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‘We report equilibrium molecular simulation data for the classical Lennard-Jones (L.J) model, covering
all thermodynamic states where the crystal is stable, as well as fluid states near coexistence with the
crystal; both fcc and hep polymorphs are considered. These data are used to compute coexistence
lines and triple points for equilibrium among the fcc, hep, and fluid phases. All results are obtained
with very high accuracy and precision such that coexistence conditions are obtained with one to two
significant figures more than previously reported. All properties are computed in the limit of an infinite
cutoff radius of the LJ potential and in the limit of an infinite number of atoms; furthermore, the effect
of vacancy defects on the free energy of the crystals is included. Data are fit to a semi-empirical
equation of state to within their estimated precision, and convenient formulas for the thermodynamic
and coexistence properties are provided. Of particular interest is the liquid-vapor-fcc triple point
temperature, which we compute to be 0.694 55 + 0.000 02 (in LJ units). Published by AIP Publishing.
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I. INTRODUCTION

The Lennard-Jones (LJ) model is a single-site pair poten-
tial that has been used for decades as a basis for understand-
ing the thermophysical behavior of simple fluids and solids.
Its form captures the key effects of interatomic repulsion
and attraction, and it is employed as a component in many
empirical force fields. The model is specified by a spheri-
cally symmetric pairwise-additive energy u® as a function of
separation 7,

r

u®(r) = 46[@)12 - (1)6]. (1)

The parameters o and €, respectively, characterize the diame-
ter of the atoms and the strength of their attractive interaction.
Here, all thermodynamic states and properties will be pre-
sented in “Lennard-Jones units” such that o =1 and €/kg =1,
where kg is Boltzmann’s constant.

The equilibrium thermodynamic properties of the LJ
model, including the equation of state, enthalpy, phase bound-
aries, critical point, and others, have been studied via molec-
ular simulation by many researchers, and semi-empirical
equations have been presented as convenient representations
of these properties. The available fluid-phase data and fits
have been thoroughly reviewed recently by Thol et al.,'
so we will not attempt to catalog them here. Simulation
data and fits have also been presented for the LJ crystal®>™
with attention recently given to the low-temperature hcp/fcc
transition.”™

In this paper, we focus on the crystal and low-temperature
fluid phases, providing molecular simulation data for the
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thermodynamic properties, from which we evaluate free ener-
gies and phase-coexistence conditions. We present data over
the entire space of temperature and density where the crystal
is stable, from zero temperature to the soft-sphere (SS) limit.
We evaluate coexistence lines between the hep and fec crys-
tals, between both crystals and the vapor and between the fcc
crystal and the liquid. Recently developed simulation meth-
ods allow us to obtain results with very little stochastic error,
which means that we have to give special attention to sources
of systematic error in our data so that its accuracy is commen-
surate with the precision. We consider in particular finite-size
effects, including truncation of the potential and extrapola-
tion to the thermodynamic limit. We also account for the
effects of vacancy defects on the free energy of the crystalline
phases. On the other hand, all behavior is handled classically,
and in particular, we do not include nuclear quantum effects
(see Sec. IT A 6).

The aims of this work are twofold: (1) to provide high-
quality data and convenient empirical representations of it,
which can be used to test theories and other simulation methods
while quantifying the importance of often-neglected sources
of inaccuracy, and (2) to demonstrate best practices for com-
puting properties of simple crystals. In Sec. II, we describe
the methods used and the formalism that compactly repre-
sents the thermodynamic space of temperature and density
to encompass all crystal states. In Sec. III, we present and
discuss the results of the calculations. We summarize and
conclude in Sec. IV; a review of the key formulas repre-
senting the LJ properties is provided in this section, for the
reader wishing to quickly access the primary results of this

paper.

Published by AIP Publishing.
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Il. FORMALISM AND METHODS

The natural variables for specifying the thermodynamic
state are the temperature 7 and number density p (or pressure
P). However, these variables are inconvenient for the present
purpose. We aim to characterize the crystalline phase over its
entire region of stability. At a high temperature and density, the
LJ model approaches the system of soft 7~ repulsive spheres,
for which the thermodynamic state can be fully specified by
the single group,'®

T
et @
For the stable LJ solid, Y is always less than about 0.5, whereas
T and p can together take on arbitrarily large values. Likewise,
it is helpful to work with the molar volume v = 1/p rather than
the density—for the stable solid v ranges from 0 (soft-sphere
limit) to about 1.0. At a low temperature, the r~% attraction
becomes important, but no simple scaling form emerges. Still,
we find it helpful to work with v? rather than v as the inde-
pendent variable as it yields a more regular behavior in the
properties.

In terms of these variables, the pressure P and molar ther-
modynamic energy u are given via derivatives of the molar
free energy a(Y, v?) as follows:

Y

opa) __pu

(a—y)uz— v (%)
0fa\ 1 B

(m)y =52 @4pu-2), (3b)

where Z = Pv/kgT is the compressibility factor. Our approach
is to evaluate u(Y, v2) and Z(Y, v?) via molecular simulation
and use these data to obtain the free energy via thermodynamic
integration according to Eq. (3).

A. Fcc and hcp crystals

The molar Helmholtz free energy for a perfect crystal of N
atoms can be separated into lattice (lat), quasiharmonic (gh),
and anharmonic (ah) components,

a(Y,v?) = u® %) + a®™ (Y, v?) + a™™(Y, v?). 4)

Each component can be evaluated using a method best suited
for it.
1. Lattice contribution

lat
11

The molar interatomic energy of the perfect lattice, u
= U'Y/N, is given analytically in v for each crystal structure,

u (v*) = 6.065 940 098 272 290/v*

— 14.453 921 043 744 47/0?, (5a)
e (%) = 6.066 146 884 549 459/u*
- 14.454 897 277 841 68/v”. (5b)

The coefficients are obtained from lattice sums converged to
machine precision, with no cutoff applied to the potential. The
lattice contribution to the pressure is

dulat

Plat — .
dv

(6)
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2. Quasiharmonic contribution

The classical quasiharmonic contribution a9 is given
by

3(N-1)

1 Ai(p;N, re)
DT, pire, N) = — In[ ——2—2=

ﬁa ( s PsTe, ) N Z n( 27TkBT

3 1
N InN + N Inp+3InA, ()
where the harmonic spring constants A; are obtained as
described below and A is the thermal de Broglie wavelength,
taken to be 1. These spring constants are, as indicated, depen-
dent on N and the potential truncation distance r.. For a
given N, we isolate the contribution from the spring con-
stants, > In 4;, and evaluate this sum for several values of r.,
and these are extrapolated to 1/r. — 0. This is repeated for
increasing values of N, and the set of extrapolated results is
again extrapolated to 1/N — 0. Thus, we evaluate the molar
quasiharmonic free-energy contribution in the thermodynamic
limit,

3 1
BaXN(T, p) = -3 InQrksT) + 5 lim

N,re—o
3(N-1)

x L AN, ). (8)

The spring constants are obtained as eigenvalues of
the dynamical matrix,'>!3 which yield A;. In principle, this
involves construction of a 3N X 3N Hessian matrix, with ele-
ments given by second derivatives of the potential with respect
to each of the x, y, z coordinates of each atom. For large N,
as needed for the limit in (8), this calculation is prohibitive.
Instead, the symmetry of the lattice permits this process to
be separated into many smaller pieces, each involving only n
basis atoms.'3 We construct a 3n x 3n dynamical matrix D as
a function of wave vector Kk,

D) = Z @ (") exp(ik - R(1")). ©)

unit cells, I’
7 <re

Here, R(!) is the coordinate of the origin of unit cell I/, and
the sum is over all unit cells having atoms within the cutoff
r. relative to atoms in the central cell. Each element of the
force-constant matrix @ pertains to the o coordinate (x, y, z)
of basis-atom j in the central unit cell (/ = 0) as it interacts with
basis-atom j in unit cell I, varying its o’ coordinate.'3

For the fcc crystal, n = 4 and we select k as the reciprocal
vectors for a cubic lattice,

k = (ki/Ky,ko /K>, k3/K3)2r/a,
ki =—=1(K; = 1)/2]...,1K;/2]; (10)

the lattice constant is @ = (4v)'? and K is the number of cells
in direction i; for fcc, this is the same in all directions and equal
to (N/4)'3. For hep, n = 4 and k are the reciprocal vectors for
a rectangular lattice,

k = (ki/(Kia), ka/(K23'Pa), ks [(Kze))2m,  (11)
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where nominally ¢ = (8/3)"?a, but the exact proportion c/a
is determined as described in Sec. II A 4. Also, we used K
=2K,=2K3 =N,

Note that N has no relation to r. in the framework,
meaning that r, can be larger than the box that would con-
tain N atoms at density 1/v. Rather, N is just a convenient
means to specify the number of wave vectors used for the
analysis [facilitating the limit in (8)], while r. describes the
range for the lattice sum in (9). D(k) yields 3n eigenvalues
(spring constants, A;) for each k, and there are N/n k-vectors
for a given N, yielding 3(N — 1) spring constants appear-
ing in Eq. (7) plus 3 modes corresponding to center-of-mass
motion.

With the formulas outlined above, we can obtain the
lattice and quasiharmonic contributions to the classical free
energy essentially exactly for the infinite system with no trun-
cation of the potential. Having obtained the harmonic free
energy for both finite-sized systems and the thermodynamic
limit, we fit ﬁ > In A; as a function of density [see Ref. 14,
Eq. (A3)],

1 1 N-1 2
WZIn/lizﬁlnN+7 lnp+;c]’v’, (12)

where ¢; are the fitting constants.

3. Anharmonic contribution

The anharmonic contribution is treated by fitting all simu-
lation data—results for all temperatures, densities, and system
sizes—to the functional form

ni m]—i

Ba™ (¥, 5 N) = Y ) cy¥in¥; (13)

i=1 j=0

this enforces the requirement that Sa®" vanish for ¥ — 0 for
all v2. To extrapolate to N — oo, we fit data for all system sizes
to the form

my mp—i my mo—i

Ba™ (Y, vz)—ZZ Yo 21+—ZZd Y (14)

i=1 j=0 i=1 j=0

and then evaluate the function with N — co (dropping the d;;
terms).
According to Eq. (3), the fitted quantities are

d Ba" Buh

Y = = —

0 ‘( Y )Uz Y ’ (1)
v? _ Bﬁaah ah ah\.

9 :( = )Y 2U2(4,8u -z™); (15b)

here we introduce 6" and 6°° as convenient representations of
these derivatives. To perform the fit, simulation data for uh
and Z*" are used to compute #* and 6°" for each simulated
state point, and these are regressed to (13), appropriately dif-
ferentiated according to (15). We note that #%, which goes
as u/T?, is finite for T — 0,'> which is consistent with the
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Y — 0 behavior of the fitting form. The upper limits of the
sums in Eq. (13) are specified by m; and m,, which are chosen
according to a_y? measure so as to neither over- nor under-fit
the data. The objective function that is minimized to determine
all ¢;; and dj; is

Y _ 2 2\2
Z (CH (HZ -6
= 2
o
k 9,:’2
Y Y 2 2
2p9ky’9,i,z(0k = 00600 —6¢)
- , (16)
O’ey 0-9”
where p o o0 is the correlation between measured 87 and 6
k 7k

in simulation k.

We evaluate the anharmonic contributions from molec-
ular simulation using the recently introduced ‘“harmonically
mapped averaging” (HMA) formulas,'®!7 as given here,

ah _ 1 .
Bu —<,Bu+2NﬁF Ar>, (17a)

L_I)(EH([;P% - 1)F~Ar),

ah _ h

= Py + 3V

(17b)

where u is the molar configurational energy for atoms in con-

figuration r (a vector of length 3N), F is the corresponding

vector representing the forces on all atoms, and Ar is the

vector describing the displacements of all atoms from their

associated lattice sites (hence, F - Ar and F - r are the sums of

3N terms). The angle brackets represent ensemble averages as

taken in a molecular simulation using any conventional sam-

pling method. Also, P4" is the quasiharmonic estimate of the

pressure obtained by differentiating the quasiharmonic free

energy for the simulated system size [as given by (7) and (12)]
with respect to volume.

The HMA formulas yield the anharmonic contributions
to the properties directly. This contrasts with a more obvious
approach that evaluates anharmonic behavior by subtracting
the harmonic contributions from simulation averages taken
using conventional methods. Consequently, the precision of
the HMA results is tremendously enhanced because fluctua-
tions associated with the harmonic behavior are not present.
Separate treatment of the anharmonic behavior is advanta-
geous with respect to accuracy as well,'>!¢ as these contribu-
tions are in particular much less sensitive to finite-size effects
in comparison with the harmonic contributions.

Special measures are used to evaluate behavior at very
high temperatures, corresponding to the soft-sphere limit. This
regime is obtained at v? — 0 for finite (non-zero) Y. Here, 6’
remains finite even though its definition involves division by
v? [cf. Eq. (15b)] because for the 4~ 1% soft-sphere (SS) model
4 Bu = Z and the numerator is zero as well. We can collect data
in this limit by simulating the soft-sphere system at an arbitrary
density (we use p = 1) while varying T to examine a range of
values of Y (which is the only variable needed to specify the SS
thermodynamic state). Then, in place of Eq. (17), we evaluate
averages according to [again, these yield results for v> = 0 to
use in Eq. (15b)]
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Bug" 1
—26 =(Bury + 5 BFLy - Ar)
v 2 ss

g 1 h
— q
R, ﬁU<—EIJ'I’+(—1/V+ﬁP )F[J'Ar

qgh

+ PPl

Fss - Ar - PP (18)

where the “LJ” subscript emphasizes that the quantity is eval-

uated for the full LJ potential (not SS), the subscript on the

angle brackets indicates that sampling is performed based on

the SS potential, and Py e is the first-order correction to the

quasiharmonic pressure in the limit of high density. Using (12),
gh

BPLJ6 =-2c;.

4. hcp lattice parameters

For the hcp phase, the equilibrium ratio of lattice con-
stants, c/a, can vary from the ideal value (8/3)"2, in a manner
depending on the temperature and density. To account for this
effect, we have computed lattice, harmonic, and anharmonic
contributions to the free energy due to variation of c¢/a from
the ideal value. Because these deviations are very small, we
can express the free energy change with a 2nd-order Taylor

series' 18 in terms of @ = (c/a)(3/8)"2. The equilibrium « is
then 5
da 0°a
=—|—|/|=—|. 19
N [ A
and the free energy change is
da\’ d%a
a@* =ala=1)- (%) /(ZW) (19b)

To evaluate these derivatives, the hcp lattice-energy con-
stants appearing in (5b) were fit to values computed from
a =0.999 to @ = 1.001 using a cubic polynomial in @ — 1. For
the harmonic contribution, the form given in (12) is extended
to a 2-dimensional fit,

1 1 N -1 :
WZIn/lizﬁlnN+7 lnp+;c]~kvzj(a—1)k.
(20)
Finally, the first derivative is computed by
da 2v
50 =3 (P = (Pu+Py)/2) @1

during NVT simulations conducted on the system with
ideal geometry @ = 1 with the pressure components com-
puted via standard formulas (without harmonically mapped
averaging).

The anharmonic derivative is obtained by subtracting
the lattice and harmonic free energy contributions and then
correlating the values as a function of v and ¥ with the form

da™ i . .
Bo—(AT) = ) Y Y™, (22)
@ i=0 j

3

Il
(=}

We assume that the anharmonic contribution to the 2nd deriva-
tive in (19) is zero. This assumption is supported by simula-
tions conducted with @ = 1.001 which showed no statistical
difference in the first derivative from a = 1.

J. Chem. Phys. 149, 204508 (2018)

5. Vacancy-defect contribution

Lattice vacancies are a thermodynamically stable defect
and will be present in some concentration in the equilibrium
crystal. These vacancies have a significant effect on the free
energy relative to the precision and accuracy of our calcula-
tions, so we need to account for them. Evaluation of vacancy
concentration is complicated by the need to allow for equili-
bration with respect to an order parameter, described as the
number of lattice sites, M.'° For a perfect crystal, N = M, but
the system in principle is free to trade off (at fixed V, N) from
this case to the one having more, smaller cells (hence different
M), some of which are vacant. There is an entropic contribu-
tion gained in the form of a mixing entropy (i.e., a mixture of
vacant and filled sites) that competes with the loss of entropy
(or increase in energy) as the atoms are confined to smaller
cells. Any simulation of feasible size using periodic bound-
ary conditions finds it difficult if not impossible to sample M
appropriately.

We circumvent this problem by working within the grand-
canonical ensemble, fixing M and solving for the chemical
potential that has the chosen M as its equilibrium value.
Details are given in Ref. 20 and are rather lengthy, so we
will not attempt to reproduce them here. The key output from
the calculations is the equilibrium vacancy fraction ¢ = (M
— N)/M, and the difference in molar Helmholtz free energy
between the vacancy-equilibrated crystal and the perfect lattice
Aa"* = a(p) — a(¢p =0).

6. (Neglect of) nuclear quantum effects

Given that we consider temperatures extending as low as
T = 0, if attempting application to a real system with atoms
of finite mass, m, nuclear quantum effects would be signifi-
cant at some of the conditions examined in this study. It is a
simple matter to accommodate these effects in #' and a9,
as the non-classical forms are given analytically. To include
nuclear quantum effects in a®", we would need to conduct
simulations using a (7'- and m-dependent) semiclassical form
of the LJ potential or, for very low T and/or m, apply path-
integral methods. In principle, corresponding measures would
also need to be applied for the gas and fluid phases. Presently
we have no particular material (m) in mind, and we do not
wish to do a parametric study of m, so we restrict our focus to
purely classical behavior.

B. Gas phase

The gas phase pressure can be determined accurately
using the virial equation of state, which expresses the com-
pressibility factor Z as a series in the density?!=23

Z=1+By(T)p+B3(T)p> +By(T)p> ... (23)

An expression for the molar Helmholtz free energy can be
derived from this,

1
Ba(T,p)=3InA+Inp—1+By(T)p+ §B3(T)p2 o
24

B,, are the virial coefficients, which may be determined rigor-
ously via numerical calculation for a given molecular model.



204508-5 A. J. Schultz and D. A. Kofke

For the conditions of interest to this work, where the gas is
in equilibrium with the crystalline solid, the density is very
low; hence, the series is not required to high order. Values
of coefficients are available’* to sufficiently high order and
with sufficient precision to allow us to compute the pressure
and free energy with at least eight digits of accuracy and
precision.

C. Liquid phase

We evaluate the free energy of the liquid phase using the
form

Bad"(Y, v} =lnp—1+ Z Z ;Y ¥ (25)
i=0 j=0
with cqg set to match the soft-sphere fluid residual free energy
aty =181,

m

coo = ﬂAss(Y = 1.8_1) - ll’lp +1- Z Ciol.g_i. (26)
i=1

The soft-sphere fluid reference is well described by the virial
equation of state,>>?° for which coefficients up to the tenth
order (B)o) are known.2>27 Additionally, coefficients up to Bj3
were fit to NVT simulation data.

D. Computational details
1. Fluid phase

We conducted simulations for v from 0 (soft-sphere limit)
to 1.8, in a cubic box with periodic images. For each volume,
we considered values of Y [Eq. (2)] in steps of 0.1 starting from
avalue slightly above the fcc-fluid coexistence point down to a
value that is 0.8 less than it. We sampled configurations using
a hybrid MD/Monte Carlo (MC) algorithm:?® the atoms are
propagated according to velocity Verlet MD?® for segments of
20 time steps, each of size At = p/125T1/2; at the end of each
segment, the whole set of time steps are accepted or rejected via
the Metropolis Monte Carlo algorithm, using the energies at the
beginning and end of the MD segment. We found an acceptance
rate of 91%-97%, depending on the system size. Sampling was
performed using a force-shifted potential truncated at r./v'/3
= 2.5, and averages were evaluated by reweighting to r./v'/3
=2.5- 1.2 with i ranging from 1 to 6 (r./v'/3 ~ 7.5 for i = 6).
For cutoffs more than 0.494 of the box length, interactions
were computed with a lattice sum of periodic images. For each
truncation, the standard long-range correction was included for
all properties.”® We examined system sizes N from 250 to 4000
atoms, with 1 x 10° MD time steps for each N at each state
point.

Simulations for soft spheres [with uD(r) = 4r712] were
conducted at 7 = 1 and N = 16 000 with densities rang-
ing from 0.30 to 0.88 in increments of 0.01 (correspond-
ing to Y from about 0.4 to 30.9). All simulations were
performed for 10° steps using the same hybrid MD/MC
strategy as used for the liquid simulations. Because trunca-
tion effects for soft spheres are much less severe than for
Lennard-Jones, we considered reduced truncations up to only
2.5-1.23 =432,

J. Chem. Phys. 149, 204508 (2018)

2. Fcc and hcep crystal phases

Simulations were performed for a grid of values of ¥ and
v? encompassing the fcc and hep crystalline phases, as esti-
mated from previous studies in the literature. The points are
displayed in Fig. 1. At each state, MC simulations were run for
N =500 atoms, sampling 1 x 108 MC steps, up to N = 4000,
sampling 1 x 10° steps for the fcc phase. For hep, simulations
were performed for N = 512 atoms, sampling 1 x 108 MC
steps, up to N = 4096, sampling 1 x 10° steps. Averages were
recorded according to Egs. (17) and (for hcp) (21).

E. Truncation of the potential

When considered on the scale of the accuracy and pre-
cision targeted in this work, truncation of the potential has a
significant influence on the results, even when standard cor-
rections are applied. For the crystal, the truncation is based on
the distance between lattice sites, so atom pairs are defined
to interact (or not) at the beginning of the simulation; the
movement of the atoms in or out of the truncation during the
simulation has no effect on whether they interact. The fluc-
tuations in and out of the truncation radius are anharmonic
(since they are not accounted for in the harmonic system)
and persist to very low temperatures, so handling the trun-
cation as we do allows us to collect anharmonic contributions
with much better precision. For the fluid, the truncation radius
is applied in the usual way: atom pairs interact when they
are inside in the radius and stop interacting if they move
away.

T T T
i Hi
.4t g
T i
[oX ittt °
fa ittt 1
NQRI i .
R i i
~ ittt HitiiH
Il i $833888
s HHH .
gl 111111111141 HHH
i i
Bt HHH .
% 0.2 0.8 1 12
2
v =1/p
2 r
b)
1.5
o o o
OO o
OO
=1
TTP
0.5
fec/hep
L
% 0.5 1 15

FIG. 1. States where crystal-phase simulations were conducted. Each black
circle represents an independent simulation, while in (b), each blue circle rep-
resents a liquid simulation. Red lines show conditions of melting/sublimation
and a tie line is drawn at the triple point. Open circles are vapor-liquid
coexistence points from Ref. 30.
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The truncation radius 7, is limited by the computational
expense required to compute all the pair interactions, which
of course grows with the cube of the radius. To handle this,
we employ an approach in which a modest reduced truncation
distance r. 1/v'/3 = 3 is employed for sampling configurations.
Data are collected every 2N steps at reduced truncation radii
(re2/v'3) of 3.0 and 3.5 (and 4.0 for N > 864).

We recover the desired larger-r. properties from the r ;-
based samples through a reweighting formula. Specifically, we
sample based on cutoff . | and evaluate a property W weighted
for the (larger) cutoff r. » as follows:

(Waexp[-B(Us - U],
Wi)y = S 27
W2 = e =B - U0, @D

where the 1 and 2 subscripts indicate a property evaluated
according to interactions cut off at r. ; and r. 7, respectively;
likewise, the subscripts on the averages (. . . ) indicate sampling
with interactions U or U,. We can observe the effect of r. by
evaluating the reweighted averages for several values of r.
during a single simulation sampling according to r. ;.

Additionally, we collect data every 10N steps using
reduced truncation radii of 5.0, 6.0, 7.5, 9.0, and 11.0. These
longer truncations require a lattice sum, especially for smaller
systems. In order to prevent the increased data collection
interval from increasing the uncertainty of the averages, we
construct the final average as follows:

(Ws)s = (Wa)y + ((WES), = (W5°),), (28)

where each term is computed according to Eq. (27). The
strong correlation between Wi and Wi* yields a very small
uncertainty for the difference.

The reweighted average given by Eq. (27) is biased, mean-
ing that the expected value of (W), differs from the correct
value. An expression for this bias is derived in the Appendix,
with the result

W. -B(U, - U
B2 - v = SRR B (o 403,

(29a)
From the propagation of error, the uncertainty is

_ (Waexp[-BW2=UD]) (g  aa An (12
T(Wa), = <eXp[—ﬂ(U2 — U])]>1 (O—N +0p - 2O-ND) .

(29b)

In (29), 63 and &3 are the variances of the mean (squared
uncertainties) for the numerator and denominator of (27),
respectively, and onp is the covariance of the two means; the
caret on each o indicates that these deviations are divided by
their respective averages.

All of the error terms in (29) are made smaller by increas-
ing the amount of sampling used for the average in (27).
Because of the square root on the error in (29b), the uncer-
tainty in (W»), will exceed its bias if sufficient sampling
is performed, and hence we normally may neglect the bias.
However in the present application, where we are combining
many independent simulation results to obtain a single fitted
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form, we must be more careful. Many of the simulations
are likely to be biased in the same way such that the bias
would remain intact after fitting even though the uncertainty
might be substantially reduced. Accordingly, we have com-
puted the bias and uncertainty using (29a) and (29b) and find
that the bias in (9 8a™/9v?)y never exceeds 7% of the uncer-
tainty, while the bias in (9 8a*"/dY) ,2 hever exceeds 4% of the
uncertainty.

There is also potential for bias of the type known to
sometimes afflict free-energy perturbation calculations.’!-?
This would result from inadequate sampling of configurations
important to the r. » system when sampling according to r, 1.
Given the nature of the perturbation, this is expected to be
negligible.

lll. RESULTS AND DISCUSSION

In this section, we present data computed using the meth-
ods outlined above and evaluate coexistence lines between the
phases of interest. Fitting constants for the semi-empirical for-
mulas appearing in Sec. II are reported in the supplementary
material.

A. Finite-size effects

The limiting process used to evaluate ﬁaﬂf is shown in
Figs. 2 and 3. Dependency of Ba%" on the potential cutoff r,.
for fixed N is through the real-space sum for @ in Eq. (9).
Convergence with respect to the potential cutoff r. is demon-
strated in Fig. 2. The neglected contribution from r > r.
decays as r.°, so we plot the harmonic free energy against
7> to obtain a nearly linear form that can be extrapolated
to zero to obtain the infinite-r, value. This process is per-
formed for several values of N (i.e., the number of k vectors
in the reciprocal-space sum), each yielding an r.-extrapolated
value for a9". These values are plotted against 1/N and them-
selves extrapolated to 1/N — 0 to yield the infinite-system
infinite-cutoff result for the quasiharmonic contribution to the
free energy. The extrapolation is shown in Fig. 3. We subtract
N In N while doing the extrapolation because this is known to
yield a more linear form.*> We fit the resulting data with the
function

7.803062

7.803060
7.803058

5 7.803056
<
[«oN

7.803054

7.803052

7.803050 30 .
| L | L | L |

0 2x10°  4x10® 6x10°  8x10®
-5
iy
c

1x10”

FIG. 2. Constructions showing extrapolation of the quasiharmonic contribu-
tion to the free energy with r.. Data are for N = 186 624.
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FIG. 3. Constructions showing extrapolation of the quasiharmonic contribu-
tion to the free energy. Labels on some of the points indicate the value of N.
Open symbols at the two smallest system sizes were excluded from the fit
because they could not be fit sufficiently well with a quadratic form.

Ba®™ —In(N)/N = ag + ai /N + ay/N?* + a3 In(N)/N?. (30)

The effect of the potential truncation radius 7, and system
size N on the anharmonic properties is demonstrated in Fig. 4.
The variation with r. is smoother than would be expected for
the given error bars because the data for a single system size are
highly correlated, inasmuch as they were all taken as averages
for different r. > using the same data as sampled according to
re.1. The r. — oo limit is reached for r. about 6, and the sys-
tem size dependence is not significant in comparison with the
uncertainties. This weak dependence of the anharmonic prop-
erties with N is consistent with observations made in previous
work, 15:16.18

B. Properties

Results for the two derivatives ¥ and 0°° defined in
Eq. (15) are presented in Fig. 5 for the fcc crystal with
N = 500. Data over the entire region of stability for the crys-
talline phase are presented, and it can be seen that all results are
given to very high precision: the variation with Y is smooth, and
although finely spaced in v2, the different isochores are easily
discerned.

0.734 . . ; . | .
864 —> ]
2048 —>
0733 00— -
5 500 —> [M\#
<0.732 4
<
[eoN
-U I
0.731F g 1
. | 1 T _
0‘7300 3 6 9 12
r
C

FIG. 4. Effect of truncation radius and system size on the Y-derivative of the
anharmonic free energy. Error bars show 68% confidence limits. Conditions
are v? = 1.04, Y = 0.24, corresponding to 7 = 0.89, p = 0.98.
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FIG. 5. Simulation results for the two anharmonic free energy derivatives
given by Eq. (15). Data are for the N = 500 fcc crystal. Uncertainties (68%
confidence) are smaller than the line thickness. Each line is an isochore, with
values of »? that vary monotonically between the two indicated limits. Lines
are colored differently to aid in distinguishing them.

The data are fit to the form defined via Egs. (13), (15), and
(16). The quality of the fit is demonstrated in Fig. 6, where the
residuals in the fit of #7 to the N = 500 data are presented. We
see that there is no observable systematic deviation of the data
from the fitting function. The 6° fit performs equally well,
and this figure is typical of other system sizes. When data for
all N are fit according to Eq. (13), the sum of residuals gives a
reduced y? statistic of 1.05.

C. Vacancies

Detailed results for the vacancy concentration of the fcc
crystal as a function of temperature and density have been

- 0.0<|no|<1.0[ ]
e 1.0<|Ao|<1.5] ]
o 1.5<|Ao|<2.0
0.41 o 20<|a0|<2.5]
e 25<|Ao|<3.0
03 i 3.0 < |A/o| i
Rt H
0.2 -
0.1¢ e
ok

o 0.2 0.4 0.6 0.8 )

FIG. 6. Map of residuals for the fit of 8" to the form given by Egs. (13)—(16).
Each point shows A/o gy = IHS’;m — QﬁYt |/o gy, where o,y is the uncertainty
in the simulation value, indicating the range it falls within, as defined in the
legend.
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FIG. 7. Crystal-fluid coexistence diagram in the plane of ¥ = Tv*/4 and
v2. Red lines are triple lines (three-phase coexistence) for the phases in the
adjacent two-phase regions. The hcp-fcc two-phase region is too small to see

on the figure.

reported elsewhere.2” In Tables S97-S99 of the supplementary
material, we present fits of the fcc vacancy data that can be
used in conjunction with the vacancy-free equation of state to
predict the vacancy concentration, the effect on the free energy,
and (through differentiation) other properties.

There have been recent reports

6,34

of defects and disorder-

ing in crystals at temperatures below the melting point, dubbed
“premelting” by researchers. While we find that vacancies
are present near melting and have a small impact on prop-
erties, others have asserted that premelting is due to even
higher-order defects such as line dislocations and that such
defects can form spontaneously in defect-free systems. In
the absence of defects we create (by removing an atom), we
observe no net motion of any atom, which would occur if
defects were forming spontaneously: the atoms simply vibrate
about their lattice sites over the course of the simulations. We
observe no qualitative difference between the properties near
(or beyond) melting and properties at low temperatures. In
particular, we see no anomalous behavior of the heat capac-
ity, which has been suggested as an indicator of premelting.
A more detailed comparison of properties we measured with
those reported by Ref. 6 is included in the supplementary
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FIG. 8. Melting line in pressure-temperature plane. Literature data are results
from direct coexistence simulations of Morris and Song,*® non-equilibrium
dynamics simulations by Ahmed and Sadus,3® Einstein crystal and histogram
reweighting simulations by Barroso and Ferreira,> Gibbs-Duhem integration
by Agrawal and Kofke,>® and phase-switch methods by McNeil-Watson and
Wilding,40 Errington,41 Eike et al. ,42 and Mastny and de Pablo.3?

D. Crystal-fluid coexistence lines

The full crystal-fluid phase diagram is shown in Fig. 7,
including the line of coexistence between the hcp and fcc
phases. Figure 8 presents the melting line in the more familiar
pressure-temperature plane, where it is seen to be consistent
with previously published results. Finite-size effects are not
visible on the scale of this figure, so in Fig. 9, we expand the
scale while plotting in reference to what should be our most
accurate determination of this line. We present the results on
several scales, to allow a fuller and more detailed comparison
to previous calculations.

In the most expanded scale, it is possible to discern the
effects of the finite size of the liquid phase. The difference
between results for N = 2000 and N = 4000 is beyond their
uncertainty estimates, but given that this difference is much
reduced from the N = 1000 — 2000 doubling, it is plausible
that system-size inaccuracies in the N = 4000 results are less
than their uncertainties.

Likewise, in Fig. 10, we demonstrate the effect on melting
of the system size of the fcc crystal. Unlike for the liquid, the
behavior is monotonic with N, and it is clear that the infinite-

material. system behavior is represented well. We show also in this figure
1 T T T T T 0.1 T = T T T 0.01 T T T
a) Morris & Song (2002) —> e b) o . Barroso & Ferreira (2002) ) \ IKolafa & Nezbeda (1994)
[ Adidh: & Tan (2016 Sousa et al. (2012) [ \ /
van der Hoef (2000) Agrawal & Kofke (1995) idhartna & Tay (2016) - \ ,’/ Thol et al. (2016)
~ 03 ke eral (2005) Barroso & Ferreira (202) 00| Mogris & Song (2002) > 7 00051
% 8 ; 5 ! am—-
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o3 [&Tmn@ole Trooo-moe _ Johnsonetal. (1993) Kolafa & Nezbeda (1994)
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FIG. 9. Melting line in pressure-temperature plane, differenced with respect to our best estimate for this line to allow for an expanded scale. The “best” system
used for this difference is based on the N — oo fcc and the N = 4000 fluid-phase results. All plots present the same data but with a 10-fold expanding scale
in each from left to right. Literature data are results from the work of Barroso and Ferreira,3 Morris and Song,38 Agrawal and Koﬂ(e,36 Errington,41 McNeil-
‘Watson and Wilding,40 Adidharma and Tam,9 Johnson et al. ,43 van der Hoef,2 Thol et al.,l Eike et al. ,42 Pedersen,44 Sousa et al. ,45 and Kolafa and Nezbeda.*¢
The rightmost figure shows the effect of the simulation size (N) of the liquid phase, with the width of each shaded region representing its 68% confidence

limits.
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FIG. 10. Same as in Fig. 9(c) but showing the fcc-phase system-size effects
in the calculation of the anharmonic contributions to the free energy and the
effect of vacancies.

the effect of vacancies. The magnitude of the effect of vacan-
cies on the melting pressure is comparable to that of simulating
a crystal or fluid of size of order N = 1000. The shift in the
coexistence line is represented well by the formula of Pronk
and Frenkel,®
Prct(de) — Paad = 1) = ——221_ 3y
Ulig — Vfce
where ¢ is the vacancy fraction. Results for ¢ as a function of
temperature and density are reported elsewhere.?’

Following previous studies,>*3%37 we provide semi-
empirical representations of the melting line for the fcc-liquid
coexistence and sublimation line for fcc-vapor coexistence in
Table 1.

Finally, we note that to achieve accurate results it is not
necessary to simulate the full grid of state points shown in
Fig. 1. In the supplementary material, we present a revised
determination of the fcc equation of state and coexistence with
the liquid based on existing lattice and harmonic calculations
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but replacing the anharmonic simulation data with data from
18 simulations of 256 atoms requiring less than 145 s of central
processing unit (CPU) time. The resulting coexistence predic-
tions are accurate but about 20 times less precise (comparable
to the uncertainties in other simulation studies).

E. Fcc-liquid-vapor triple point

The intersection of the fcc-liquid and the fcc-vapor coex-
istence lines is the triple point, where fcc, liquid, and vapor
all coexist. The conditions at the triple point are recorded in
Table II, in comparison with the values reported previously in
the literature. Results from our calculations are presented both
with and without consideration of the effect of vacancy defects,
and we see that their contribution is considerably larger than
the uncertainty in the values. We have also used the equations
of state for liquid and vapor to predict vapor-liquid equilib-
rium from the triple point to 7 = 0.9 and report correlations
for the coexistence properties in Table 1. The predictions are
almost consistent with calculations by Lotfi and co-workers, >0
but for the new results, the liquid density is about 10 times
more precise and the pressure and vapor density are more than
100 times more precise.

F. Fcc-hep coexistence line

Coexistence between the fcc and hcp crystals emerges
at T =0 at a pressure P = 8§78.5007 and continues to lower
densities with increasing temperature, until it intersects the
fcc-vapor coexistence line at 7 = 0.3474 + 0.0013, forming
a triple point; see Fig. 7. Properties at the endpoints of this
coexistence line are summarized in Table III. These results are
affected by deformation of the hcp lattice, and accordingly,
we include coexistence results for both the ideal hcp lattice
(@ = 1) and the one where the lattice is permitted to undergo

TABLE 1. Correlations for coexistence properties of the Lennard-Jones model. All quantities in LJ units (such that o = 1, e/kg = 1). fcc-liquid correlations
are valid for 7 > 0.68. Vapor-fcc correlations are valid for 7 > 0.75. fcc-hep correlations are valid for p > 1.368. Vapor-liquid correlations are valid for

0.67<T <009.
#* Property Correlation®
1 plia/fec ,6-5/4(16.50077 —7.8946881/2 —3.803918 — 0.5565883/% — 0.966398% + 1.38543535/2 — 1077948 + 0.33176,37/2)
-1/2
2 plee, ,3-1/2(1.37785 —0.40630B8'/2 +0.030698 — 0.0081333/2 — 0.0046082 + 0.0008235/2 — 0A00343ﬁ3) Y
li _ -1/2
3 Proese B 1/4(1.48202 —0.3740481/2 + 0.05228B + 0.0540783/2 — 0.202078% + 0.401378°/2 — 0.355898> + 0.1247687/ 2)
4 pvap/fe exp(ﬁu};“ - 1 InT +5.85227 — 0.35641T — 0.28917T2 + 0.90556T> — 2.0684T* + 1.56928T5)
5 plee 1.09151 - 0.140817 - 0.041 5272 + 0.018 2873 — 0.185477* + 0.316 867 — 0.241 397°
6 Paey exp(Bul — 3 InT +5.85 184 - 0.33797T — 0.5102072 + 1.97223T3 — 4.30783T* + 3.281747)
7 phep/fee 47.71734 - 152.29990p + 199.61630p% — 157.42739p> + 42.52466p* + 18.29947p°
-1/2
8 plee, (0211819 +12.41012Y — 34.871¥2 - 14.59Y3 — 1881.7y* + 31778Y° — 151675Y°) Y
P
9 Thep/fec Av? /u2(0.322335 +0.071798A02 + 0.055055Av* — 0.077536A0° + 0.385729Av® — 0.518442A010 + 0.300867Au'2)
10 phep — pfee —0.0087065 + 0.635861Y — 17.0213Y2 + 448.668Y> — 7999.46Y* + 76730.4Y> — 314865Y°
11 pyap/iq 0.023 00545 — 0.208 998 927 + 0.718 519 3072 —1.156 998 85T + 0.837 116 54T* — 0.187 756 04T
12 oo ~0.077 658 74 + 0.488 720 94T — 1.199.805 1372 + 1.449 18 9367°-0.910 262637 + 0.279 233 287>
13 p?vqap 4.5980714 —21.358046 1T + 50.320015 772 - 60.083 7476T3 + 35.702 965 0T* — 8.477293 1T

2(1-3) freezing/melting, coexistence of fcc and liquid: (1) pressure; (2) fce density; (3) liquid density; (4-6) sublimation, coexistence of fce and vapor: (4) pressure; (5) fee density; (6)
vapor density; (7-10) polymorphism, hcp/fcc coexistence: (7) pressure; (8) fcc density; (9) temperature; (10) density change for fcc — hep transformation; (11-13) boiling/condensation,
coexistence of liquid and vapor (valid for 0.69 < 7 < 0.9): (11) pressure; (12) vapor density; (13) liquid density.

B = UT: Y = T/4p*); uli = -8.610200156; Av>" = (v* — 0.211819)".



204508-10 A. J. Schultz and D. A. Kofke

J. Chem. Phys. 149, 204508 (2018)

TABLE II. Liquid-vapor-fcc triple-point properties for the Lennard-Jones model. All quantities in LJ units.

liq

fcc

Source Ty Py P P

This work (with vacancies) 0.694 55(2) 0.001 2637(5) 0.845 35(3) 0.960765(8)
This work (no vacancies) 0.694 48(2) 0.0012625(5) 0.84537(2) 0.960813(6)
Heng et al.¥’ 0.708 5(5) 0.002264(17) 0.840 5(3) 0.9587(2)
Ahmed and Sadus® 0.661 0.0018 0.864 0.978
Mastny and de Pablo®’ 0.694 o . .
Barroso and Ferreira® 0.692 0.001 0.847 0.962

Chen er al.*8 0.689(9) 0.00129(22) 0.844(4) 0.955(5)
Agrawal and Kofke3© 0.687(4) 0.0011 0.850 0.963

Ladd and Woodcock* 0.67(1) -0.47(3) 0.818(4) 0.963(6)
Hansen and Verlet®” 0.68(1) 0.85(1)

2Numbers in parentheses indicate the 68% uncertainty in the rightmost digit(s) of the reported value.

homogeneous strain, adopting a value @ that minimizes the
free energy according to Eq. (19).

Stillinger!! reported T = 0 hep-fec coexistence conditions
based on converged lattice sums, just as we have done. Our
results differ from his slightly due to additional precision that
we have retained in our sums. We note that although the lat-
tice sums give the energy to about 16 significant figures, the
equilibrium 7" = 0 pressure is given to about 11 figures. Still-
inger discussed the effect of deformation of the hcp lattice and
provided formulas that allow its effects to be computed but
provided data only for the undeformed case (indicating that
the deformation effect is small).

Travesset’ computed the harmonic free energy for fcc
and hep phases and determined coexistence between the two
phases. He identified the triple point to be where the coex-
istence pressure was zero. The properties at the triple point
are in reasonable agreement with values we computed using
only harmonic contributions (also recorded in Table III) but
showing slightly different densities—the difference in « is not
sufficient to cause this, and instead it may be due to the less
precise lattice energy used in Ref. 7 and the high sensitivity
of the fcc-hep coexistence curve to such inaccuracies. Calero
et al.® reported a vapor/hep/fee triple-point temperature that

differs substantially from ours. The source of this discrep-
ancy is in the anharmonic contribution—according to Calero
et al., the anharmonic contributions strongly favor fcc, while
we find that they weakly favor hcp. We do not otherwise have
an explanation for this discrepancy.

Adidharma and Tan” examined the properties of the fcc
and hcp phases using molecular simulation, but their free-
energy calculations used results from Calero et al.® to deter-
mine areference free-energy. Consequently their hep-fce coex-
istence line differs from ours as well, but this does not represent
an independent comparison. Consistent with their specifi-
cation of a lower triple-point temperature, their triple-point
coexistence densities are higher than ours.

As seen in Fig. 7, the fcc-hep coexistence curve is nearly a
straight line in terms of v and Y for the fcc phase even though
the temperature behavior is more complex, going through a
maximum of 7 = 0.4028. Accordingly, we provide correla-
tions for the fcc-hep coexistence curve in Table I in terms
of ¥, v2, and p, where each of these is the value for the fcc
phase. The difference of the hcp density from the fcc density
is smaller than the error in the fit but can be obtained from the
correlation for p"P — pf°® At alow temperature (and high den-
sity), the fcc phase is more dense, while the hcp phase is more

TABLE III. Conditions at the endpoints of the hcp-fce coexistence line for the Lennard-Jones model. All quantities

in LJ units.

Source a? T P pfee phep

This work 1.000 004 856 0 878.496 912704 2.1727911923  2.172782464 35
This work 1 0 878.485 537367 2.17278623477 2.17277750617
Stillinger! 1 0 878.486276 395 2.17278655676 2.172777 82826
Travesset’ 1 0 878.49 2.1727879 2.1727794
This work 0.99981276  0.3474(13)° 8.8(9) x 1079 1.036 8(2) 1.036 8(2)
This work 1 0.3470(13) 8.6(8) x 1079 1.0369(2) 1.0369(2)
This work (harmonic)  0.99989257  0.3191838 0.9631 x 107° 1.038 5946 1.038 6084
Travesset” (harmonic) 1 0.319 1.038 8024 1.038 8161
Calero et al.® 1 0.13
Adidharma and Tan’ 1 0.13¢ 1.072515 1.072518

2The reduced hep c/a ratio « is unity for the ideal (undistorted) lattice.
YNumbers in parentheses indicate the 68% uncertainty in the rightmost digit(s) of the reported value.

CFit to match that in the work of Calero et al.®



204508-11 A. J. Schultz and D. A. Kofke

0.5

T T T
harmonic fec instability
0.4 B
0.3 B
>

0.2F

0.1

FIG. 11. Same as Fig. 7 but computed while excluding anharmonic contribu-
tions to properties (solid lines). The hcp-fee-vapor triple line is in red. Dashed
lines show behavior with full anharmonic contributions, for reference (these
are the same as in Fig. 7).

dense at low pressure (near the fcc-hcp-vapor triple point). The
density of the two phases is equal where the temperature is a
maximum.

G. Importance of anharmonic effects on coexistence

Given the effort needed to account for anharmonic effects,
it is of interest to examine what happens if we include only lat-
tice and harmonic contributions to the properties of the crystal
phases, neglecting anharmonic contributions entirely. Accord-
ingly, Fig. 11 presents the phase diagram for the fcc crystal in
the absence of anharmonic effects (cf. Fig. 7). The most strik-
ing outcome is the complete loss of the melting transition such
that the harmonic fcc phase never loses stability with respect
to the liquid, at any temperature; a description of this behav-
ior in terms of the free energy is given in the supplementary
material. The transition to the vapor (sublimation) remains and
is shifted to lower temperatures. For higher temperatures, at
sufficiently low density, the fcc crystal becomes mechanically
unstable (dP/dv > 0); this instability continues to lower tem-
peratures but is interrupted by the sublimation line, where the
crystal becomes thermodynamically unstable with respect to
the vapor.

The effect on the fcc/hep coexistence is small, lowering
the transition temperature slightly (see Table III)—anharmonic
contributions favor the hcp phase.

J. Chem. Phys. 149, 204508 (2018)

IV. SUMMARY AND CONCLUSIONS

For the convenience of the reader, we provide here a
summary of the formulas one should use to compute the
infinite-system crystal properties reported here.

e Given a temperature T and density p of interest, com-
pute Y = T/4p* and v = 1/p*. Note that all quantities
are given in LJ units such that o = 1, e/kp = 1.

e Molar free energy of fcc or undistorted hcp crystal.
Evaluate according to the sum of terms in Eq. (4)
(allowing N — co where needed): u'* is given by
Eq. (5); a®" is given by Eq. (8) with the sum over In
A; given by Eq. (12) (fcc, with constants ¢; given in
Table S10) or Eq. (20) (for hep with a = 1, with ¢; o
given in Table S15); ¢® is given by Eq. (13) with cij
given in Table S20 for fcc and Table S55 for hep. Note
that this free energy is based on a unit value of the
thermal de Broglie wavelength, A = 1.

o Thermodynamic properties of crystal. The five first and
second derivatives of the free-energy with respect to T’
and v can be obtained from the formulas developed
here. We summarize them in Table IV.

e hcp distortion fits for free energy derivatives with
respect to @ are provided in Tables S88—S90 of the sup-
plementary material. These can be used with Eq. (19)
to obtain the distortion and its effect on the free
energy. An extended discussion of the distortion of
the hcp phase is also presented in the supplementary
material.

e Vacancy effects. Concentration of vacancy defects
and their free-energy contribution are provided as
fits in Tables S97-S99 of the supplementary mate-
rial. The original simulation data are available in
Ref. 20.

e Solid(fcc)-liquid coexistence (melting) line. Table 1
gives the coexistence pressure (#1) and densities (#2
and #3) as a function of temperature (via S = 1/T).
This applies from the soft-sphere limit (8 — 0) to
the fcc/liquid/vapor triple point, 8 = 1.44 (T = 0.694;
Table II).

o Solid-vapor coexistence (sublimation) line. Table 1
gives the coexistence pressure (#4) and densities (#5

TABLE IV. Expressions for thermodynamic properties in terms of semi-empirical fits of free energy.

Property Definition Formula®b-¢
Internal energy Pu Bul +1.5 =Xij ic,-jYi 0¥
Pressure BPv BPMp +7 =23 jejv¥ — 2%, ;2 + j)e; Yio¥
. . Cy 1 (0Ou . i 2j
Isochoric heat capacity s = g(ﬁ)v 1.5 =3 ji(i + Dy Y'o¥
,(OP L dP™ o % P i o
Isothermal bulk modulus BuvB = —Bv e Bu ] +7+23j(2j = Dejo? + 2 3 (2i +j)(4i+2j — ey Y'o?
vlr v J i
. o vye _ v (0P . 2
Isochoric thermal pressure coefficient —=—|= 7=2%jcjvd =23, (20 + j)(@ + Ve Yo
kg kg \OT v A

2Expression for dimensionless quantity as given in the “definition” column. Also, ¥ = Tv*/4.

bLimits on the i,jdouble sumsare I <i <my,0 <j<my—i.

cylat jg given by Eq. (5) and Plat g given by Eq. (6). Polynomial coefficients are given in the supplementary material: ¢; in Tables S10 and S15 and c;; in Tables S20 and S55.

dVolume expansivity is ap = (1/v)(@v/T)p =yy/B.
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and #6) as a function of 7. This is valid from
T = 0 to the fcc/liquid/vapor triple point 7 =~ 0.694
(Table II). The crystal form changes from hcp to fcc
as T increases through the hcp/fce/vapor triple point,
T =~ 0.347 (Table III).

e hcp/fee coexistence line. Coexistence properties are
given in Table I, including the density of the fcc
phase (#8) as a function of Y, the temperature (#9)
as a function of v2, and the difference in density
between hcp and fcc phases (#10) as a function
of Y.

Although this study of the LJ crystal aimed to be compre-
hensive (at least with respect to conditions where the crystal is
stable), inevitably there are some effects or behaviors of inter-
est which have not been included here and which could be sig-
nificantly relative to the accuracy and precision of our results.
We discussed neglect of nuclear quantum effects in Sec. II A 6;
one might also have interest in other types of defects apart
from vacancies, such as stacking faults (interstitials are likely
to be negligible). We have not computed elastic properties
other than the bulk modulus, omitting consideration of shear
moduli or related quantities. We have also not examined trans-
port properties. Nevertheless, subsequent studies along these
lines have a new standard of accuracy and precision to aim
for in collecting properties. Moreover, new theoretical treat-
ments and simulation methods should benefit from having a
map of the properties with the precision and accuracy obtained
here and convenient semi-empirical representations of the
same.

SUPPLEMENTAL MATERIAL

See supplementary material for additional results and
discussion as well as tables of raw data and coefficients
of fits as described in this manuscript. Python codes that
implement the equations described here are available upon
request.
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APPENDIX: DERIVATION OF EQ. (29a)

Any given simulation run will yield averages for the
numerator and denominator of Eq. (27) that have a ran-
dom error, éy and ép, respectively, defined as fractions with
respect to the true averages (indicated by the hat). Assum-
ing that averaging is performed properly, the expected values
of these errors are zero, E[éy] = E[ép] = 0, and moreover,
their characteristic size (i.e., the uncertainty in their respective
averages) diminishes inversely with the amount of sampling,
0% = E(€%) ~ ngmp» (samp = ), X = {N,D}. However, when
subject to a non-linear transformation, such as in Eq. (27),
these stochastic errors can introduce a systematic error in the
transformed quantity. In particular, the expected value of the
ratio 18
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(Waexp[-B(U — UD]) (1 +én)
E[{W: =F
[(W2)a] [ (exp[-B(Ur — UD])(1 +ép)

_ (Waexp[-B(U2 = UD]),
(exp[-B(U2 — U] )
xE[(1+&n)(1-ép+ &, - 0é)]
= (Wa)y(1 - Elénép] +E[é}))

= <W2>2(1 - a'ND +@'l2)>.

(AD)
A simple rearrangement yields (29a).
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