates a vector from xy coordinates
(as in Smalltalk [15]).

Local Coordinate Systems. Using offset by as above over-
rides the default position of the Car, leaving the default ori-
entation (along the road) unchanged. Suppose for greater
realism we don’t want to require the car to be exactly aligned
with the road, but to be within say 5◦. We could try:
1 Car offset by (-10, 10) @ (20, 40), \
2 facing (-5, 5) deg

but this is not quite what we want, since this sets the orienta-
tion of the Car in global coordinates (i.e. within 5◦ of North).
Instead we can use Scenic’s general operator X relative
to Y , which can interpret vectors and headings as being in
a variety of local coordinate systems:
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1 Car offset by (-10, 10) @ (20, 40), \
2 facing (-5, 5) deg relative to roadDirection

If we want the heading to be relative to the ego car’s orien-
tation, we simply write (-5, 5) deg relative to ego.
Notice that since roadDirection is a vector field, it de-

fines a coordinate system at each point, and an expression
like 15 deg relative to field does not define a unique
heading. The example above works because Scenic knows
that (-5, 5) deg relative to roadDirection depends
on a reference position, and automatically uses the position
of the Car being defined. This is a feature of Scenic’s system
of specifiers, which we explain next.

Readable, Flexible Specifiers. The syntax offset by X
and facing Y for specifying positions and orientations may
seem unusual compared to typical constructors in object-
oriented languages. There are two reasons why Scenic uses
this kind of syntax: first, readability. The second is more
subtle and based on the fact that in natural language there are
many ways to specify positions and other properties, some
of which interact with each other. Consider the following
ways one might describe the location of an object:
1. “is at position X” (absolute position);
2. “is just left of position X” (pos. based on orientation);
3. “is 3 m left of the taxi” (a local coordinate system);
4. “is one lane left of the taxi” (another local system);
5. “appears to be 10 m behind the taxi” (relative to the line

of sight);
These are all fundamentally different from each other: e.g.,
(3) and (4) differ if the taxi is not parallel to the lane.

Furthermore, these specifications combine other proper-
ties of the object in different ways: to place the object “just
left of” a position, we must first know the object’s heading;
whereas if we wanted to face the object “towards” a location,
we must instead know its position. There can be chains of
such dependencies: “the car is 0.5 m left of the curb” means
that the right edge of the car is 0.5 m away from the curb, not
the car’s position, which is its center. So the car’s position
depends on its width, which in turn depends on its model.
In a typical object-oriented language, this might be handled
by computing values for position and other properties and
passing them to a constructor. For “a car is 0.5 m left of the
curb” we might write:
1 m = Car.defaultModelDistribution.sample()
2 pos = curb.offsetLeft(0.5 + m.width / 2)
3 car = Car(pos, model=m)

Notice how m must be used twice, because m determines
both the model of the car and (indirectly) its position. This
is inelegant and breaks encapsulation because the default
model distribution is used outside of the Car constructor.
The latter problem could be fixed by having a specialized
constructor or factory function,
1 car = CarLeftOfBy(curb, 0.5)

but these would proliferate since we would need to handle
all possible combinations of ways to specify different prop-
erties (e.g. do we want to require a specific model? Are we
overriding the width provided by the model for this spe-
cific car?). Instead of having a multitude of such monolithic
constructors, Scenic factors the definition of objects into
potentially-interacting but syntactically-independent parts:

1 Car left of spot by 0.5, with model BUS

Here left of X by D and with model M are specifiers
which do not have an order, but which together specify the
properties of the car. Scenic works out the dependencies
between properties (here, position is provided by left of,
which depends on width, whose default value depends on
model) and evaluates them in the correct order. To use the
default model distribution we would simply leave off with
model BUS; keeping it affects the position appropriately
without having to specify BUS more than once.

Specifying Multiple Properties Together. Recall that we
defined the default position for a Car to be a Point on
road: this is an example of another specifier, on region,
which specifies position to be a uniformly random point in
the given region. This specifier illustrates another feature of
Scenic, namely that specifiers can specify multiple proper-
ties simultaneously. Consider the following scenario, which
creates a parked car given a region curb defined in gtaLib:

1 spot = OrientedPoint on visible curb
2 Car left of spot by 0.25

The function visible region returns the part of the region
that is visible from the ego object. The specifier on visible
curb will then set position to be a uniformly random visi-
ble point on the curb. We create spot as an OrientedPoint,
which is a built-in class that defines a local coordinate system
by having both a position and a heading. The on region
specifier can also specify heading if the region has a pre-
ferred orientation (a vector field) associated with it: in our
example, curb is oriented by roadDirection. So spot is, in
fact, a uniformly random visible point on the curb, oriented
along the road. That orientation then causes the car to be
placed 0.25 m left of spot in spot’s local coordinate system,
i.e. away from the curb, as desired.
In fact, Scenic makes it easy to elaborate the scenario

without needing to alter the code above. Most simply, we
could specify a particular model or non-default distribution
over models by just adding with model M to the definition
of the Car. More interestingly, we could produce a scenario
for badly-parked cars by adding two lines:

1 spot = OrientedPoint on visible curb
2 badAngle = Uniform(1.0, -1.0) * (10, 20) deg
3 Car left of spot by 0.5, \
4 facing badAngle relative to roadDirection
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Figure 3. A scene of a badly-parked car.

This will yield cars parked 10-20◦ off from the direction of
the curb, as seen in Fig. 3. This illustrates how specifiers
greatly enhance Scenic’s flexibility and modularity.

Declarative Specifications ofHard and SoftConstraints.
Notice that in the scenarios above we never explicitly en-
sured that the two cars will not intersect each other. Despite
this, Scenic will never generate such scenes. This is because
Scenic enforces several default requirements: all objects must
be contained in the workspace, must not intersect each other,
and must be visible from the ego object.1 Scenic also allows
the user to define custom requirements checking arbitrary
conditions built from various geometric predicates. For ex-
ample, the following scenario produces a car headed roughly
towards us, while still facing the nominal road direction:
1 car2 = Car offset by (-10, 10) @ (20, 40), \
2 with viewAngle 30 deg
3 require car2 can see ego

Here we have used the X can see Y predicate, which in
this case is checking that the ego car is inside the 30◦ view
cone of the second car. If we only need this constraint to hold
part of the time, we can use a soft requirement specifying the
minimum probability with which it must hold:
1 require[0.5] car2 can see ego

Hard requirements, called “observations” in other PPLs (see,
e.g., [20]), are very convenient in our setting because they
make it easy to restrict attention to particular cases of inter-
est. They also improve encapsulation, since we can restrict
an existing scenario without altering it. Finally, soft require-
ments are useful in ensuring adequate representation of a
particular condition when generating a training set: for ex-
ample, we could require that at least 90% of the images have
a car driving on the right side of the road.

Mutations. Scenic provides a simple mutation system that
improves compositionality by providing a mechanism to
1The last requirement ensures that the object will affect the rendered image.
It can be disabled, if for example generating non-visual data.

Figure 4. Webots scene of Mars rover in debris field.

add variety to a scenario without changing its code. This is
useful, for example, if we have a scenario encoding a single
concrete scene obtained from real-world data and want to
quickly generate variations. For instance:
1 taxi = Car at 120 @ 300, facing 37 deg, ...
2 ...
3 mutate taxi

This will add Gaussian noise to the position and heading
of taxi, while still enforcing all built-in and custom require-
ments. The standard deviation of the noise can be scaled by
writing, for example, mutate taxi by 2 (which adds twice
as much noise), and we will see later that it can be controlled
separately for position and heading.

Multiple Domains and Simulators. We conclude this sec-
tion with an example illustrating a second application do-
main, namely generating workspaces to test motion planning
algorithms, and Scenic’s ability to work with different sim-
ulators. A robot like a Mars rover able to climb over rocks
can have very complex dynamics, with the feasibility of a
motion plan depending on exact details of the robot’s hard-
ware and the geometry of the terrain. We can use Scenic to
write a scenario generating challenging cases for a planner
to solve. Figure 4 shows a scene, visualized using an interface
we wrote between Scenic and the Webots robotics simula-
tor [30], with a bottleneck between the robot and its goal
that forces the planner to consider climbing over a rock.

This example, the badly-parked car scenario of Fig. 3, and
the bumper-to-bumper traffic scenario of Fig. 1 illustrate the
versatility of Scenic in constructing a wide range of inter-
esting scenarios. Complete Scenic code for the bumper-to-
bumper scenario as well as other scenarios used as examples
in this section or in our experiments, along with images of
generated scenes, can be found in Appendix A of [13].
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scenario := (import file)∗ (statement)∗
boolean := True | False | booleanOperator
scalar := number | distrib | scalarOperator
distrib := baseDist | resample(distrib)
vector := scalar @ scalar | Point | vectorOperator

heading := scalar | OrientedPoint | headingOperator
direction := heading | vectorField

value := boolean | scalar | vector | direction
| region | instance | instance.property

classDefn := class class[(superclass)]:
(property: defaultValueExpr)∗

instance := class specifier, . . .
specifier := with property value | posSpec | headSpec

Figure 5. Simplified Scenic grammar. Point and Oriented-
Point are instances of the corresponding classes. See Tab. 5
for statements, Fig. 7 for operators, Tab. 1 for baseDist, and
Tables 3 and 4 for posSpec and headSpec.

4 Syntax of Scenic
Scenic is a simple object-oriented PPL, with programs con-
sisting of sequences of statements built with standard im-
perative constructs including conditionals, loops, functions,
and methods (which we do not describe further, focusing on
the new elements). Compared to other imperative PPLs, the
major restriction of Scenic, made in order to allow more
efficient sampling, is that conditional branching may not de-
pend on random variables. The novel syntax, outlined above,
is largely devoted to expressing geometric relationships in a
concise and flexible manner. Figure 5 gives a formal grammar
for Scenic, which we now describe in detail.

4.1 Data Types
Scenic provides several primitive data types:

Booleans expressing truth values.
Scalars floating-point numbers, which can be sampled

from various distributions (see Table 1).
Vectors representing positions and offsets in space, con-

structed from coordinates in meters with the syntax
X @ Y (inspired by Smalltalk [15]).

Headings representing orientations in space. Conve-
niently, in 2D these are a single angle (in radians, anti-
clockwise from North). By convention the heading of a
local coordinate system is the heading of its y-axis, so,
for example, -2 @ 3 means 2 meters left and 3 ahead.

Vector Fields associating an orientation to each point in
space. For example, the shortest paths to a destination
or (in our case study) the nominal traffic direction.

Regions representing sets of points in space. These can
have an associated vector field giving points in the
region preferred orientations.

Table 1. Distributions. All parameters scalars except value.

Syntax Distribution

(low, high) uniform on interval
Uniform(value, . . .) uniform over values
Discrete({value: wt, . . .}) discrete with weights
Normal(mean, stdDev) normal with given µ, σ

Table 2. Properties of Point, OrientedPoint, and Object.

Property Default Meaning

position 0 @ 0 position in global coords.
viewDistance 50 distance for ‘can see’
mutationScale 0 overall scale of mutations
positionStdDev 1 mutation σ for position

heading 0 heading in global coords.
viewAngle 360◦ angle for ‘can see’
headingStdDev 5◦ mutation σ for heading

width 1 width of bounding box
height 1 height of bounding box
allowCollisions false collisions allowed
requireVisible true must be visible from ego

In addition, Scenic provides objects, organized into single-
inheritance classes specifying a set of properties their in-
stances must have, together with corresponding default val-
ues (see Fig. 5). Default value expressions are evaluated each
time an object is created. Thus if we write weight: (1, 5)
when defining a class then each instance will have a weight
drawn independently from (1, 5). Default values may use
the special syntax self.property to refer to one of the other
properties of the object, which is then a dependency of this
default value. In our case study, for example, the width and
height of a Car are by default derived from its model.

Physical objects in a scene are instances of Object, which
is the default superclass when none is specified. Object de-
scends from the two other built-in classes: its superclass
is OrientedPoint, which in turn subclasses Point. These
represent locations in space, with and without an orienta-
tion respectively, and so provide the fundamental properties
heading and position. Object extends them by defining a
bounding box with the properties width and height. Table 2
lists the properties of these classes and their default values.

To allow cleaner notation, Point and OrientedPoint are
automatically interpreted as vectors or headings in contexts
expecting these (as shown in Fig. 5). For example, we can
write taxi offset by 1 @ 2 and 30 deg relative to
taxi instead of taxi.position offset by 1 @ 2 and 30
deg relative to taxi.heading. Ambiguous cases, e.g.
taxi relative to limo, are illegal (caught by a simple
type system); the more verbose syntax must be used instead.
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ego

left of ego

back right of ego

1

2
Point offset by 1 @ 2

or
1 @ 2 relative to ego

P

P offset by 0 @ -2

2

2

1

Point beyond P by -2 @ 1

Object behind P by 2

apparent heading of P

Figure 6. Various Scenic operators and specifiers applied
to the ego object and an OrientedPoint P. Instances of
OrientedPoint are shown as bold arrows.

4.2 Expressions
Scenic’s expressions are mostly straightforward, largely con-
sisting of the arithmetic, boolean, and geometric operators
in Fig. 7. The meanings of these operators are largely clear
from their syntax, so we defer complete definitions of their
semantics to Appendix C of [13]. Figure 6 illustrates several
of the geometric operators (as well as some specifiers, which
we will discuss in the next section). Various points to note:
• X can see Y uses a simple model where a Point can see
a certain distance, and an OrientedPoint restricts this
to the sector along its heading with a certain angle (see
Table 2). An Object is visible iff its bounding box is.

• X relative to Y interprets X as an offset in a local
coordinate system defined by Y . Thus -3 @ 0 relative
to Y yields 3 m West of Y if Y is a vector, and 3 m left of
Y if Y is an OrientedPoint. If defining a heading inside a
specifier, either X or Y can be a vector field, interpreted as
a heading by evaluating it at the position of the object
being specified. So we can write for example Car at 120
@ 70, facing 30 deg relative to roadDirection.

• visible region yields the part of the region visible from
the ego, e.g. Car on visible road. The form region
visible from X uses X instead of ego.
Two types of Scenic expressions are more complex: dis-

tributions and object definitions. As in a typical imperative
probabilistic programming language, a distribution evaluates
to a sample from the distribution. Thus the program
1 x = (0, 1)
2 y = x @ x

does not make y uniform over the unit box, but rather over its
diagonal. For convenience in sampling multiple times from
a primitive distribution, Scenic provides a resample(D)

scalarOperator := max(scalar, . . .) | min(scalar, . . .)
| -scalar | abs(scalar) | scalar (+ | *) scalar
| relative heading of heading [from heading]
| apparent heading of OrientedPoint [from vector]
| distance [from vector] to vector
| angle [from vector] to vector

booleanOperator := not boolean
| boolean (and | or) boolean
| scalar (== | != | < | > | <= | >=) scalar
| (Point | OrientedPoint) can see (vector | Object)
| (vector | Object) is in region

headingOperator := scalar deg
| vectorField at vector
| direction relative to direction

vectorOperator := vector relative to vector
| vector offset by vector
| vector offset along direction by vector

regionOperator := visible region
| region visible from (Point | OrientedPoint)

orientedPointOperator :=
vector relative to OrientedPoint

| OrientedPoint offset by vector
| follow vectorField [from vector] for scalar
| (front | back | left | right) of Object
| (front | back) (left | right) of Object

Figure 7. Operators by result type.

function returning an independent2 sample from D, one
of the distributions in Tab. 1. Scenic also allows defining
custom distributions beyond those in the Table.

The second type of complex Scenic expressions are object
definitions. These are the only expressions with a side ef-
fect, namely creating an object in the generated scene. More
interestingly, properties of objects are specified using the
system of specifiers discussed above, which we now detail.

4.3 Specifiers
As shown in the grammar in Fig. 5, an object is created
by writing the class name followed by a (possibly empty)
comma-separated list of specifiers. The specifiers are com-
bined, possibly adding default specifiers from the class defi-
nition, to form a complete specification of all properties of
the object. Arbitrary properties (including user-defined prop-
erties with no meaning in Scenic) can be specified with the
generic specifier with property value, while Scenic provides
many more specifiers for the built-in properties position
and heading, shown in Tables 3 and 4 respectively.

In general, a specifier is a function taking in values for zero
or more properties, its dependencies, and returning values for
one or more other properties, some of which can be specified
2Conditioned on the values of the distribution’s parameters (e.g. low and
high for a uniform interval), which are not resampled.
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Table 3. Specifiers for position. Those in the second group also optionally specify heading.

Specifier Dependencies

at vector —
offset by vector —
offset along direction by vector —
(left | right) of vector [by scalar] heading, width
(ahead of | behind) vector [by scalar] heading, height
beyond vector by vector [from vector] —
visible [from (Point | OrientedPoint)] —

(in | on) region —
(left | right) of (OrientedPoint | Object) [by scalar] width
(ahead of | behind) (OrientedPoint | Object) [by scalar] height
following vectorField [from vector] for scalar —

Table 4. Specifiers for heading.

Specifier Deps.

facing heading —
facing vectorField position
facing (toward | away from) vector position
apparently facing heading [from vector] position

optionally, meaning that other specifiers will override them.
For example, on region specifies position and optionally
specifies heading if the given region has a preferred orien-
tation. If road is such a region, as in our case study, then
Object on roadwill create an object at a position uniformly
random in road and with the preferred orientation there. But
since heading is only specified optionally, we can override
it by writing Object on road, facing 20 deg.

Specifiers are combined to determine the properties of an
object by evaluating them in an order ensuring that their
dependencies are always already assigned. If there is no such
order or a single property is specified twice, the scenario
is ill-formed. The procedure by which the order is found,
taking into account properties that are optionally specified
and default values, will be described in the next section.
As the semantics of the specifiers in Tables 3 and 4 are

largely evident from their syntax, we defer exact definitions
to Appendix C of [13]. We briefly discuss some of the more
complex specifiers, referring to the examples in Fig. 6:
• behind vector means the object is placed with the mid-
point of its front edge at the given vector, and similarly
for ahead/left/right of vector .

• beyond A by O from B means the position obtained by
treating O as an offset in the local coordinate system at A
oriented along the line of sight from B. In this and other
specifiers, if the from B is omitted, the ego object is used
by default. So for example beyond taxi by 0 @ 3means

Table 5. Statements.

Syntax Meaning

identifier = value var. assignment
param identifier = value, . . . param. assign.
classDefn class definition
instance object definition
require boolean hard requirement
require[number] boolean soft requirement
mutate identifier, . . . [by number] enable mutation

3 m directly behind the taxi as viewed by the camera (see
Fig. 6 for another example).

• The heading optionally specified by left of Oriented-
Point, etc. is that of the OrientedPoint (thus in Fig. 6, P
offset by 0 @ -2 yields an OrientedPoint facing the
same way as P). Similarly, the heading optionally speci-
fied by following vectorField is that of the vector field
at the specified position.

• apparently facing H means the object has heading H
with respect to the line of sight from ego. For example,
apparently facing 90 deg would orient the object so
that the camera views its left side head-on.

4.4 Statements
Finally, we discuss Scenic’s statements, listed in Table 5.
Class and object definitions have been discussed above, and
variable assignment behaves in the standard way.

The statement param identifer = value assigns values to
global parameters of the scenario. These have no semantics
in Scenic but provide a general-purpose way to encode arbi-
trary global information. For example, in our case study we
used parameters time and weather to put distributions on
the time of day and the weather conditions during the scene.
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The require boolean statement requires that the given
condition hold in all instantiations of the scenario (equiva-
lently to observe statements in other probabilistic program-
ming languages; see e.g. [4, 31]). The variant statement
require[p] boolean adds a soft requirement that need only
hold with some probability p (which must be a constant). We
will discuss the semantics of these in the next section.

Lastly, the mutate instance, . . . by number statement
adds Gaussian noise with the given standard deviation (de-
fault 1) to the position and heading properties of the listed
objects (or every Object, if no list is given). For example,
mutate taxi by 2would add twice as much noise as mutate
taxi. The noise can be controlled separately for position
and heading, as we discuss in the next section.

5 Semantics and Scene Generation
5.1 Semantics of Scenic
The output of a Scenic program is a scene consisting of the
assignment to all the properties of each Object defined in
the scenario, plus any global parameters defined with param.
Since Scenic is a probabilistic programming language, the
semantics of a program is actually a distribution over possi-
ble outputs, here scenes. As for other imperative PPLs, the
semantics can be defined operationally as a typical inter-
preter for an imperative language but with two differences.
First, the interpreter makes random choices when evaluat-
ing distributions [40]. For example, the Scenic statement
x = (0, 1) updates the state of the interpreter by assigning
a value to x drawn from the uniform distribution on the in-
terval (0, 1). In this way every possible run of the interpreter
has a probability associated with it. Second, every run where
a require statement (the equivalent of an “observation” in
other PPLs) is violated gets discarded, and the run probabili-
ties appropriately normalized (see, e.g., [20]). For example,
adding the statement require x > 0.5 above would yield
a uniform distribution for x over the interval (0.5, 1).

Scenic uses the standard semantics for assignments, arith-
metic, loops, functions, and so forth. Below, we define the
semantics of the main constructs unique to Scenic. See Ap-
pendix B of [13] for a more formal treatment.

Soft Requirements. The statement require[p] B is inter-
preted as require B with probability p and as a no-op oth-
erwise: that is, it is interpreted as a hard requirement that is
only checked with probability p. This ensures that the con-
dition B will hold with probability at least p in the induced
distribution of the Scenic program, as desired.

Specifiers and Object Definitions. As we saw above, each
specifier defines a function mapping values for its dependen-
cies to values for the properties it specifies. When an object
of classC is constructed using a set of specifiers S , the object
is defined as follows (see Appendix B of [13] for details):

1. If a property is specified (non-optionally) by multiple
specifiers in S , an ambiguity error is raised.

2. The set of properties P for the new object is found by
combining the properties specified by all specifiers in S
with the properties inherited from the class C .

3. Default value specifiers from C are added to S as needed
so that each property in P is paired with a unique specifier
in S specifying it, with precedence order: non-optional
specifier, optional specifier, then default value.

4. The dependency graph of the specifiers S is constructed.
If it is cyclic, an error is raised.

5. The graph is topologically sorted and the specifiers are
evaluated in this order to determine the values of all prop-
erties P of the new object.

Mutation. The mutate X by N statement sets the special
mutationScale property to N (the mutate X form sets it to
1). At the end of evaluation of the Scenic program, but before
requirements are checked, Gaussian noise is added to the
position and heading properties of objects with nonzero
mutationScale. The standard deviation of the noise is the
value of the positionStdDev and headingStdDev property
respectively (see Table 2), multiplied by mutationScale.

The problem of sampling scenes from the distribution de-
fined by a Scenic program is essentially a special case of
the sampling problem for imperative PPLs with observations
(since soft requirements can also be encoded as observations).
While we could apply general techniques for such problems,
the domain-specific design of Scenic enables specialized
sampling methods, which we discuss below. We also note
that the scene generation problem is closely related to control
improvisation, an abstract framework capturing various prob-
lems requiring synthesis under hard, soft, and randomness
constraints [12]. Scene improvisation from a Scenic program
can be viewed as an extension with a more detailed random-
ness constraint given by the imperative part of the program.

5.2 Domain-Specific Sampling Techniques
The geometric nature of the constraints in Scenic programs,
together with Scenic’s lack of conditional control flow, en-
able domain-specific sampling techniques inspired by robotic
path planning methods. Specifically, we can use ideas for
constructing configuration spaces to prune parts of the sam-
ple space where the objects being positioned do not fit into
the workspace. We describe three such techniques below,
deferring formal statements of the algorithms to Appendix
B of [13].

Pruning Based on Containment. The simplest technique
applies to any objectX whose position is uniform in a region
R and which must be contained in a region C (e.g. the road
in our case study). If minRadius is a lower bound on the
distance from the center of X to its bounding box, then we
can restrict R to R∩erode(C,minRadius). This is sound, since
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if X is centered anywhere not in the restriction, then some
point of its bounding box must lie outside of C .

Pruning Based on Orientation. The next technique ap-
plies to scenarios placing constraints on the relative heading
and the maximum distance M between objects X and Y ,
which are oriented with respect to a vector field that is con-
stant within polygonal regions (such as our roads). For each
polygon P , we find all polygons Qi satisfying the relative
heading constraints with respect to P (up to a perturbation if
X and Y need not be exactly aligned to the field), and restrict
P to P ∩dilate(∪Qi ,M). This is also sound: suppose X can be
positioned at x in polygon P . Then Y must lie at some y in a
polygon Q satisfying the constraints, and since the distance
from x to y is at mostM , we have x ∈ dilate(Q,M).

Pruning Based on Size. Finally, in the setting above of ob-
jects X and Y aligned to a polygonal vector field (with maxi-
mum distanceM), we can also prune the space using a lower
bound on the width of the configuration. For example, in our
bumper-to-bumper scenario we can infer such a bound from
the offset by specifiers in the program. We first find all
polygons that are not wide enough to fit the configuration
according to the bound: call these “narrow”. Then we restrict
each narrow polygon P to P ∩ dilate(∪Qi ,M) whereQi runs
over all polygons except P . To see that this is sound, suppose
object X can lie at x in polygon P . If P is not narrow, we do
not restrict it; otherwise, object Y must lie at y in some other
polygon Q . Since the distance from x to y is at most M , as
above we have x ∈ dilate(Q,M).

After pruning the space as described above, our implemen-
tation uses rejection sampling, generating scenes from the
imperative part of the scenario until all requirements are
satisfied. While this samples from exactly the desired distri-
bution, it has the drawback that a huge number of samples
may be required to yield a single valid scene (in the worst
case, when the requirements have probability zero of being
satisfied, the algorithm will not even terminate). However,
we found in our experiments that all reasonable scenarios
we tried required only several hundred iterations at most,
yielding a sample within a few seconds. Furthermore, the
pruning methods above could reduce the number of samples
needed by a factor of 3 or more (see Appendix D of [13]
for details of our experiments). In future work it would be
interesting to see whether Markov chain Monte Carlo meth-
ods previously used for probabilistic programming (see, e.g.,
[31, 34, 47]) could be made effective in the case of Scenic.

6 Experiments
We demonstrate the three applications of Scenic discussed
in Sec. 2: testing a system under particular conditions (6.2),
training the system to improve accuracy in hard cases (6.3),
and debugging failures (6.4).

6.1 Experimental Setup
We generated scenes in the virtual world of the video game
Grand Theft Auto V (GTAV) [14]. We wrote a Scenic li-
brary gtaLib defining Regions representing the roads and
curbs in (part of) this world, as well as a type of object Car
providing two additional properties3: model, representing
the type of car, with a uniform distribution over 13 diverse
models provided by GTAV, and color, representing the car
color, with a default distribution based on real-world car
color statistics [7]. In addition, we implemented two global
scene parameters: time, representing the time of day, and
weather, representing theweather as one of 14 discrete types
supported by GTAV (e.g. “clear” or “snow”).
GTAV is closed-source and does not expose any kind of

scene description language. Therefore, to import scenes gen-
erated by Scenic into GTAV, we wrote a plugin based on
DeepGTAV4. The plugin calls internal functions of GTAV to
create cars with the desired positions, colors, etc., as well as
to set the camera position, time of day, and weather.
Our experiments used squeezeDet [48], a convolutional

neural network real-time object detector for autonomous
driving5. We used a batch size of 20 and trained all models for
10,000 iterations unless otherwise noted. Images captured
from GTAV with resolution 1920 × 1200 were resized to
1248 × 384, the resolution used by squeezeDet. All models
were trained and evaluated on NVIDIA TITAN Xp GPUs.

We used standard metrics precision and recall to measure
the accuracy of detection on a particular image set. The ac-
curacy is computed based on how well the network predicts
the correct bounding box, score, and category of objects in
the image set. Details are in Appendix D of [13], but in brief,
precision is defined as tp/(tp+ f p) and recall as tp/(tp+ f n),
where true positives tp is the number of correct detections,
false positives f p is the number of predicted boxes that do
not match any ground truth box, and false negatives f n is
the number of ground truth boxes that are not detected.

6.2 Testing under Different Conditions
When testing a model, one may be interested in a particular
operation regime. For instance, an autonomous car manufac-
turer may be more interested in certain road conditions (e.g.
desert vs. forest roads) depending on where its cars will be
mainly used. Scenic provides a systematic way to describe
scenarios of interest and construct corresponding test sets.

To demonstrate this, we first wrote very general scenarios
describing scenes of 1–4 cars (not counting the camera),
specifying only that the cars face within 10◦ of the road
direction. We generated 1,000 images from each scenario,
yielding a training set Xgeneric of 4,000 images, and used
3For the full definition of Car, see Appendix A of [13]; the definitions of
road, curb, etc. are a few lines loading the corresponding sets of points from
a file storing the GTAV map (see Appendix D for how this was generated).
4
https://github.com/aitorzip/DeepGTAV

5Used industrially, for example by DeepScale (http://deepscale.ai/).
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1 wiggle = (-10 deg, 10 deg)
2 ego = Car with roadDeviation wiggle
3 c = Car visible, \
4 with roadDeviation resample(wiggle)
5 leftRight = Uniform(1.0, -1.0) * (1.25, 2.75)
6 Car beyond c by leftRight @ (4, 10), \
7 with roadDeviation resample(wiggle)

Figure 8. A scenario where one car partially occludes an-
other. The property roadDeviation is defined in Car to
mean its heading relative to the roadDirection.

these to train a model Mgeneric as described in Sec. 6.1. We
also generated an additional 50 images from each scenario
to obtain a generic test set Tgeneric of 200 images.
Next, we specialized the general scenarios in opposite

directions: scenarios for good/bad road conditions fixing
the time to noon/midnight and the weather to sunny/rainy
respectively, generating specialized test sets Tgood and Tbad.

EvaluatingMgeneric onTgeneric,Tgood, andTbad, we obtained
precisions of 83.1%, 85.7%, and 72.8%, respectively, and re-
calls of 92.6%, 94.3%, and 92.8%. This shows that, as might
be expected, the model performs better on bright days than
on rainy nights. This suggests there might not be enough ex-
amples of rainy nights in the training set, and indeed under
our default weather distribution rain is less likely than shine.
This illustrates how specialized test sets can highlight the
weaknesses and strengths of a particular model. In the next
section, we go one step further and use Scenic to redesign
the training set and improve model performance.

6.3 Training on Rare Events
In the synthetic data setting, we are limited not by data
availability but by the cost of training. The natural question
is then how to generate a synthetic data set that as effective
as possible given a fixed size. In this section we show that
over-representing a type of input that may occur rarely but is
difficult for the model can improve performance on the hard
case without compromising performance in the typical case.
Scenic makes this possible by allowing the user to write a
scenario capturing the hard case specifically.
For our car detection task, an obvious hard case is when

one car substantially occludes another. We wrote a simple
scenario, shown in Fig. 8, which generates such scenes by
placing one car behind the other as viewed from the camera,
offset left or right so that it is at least partially visible (sample
images are in Appendix A of [13]). Generating images from
this scenario we obtained a training setXoverlap of 250 images
and a test set Toverlap of 200 images.
For a baseline training set we used the “Driving in the

Matrix” synthetic data set [24], which has been shown to
yield good car detection performance even on real-world

Table 6. Performance ofmodels trained on 5,000 images from
Xmatrix or a mixture with Xoverlap, averaged over 8 training
runs with random selections of images from Xmatrix.

Mixture Tmatrix Toverlap
% Precision Recall Precision Recall

100 / 0 72.9 ± 3.7 37.1 ± 2.1 62.8 ± 6.1 65.7 ± 4.0
95 / 5 73.1 ± 2.3 37.0 ± 1.6 68.9 ± 3.2 67.3 ± 2.4

images6. Like our images, the “Matrix” images were rendered
in GTAV; however, rather than using a PPL to guide genera-
tion, they were produced by allowing the game’s AI to drive
around randomly while periodically taking screenshots. We
randomly selected 5,000 of these images to form a training set
Xmatrix, and 200 for a test set Tmatrix. We trained squeezeDet
for 5,000 iterations on Xmatrix, evaluating it on Tmatrix and
Toverlap. To reduce the effect of jitter during training we used
a standard technique [2], saving the last 10 models in steps
of 10 iterations and picking the one achieving the best total
precision and recall. This yielded the results in the first row
of Tab. 6. Although Xmatrix contains many images of over-
lapping cars, the precision on Toverlap is significantly lower
than for Tmatrix, indicating that the network is predicting
lower-quality bounding boxes for such cars7.
Next we attempted to improve the effectiveness of the

training set by mixing in the difficult images produced with
Scenic. Specifically, we replaced a random 5% of Xmatrix (250
images) with images from Xoverlap, keeping the overall train-
ing set size constant. We then retrained the network on the
new training set and evaluated it as above. To reduce the
dependence on which images were replaced, we averaged
over 8 training runs with different random selections of the
250 images to replace. The results are shown in the second
row of Tab. 6. Even altering only 5% of the training set, per-
formance on Toverlap significantly improves. Critically, the
improvement on Toverlap is not paid for by a corresponding
decrease on Tmatrix: performance on the original data set re-
mains the same. Thus, by allowing us to specify and generate
instances of a difficult case, Scenic enables the generation
of more effective training sets than can be obtained through
simpler approaches not based on PPLs.

6We use the “Matrix” data set since it is known to be effective for car
detection and was not designed by us, making the fact that Scenic is able
to improve it more striking. The results of this experiment also hold under
the Average Precision (AP) metric used in [24], as well as in a similar
experiment using the Scenic generic two-car scenario from the last section
as the baseline. See Appendix D of [13] for details.
7Recall is much higher on Toverlap, meaning the false-negative rate is better;
this is presumably because all the Toverlap images have exactly 2 cars and
are in that sense easier than the Tmatrix images, which can have many cars.
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Table 7. Performance ofMgeneric on different scenarios rep-
resenting variations of a single misclassified image.

Scenario Precision Recall

(1) varying model and color 80.3 100
(2) varying background 50.5 99.3
(3) varying local position, orientation 62.8 100

(4) varying position but staying close 53.1 99.3
(5) any position, same apparent angle 58.9 98.6
(6) any position and angle 67.5 100
(7) varying background, model, color 61.3 100

(8) staying close, same apparent angle 52.4 100
(9) staying close, varying model 58.6 100

6.4 Debugging Failures
In our final experiment, we show how Scenic can be used to
generalize a single input on which a model fails, exploring its
neighborhood in a variety of different directions and giving
insight into which features of the scene are responsible for
the failure. The original failure can then be generalized to a
broader scenario describing a class of inputs on which the
model misbehaves, which can in turn be used for retraining.
We selected one scene from our first experiment, consisting
of a single car viewed from behind at a slight angle, which
Mgeneric wrongly classified as three cars (thus having 33.3%
precision and 100% recall). We wrote several scenarios which
left most of the features of the scene fixed but allowed others
to vary. Specifically, scenario (1) varied the model and color
of the car, (2) left the position and orientation of the car
relative to the camera fixed but varied the absolute position,
effectively changing the background of the scene, and (3)
used the mutation feature of Scenic to add a small amount
of noise to the car’s position, heading, and color (see Appen-
dix A of [13] for code and the original misclassified image).
For each scenario we generated 150 images and evaluated
Mgeneric on them. As seen in Tab. 7, changing the model and
color improved performance the most, suggesting they were
most relevant to the misclassification, while local position
and orientation were less important and global position (i.e.
the background) was least important.
To investigate these possibilities further, we wrote a sec-

ond round of variant scenarios, also shown in Tab. 7. The
results confirmed the importance of model and color (com-
pare (2) to (7)), as well as angle (compare (5) to (6)), but also
suggested that being close to the camera could be the rele-
vant aspect of the car’s local position.We confirmed this with
a final round of scenarios (compare (5) and (8)), which also
showed that the effect of car model is small among scenes
where the car is close to the camera (compare (4) and (9)).

Having established that car model, closeness to the cam-
era, and view angle all contribute to poor performance of

Table 8. Performance ofMgeneric after retraining, replacing
10% of Xgeneric with different data.

Replacement Data Precision Recall

Original (no replacement) 82.9 92.7
Classical augmentation 78.7 92.1

Close car 87.4 91.6
Close car at shallow angle 84.0 92.1

the network, we wrote broader scenarios capturing these
features. To avoid overfitting, and since our experiments in-
dicated car model was not very relevant when the car is close
to the camera, we decided not to fix the car model. Instead,
we specialized the generic one-car scenario from our first
experiment to produce only cars close to the camera. We
also created a second scenario specializing this further by
requiring that the car be viewed at a shallow angle.

Finally, we used these scenarios to retrainMgeneric, hoping
to improve performance on its original test set Tgeneric (to
better distinguish small differences in performance, we in-
creased the test set size to 400 images). To keep the size of the
training set fixed as in the previous experiment, we replaced
400 one-car images in Xgeneric (10% of the whole training set)
with images generated from our scenarios. As a baseline,
we used images produced with classical image augmenta-
tion techniques implemented in imgaug [25]. Specifically, we
modified the original misclassified image by randomly crop-
ping 10%–20% on each side, flipping horizontally with prob-
ability 50%, and applying Gaussian blur with σ ∈ [0.0, 3.0].

The results of retrainingMgeneric on the resulting data sets
are shown in Tab. 8. Interestingly, classical augmentation
actually hurt performance, presumably due to overfitting
to relatively slight variants of a single image. On the other
hand, replacing part of the data set with specialized images
of cars close to the camera significantly reduced the number
of false positives like the original misclassification (while
the improvement for the “shallow angle” scenario was less,
perhaps due to overfitting to the restricted angle range). This
demonstrates how Scenic can be used to improve perfor-
mance by generalizing individual failures into scenarios that
capture the essence of the problem but are broad enough to
prevent overfitting during retraining.

7 Related Work
Data Generation and Testing for ML. There has been
a large amount of work on generating synthetic data for
specific applications, including text recognition [22], text lo-
calization [21], robotic object grasping [44], and autonomous
driving [9, 24]. Closely related is work on domain adaptation,
which attempts to correct differences between synthetic and
real-world input distributions. Domain adaptation has en-
abled synthetic data to successfully train models for several

75



PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Fremont, Dreossi, Ghosh, Yue, Sangiovanni-Vincentelli, and Seshia

other applications including 3D object detection [28, 42],
pedestrian detection [45], and semantic image segmenta-
tion [38]. Such work provides important context for our
paper, showing that models trained exclusively on synthetic
data (possibly domain-adapted) can achieve acceptable per-
formance on real-world data. The major difference in our
work is that we provide, through Scenic, language-based
systematic data generation for any perception system.
Some works have also explored the idea of using adver-

sarial examples (i.e. misclassified examples) to retrain and
improve ML models (e.g., [17, 46, 49]). In particular, Genera-
tive Adversarial Networks (GANs) [16], a particular kind of
neural network able to generate synthetic data, have been
used to augment training sets [27, 29]. The difference with
Scenic is that GANs require an initial training set/pretrained
model and do not easily incorporate declarative constraints,
while Scenic produces synthetic data in an explainable, pro-
grammatic fashion requiring only a simulator.

Model-Based Test Generation. Techniques using a model
to guide test generation have long existed [3]. A popular
approach is to provide example tests, as in mutational fuzz
testing [43] and example-based scene synthesis [10]. While
these methods are easy to use, they do not provide fine-
grained control over the generated data. Another approach
is to give rules or a grammar specifying how the data can
be generated, as in generative fuzz testing [43], procedural
generation from shape grammars [32], and grammar-based
scene synthesis [23]. While grammars allow much greater
control, they do not easily allow enforcing global properties.
This is also true when writing a program in a domain-specific
language with nondeterminism [8]. Conversely, constraints
as in constrained-random verification [33] allow global prop-
erties but can be difficult to write. Scenic improves on these
methods by simultaneously providing fine-grained control,
enforcement of global properties, specification of probability
distributions, and simple imperative syntax.

Probabilistic Programming Languages. The semantics
(and to some extent, the syntax) of Scenic are similar to
that of other probabilistic programming languages such as
Prob [20], Church [18], and BLOG [31]. In probabilistic pro-
gramming the focus is usually on inference rather than gener-
ation (the main application in our case), and in particular to
our knowledge probabilistic programming languages have
not previously been used for test generation. However, the
most popular inference techniques are based on sampling
and so could be directly applied to generate scenes from
Scenic programs, as we discussed in Sec. 5.
Several probabilistic programming languages have been

used to define generative models of objects and scenes: both
general-purpose languages such as WebPPL [19] (see, e.g.,
[37]) and languages specifically motivated by such applica-
tions, namely Quicksand [36] and Picture [26]. The latter are
in some sense the most closely-related to Scenic, although

neither provides specialized syntax or semantics for dealing
with geometry (Picture also was used only for inverse ren-
dering, not data generation). The main advantage of Scenic
over these languages is that its domain-specific design per-
mits concise representation of complex scenarios and enables
specialized sampling techniques.

8 Conclusion
In this paper, we introduced Scenic, a probabilistic program-
ming language for specifying distributions over configura-
tions of physical objects and agents. We showed how Scenic
can be used to generate synthetic data sets useful for deep
learning tasks. Specifically, we used Scenic to generate spe-
cialized test sets, improve the effectiveness of training sets by
emphasizing difficult cases, and generalize from individual
failure cases to broader scenarios suitable for retraining. In
particular, by training on hard cases generated by Scenic, we
were able to boost the performance of a car detector neural
network (given a fixed training set size) significantly beyond
what could be achieved by prior synthetic data generation
methods [24] not based on PPLs.

In future work we plan to conduct experiments applying
Scenic to a variety of additional domains, applications, and
simulators. For example, we have integrated Scenic as the
environment modeling language for VerifAI, a tool for the
design and analysis of AI-based systems [6], and used it to
generate seed inputs for temporal-logic falsification of an au-
tomated collision-avoidance system. We have also interfaced
Scenic to the X-Plane flight simulator [35] in order to test
ML-based aircraft navigation systems, and to the CARLA
driving simulator [5] for scenarios requiring more control
than GTAV provides. Finally, we plan to extend the Scenic
language itself in several directions: allowing user-defined
specifiers, describing 3D scenes, and encoding dynamic sce-
narios to aid in the analysis of complex dynamic behaviors,
including both control as well as perception.

Acknowledgments
The authors would like to thank Ankush Desai, Alastair
Donaldson, Andrew Gordon, Jonathan Ragan-Kelley, Sriram
Rajamani, and several anonymous reviewers for helpful dis-
cussions and feedback. This work is supported in part by
the National Science Foundation Graduate Research Fellow-
ship Program under Grant No. DGE-1106400, NSF grants
CNS-1545126 (VeHICaL), CNS-1646208, CNS-1739816, and
CCF-1837132, DARPA under agreement number FA8750-16-
C0043, the DARPA Assured Autonomy program, Berkeley
Deep Drive, the iCyPhy center, and TerraSwarm, one of six
centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

76



Scenic: A Language for Scenario Specification and Scene Generation PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

References
[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John

Schulman, and Dan Mané. 2016. Concrete Problems in AI Safety. CoRR
abs/1606.06565 (2016). arXiv:1606.06565

[2] Sylvain Arlot and Alain Celisse. 2010. A survey of cross-validation
procedures for model selection. Statist. Surv. 4 (2010), 40–79. https:

//doi.org/10.1214/09-SS054

[3] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner. 2005. Model-Based Testing of Reactive Systems:
Advanced Lectures (Lecture Notes in Computer Science). Springer-Verlag
New York, Inc., Secaucus, NJ, USA.

[4] Guillaume Claret, Sriram K Rajamani, Aditya V Nori, Andrew D Gor-
don, and Johannes Borgström. 2013. Bayesian inference using data flow
analysis. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. ACM, 92–102.

[5] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,
and Vladlen Koltun. 2017. CARLA: An Open Urban Driving Simulator.
In Conference on Robot Learning, CoRL. 1–16.

[6] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim,
Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia.
2019. VerifAI: A Toolkit for the Design and Analysis of Artificial
Intelligence-Based Systems. arXiv:1902.04245 https://github.com/

BerkeleyLearnVerify/VerifAI

[7] DuPont. 2012. Global Automotive Color Popularity Re-
port. https://web.archive.org/web/20130818022236/http:

//www2.dupont.com/Media_Center/en_US/color_popularity/

Images_2012/DuPont2012ColorPopularity.pdf

[8] Tayfun Elmas, Jacob Burnim, George Necula, and Koushik Sen. 2013.
CONCURRIT: a domain specific language for reproducing concurrency
bugs. In ACM SIGPLAN Notices, Vol. 48. ACM, 153–164.

[9] Artur Filipowicz, Jeremiah Liu, and Alain Kornhauser. 2017. Learning
to recognize distance to stop signs using the virtual world of Grand Theft
Auto 5. Technical Report. Princeton University.

[10] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser,
and Pat Hanrahan. 2012. Example-based Synthesis of 3D Object Ar-
rangements. In ACM SIGGRAPH 2012 (SIGGRAPH Asia ’12).

[11] Daniel Fremont, Xiangyu Yue, Tommaso Dreossi, Shromona Ghosh,
Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia. 2018. Scenic:
Language-Based Scene Generation. Technical Report UCB/EECS-2018-8.
EECS Department, University of California, Berkeley. http://www2.

eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-8.html

[12] Daniel J. Fremont, Alexandre Donzé, Sanjit A. Seshia, andDavidWessel.
2015. Control Improvisation. In 35th IARCS Annual Conference on
Foundation of Software Technology and Theoretical Computer Science
(FSTTCS) (LIPIcs), Vol. 45. 463–474.

[13] Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu
Yue, Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia. 2019.
Scenic: A Language for Scenario Specification and Scene Generation.
arXiv:1809.09310 https://github.com/BerkeleyLearnVerify/Scenic

[14] Rockstar Games. 2015. Grand Theft Auto V. Windows PC version.
https://www.rockstargames.com/games/info/V

[15] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language
and its Implementation. Addison-Wesley, Reading, Massachusetts.

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014.
Generative adversarial nets. In Advances in neural information process-
ing systems. 2672–2680.

[17] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Ex-
plaining and Harnessing Adversarial Examples. CoRR abs/1412.6572
(2014). arXiv:1412.6572

[18] Noah Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz,
and Joshua B. Tenenbaum. 2008. Church: A universal language for
generative models. In Uncertainty in Artificial Intelligence 24 (UAI).
220–229.

[19] Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and
Implementation of Probabilistic Programming Languages. http://dippl.
org. Accessed: 2018-7-11.

[20] Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K
Rajamani. 2014. Probabilistic programming. In FOSE 2014. ACM, 167–
181.

[21] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. 2016. Syn-
thetic Data for Text Localisation in Natural Images. In Computer Vision
and Pattern Recognition, CVPR. 2315–2324. https://doi.org/10.1109/

CVPR.2016.254

[22] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Synthetic Data and Artificial Neural Networks for Natural
Scene Text Recognition. CoRR abs/1406.2227 (2014). arXiv:1406.2227

[23] Chenfanfu Jiang, Siyuan Qi, Yixin Zhu, Siyuan Huang, Jenny Lin, Lap-
Fai Yu, Demetri Terzopoulos, and Song-Chun Zhu. 2018. Configurable
3D Scene Synthesis and 2D Image Rendering with Per-pixel Ground
Truth Using Stochastic Grammars. International Journal of Computer
Vision (2018), 1–22.

[24] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta,
Sharath Nittur Sridhar, Karl Rosaen, and Ram Vasudevan.
2017. Driving in the Matrix: Can virtual worlds replace
human-generated annotations for real world tasks?. In Interna-
tional Conference on Robotics and Automation, ICRA. 746–753.
https://doi.org/10.1109/ICRA.2017.7989092

[25] Alexander Jung. 2018. imgaug. https://github.com/aleju/imgaug

[26] Tejas Kulkarni, Pushmeet Kohli, Joshua B. Tenenbaum, and Vikash K.
Mansinghka. 2015. Picture: A probabilistic programming language for
scene perception. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 4390–4399.

[27] Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, and Eric P
Xing. 2017. Recurrent Topic-Transition GAN for Visual Paragraph
Generation. arXiv preprint arXiv:1703.07022 (2017).

[28] Joerg Liebelt and Cordelia Schmid. 2010. Multi-view object class
detection with a 3D geometric model. In Computer Vision and Pattern
Recognition, CVPR. 1688–1695. https://doi.org/10.1109/CVPR.2010.

5539836

[29] Marco Marchesi. 2017. Megapixel Size Image Creation using Genera-
tive Adversarial Networks. arXiv preprint arXiv:1706.00082 (2017).

[30] Olivier Michel. 2004. Webots: Professional Mobile Robot Simulation.
International Journal of Advanced Robotic Systems 1, 1 (2004), 39–42.

[31] Brian Milch, Bhaskara Marthi, and Stuart Russell. 2004. BLOG: Re-
lational modeling with unknown objects. In ICML 2004 workshop on
statistical relational learning and its connections to other fields. 67–73.

[32] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc
Van Gool. 2006. Procedural modeling of buildings. InACMTransactions
On Graphics, Vol. 25. ACM, 614–623.

[33] Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov,
Eitan Marcus, and Gil Shurek. 2006. Constraint-Based Random Stimuli
Generation for Hardware Verification. In Proc. of AAAI. 1720–1727.

[34] Aditya V Nori, Chung-Kil Hur, Sriram K Rajamani, and Selva Samuel.
2014. R2: An Efficient MCMC Sampler for Probabilistic Programs.. In
AAAI. 2476–2482.

[35] Laminar Research. 2019. X-Plane 11. https://www.x-plane.com/

[36] Daniel Ritchie. 2014. Quicksand: A Lightweight Embedding of Proba-
bilistic Programming for Procedural Modeling and Design. In 3rd NIPS
Workshop on Probabilistic Programming. https://dritchie.github.io/pdf/
qs.pdf

[37] Daniel Ritchie. 2016. Probabilistic programming for procedural modeling
and design. Ph.D. Dissertation. Stanford University. https://purl.

stanford.edu/vh730bw6700

[38] Germán Ros, Laura Sellart, Joanna Materzynska, David Vázquez, and
Antonio M. López. 2016. The SYNTHIA Dataset: A Large Collection
of Synthetic Images for Semantic Segmentation of Urban Scenes. In
Computer Vision and Pattern Recognition, CVPR. 3234–3243. https:

77

http://arxiv.org/abs/1606.06565
https://doi.org/10.1214/09-SS054
https://doi.org/10.1214/09-SS054
http://arxiv.org/abs/1902.04245
https://github.com/BerkeleyLearnVerify/VerifAI
https://github.com/BerkeleyLearnVerify/VerifAI
https://web.archive.org/web/20130818022236/http://www2.dupont.com/Media_Center/en_US/color_popularity/Images_2012/DuPont2012ColorPopularity.pdf
https://web.archive.org/web/20130818022236/http://www2.dupont.com/Media_Center/en_US/color_popularity/Images_2012/DuPont2012ColorPopularity.pdf
https://web.archive.org/web/20130818022236/http://www2.dupont.com/Media_Center/en_US/color_popularity/Images_2012/DuPont2012ColorPopularity.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-8.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-8.html
http://arxiv.org/abs/1809.09310
https://github.com/BerkeleyLearnVerify/Scenic
https://www.rockstargames.com/games/info/V
http://arxiv.org/abs/1412.6572
http://dippl.org
http://dippl.org
https://doi.org/10.1109/CVPR.2016.254
https://doi.org/10.1109/CVPR.2016.254
http://arxiv.org/abs/1406.2227
https://doi.org/10.1109/ICRA.2017.7989092
https://github.com/aleju/imgaug
https://doi.org/10.1109/CVPR.2010.5539836
https://doi.org/10.1109/CVPR.2010.5539836
https://www.x-plane.com/
https://dritchie.github.io/pdf/qs.pdf
https://dritchie.github.io/pdf/qs.pdf
https://purl.stanford.edu/vh730bw6700
https://purl.stanford.edu/vh730bw6700
https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.1109/CVPR.2016.352


PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Fremont, Dreossi, Ghosh, Yue, Sangiovanni-Vincentelli, and Seshia

//doi.org/10.1109/CVPR.2016.352

[39] Stuart Russell, Tom Dietterich, Eric Horvitz, Bart Selman, Francesca
Rossi, Demis Hassabis, Shane Legg, Mustafa Suleyman, Dileep George,
and Scott Phoenix. 2015. Letter to the Editor: Research Priorities
for Robust and Beneficial Artificial Intelligence: An Open Letter. AI
Magazine 36, 4 (2015).

[40] Nasser Saheb-Djahromi. 1978. Probabilistic LCF. In Mathematical
Foundations of Computer Science. Springer, 442–451.

[41] Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. 2016. Towards
Verified Artificial Intelligence. arXiv:1606.08514

[42] Michael Stark, Michael Goesele, and Bernt Schiele. 2010. Back to the
Future: Learning Shape Models from 3D CAD Data. In British Machine
Vision Conference, BMVC. 1–11. https://doi.org/10.5244/C.24.106

[43] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing:
Brute Force Vulnerability Discovery. Addison-Wesley.

[44] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba,
and Pieter Abbeel. 2017. Domain randomization for transferring deep
neural networks from simulation to the real world. In International
Conference on Intelligent Robots and Systems, IROS. 23–30. https:

//doi.org/10.1109/IROS.2017.8202133

[45] David Vazquez, Antonio M Lopez, Javier Marin, Daniel Ponsa, and
David Geronimo. 2014. Virtual and real world adaptation for pedestrian
detection. IEEE transactions on pattern analysis andmachine intelligence
36, 4 (2014), 797–809.

[46] Sebastien CWong, Adam Gatt, Victor Stamatescu, and Mark DMcDon-
nell. 2016. Understanding data augmentation for classification: when
to warp?. In Digital Image Computing: Techniques and Applications
(DICTA), 2016 International Conference on. IEEE, 1–6.

[47] Frank Wood, Jan Willem Meent, and Vikash Mansinghka. 2014. A
new approach to probabilistic programming inference. In Artificial
Intelligence and Statistics. 1024–1032.

[48] Bichen Wu, Forrest N. Iandola, Peter H. Jin, and Kurt Keutzer. 2017.
SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural
Networks for Real-Time Object Detection for Autonomous Driving.
In Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops. 446–454. https://doi.org/10.1109/CVPRW.2017.60

[49] Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, and
Zhi Jin. 2016. Improved relation classification by deep recurrent neural
networks with data augmentation. arXiv preprint arXiv:1601.03651
(2016).

78

https://doi.org/10.1109/CVPR.2016.352
http://arxiv.org/abs/1606.08514
https://doi.org/10.5244/C.24.106
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/CVPRW.2017.60

	Abstract
	1 Introduction
	2 Using PPLs to Design and Analyze Perception Systems
	3 The Scenic Language
	4 Syntax of Scenic
	4.1 Data Types
	4.2 Expressions
	4.3 Specifiers
	4.4 Statements

	5 Semantics and Scene Generation
	5.1 Semantics of Scenic
	5.2 Domain-Specific Sampling Techniques

	6 Experiments
	6.1 Experimental Setup
	6.2 Testing under Different Conditions
	6.3 Training on Rare Events
	6.4 Debugging Failures

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

