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Long-established molecular theories often can provide good

analytical estimates of thermodynamic properties for simple

molecular models. Molecular simulation, on the other hand, can

provide exact properties for the same models, or others that are

arbitrarily realistic, but requires significantly more

computational expense. Recent developments enable

molecular simulation to improve performance by exploiting

information available from approximate theories. The

connection is formed via alternative ensemble averages, which

allow direct calculation of the correction to the theory. In

favorable cases this correction is small and can be computed

with low uncertainty. Alternative ensemble averages of this type

can be formulated systematically using a recently introduced

framework, known as mapped averaging.
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Introduction: From molecular models to
thermodynamic properties
Molecular theory and molecular simulation represent two

paths from statistical mechanics to properties, as illus-

trated in Figure 1. Examples of molecular theory include

integral-equation methods (e.g., Percus–Yevick [1]), lat-

tice dynamics for crystals [2], and the SAFT equation of

state [3]. These approaches yield analytical formulas for

the properties, and to remain tractable they are based on a

simple representation of the intermolecular interactions.

Attempts to connect such methods to realistic systems

rely on either ab initio calculations or experiment to

parameterize the molecular model. The compromises

in the model or the theory needed to make the framework

tractable causes the resulting thermodynamic model to be

necessarily approximate. Nevertheless these approaches

are extremely useful in practice.

Complementing this path is the route to properties via

molecular simulation. This computational method yields

properties that are in principle exact for a given molecular

model. The computational (rather than analytical) nature

of this approach allows it to accommodate much more

complex and realistic molecular models. Although still

rare, we are entering a stage where first-principles molec-

ular models can be used with molecular dynamics or

Monte Carlo sampling to obtain results that are more

definitive than experiment [4], or to at least provide

reliable results where experiments are not feasible

(e.g., at extremes of temperature and pressure [5]).

As an aside, we note that the virial equation of state [1,6]

represents a third path from statistical mechanics to

properties, one exhibiting both good and bad features

of the other two, as well as its own idiosynchrasies.

Historically, the primary interaction between the two

paths to properties is the application of simulation to

evaluate the predictions of theory, with both applied to

the same molecular model. In this manner the simulation

is viewed as a controlled experiment on the model, and

any disagreement unambiguously points to limitations of

the theory (unlike comparison to experiment, which

could differ due to limits of the molecular model and/

or the theory). This is indeed an important connection

between theory and simulation, but apart from this there

has been little synergy between them. One can formulate

a theory such as lattice dynamics that provides a remark-

ably good—yet inexact—description of properties, and

simulation generally has no way to improve its perfor-

mance by making use of this knowledge.

New developments may be poised to remedy this situa-

tion. A given property can be expressed as an ensemble

average in multiple ways, and molecular theory can be

applied to yield a form that is advantageous for calculation

by molecular simulation. Such alternatives have emerged

only within the past five years or so, and they have yet to

gain much attention. Presently we have one successful

example in application to crystals [7,8�,9,10�,11], and

others that have been put forth but not broadly tested

or applied [12��,13]. A general framework to methodically

develop new ensemble averages informed by theory has

been proposed [12��], but its application is, in general, not

trivial. On the one hand, its complexities may limit the
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ultimate effectiveness of this approach; but on the other,

the framework opens up a new avenue to be explored and

understood by the molecular simulation community, and

perhaps used to invent new ways to improve perfor-

mance. This opportunity is the focus of this Opinion.

Example: Pair and singlet density distributions
In 2013 Borgis et al. [14] presented an alternative specifi-

cation of the ensemble average for the radial distribution

function g(r). The conventional formula is:

gðrÞ ¼
1

4pr2r

1

N

X

N

i

X

j<i

dðjrijj � rÞ

* +

ð1Þ

where r is the density, N is the number of molecules, rij is
the separation vector for molecules i and j, and the sum is

over all i, j pairs. The summand is the Dirac delta

function, and its ensemble average is evaluated using

histograms: values of the pair separation r are segregated

into bins, with each bin giving a count of the number of

times that a molecule pair is observed to have a separation

represented by a particular (narrow) range of r. Averages

of this type are forced to make a compromise between

resolution and precision—smaller bins that yield noisy

results versus larger bins that gloss over the finer features

of the function.

Using the Poisson form for the delta function and an

integration by parts, Borgis et al. [14] showed that the

following rigorous expression can instead be used to

evaluate g(r):

gðrÞ ¼ 1 �
1

r
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where H(.) denotes the Heaviside function, b is the

reciprocal temperature, fj is the total force on molecule

j, and the hat on rij indicates a unit vector. Although it

does not enter explicitly in the development, the

“theory” underlying this formula is the ideal gas. This

can be seen by its behavior when applied to the ideal-gas

model—the forces there are identically zero so the aver-

age vanishes, leaving simply g(r) = 1; this is the exact

result for an ideal gas, and is given with zero uncertainty.

Contrast that with Eq. (1), which upon application to an

ideal gas will yield g(r) = 1 only upon averaging, produc-

ing a distribution that exhibits some uncertainty, or noise.

The uncertainty reduction offered by Eq. (2) is present

also when applied to interacting molecules. Even in this

case, the baseline uniform contribution to g(r) is handled

exactly, whereas in Eq. (1) it must be obtained as part of

the average. The benefit increases to the extent the

system behaves ideally, so the approach is best suited

for measuring small differences from the uniform base-

line. Borgis et al. demonstrated advantages of the alter-

native formulation for conditions well away from ideal.

One must again keep in mind that the uncertainty of the

histogram-based approach, Eq. (1) can be dialed to almost

any level by trading off against resolution. This issue does

not afflict the force-based approach, Eq. (2), as it does not

require histogramming and so it can be applied to arbi-

trary resolution without degrading the precision.

More recently, de las Heras and Schmidt [15�] derived a

formula for the singlet density distribution of an inhomo-

geneous system that is similar to Eq. (2) for the pair

distribution:

rðrÞ ¼ r0 þ
X

N

i

r � ri

4pjr � rij
3
�bf i

* +

; ð3Þ

where r0 is a constant. The formula again yields an exact,

noise-free result when applied to an ideal gas. In applica-

tion to interacting molecules, the alternative expression

shows improvement in the precision of the averages in

comparison to the conventional histogram-based

approach [15�].

Mapped averaging: A framework for deriving
ensemble averages
It is possible to generalize the development summarized

above to encompass other thermodynamic properties,

using molecular theories other than the ideal-gas model

as an implicit starting point for the alternative ensemble

average. The framework for doing this begins with the idea
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Figure 1

Parallel routes from statistical thermodynamics to properties, and the

role of mapped averaging in connecting them.
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of targeted perturbation, proposed by Jarzynski in 2002 as a

means to improve free-energy calculations [16]. The key

equation presented by Jarzynski can be written as:

ðbAÞðl0Þ � ðbAÞðlÞ ¼ �lnhJexp �ðbUÞðx; l0Þ þ ðbUÞðX; lÞ½ �il:

ð4Þ

Here, A(l) is the free energy as a function of a system

parameter l, which might be a thermodynamic state

variable, a force-field parameter, a constraint, or some-

thing else that affects the free energy (we lump b with A

and U to allow for the case where l depends on tempera-

ture); the desired free energy difference is for the pertur-

bation l ! l0. On the right is an ensemble average over

the system defined by l. The quantity being averaged is

the Boltzmann factor of the energy change accompanying

the l perturbation, but it is defined in conjunction with a

mapping X ! x of the system coordinates; J is the Jaco-

bian for this mapping.

The aim of the mapping is to put the system in a

configuration x that is more representative of a configura-

tion at l0 than X is. This is illustrated in Figure 2. More

specifically, one would like the relative weight of config-

urations in the neighborhood of x at l0 to equal those

around X at l; the mapping may cause these two neigh-

borhoods to differ in size, and that is accounted for by the

Jacobian. The relative weight at X may change with

l ! l0 because the absolute weight at X changes, and/

or because the normalizing constant (i.e., the partition

function) changes. Regardless, the mapping aims to move

to a new configuration x that preserves this relative

weight. In the original context of Jarzynski’s targeted

perturbation, this prescription ensures that the important

phase space at l0 is adequately sampled even though the

system at l governs sampling—it is as if the two important

phase spaces were fully overlapping. The result is a more

precise and accurate free-energy difference via Eq. (4).

Jarzynski demonstrated the approach to evaluate the free-

energy change associated with the formation of a cavity in a

dense fluid [16]. Subsequently, Tan et al. [17,18] proposed

“harmonically-targeted temperature perturbation” as an

application to improve calculation of free energies of crys-

tals, and Paliwal and Shirts [19] demonstrated targeted

perturbation for several applications in the context of

multistate free-energy calculations.

A broader range of applications of targeted perturbation

can be found by considering a differential perturbation of

l, which then can be used to develop expressions for the

first [7,16] and second [7,12��] derivatives of the free

energy. In this manner, targeted perturbation can be used

to evaluate thermodynamic properties. Thus, for the

perturbation l ! l + dl we define the mapping accord-

ing to X ! X þ _xldl. The key quantity here is the

mapping velocity _xl, which defines the rate of change of

the coordinates as l is varied from its base value (which

typically is the one that governs the simulation). Straight-

forward analysis yields expressions for the free-energy

derivatives: (with m representing a second parameter

along with l in the second derivative):

ðbAÞl �
@ðbAÞ

@l
¼ �hJli þ h ðbUÞli ð5aÞ

ðbAÞlm �
@2ðbAÞ

@l@m

¼ �hJlm � JlJmi þ h ðbUÞlmi

� Cov Jl � ðbUÞl; Jm � ðbUÞm

h i

ð5bÞ

The Jacobian and energy derivatives are expressed in

terms of the mapping velocity [12��]:

Jl ¼ rx� _x
l

ð6aÞ

Jlm � JlJm ¼ rx� _x
l
m þ _xm�rxðrx� _x

lÞ ð6bÞ

ðbUÞl ¼ ðbuÞl � bf � _xl ð6cÞ

ðbUÞlm ¼ ðbuÞlm � _xlm þ _xm�rx _x
l

�

�bf þ _xm�bf� _xl
�

� _xl�ðbf Þm þ _xm�ðbf Þl

�

;

�

ð6dÞ
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Figure 2

Illustration of the objective of the mapping. Large gray square

represents the full 3N-dimensional phase space G, and shaded regions

represent the configurations important to the system at states l

(yellow shades) and l0 (blue shades), respectively. Lines show

mapping X ! x of particular points in phase space. The aim of the

procedure is to map points in the l-important configurations into new

points having the same relative weight in the set important at l0, while

configurations not important to l map to others not important to l0.

(The mapping is bijective, so the lines could be drawn with arrows on

both ends).
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where f � � rxu is the phase-space force vector and

f � rx rxu is the force-constant matrix (Hessian) for a

given configuration. Note that we use uppercase U to

denote a function that varies with l due to its direct

dependence on l as well as the effect of the mapping

(Lagrangian frame); lowercase u depends on l only

through its direct effect (if any), and does not include

the effects of mapping (Eulerian frame).

These equations are rigorous, and will yield correct

formulas for the free-energy derivatives—and thus alter-

native ensemble averages for properties—given any map-

ping velocity. The choice of _x
l

is important however in

generating new expressions that are useful in practice,

that is, that yield simulation averages having low uncer-

tainties for a given amount of sampling. A perfect map-

ping is one that will leave the averaged quantity in Eq. (4)

unchanged with the perturbation in l. We have shown

that such a mapping will satisfy this conservation equa-

tion for the relative weight p/q [12��]:

@

@l

p

q

�

þ rx�
p

q
_xl
�

¼ 0

��

ð7Þ

where p(x ; l) = exp(� bu(x)), and q(l) =
R

p(x ; l)dx. This

is a high-dimensional partial differential equation, and it

cannot be solved for any realistic molecular system (we

cannot even evaluate q(l)). However, we are permitted to

use an approximate p(x ; l), one which allows an expres-

sion for q(l) and for which a solution to Eq. (7) is possible;

the _x
l

so obtained can be used to generate still-rigorous

ensemble averages via Eqs. (5) and (6). This is the way

that approximate theory can be used to generate alterna-

tive ensemble averages that lead to molecular simulations

with improved performance. This route is indicated in

Figure 1 with the yellow arrows. We refer to these

alternative ensemble averages as “mapped averages.”

It is amusing to find that a very familiar formula in

statistical mechanics results from a simple application

of this framework, showing that we already know of an

example of mapped averaging. Considering a volume

derivative (l � V) and employing an ideal-gas reference,

we have p(x) = 1 and q(V) = VN, and a solution of Eq. (7) is

(denoting ri as the element of x relating to molecule i):

_rVi ¼
ri
3V

: ð8Þ

Thus, the mapping velocity corresponds to a simple

homogeneous affine expansion of positions with volume.

The volume derivative yields the pressure, which accord-

ing to Eq. (5a), (6a), and (6c) is:

bP

r
¼ �

1

r
ðbAÞV ¼ 1 þ

b

3

1

N

X

N

i

ri�f i

+

;

*

ð9Þ

which is the well-established virial formula for the pres-

sure [1,20,21].

Leveraging theory to enhance simulation
The framework outlined in the previous section opens up

a vast space of possibilities to improve the performance of

molecular simulations, and relatively little has been done

so far to explore these opportunities. For example,

recently we have shown [22] that the alternative averages

for the density functions, Eqs. (2) and (3), can be obtained

from the mapped-averaging framework by using p(x) �
1—in these two cases the relevant free-energy derivative

is a functional derivative with respect to the pair or singlet

potential, respectively. In fact, one drawback in these

formulas is that they do not handle well the parts of the

density function that are practically zero, such as inside

the core of the pair potential. They correctly give a zero

density, but only on average, and hence they are noisy

where conventional histogram methods give the zero

density with no uncertainty. This performance is a con-

sequence of the use of an ideal-gas implicit reference,

which assumes uniform density everywhere. We can

improve this by instead selecting p(x) to account for

interactions pair-by-pair. The mapped-averaging frame-

work then yields the following new formula for the pair

distribution:

gðrÞ ¼

e�bu2ðrÞ 1 �
1

r

1

N

X

N

i

X

j<i

Hðr ij � rÞ

4pr2ij
eþbu2ðr ijÞbðf j � f iÞ

� �̂rij

+* #"

ð10Þ

where u2(r) is the (spherically-symmetric) pair potential

and the * on the total-force difference indicates that both

forces are exclusive of the direct fij contribution.

In a similar manner, the virial formula for the pressure,

Eq. (9), can be extended [12��]:

bP

r
¼ 1 þ B2r þ

1

2

1

N

X

N

i

X

j<i

_r V
ij ðr ijÞbðf j � f iÞ

� �̂rij

+

;

*

ð11aÞ

where B2 is the second virial coefficient [1], and the pair-

distance mapping velocity is:

_r V
ijðr ijÞ ¼

Z r ij

0

~r

r ij

� �2

e�bðu2ð~rÞ�u2ðr ijÞÞ � 1

�

d~r

�

ð11bÞ

Whereas Eq. (9) can be viewed as providing an ensemble

average that corrects the ideal-gas law, we have in Eq. (11)
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a formula that provides an ensemble average that corrects

the second-order virial series.

Mapped averaging has given its most impressive perfor-

mance in the application where it was originally con-

ceived—crystalline systems [7–11,12��,23,24]. For mon-

atomic crystals, the energy can be approximated by a

simple isotropic harmonic form, corresponding to a

Gaussian density about each lattice site:

pðx; bÞ ¼
Y

N

i¼1

expð�bcjDrij
2Þ ð12Þ

where Dri is the displacement of atom i from its lattice-

site position, and c is a constant (it has no effect on the

result, so it may be left undetermined). Taking l � b,

from Eq. (7) the mapping velocity is:

_rbi ¼ �
Dri
2b

; ð13Þ

and we arrive at an expression for the thermodynamic

energy:

bUavg ¼ ðbAÞb ¼
3

2
ðN � 1Þ þ b U þ

1

2

X

N

i

Dri�f i

+*

ð14Þ

We recognize the first term on the right-hand side to be

the harmonic contribution, showing that the average

provides a direct measurement of Uah, the anharmonic

contribution to the energy. We refer to averages such as

this, which are formulated in reference to the behavior of

a harmonic system, as harmonically mapped averages

(HMA). Note that we could not formulate an alternative

average via the more obvious approach of directly sub-

tracting a configuration-dependent harmonic energy:

bU avg 6¼
3

2
ðN � 1Þ þ b U � c

X

N

i

jDrij
2

+

;

*

ð15Þ

because bhc
PN

i jDrij
2i 6¼ 3ðN � 1Þ=2 (the equality holds

only if the average is taken while sampling a true har-

monic system). The ability to generate mapped-averag-

ing expressions methodically, rather than just intuitively,

is important to the formulation of alternative ensemble

averages that are correct and effective in practice. This is

true a fortiori when considering properties based on

higher-order free-energy derivatives, such as the heat

capacity [7].

By enabling its direct calculation, Uah can be computed to

a given precision tens to thousands of times (depending

on temperature and density) more quickly than via con-

ventional averaging [7,8�,9,10�]. The greatest speedup is

obtained at low temperature or high density, where the

harmonic-reference starting point is most applicable.

Even though the anharmonic contribution is smallest at

these conditions, its precise measurement is important for

computing the free energy [7,8�,9]: if employing thermo-

dynamic integration from zero temperature, the integrand

requires Uah/T2, so any noise in the simulation average is

greatly amplified at T ! 0 while the ratio remains finite in

this limit. This low-temperature part to the integral is by

far the largest contributor to the uncertainty in the free

energy at, say, the melting temperature when performing

temperature integration.

We mention in passing that we recently presented an

HMA formula for the temperature for use in microcano-

nical (NVE) simulations of crystals [11]:

T ¼
1

3ðN � 1ÞkB

X

N

i¼1

p2i
2m

�
1

2
Dri�f i

�

+

;

 *

ð16Þ

where pi is the momentum of molecule i. This formula-

tion exhibits a very small variance, but its advantage is not

as much as it might be, due to strong negative correlations

that reduce the uncertainty of the conventional form for

the temperature [11]. Still, this representation might

provide an interesting basis for a new thermostat.

We are currently engaged in a project to implement HMA

formulas in some well-used molecular simulation codes

(mapped averaging in all its forms is implemented rou-

tinely in Etomica, our in-house molecular simulation code

base [25]). Specifically, we have written scripts to process

output from VASP [26], and have developed capabilities

in LAMMPS [27] to compute crystalline properties this

way. We plan to perform similar implementations for

HOOMD-blue [28,29] and Cassandra [30]. We hope that

these developments will make the HMA advances acces-

sible to the community of molecular simulation practi-

tioners. The usefulness of these methods might induce

developers to implement options for computing coordi-

nate second derivatives (Hessian matrix) in addition to

first derivatives (forces), as a standard development

practice.

Additional considerations
We collect here a few worthwhile observations and points

that have not been mentioned or highlighted above.

Mapped averaging . . .

� . . . does not provide something for nothing. It gains

its advantages by input from the underlying molecular

theory, and by information obtained from the configu-

rational derivatives (forces and Hessian) that appear in

74 Frontiers of Chemical Engineering
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the averages. Generally we find that the improved

precision of the mapped averages is worth any added

expense incurred by evaluating these derivatives.

� . . . does not affect sampling of configurations. It can

be used with any molecular dynamics or Monte Carlo

method. The only thing changed is the quantity that is

averaged. Consequently, any number of properties can

be evaluated by mapped averaging in a single simula-

tion—its use for one property does not interfere with a

mapped average for any other.

� . . . is not (as of yet) suitable for transport or kinetic

properties, nor related quantities such as time-correla-

tion functions. As currently constituted, mapped aver-

aging applies only to properties expressible as equilib-

rium free-energy derivatives. A route to application to

transport properties might be found through the for-

malism of maximum caliber [31–33], but no develop-

ment has yet been attempted in this direction.

� . . . can help offset deficiencies in sampling, and

thereby provide enhancements in accuracy as well as

precision. This is suggested by applications which have

shown that HMA averages [7]: (a) are less susceptible to

finite-size effects; (b) are less affected by truncation of

the potential; (c) de-correlate more quickly, and

thereby provide more statistically independent config-

urations for a given number of samples; (d) are faster to

equilibrate from a non-equilibrium initial condition; (e)

are less affected by small errors introduced by having a

larger time step in MD simulations [11].

� . . . is not the only way to derive a given alternative

ensemble average. The advantage of the mapped-

averaging framework reviewed here is that it provides

a methodical approach to do this, given a clear formu-

lation for the molecular structure.

� . . . is efficient only to the extent that the theory used

to approximate the molecular structure is accurate.

Although the alternative averages derived from a the-

ory do not become inaccurate where the theory fails,

their effectiveness in reducing the uncertainty is

diminished. We have found for example that

mapped-averaging formulas based on gas-phase struc-

ture are not particularly efficient when computing

properties of liquid phases [12��,13].

Outlook
In principle, limits on the effectiveness of mapped aver-

aging might be remedied by invoking more sophisticated

theories for the structure. However, theories that are too

complex will preclude finding a practical solution of the

mapping equation, Eq. (7). This challenge, coupled with

the promise demonstrated by application of HMA to

crystals, can spur efforts to cleverly synthesize molecular

theory, the mapping equation, and molecular simulation

toward more effective outcomes.

Indeed, the formulation of alternative ensemble averages

represents a strategy to enhance molecular simulation

that is qualitatively distinct from other well studied

families of methods, such as non-Boltzmann sampling,

biased selection of configurations, or other techniques to

accelerate sampling or convergence. Arguably, mapped

averaging is a concept that has merits independent of its

role in molecular simulation, and can be more properly

viewed as occupying the foundations of statistical

mechanics itself. Regardless, it is not often that one is

presented with a qualitatively new direction to improve

molecular simulations, so there is much room to invent,

explore and be creative. It remains to be seen though

whether mapped averaging will play out as an important

new path to advance the field, or whether it is a curiosity

with a few useful applications but limited general

effectiveness.
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