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We report equilibrium molecular simulation data for the classical Lennard-Jones (LJ) model, covering

all thermodynamic states where the crystal is stable, as well as fluid states near coexistence with the

crystal; both fcc and hcp polymorphs are considered. These data are used to compute coexistence

lines and triple points for equilibrium among the fcc, hcp, and fluid phases. All results are obtained

with very high accuracy and precision such that coexistence conditions are obtained with one to two

significant figures more than previously reported. All properties are computed in the limit of an infinite

cutoff radius of the LJ potential and in the limit of an infinite number of atoms; furthermore, the effect

of vacancy defects on the free energy of the crystals is included. Data are fit to a semi-empirical

equation of state to within their estimated precision, and convenient formulas for the thermodynamic

and coexistence properties are provided. Of particular interest is the liquid-vapor-fcc triple point

temperature, which we compute to be 0.694 55 ± 0.000 02 (in LJ units). Published by AIP Publishing.

https://doi.org/10.1063/1.5053714

I. INTRODUCTION

The Lennard-Jones (LJ) model is a single-site pair poten-

tial that has been used for decades as a basis for understand-

ing the thermophysical behavior of simple fluids and solids.

Its form captures the key effects of interatomic repulsion

and attraction, and it is employed as a component in many

empirical force fields. The model is specified by a spheri-

cally symmetric pairwise-additive energy u(2) as a function of

separation r,

u(2)(r) = 4ǫ

[

(

σ

r

)12

−

(

σ

r

)6
]

. (1)

The parameters σ and ǫ , respectively, characterize the diame-

ter of the atoms and the strength of their attractive interaction.

Here, all thermodynamic states and properties will be pre-

sented in “Lennard-Jones units” such that σ = 1 and ǫ /kB = 1,

where kB is Boltzmann’s constant.

The equilibrium thermodynamic properties of the LJ

model, including the equation of state, enthalpy, phase bound-

aries, critical point, and others, have been studied via molec-

ular simulation by many researchers, and semi-empirical

equations have been presented as convenient representations

of these properties. The available fluid-phase data and fits

have been thoroughly reviewed recently by Thol et al.,1

so we will not attempt to catalog them here. Simulation

data and fits have also been presented for the LJ crystal2–6

with attention recently given to the low-temperature hcp/fcc

transition.7–9

In this paper, we focus on the crystal and low-temperature

fluid phases, providing molecular simulation data for the

thermodynamic properties, from which we evaluate free ener-

gies and phase-coexistence conditions. We present data over

the entire space of temperature and density where the crystal

is stable, from zero temperature to the soft-sphere (SS) limit.

We evaluate coexistence lines between the hcp and fcc crys-

tals, between both crystals and the vapor and between the fcc

crystal and the liquid. Recently developed simulation meth-

ods allow us to obtain results with very little stochastic error,

which means that we have to give special attention to sources

of systematic error in our data so that its accuracy is commen-

surate with the precision. We consider in particular finite-size

effects, including truncation of the potential and extrapola-

tion to the thermodynamic limit. We also account for the

effects of vacancy defects on the free energy of the crystalline

phases. On the other hand, all behavior is handled classically,

and in particular, we do not include nuclear quantum effects

(see Sec. II A 6).

The aims of this work are twofold: (1) to provide high-

quality data and convenient empirical representations of it,

which can be used to test theories and other simulation methods

while quantifying the importance of often-neglected sources

of inaccuracy, and (2) to demonstrate best practices for com-

puting properties of simple crystals. In Sec. II, we describe

the methods used and the formalism that compactly repre-

sents the thermodynamic space of temperature and density

to encompass all crystal states. In Sec. III, we present and

discuss the results of the calculations. We summarize and

conclude in Sec. IV; a review of the key formulas repre-

senting the LJ properties is provided in this section, for the

reader wishing to quickly access the primary results of this

paper.
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II. FORMALISM AND METHODS

The natural variables for specifying the thermodynamic

state are the temperature T and number density ρ (or pressure

P). However, these variables are inconvenient for the present

purpose. We aim to characterize the crystalline phase over its

entire region of stability. At a high temperature and density, the

LJ model approaches the system of soft r−12 repulsive spheres,

for which the thermodynamic state can be fully specified by

the single group,10

Y ≡
T

4ρ4
. (2)

For the stable LJ solid, Y is always less than about 0.5, whereas

T and ρ can together take on arbitrarily large values. Likewise,

it is helpful to work with the molar volume v = 1/ρ rather than

the density—for the stable solid v ranges from 0 (soft-sphere

limit) to about 1.0. At a low temperature, the r−6 attraction

becomes important, but no simple scaling form emerges. Still,

we find it helpful to work with v2 rather than v as the inde-

pendent variable as it yields a more regular behavior in the

properties.

In terms of these variables, the pressure P and molar ther-

modynamic energy u are given via derivatives of the molar

free energy a(Y, v2) as follows:
(

∂ βa

∂Y

)

v2

= −
βu

Y
, (3a)

(

∂ βa

∂v2

)

Y

=

1

2v2
(4βu − Z), (3b)

where Z = Pv/kBT is the compressibility factor. Our approach

is to evaluate u(Y, v2) and Z(Y, v2) via molecular simulation

and use these data to obtain the free energy via thermodynamic

integration according to Eq. (3).

A. Fcc and hcp crystals

The molar Helmholtz free energy for a perfect crystal of N

atoms can be separated into lattice (lat), quasiharmonic (qh),

and anharmonic (ah) components,

a(Y , v2) = ulat(v2) + aqh(Y , v2) + aah(Y , v2). (4)

Each component can be evaluated using a method best suited

for it.

1. Lattice contribution

The molar interatomic energy of the perfect lattice, ulat

≡U lat/N, is given analytically in v2 for each crystal structure,11

ulat
fcc(v2) = 6.065 940 098 272 290/v4

− 14.453 921 043 744 47/v2, (5a)

ulat
hcp(v2) = 6.066 146 884 549 459/v4

− 14.454 897 277 841 68/v2. (5b)

The coefficients are obtained from lattice sums converged to

machine precision, with no cutoff applied to the potential. The

lattice contribution to the pressure is

Plat
= −

dulat

dv
. (6)

2. Quasiharmonic contribution

The classical quasiharmonic contribution aqh is given

by

βaqh(T , ρ; rc, N) =
1

2N

3(N−1)
∑

i

ln

(

λi(ρ; N , rc)

2πkBT

)

−
3

2N
ln N +

1

N
ln ρ + 3 lnΛ, (7)

where the harmonic spring constants λi are obtained as

described below and Λ is the thermal de Broglie wavelength,

taken to be 1. These spring constants are, as indicated, depen-

dent on N and the potential truncation distance rc. For a

given N, we isolate the contribution from the spring con-

stants,
∑

ln λi, and evaluate this sum for several values of rc,

and these are extrapolated to 1/rc → 0. This is repeated for

increasing values of N, and the set of extrapolated results is

again extrapolated to 1/N → 0. Thus, we evaluate the molar

quasiharmonic free-energy contribution in the thermodynamic

limit,

βa
qh
∞ (T , ρ) = −

3

2
ln(2πkBT ) +

1

2N
lim

N ,rc→∞

×

3(N−1)
∑

i

ln λi(ρ; N , rc). (8)

The spring constants are obtained as eigenvalues of

the dynamical matrix,12,13 which yield λi. In principle, this

involves construction of a 3N × 3N Hessian matrix, with ele-

ments given by second derivatives of the potential with respect

to each of the x, y, z coordinates of each atom. For large N,

as needed for the limit in (8), this calculation is prohibitive.

Instead, the symmetry of the lattice permits this process to

be separated into many smaller pieces, each involving only n

basis atoms.13 We construct a 3n × 3n dynamical matrix D as

a function of wave vector k,

D(k) =
∑

unit cells, l′

rjj′<rc

Φ(l′) exp
(

ik · R(l′)
)

. (9)

Here, R(l′) is the coordinate of the origin of unit cell l′, and

the sum is over all unit cells having atoms within the cutoff

rc relative to atoms in the central cell. Each element of the

force-constant matrix Φ pertains to the α coordinate (x, y, z)

of basis-atom j in the central unit cell (l = 0) as it interacts with

basis-atom j′ in unit cell l′, varying its α′ coordinate.13

For the fcc crystal, n = 4 and we select k as the reciprocal

vectors for a cubic lattice,

k = (k1/K1, k2/K2, k3/K3)2π/a,

ki = −⌊(Ki − 1)/2⌋ . . . , ⌊Ki/2⌋; (10)

the lattice constant is a = (4v)1/3 and K i is the number of cells

in direction i; for fcc, this is the same in all directions and equal

to (N /4)1/3. For hcp, n = 4 and k are the reciprocal vectors for

a rectangular lattice,

k = (k1/(K1a), k2/(K231/3a), k3/(K3c))2π, (11)



204508-3 A. J. Schultz and D. A. Kofke J. Chem. Phys. 149, 204508 (2018)

where nominally c = (8/3)1/2a, but the exact proportion c/a

is determined as described in Sec. II A 4. Also, we used K1

= 2K2 = 2K3 = N1/3.

Note that N has no relation to rc in the framework,

meaning that rc can be larger than the box that would con-

tain N atoms at density 1/v . Rather, N is just a convenient

means to specify the number of wave vectors used for the

analysis [facilitating the limit in (8)], while rc describes the

range for the lattice sum in (9). D(k) yields 3n eigenvalues

(spring constants, λi) for each k, and there are N /n k-vectors

for a given N, yielding 3(N − 1) spring constants appear-

ing in Eq. (7) plus 3 modes corresponding to center-of-mass

motion.

With the formulas outlined above, we can obtain the

lattice and quasiharmonic contributions to the classical free

energy essentially exactly for the infinite system with no trun-

cation of the potential. Having obtained the harmonic free

energy for both finite-sized systems and the thermodynamic

limit, we fit 1
2N

∑

ln λi as a function of density [see Ref. 14,

Eq. (A3)],

1

2N

∑

ln λi =
1

N
ln N + 7

N − 1

N
ln ρ +

∑

j

cjv
2j, (12)

where cj are the fitting constants.

3. Anharmonic contribution

The anharmonic contribution is treated by fitting all simu-

lation data—results for all temperatures, densities, and system

sizes—to the functional form

βaah(Y , v2; N) =

m1
∑

i=1

m1−i
∑

j=0

cijY
iv2j; (13)

this enforces the requirement that βaah vanish for Y → 0 for

all v2. To extrapolate to N→∞, we fit data for all system sizes

to the form

βaah(Y , v2) =

m1
∑

i=1

m1−i
∑

j=0

cijY
iv2j +

1

N

m2
∑

i=1

m2−i
∑

j=0

dijY
iv2j (14)

and then evaluate the function with N →∞ (dropping the dij

terms).

According to Eq. (3), the fitted quantities are

θY ≡

(

∂ βaah

∂Y

)

v2

= −
βuah

Y
, (15a)

θv
2

≡

(

∂ βaah

∂v2

)

Y

=

1

2v2

(

4βuah − Zah
)

; (15b)

here we introduce θY and θv
2

as convenient representations of

these derivatives. To perform the fit, simulation data for uah

and Zah are used to compute θY and θv
2

for each simulated

state point, and these are regressed to (13), appropriately dif-

ferentiated according to (15). We note that θY , which goes

as uah/T2, is finite for T → 0,15 which is consistent with the

Y → 0 behavior of the fitting form. The upper limits of the

sums in Eq. (13) are specified by m1 and m2, which are chosen

according to a χ2 measure so as to neither over- nor under-fit

the data. The objective function that is minimized to determine

all cij and dij is

Ω ≡
∑

k

(θY
k
− θY

fit
)2

σ2

θY
k

+
(θv

2

k
− θv

2

fit
)2

σ2

θ v2

k

−

2ρ
θY

k
,θ v2

k

(θY
k
− θY

fit
)(θv

2

k
− θv

2

fit
)

σθY
k
σ
θ v2

k

, (16)

where ρ
θY

k
,θ v2

k

is the correlation between measured θY and θv
2

in simulation k.

We evaluate the anharmonic contributions from molec-

ular simulation using the recently introduced “harmonically

mapped averaging” (HMA) formulas,16,17 as given here,

βuah
=

〈

βu +
1

2N
βF · ∆r

〉

, (17a)

Zah
= βPqhv +

β

3(N − 1)

〈

F · r + (βPqhv − 1)F · ∆r

〉

,

(17b)

where u is the molar configurational energy for atoms in con-

figuration r (a vector of length 3N), F is the corresponding

vector representing the forces on all atoms, and ∆r is the

vector describing the displacements of all atoms from their

associated lattice sites (hence, F · ∆r and F · r are the sums of

3N terms). The angle brackets represent ensemble averages as

taken in a molecular simulation using any conventional sam-

pling method. Also, Pqh is the quasiharmonic estimate of the

pressure obtained by differentiating the quasiharmonic free

energy for the simulated system size [as given by (7) and (12)]

with respect to volume.

The HMA formulas yield the anharmonic contributions

to the properties directly. This contrasts with a more obvious

approach that evaluates anharmonic behavior by subtracting

the harmonic contributions from simulation averages taken

using conventional methods. Consequently, the precision of

the HMA results is tremendously enhanced because fluctua-

tions associated with the harmonic behavior are not present.

Separate treatment of the anharmonic behavior is advanta-

geous with respect to accuracy as well,15,16 as these contribu-

tions are in particular much less sensitive to finite-size effects

in comparison with the harmonic contributions.

Special measures are used to evaluate behavior at very

high temperatures, corresponding to the soft-sphere limit. This

regime is obtained at v2 → 0 for finite (non-zero) Y. Here, θv
2

remains finite even though its definition involves division by

v2 [cf. Eq. (15b)] because for the 4r−12 soft-sphere (SS) model

4βu = Z and the numerator is zero as well. We can collect data

in this limit by simulating the soft-sphere system at an arbitrary

density (we use ρ = 1) while varying T to examine a range of

values of Y (which is the only variable needed to specify the SS

thermodynamic state). Then, in place of Eq. (17), we evaluate

averages according to [again, these yield results for v2 = 0 to

use in Eq. (15b)]
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βuah
6

v2
=

〈

βuLJ +
1

2
βFLJ · ∆r

〉

SS

,

Zah
6

v2
= βv

〈

1

3V
FLJ · r +

(

−1/V + βP
qh

SS

)

FLJ · ∆r

+ βP
qh

LJ6
FSS · ∆r − Plat

LJ

〉

SS
, (18)

where the “LJ” subscript emphasizes that the quantity is eval-

uated for the full LJ potential (not SS), the subscript on the

angle brackets indicates that sampling is performed based on

the SS potential, and PLJ6 is the first-order correction to the

quasiharmonic pressure in the limit of high density. Using (12),

βP
qh

LJ6
= −2c1.

4. hcp lattice parameters

For the hcp phase, the equilibrium ratio of lattice con-

stants, c/a, can vary from the ideal value (8/3)1/2, in a manner

depending on the temperature and density. To account for this

effect, we have computed lattice, harmonic, and anharmonic

contributions to the free energy due to variation of c/a from

the ideal value. Because these deviations are very small, we

can express the free energy change with a 2nd-order Taylor

series11,18 in terms of α ≡ (c/a)(3/8)1/2. The equilibrium α is

then

αeq
= −

(

∂a

∂α

) / (

∂2a

∂α2

)

, (19a)

and the free energy change is

a(αeq) = a(α = 1) −

(

∂a

∂α

)2/ (

2
∂2a

∂α2

)

. (19b)

To evaluate these derivatives, the hcp lattice-energy con-

stants appearing in (5b) were fit to values computed from

α = 0.999 to α = 1.001 using a cubic polynomial in α − 1. For

the harmonic contribution, the form given in (12) is extended

to a 2-dimensional fit,

1

2N

∑

ln λi =
1

N
ln N + 7

N − 1

N
ln ρ +

∑

j,k

cjkv
2j(α − 1)k .

(20)

Finally, the first derivative is computed by

∂a

∂α
= −

2v

3

(

Pzz − (Pxx + Pyy)/2
)

(21)

during NVT simulations conducted on the system with

ideal geometry α = 1 with the pressure components com-

puted via standard formulas (without harmonically mapped

averaging).

The anharmonic derivative is obtained by subtracting

the lattice and harmonic free energy contributions and then

correlating the values as a function of v2 and Y with the form

β
∂aah

∂α
(v2, T ) =

m
∑

i=0

m−i
∑

j=0

cijY
i+1v2j. (22)

We assume that the anharmonic contribution to the 2nd deriva-

tive in (19) is zero. This assumption is supported by simula-

tions conducted with α = 1.001 which showed no statistical

difference in the first derivative from α = 1.

5. Vacancy-defect contribution

Lattice vacancies are a thermodynamically stable defect

and will be present in some concentration in the equilibrium

crystal. These vacancies have a significant effect on the free

energy relative to the precision and accuracy of our calcula-

tions, so we need to account for them. Evaluation of vacancy

concentration is complicated by the need to allow for equili-

bration with respect to an order parameter, described as the

number of lattice sites, M.19 For a perfect crystal, N = M, but

the system in principle is free to trade off (at fixed V, N) from

this case to the one having more, smaller cells (hence different

M), some of which are vacant. There is an entropic contribu-

tion gained in the form of a mixing entropy (i.e., a mixture of

vacant and filled sites) that competes with the loss of entropy

(or increase in energy) as the atoms are confined to smaller

cells. Any simulation of feasible size using periodic bound-

ary conditions finds it difficult if not impossible to sample M

appropriately.

We circumvent this problem by working within the grand-

canonical ensemble, fixing M and solving for the chemical

potential that has the chosen M as its equilibrium value.

Details are given in Ref. 20 and are rather lengthy, so we

will not attempt to reproduce them here. The key output from

the calculations is the equilibrium vacancy fraction φ = (M

− N)/M, and the difference in molar Helmholtz free energy

between the vacancy-equilibrated crystal and the perfect lattice

∆avac ≡ a(φ) − a(φ = 0).

6. (Neglect of) nuclear quantum effects

Given that we consider temperatures extending as low as

T = 0, if attempting application to a real system with atoms

of finite mass, m, nuclear quantum effects would be signifi-

cant at some of the conditions examined in this study. It is a

simple matter to accommodate these effects in ulat and aqh,

as the non-classical forms are given analytically. To include

nuclear quantum effects in aah, we would need to conduct

simulations using a (T - and m-dependent) semiclassical form

of the LJ potential or, for very low T and/or m, apply path-

integral methods. In principle, corresponding measures would

also need to be applied for the gas and fluid phases. Presently

we have no particular material (m) in mind, and we do not

wish to do a parametric study of m, so we restrict our focus to

purely classical behavior.

B. Gas phase

The gas phase pressure can be determined accurately

using the virial equation of state, which expresses the com-

pressibility factor Z as a series in the density21–23

Z = 1 + B2(T )ρ + B3(T )ρ2 + B4(T )ρ3 . . . . (23)

An expression for the molar Helmholtz free energy can be

derived from this,

βa(T , ρ) = 3 lnΛ + ln ρ − 1 + B2(T )ρ +
1

2
B3(T )ρ2 + . . . .

(24)

Bn are the virial coefficients, which may be determined rigor-

ously via numerical calculation for a given molecular model.
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For the conditions of interest to this work, where the gas is

in equilibrium with the crystalline solid, the density is very

low; hence, the series is not required to high order. Values

of coefficients are available24 to sufficiently high order and

with sufficient precision to allow us to compute the pressure

and free energy with at least eight digits of accuracy and

precision.

C. Liquid phase

We evaluate the free energy of the liquid phase using the

form

βaliq(Y , v2) = ln ρ − 1 +

m
∑

i=0

m−i
∑

j=0

cijY
−iv2j (25)

with c00 set to match the soft-sphere fluid residual free energy

at Y = 1.8−1,

c00 = βASS(Y = 1.8−1) − ln ρ + 1 −

m
∑

i=1

ci01.8−i. (26)

The soft-sphere fluid reference is well described by the virial

equation of state,25,26 for which coefficients up to the tenth

order (B10) are known.25,27 Additionally, coefficients up to B13

were fit to NVT simulation data.

D. Computational details

1. Fluid phase

We conducted simulations for v2 from 0 (soft-sphere limit)

to 1.8, in a cubic box with periodic images. For each volume,

we considered values of Y [Eq. (2)] in steps of 0.1 starting from

a value slightly above the fcc-fluid coexistence point down to a

value that is 0.8 less than it. We sampled configurations using

a hybrid MD/Monte Carlo (MC) algorithm:28 the atoms are

propagated according to velocity Verlet MD29 for segments of

20 time steps, each of size ∆t = ρ/125T1/2; at the end of each

segment, the whole set of time steps are accepted or rejected via

the Metropolis Monte Carlo algorithm, using the energies at the

beginning and end of the MD segment. We found an acceptance

rate of 91%-97%, depending on the system size. Sampling was

performed using a force-shifted potential truncated at rc/v1/3

= 2.5, and averages were evaluated by reweighting to rc/v1/3

= 2.5· 1.2i with i ranging from 1 to 6 (rc/v1/3 ≈ 7.5 for i = 6).

For cutoffs more than 0.494 of the box length, interactions

were computed with a lattice sum of periodic images. For each

truncation, the standard long-range correction was included for

all properties.28 We examined system sizes N from 250 to 4000

atoms, with 1 × 106 MD time steps for each N at each state

point.

Simulations for soft spheres [with u(2)(r) = 4r−12] were

conducted at T = 1 and N = 16 000 with densities rang-

ing from 0.30 to 0.88 in increments of 0.01 (correspond-

ing to Y from about 0.4 to 30.9). All simulations were

performed for 106 steps using the same hybrid MD/MC

strategy as used for the liquid simulations. Because trunca-

tion effects for soft spheres are much less severe than for

Lennard-Jones, we considered reduced truncations up to only

2.5 · 1.23 = 4.32.

2. Fcc and hcp crystal phases

Simulations were performed for a grid of values of Y and

v2 encompassing the fcc and hcp crystalline phases, as esti-

mated from previous studies in the literature. The points are

displayed in Fig. 1. At each state, MC simulations were run for

N = 500 atoms, sampling 1 × 108 MC steps, up to N = 4000,

sampling 1 × 109 steps for the fcc phase. For hcp, simulations

were performed for N = 512 atoms, sampling 1 × 108 MC

steps, up to N = 4096, sampling 1 × 109 steps. Averages were

recorded according to Eqs. (17) and (for hcp) (21).

E. Truncation of the potential

When considered on the scale of the accuracy and pre-

cision targeted in this work, truncation of the potential has a

significant influence on the results, even when standard cor-

rections are applied. For the crystal, the truncation is based on

the distance between lattice sites, so atom pairs are defined

to interact (or not) at the beginning of the simulation; the

movement of the atoms in or out of the truncation during the

simulation has no effect on whether they interact. The fluc-

tuations in and out of the truncation radius are anharmonic

(since they are not accounted for in the harmonic system)

and persist to very low temperatures, so handling the trun-

cation as we do allows us to collect anharmonic contributions

with much better precision. For the fluid, the truncation radius

is applied in the usual way: atom pairs interact when they

are inside in the radius and stop interacting if they move

away.

FIG. 1. States where crystal-phase simulations were conducted. Each black

circle represents an independent simulation, while in (b), each blue circle rep-

resents a liquid simulation. Red lines show conditions of melting/sublimation

and a tie line is drawn at the triple point. Open circles are vapor-liquid

coexistence points from Ref. 30.
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The truncation radius rc is limited by the computational

expense required to compute all the pair interactions, which

of course grows with the cube of the radius. To handle this,

we employ an approach in which a modest reduced truncation

distance rc ,1/v1/3 = 3 is employed for sampling configurations.

Data are collected every 2N steps at reduced truncation radii

(rc ,2/v1/3) of 3.0 and 3.5 (and 4.0 for N ≥ 864).

We recover the desired larger-rc properties from the rc,1-

based samples through a reweighting formula. Specifically, we

sample based on cutoff rc ,1 and evaluate a property W weighted

for the (larger) cutoff rc ,2 as follows:

〈W2〉2 =

〈

W2 exp
[

−β(U2 − U1)
]〉

1
〈

exp
[

−β(U2 − U1)
]〉

1

, (27)

where the 1 and 2 subscripts indicate a property evaluated

according to interactions cut off at rc ,1 and rc ,2, respectively;

likewise, the subscripts on the averages 〈. . . 〉 indicate sampling

with interactions U1 or U2. We can observe the effect of rc by

evaluating the reweighted averages for several values of rc ,2

during a single simulation sampling according to rc ,1.

Additionally, we collect data every 10N steps using

reduced truncation radii of 5.0, 6.0, 7.5, 9.0, and 11.0. These

longer truncations require a lattice sum, especially for smaller

systems. In order to prevent the increased data collection

interval from increasing the uncertainty of the averages, we

construct the final average as follows:

〈W3〉3 = 〈W2〉2 +
(〈

WLS
3

〉

3
−

〈

WLS
2

〉

2

)

, (28)

where each term is computed according to Eq. (27). The

strong correlation between WLS
2

and WLS
3

yields a very small

uncertainty for the difference.

The reweighted average given by Eq. (27) is biased, mean-

ing that the expected value of 〈W2〉2 differs from the correct

value. An expression for this bias is derived in the Appendix,

with the result

E[〈W2〉2]− 〈W2〉2 =

〈

W2 exp
[

−β(U2 − U1)
]〉

1
〈

exp
[

−β(U2 − U1)
]〉

1

(

−σ̂ND + σ̂2
D

)

.

(29a)

From the propagation of error, the uncertainty is

σ〈W2〉2 =

〈

W2 exp
[

−β(U2 − U1)
]〉

1
〈

exp
[

−β(U2 − U1)
]〉

1

(

σ̂2
N + σ̂2

D − 2σ̂ND

)1/2
.

(29b)

In (29), σ̂2
N

and σ̂2
D

are the variances of the mean (squared

uncertainties) for the numerator and denominator of (27),

respectively, and σ̂ND is the covariance of the two means; the

caret on each σ indicates that these deviations are divided by

their respective averages.

All of the error terms in (29) are made smaller by increas-

ing the amount of sampling used for the average in (27).

Because of the square root on the error in (29b), the uncer-

tainty in 〈W2〉2 will exceed its bias if sufficient sampling

is performed, and hence we normally may neglect the bias.

However in the present application, where we are combining

many independent simulation results to obtain a single fitted

form, we must be more careful. Many of the simulations

are likely to be biased in the same way such that the bias

would remain intact after fitting even though the uncertainty

might be substantially reduced. Accordingly, we have com-

puted the bias and uncertainty using (29a) and (29b) and find

that the bias in (∂ βaah/∂v2)Y never exceeds 7% of the uncer-

tainty, while the bias in (∂ βaah/∂Y )v2 never exceeds 4% of the

uncertainty.

There is also potential for bias of the type known to

sometimes afflict free-energy perturbation calculations.31,32

This would result from inadequate sampling of configurations

important to the rc ,2 system when sampling according to rc ,1.

Given the nature of the perturbation, this is expected to be

negligible.

III. RESULTS AND DISCUSSION

In this section, we present data computed using the meth-

ods outlined above and evaluate coexistence lines between the

phases of interest. Fitting constants for the semi-empirical for-

mulas appearing in Sec. II are reported in the supplementary

material.

A. Finite-size effects

The limiting process used to evaluate βa
qh
∞ is shown in

Figs. 2 and 3. Dependency of βaqh on the potential cutoff rc

for fixed N is through the real-space sum for Φ in Eq. (9).

Convergence with respect to the potential cutoff rc is demon-

strated in Fig. 2. The neglected contribution from r > rc

decays as r−5
c , so we plot the harmonic free energy against

r−5
c to obtain a nearly linear form that can be extrapolated

to zero to obtain the infinite-rc value. This process is per-

formed for several values of N (i.e., the number of k vectors

in the reciprocal-space sum), each yielding an rc-extrapolated

value for aqh. These values are plotted against 1/N and them-

selves extrapolated to 1/N → 0 to yield the infinite-system

infinite-cutoff result for the quasiharmonic contribution to the

free energy. The extrapolation is shown in Fig. 3. We subtract

N ln N while doing the extrapolation because this is known to

yield a more linear form.33 We fit the resulting data with the

function

FIG. 2. Constructions showing extrapolation of the quasiharmonic contribu-

tion to the free energy with rc. Data are for N = 186 624.
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FIG. 3. Constructions showing extrapolation of the quasiharmonic contribu-

tion to the free energy. Labels on some of the points indicate the value of N.

Open symbols at the two smallest system sizes were excluded from the fit

because they could not be fit sufficiently well with a quadratic form.

βaqh − ln(N)/N = a0 + a1/N + a2/N
2 + a3 ln(N)/N2. (30)

The effect of the potential truncation radius rc and system

size N on the anharmonic properties is demonstrated in Fig. 4.

The variation with rc is smoother than would be expected for

the given error bars because the data for a single system size are

highly correlated, inasmuch as they were all taken as averages

for different rc ,2 using the same data as sampled according to

rc ,1. The rc →∞ limit is reached for rc about 6, and the sys-

tem size dependence is not significant in comparison with the

uncertainties. This weak dependence of the anharmonic prop-

erties with N is consistent with observations made in previous

work.15,16,18

B. Properties

Results for the two derivatives θY and θv
2

defined in

Eq. (15) are presented in Fig. 5 for the fcc crystal with

N = 500. Data over the entire region of stability for the crys-

talline phase are presented, and it can be seen that all results are

given to very high precision: the variation with Y is smooth, and

although finely spaced in v2, the different isochores are easily

discerned.

FIG. 4. Effect of truncation radius and system size on the Y -derivative of the

anharmonic free energy. Error bars show 68% confidence limits. Conditions

are v2 = 1.04, Y = 0.24, corresponding to T = 0.89, ρ = 0.98.

FIG. 5. Simulation results for the two anharmonic free energy derivatives

given by Eq. (15). Data are for the N = 500 fcc crystal. Uncertainties (68%

confidence) are smaller than the line thickness. Each line is an isochore, with

values of v2 that vary monotonically between the two indicated limits. Lines

are colored differently to aid in distinguishing them.

The data are fit to the form defined via Eqs. (13), (15), and

(16). The quality of the fit is demonstrated in Fig. 6, where the

residuals in the fit of θY to the N = 500 data are presented. We

see that there is no observable systematic deviation of the data

from the fitting function. The θv
2

fit performs equally well,

and this figure is typical of other system sizes. When data for

all N are fit according to Eq. (13), the sum of residuals gives a

reduced χ2 statistic of 1.05.

C. Vacancies

Detailed results for the vacancy concentration of the fcc

crystal as a function of temperature and density have been

FIG. 6. Map of residuals for the fit of θY to the form given by Eqs. (13)–(16).

Each point shows ∆/σ
θY ≡ |θ

Y
sim
− θY

fit
|/σ

θY , where σ
θY is the uncertainty

in the simulation value, indicating the range it falls within, as defined in the

legend.
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FIG. 7. Crystal-fluid coexistence diagram in the plane of Y = Tv4/4 and

v2. Red lines are triple lines (three-phase coexistence) for the phases in the

adjacent two-phase regions. The hcp-fcc two-phase region is too small to see

on the figure.

reported elsewhere.20 In Tables S97–S99 of the supplementary

material, we present fits of the fcc vacancy data that can be

used in conjunction with the vacancy-free equation of state to

predict the vacancy concentration, the effect on the free energy,

and (through differentiation) other properties.

There have been recent reports6,34 of defects and disorder-

ing in crystals at temperatures below the melting point, dubbed

“premelting” by researchers. While we find that vacancies

are present near melting and have a small impact on prop-

erties, others have asserted that premelting is due to even

higher-order defects such as line dislocations and that such

defects can form spontaneously in defect-free systems. In

the absence of defects we create (by removing an atom), we

observe no net motion of any atom, which would occur if

defects were forming spontaneously: the atoms simply vibrate

about their lattice sites over the course of the simulations. We

observe no qualitative difference between the properties near

(or beyond) melting and properties at low temperatures. In

particular, we see no anomalous behavior of the heat capac-

ity, which has been suggested as an indicator of premelting.6

A more detailed comparison of properties we measured with

those reported by Ref. 6 is included in the supplementary

material.

FIG. 8. Melting line in pressure-temperature plane. Literature data are results

from direct coexistence simulations of Morris and Song,38 non-equilibrium

dynamics simulations by Ahmed and Sadus,39 Einstein crystal and histogram

reweighting simulations by Barroso and Ferreira,3 Gibbs-Duhem integration

by Agrawal and Kofke,36 and phase-switch methods by McNeil-Watson and

Wilding,40 Errington,41 Eike et al.,42 and Mastny and de Pablo.37

D. Crystal-fluid coexistence lines

The full crystal-fluid phase diagram is shown in Fig. 7,

including the line of coexistence between the hcp and fcc

phases. Figure 8 presents the melting line in the more familiar

pressure-temperature plane, where it is seen to be consistent

with previously published results. Finite-size effects are not

visible on the scale of this figure, so in Fig. 9, we expand the

scale while plotting in reference to what should be our most

accurate determination of this line. We present the results on

several scales, to allow a fuller and more detailed comparison

to previous calculations.

In the most expanded scale, it is possible to discern the

effects of the finite size of the liquid phase. The difference

between results for N = 2000 and N = 4000 is beyond their

uncertainty estimates, but given that this difference is much

reduced from the N = 1000 → 2000 doubling, it is plausible

that system-size inaccuracies in the N = 4000 results are less

than their uncertainties.

Likewise, in Fig. 10, we demonstrate the effect on melting

of the system size of the fcc crystal. Unlike for the liquid, the

behavior is monotonic with N, and it is clear that the infinite-

system behavior is represented well. We show also in this figure

FIG. 9. Melting line in pressure-temperature plane, differenced with respect to our best estimate for this line to allow for an expanded scale. The “best” system

used for this difference is based on the N → ∞ fcc and the N = 4000 fluid-phase results. All plots present the same data but with a 10-fold expanding scale

in each from left to right. Literature data are results from the work of Barroso and Ferreira,3 Morris and Song,38 Agrawal and Kofke,36 Errington,41 McNeil-

Watson and Wilding,40 Adidharma and Tan,9 Johnson et al.,43 van der Hoef,2 Thol et al.,1 Eike et al.,42 Pedersen,44 Sousa et al.,45 and Kolafa and Nezbeda.46

The rightmost figure shows the effect of the simulation size (N) of the liquid phase, with the width of each shaded region representing its 68% confidence

limits.
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FIG. 10. Same as in Fig. 9(c) but showing the fcc-phase system-size effects

in the calculation of the anharmonic contributions to the free energy and the

effect of vacancies.

the effect of vacancies. The magnitude of the effect of vacan-

cies on the melting pressure is comparable to that of simulating

a crystal or fluid of size of order N ≈ 1000. The shift in the

coexistence line is represented well by the formula of Pronk

and Frenkel,35

Pmelt(φeq) − Pmelt(φ = 1) = −
φkBT

vliq − vfcc

, (31)

where φ is the vacancy fraction. Results for φ as a function of

temperature and density are reported elsewhere.20

Following previous studies,2,4,36,37 we provide semi-

empirical representations of the melting line for the fcc-liquid

coexistence and sublimation line for fcc-vapor coexistence in

Table I.

Finally, we note that to achieve accurate results it is not

necessary to simulate the full grid of state points shown in

Fig. 1. In the supplementary material, we present a revised

determination of the fcc equation of state and coexistence with

the liquid based on existing lattice and harmonic calculations

but replacing the anharmonic simulation data with data from

18 simulations of 256 atoms requiring less than 145 s of central

processing unit (CPU) time. The resulting coexistence predic-

tions are accurate but about 20 times less precise (comparable

to the uncertainties in other simulation studies).

E. Fcc-liquid-vapor triple point

The intersection of the fcc-liquid and the fcc-vapor coex-

istence lines is the triple point, where fcc, liquid, and vapor

all coexist. The conditions at the triple point are recorded in

Table II, in comparison with the values reported previously in

the literature. Results from our calculations are presented both

with and without consideration of the effect of vacancy defects,

and we see that their contribution is considerably larger than

the uncertainty in the values. We have also used the equations

of state for liquid and vapor to predict vapor-liquid equilib-

rium from the triple point to T = 0.9 and report correlations

for the coexistence properties in Table I. The predictions are

almost consistent with calculations by Lotfi and co-workers,30

but for the new results, the liquid density is about 10 times

more precise and the pressure and vapor density are more than

100 times more precise.

F. Fcc-hcp coexistence line

Coexistence between the fcc and hcp crystals emerges

at T = 0 at a pressure P = 878.5007 and continues to lower

densities with increasing temperature, until it intersects the

fcc-vapor coexistence line at T = 0.3474 ± 0.0013, forming

a triple point; see Fig. 7. Properties at the endpoints of this

coexistence line are summarized in Table III. These results are

affected by deformation of the hcp lattice, and accordingly,

we include coexistence results for both the ideal hcp lattice

(α = 1) and the one where the lattice is permitted to undergo

TABLE I. Correlations for coexistence properties of the Lennard-Jones model. All quantities in LJ units (such that σ = 1, ǫ /kB = 1). fcc-liquid correlations

are valid for T > 0.68. Vapor-fcc correlations are valid for T > 0.75. fcc-hcp correlations are valid for ρ > 1.368. Vapor-liquid correlations are valid for

0.67 < T < 0.9.

#a Property Correlationb

1 Pliq/fcc β−5/4
(

16.50077 − 7.89468β1/2 − 3.80391β − 0.55658β3/2 − 0.96639β2 + 1.38543β5/2 − 1.07794β3 + 0.33176β7/2
)

2 ρfcc
melt

β−1/2
(

1.37785 − 0.40630β1/2 + 0.03069β − 0.00813β3/2 − 0.00460β2 + 0.00082β5/2 − 0.00343β3
)−1/2

3 ρ
liq

freeze
β−1/4

(

1.48202 − 0.37404β1/2 + 0.05228β + 0.05407β3/2 − 0.20207β2 + 0.40137β5/2 − 0.35589β3 + 0.12476β7/2
)−1/2

4 Pvap/fcc exp
(

βulat
0
− 1

2
ln T + 5.85227 − 0.35641T − 0.28917T2 + 0.90556T3 − 2.0684T4 + 1.56928T5

)

5 ρfcc
sub

1.091 51 ☞ 0.140 81T ☞ 0.041 52T2 + 0.018 28T3
☞ 0.185 47T4 + 0.316 86T5

☞ 0.241 39T6

6 ρ
vap

dep
exp

(

βulat
0
− 3

2
ln T + 5.85 184 − 0.33 797T − 0.51020T2 + 1.97223T3 − 4.30783T4 + 3.28174T5

)

7 Phcp/fcc 47.71734 ☞ 152.29990ρ + 199.61630ρ2
☞ 157.42739ρ3 + 42.52466ρ4 + 18.29947ρ5

8 ρfcc
fcc/hcp

(

0.211819 + 12.41012Y − 34.871Y2 − 14.59Y3 − 1881.7Y4 + 31778Y5 − 151675Y6
)−1/2

9 Thcp/fcc
∆v2/v2

(

0.322335 + 0.071798∆v2 + 0.055055∆v4 − 0.077536∆v6 + 0.385729∆v8 − 0.518442∆v10 + 0.300867∆v12
)

10 ρhcp
☞ ρfcc −0.0087065 + 0.635861Y − 17.0213Y2 + 448.668Y3 − 7999.46Y4 + 76730.4Y5 − 314865Y6

11 Pvap/liq 0.023 005 45 ☞ 0.208 998 92T + 0.718 519 30T2
☞1.156 998 85T3 + 0.837 116 54T4

☞ 0.187 756 04T5

12 ρ
vap

cond
☞0.077 658 74 + 0.488 720 94T ☞ 1.199 805 13T2 + 1.449 18 936T3

☞0.910 26263T4 + 0.279 233 28T5

13 ρ
liq
evap 4.598 071 4 ☞ 21.358 046 1T + 50.320 015 7T2

☞ 60.083 7476T3 + 35.702 965 0T4
☞ 8.477 293 1T5

a(1–3) freezing/melting, coexistence of fcc and liquid: (1) pressure; (2) fcc density; (3) liquid density; (4–6) sublimation, coexistence of fcc and vapor: (4) pressure; (5) fcc density; (6)

vapor density; (7–10) polymorphism, hcp/fcc coexistence: (7) pressure; (8) fcc density; (9) temperature; (10) density change for fcc→ hcp transformation; (11–13) boiling/condensation,

coexistence of liquid and vapor (valid for 0.69 < T < 0.9): (11) pressure; (12) vapor density; (13) liquid density.
bβ = 1/T ; Y = T /(4ρ4); ulat

0
= −8.610200156; ∆v2n

= (v2 − 0.211819)n.
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TABLE II. Liquid-vapor-fcc triple-point properties for the Lennard-Jones model. All quantities in LJ units.

Source T tp Ptp ρ
liq
tp ρfcc

tp

This work (with vacancies) 0.694 55(2)a 0.001 2637(5) 0.845 35(3) 0.960765(8)

This work (no vacancies) 0.694 48(2) 0.001 2625(5) 0.845 37(2) 0.960813(6)

Heng et al.47 0.708 5(5) 0.002 264(17) 0.840 5(3) 0.958 7(2)

Ahmed and Sadus39 0.661 0.0018 0.864 0.978

Mastny and de Pablo37 0.694 . . . . . . . . .

Barroso and Ferreira3 0.692 0.001 0.847 0.962

Chen et al.48 0.689(9) 0.001 29(22) 0.844(4) 0.955(5)

Agrawal and Kofke36 0.687(4) 0.0011 0.850 0.963

Ladd and Woodcock49 0.67(1) ☞0.47(3) 0.818(4) 0.963(6)

Hansen and Verlet50 0.68(1) . . . 0.85(1) . . .

aNumbers in parentheses indicate the 68% uncertainty in the rightmost digit(s) of the reported value.

homogeneous strain, adopting a value αeq that minimizes the

free energy according to Eq. (19).

Stillinger11 reported T = 0 hcp-fcc coexistence conditions

based on converged lattice sums, just as we have done. Our

results differ from his slightly due to additional precision that

we have retained in our sums. We note that although the lat-

tice sums give the energy to about 16 significant figures, the

equilibrium T = 0 pressure is given to about 11 figures. Still-

inger discussed the effect of deformation of the hcp lattice and

provided formulas that allow its effects to be computed but

provided data only for the undeformed case (indicating that

the deformation effect is small).

Travesset7 computed the harmonic free energy for fcc

and hcp phases and determined coexistence between the two

phases. He identified the triple point to be where the coex-

istence pressure was zero. The properties at the triple point

are in reasonable agreement with values we computed using

only harmonic contributions (also recorded in Table III) but

showing slightly different densities—the difference in α is not

sufficient to cause this, and instead it may be due to the less

precise lattice energy used in Ref. 7 and the high sensitivity

of the fcc-hcp coexistence curve to such inaccuracies. Calero

et al.8 reported a vapor/hcp/fcc triple-point temperature that

differs substantially from ours. The source of this discrep-

ancy is in the anharmonic contribution—according to Calero

et al., the anharmonic contributions strongly favor fcc, while

we find that they weakly favor hcp. We do not otherwise have

an explanation for this discrepancy.

Adidharma and Tan9 examined the properties of the fcc

and hcp phases using molecular simulation, but their free-

energy calculations used results from Calero et al.8 to deter-

mine a reference free-energy. Consequently their hcp-fcc coex-

istence line differs from ours as well, but this does not represent

an independent comparison. Consistent with their specifi-

cation of a lower triple-point temperature, their triple-point

coexistence densities are higher than ours.

As seen in Fig. 7, the fcc-hcp coexistence curve is nearly a

straight line in terms of v2 and Y for the fcc phase even though

the temperature behavior is more complex, going through a

maximum of T ≈ 0.4028. Accordingly, we provide correla-

tions for the fcc-hcp coexistence curve in Table I in terms

of Y, v2, and ρ, where each of these is the value for the fcc

phase. The difference of the hcp density from the fcc density

is smaller than the error in the fit but can be obtained from the

correlation for ρhcp − ρfcc. At a low temperature (and high den-

sity), the fcc phase is more dense, while the hcp phase is more

TABLE III. Conditions at the endpoints of the hcp-fcc coexistence line for the Lennard-Jones model. All quantities

in LJ units.

Source αa T P ρfcc ρhcp

This work 1.000 004 856 0 878.496 912 704 2.172 791 1923 2.172 782 464 35

This work 1 0 878.485 537 367 2.172 786 23477 2.172 777 506 17

Stillinger11 1 0 878.486 276 395 2.172 786 55676 2.172 777 828 26

Travesset7 1 0 878.49 2.172 787 9 2.172 779 4

This work 0.999 812 76 0.347 4(13)b 8.8(9) × 10☞9 1.036 8(2) 1.036 8(2)

This work 1 0.347 0(13) 8.6(8) × 10☞9 1.036 9(2) 1.036 9(2)

This work (harmonic) 0.999 892 57 0.319 183 8 0.9631 × 10☞9 1.038 5946 1.038 6084

Travesset7 (harmonic) 1 0.319 . . . 1.038 8024 1.038 8161

Calero et al.8 1 0.13 . . . . . . . . .

Adidharma and Tan9 1 0.13c . . . 1.072 515 1.072 518

aThe reduced hcp c/a ratio α is unity for the ideal (undistorted) lattice.
bNumbers in parentheses indicate the 68% uncertainty in the rightmost digit(s) of the reported value.
cFit to match that in the work of Calero et al.8
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FIG. 11. Same as Fig. 7 but computed while excluding anharmonic contribu-

tions to properties (solid lines). The hcp-fcc-vapor triple line is in red. Dashed

lines show behavior with full anharmonic contributions, for reference (these

are the same as in Fig. 7).

dense at low pressure (near the fcc-hcp-vapor triple point). The

density of the two phases is equal where the temperature is a

maximum.

G. Importance of anharmonic effects on coexistence

Given the effort needed to account for anharmonic effects,

it is of interest to examine what happens if we include only lat-

tice and harmonic contributions to the properties of the crystal

phases, neglecting anharmonic contributions entirely. Accord-

ingly, Fig. 11 presents the phase diagram for the fcc crystal in

the absence of anharmonic effects (cf. Fig. 7). The most strik-

ing outcome is the complete loss of the melting transition such

that the harmonic fcc phase never loses stability with respect

to the liquid, at any temperature; a description of this behav-

ior in terms of the free energy is given in the supplementary

material. The transition to the vapor (sublimation) remains and

is shifted to lower temperatures. For higher temperatures, at

sufficiently low density, the fcc crystal becomes mechanically

unstable (dP/dv > 0); this instability continues to lower tem-

peratures but is interrupted by the sublimation line, where the

crystal becomes thermodynamically unstable with respect to

the vapor.

The effect on the fcc/hcp coexistence is small, lowering

the transition temperature slightly (see Table III)—anharmonic

contributions favor the hcp phase.

IV. SUMMARY AND CONCLUSIONS

For the convenience of the reader, we provide here a

summary of the formulas one should use to compute the

infinite-system crystal properties reported here.

• Given a temperature T and density ρ of interest, com-

pute Y = T /4ρ4 and v2 = 1/ρ2. Note that all quantities

are given in LJ units such that σ = 1, ǫ /kB = 1.

• Molar free energy of fcc or undistorted hcp crystal.

Evaluate according to the sum of terms in Eq. (4)

(allowing N → ∞ where needed): ulat is given by

Eq. (5); aqh is given by Eq. (8) with the sum over ln

λi given by Eq. (12) (fcc, with constants cj given in

Table S10) or Eq. (20) (for hcp with α = 1, with cj ,0

given in Table S15); aah is given by Eq. (13) with cij

given in Table S20 for fcc and Table S55 for hcp. Note

that this free energy is based on a unit value of the

thermal de Broglie wavelength, Λ = 1.

• Thermodynamic properties of crystal. The five first and

second derivatives of the free-energy with respect to T

and v can be obtained from the formulas developed

here. We summarize them in Table IV.

• hcp distortion fits for free energy derivatives with

respect to α are provided in Tables S88–S90 of the sup-

plementary material. These can be used with Eq. (19)

to obtain the distortion and its effect on the free

energy. An extended discussion of the distortion of

the hcp phase is also presented in the supplementary

material.

• Vacancy effects. Concentration of vacancy defects

and their free-energy contribution are provided as

fits in Tables S97–S99 of the supplementary mate-

rial. The original simulation data are available in

Ref. 20.

• Solid(fcc)-liquid coexistence (melting) line. Table I

gives the coexistence pressure (#1) and densities (#2

and #3) as a function of temperature (via β = 1/T ).

This applies from the soft-sphere limit (β → 0) to

the fcc/liquid/vapor triple point, β ≈ 1.44 (T ≈ 0.694;

Table II).

• Solid-vapor coexistence (sublimation) line. Table I

gives the coexistence pressure (#4) and densities (#5

TABLE IV. Expressions for thermodynamic properties in terms of semi-empirical fits of free energy.

Property Definition Formulaa,b,c

Internal energy βu βulat + 1.5 ☞
∑

i ,j icijY
i v2j

Pressure βPv βPlatv + 7 ☞ 2
∑

j jcjv
2j
☞ 2

∑

i ,j(2i + j)cijY
iv2j

Isochoric heat capacity
cv

kB
=

1

kB

(

∂u

∂T

)

v

1.5 ☞
∑

i ,j i(i + 1)cijY
iv2j

Isothermal bulk modulus βvB = −βv2

(

∂P

∂v

)

T

βv2 dPlat

dv
+ 7 + 2

∑

j
j(2j − 1)cjv

2j + 2
∑

i,j
(2i + j)(4i + 2j − 1)cijY

iv2j

Isochoric thermal pressure coefficientd
vγv

kB
=

v

kB

(

∂P

∂T

)

v

7 ☞ 2
∑

j jcjv
2j
☞ 2

∑

i ,j(2i + j)(i + 1)cijY
iv2j

aExpression for dimensionless quantity as given in the “definition” column. Also, Y = Tv4/4.
bLimits on the i, j double sums are 1 ≤ i ≤ m1, 0 ≤ j ≤ m1 ☞ i.
culat is given by Eq. (5) and Plat is given by Eq. (6). Polynomial coefficients are given in the supplementary material: cj in Tables S10 and S15 and cij in Tables S20 and S55.
dVolume expansivity is αP ≡ (1/v)(∂v/∂T )P = γv/B.
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and #6) as a function of T. This is valid from

T = 0 to the fcc/liquid/vapor triple point T ≈ 0.694

(Table II). The crystal form changes from hcp to fcc

as T increases through the hcp/fcc/vapor triple point,

T ≈ 0.347 (Table III).

• hcp/fcc coexistence line. Coexistence properties are

given in Table I, including the density of the fcc

phase (#8) as a function of Y, the temperature (#9)

as a function of v2, and the difference in density

between hcp and fcc phases (#10) as a function

of Y.

Although this study of the LJ crystal aimed to be compre-

hensive (at least with respect to conditions where the crystal is

stable), inevitably there are some effects or behaviors of inter-

est which have not been included here and which could be sig-

nificantly relative to the accuracy and precision of our results.

We discussed neglect of nuclear quantum effects in Sec. II A 6;

one might also have interest in other types of defects apart

from vacancies, such as stacking faults (interstitials are likely

to be negligible). We have not computed elastic properties

other than the bulk modulus, omitting consideration of shear

moduli or related quantities. We have also not examined trans-

port properties. Nevertheless, subsequent studies along these

lines have a new standard of accuracy and precision to aim

for in collecting properties. Moreover, new theoretical treat-

ments and simulation methods should benefit from having a

map of the properties with the precision and accuracy obtained

here and convenient semi-empirical representations of the

same.

SUPPLEMENTAL MATERIAL

See supplementary material for additional results and

discussion as well as tables of raw data and coefficients

of fits as described in this manuscript. Python codes that

implement the equations described here are available upon

request.
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APPENDIX: DERIVATION OF EQ. (29a)

Any given simulation run will yield averages for the

numerator and denominator of Eq. (27) that have a ran-

dom error, ǫ̂N and ǫ̂D, respectively, defined as fractions with

respect to the true averages (indicated by the hat). Assum-

ing that averaging is performed properly, the expected values

of these errors are zero, E[ǫ̂N ] = E[ǫ̂D] = 0, and moreover,

their characteristic size (i.e., the uncertainty in their respective

averages) diminishes inversely with the amount of sampling,

σ̂2
X
≡ E(ǫ̂2

X
) ∼ n−1

samp, (nsamp→∞), X ={N,D}. However, when

subject to a non-linear transformation, such as in Eq. (27),

these stochastic errors can introduce a systematic error in the

transformed quantity. In particular, the expected value of the

ratio is

E[〈W2〉2] = E

[ 〈

W2 exp
[

−β(U2 − U1)
]〉

1(1 + ǫ̂N )
〈

exp
[

−β(U2 − U1)
]〉

1(1 + ǫ̂D)

]

=

〈

W2 exp
[

−β(U2 − U1)
]〉

1
〈

exp
[

−β(U2 − U1)
]〉

1

×E
[

(1 + ǫ̂N )
(

1 − ǫ̂D + ǫ̂2
D − O(ǫ̂3

D)
]

= 〈W2〉2

(

1 − E[ǫ̂N ǫ̂D] + E[ǫ̂2
D]

)

= 〈W2〉2

(

1 − σ̂ND + σ̂2
D

)

. (A1)

A simple rearrangement yields (29a).
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