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Long-established molecular theories often can provide good
analytical estimates of thermodynamic properties for simple
molecular models. Molecular simulation, on the other hand, can
provide exact properties for the same models, or others that are
arbitrarily realistic, but requires significantly more
computational expense. Recent developments enable
molecular simulation to improve performance by exploiting
information available from approximate theories. The
connection is formed via alternative ensemble averages, which
allow direct calculation of the correction to the theory. In
favorable cases this correction is small and can be computed
with low uncertainty. Alternative ensemble averages of this type
can be formulated systematically using a recently introduced
framework, known as mapped averaging.
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Introduction: From molecular models to
thermodynamic properties

Molecular theory and molecular simulation represent two
paths from statistical mechanics to properties, as illus-
trated in Figure 1. Examples of molecular theory include
integral-equation methods (e.g., Percus—Yevick [1]), lat-
tice dynamics for crystals [2], and the SAFT equation of
state [3]. These approaches yield analytical formulas for
the properties, and to remain tractable they are based on a
simple representation of the intermolecular interactions.
Attempts to connect such methods to realistic systems
rely on either ab initio calculations or experiment to
parameterize the molecular model. The compromises
in the model or the theory needed to make the framework
tractable causes the resulting thermodynamic model to be

Check for
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necessarily approximate. Nevertheless these approaches
are extremely useful in practice.

Complementing this path is the route to properties via
molecular simulation. This computational method yields
properties that are in principle exact for a given molecular
model. The computational (rather than analytical) nature
of this approach allows it to accommodate much more
complex and realistic molecular models. Although still
rare, we are entering a stage where first-principles molec-
ular models can be used with molecular dynamics or
Monte Carlo sampling to obtain results that are more
definitive than experiment [4], or to at least provide
reliable results where experiments are not feasible
(e.g., at extremes of temperature and pressure [5]).

As an aside, we note that the virial equation of state [1,6]
represents a third path from statistical mechanics to
properties, one exhibiting both good and bad features
of the other two, as well as its own idiosynchrasies.

Historically, the primary interaction between the two
paths to properties is the application of simulation to
evaluate the predictions of theory, with both applied to
the same molecular model. In this manner the simulation
is viewed as a controlled experiment on the model, and
any disagreement unambiguously points to limitations of
the theory (unlike comparison to experiment, which
could differ due to limits of the molecular model and/
or the theory). This is indeed an important connection
between theory and simulation, but apart from this there
has been little synergy between them. One can formulate
a theory such as lattice dynamics that provides a remark-
ably good—rvyet inexact—description of properties, and
simulation generally has no way to improve its perfor-
mance by making use of this knowledge.

New developments may be poised to remedy this situa-
tion. A given property can be expressed as an ensemble
average in multiple ways, and molecular theory can be
applied to yield a form that is advantageous for calculation
by molecular simulation. Such alternatives have emerged
only within the past five years or so, and they have yet to
gain much attention. Presently we have one successful
example in application to crystals [7,8%9,10°11], and
others that have been put forth but not broadly tested
or applied [12°°,13]. A general framework to methodically
develop new ensemble averages informed by theory has
been proposed [12°°], but its application is, in general, not
trivial. On the one hand, its complexities may limit the
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Parallel routes from statistical thermodynamics to properties, and the
role of mapped averaging in connecting them.

ultimate effectiveness of this approach; but on the other,
the framework opens up a new avenue to be explored and
understood by the molecular simulation community, and
perhaps used to invent new ways to improve perfor-
mance. This opportunity is the focus of this Opinion.

Example: Pair and singlet density distributions
In 2013 Borgis et al. [14] presented an alternative specifi-
cation of the ensemble average for the radial distribution
function g(r). The conventional formula is:

glr) = Wz <N226 |ry|—r> (1)

i y<i

where p is the density, Vis the number of molecules, r;; is
the separation vector for molecules 7 and /, and the sum is
over all 7, j pairs. The summand is the Dirac delta
function, and its ensemble average is evaluated using
histograms: values of the pair separation 7 are segregated
into bins, with each bin giving a count of the number of
times that a molecule pair is observed to have a separation
represented by a particular (narrow) range of 7. Averages
of this type are forced to make a compromise between
resolution and precision—smaller bins that yield noisy
results versus larger bins that gloss over the finer features
of the function.

Using the Poisson form for the delta function and an
integration by parts, Borgis et al. [14] showed that the
following rigorous expression can instead be used to
evaluate g(7):

g(r) =1 _<NZZ ;Ijrr

i y<i

B(f; — f,')‘f,/-> (2)

where H(.) denotes the Heaviside function, B is the
reciprocal temperature, f; is the total force on molecule
/» and the hat on r; 1ndlcates a unit vector. Although it
does not enter expllcltly in the development, the
“theory” underlying this formula is the ideal gas. This
can be seen by its behavior when applied to the ideal-gas
model—the forces there are identically zero so the aver-
age vanishes, leaving simply g(r) = 1; this is the exact
result for an ideal gas, and is given with zero uncertainty.
Contrast that with Eq. (1), which upon application to an
ideal gas will yield g(r) = 1 only upon averaging, produc-
ing a distribution that exhibits some uncertainty, or noise.

The uncertainty reduction offered by Eq. (2) is present
also when applied to interacting molecules. Even in this
case, the baseline uniform contribution to g(#) is handled
exactly, whereas in Eq. (1) it must be obtained as part of
the average. The benefit increases to the extent the
system behaves ideally, so the approach is best suited
for measuring small differences from the uniform base-
line. Borgis et al. demonstrated advantages of the alter-
native formulation for conditions well away from ideal.
One must again keep in mind that the uncertainty of the
histogram-based approach, Eq. (1) can be dialed to almost
any level by trading off against resolution. This issue does
not afflict the force-based approach, Eq. (2), as it does not
require histogramming and so it can be applied to arbi-
trary resolution without degrading the precision.

More recently, de las Heras and Schmidt [15°] derived a
formula for the singlet density distribution of an inhomo-
geneous system that is similar to Eq. (2) for the pair
distribution:

P(f):Po+<Z4 r|r—r\3'3 > (3)

where pg is a constant. The formula again yields an exact,
noise-free result when applied to an ideal gas. In applica-
tion to interacting molecules, the alternative expression
shows improvement in the precision of the averages in
comparison to the conventional histogram-based
approach [15°].

Mapped averaging: A framework for deriving
ensemble averages

It is possible to generalize the development summarized
above to encompass other thermodynamic properties,
using molecular theories other than the ideal-gas model
as an implicit starting point for the alternative ensemble
average. The framework for doing this begins with the idea
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of targeted perturbation, proposed by Jarzynski in 2002 as a
means to improve free-energy calculations [16]. The key
equation presented by Jarzynski can be written as:

(BA)(A) = (BA) (1) = —In{Jexp[—(BU)(x;2") + (BU)(X; 1)),
(4)

Here, A()) is the free energy as a function of a system
parameter A, which might be a thermodynamic state
variable, a force-ficld parameter, a constraint, or some-
thing else that affects the free energy (we lump B with A
and U to allow for the case where A depends on tempera-
ture); the desired free energy difference is for the pertur-
bation A — A’. On the right is an ensemble average over
the system defined by A. The quantity being averaged is
the Boltzmann factor of the energy change accompanying
the A perturbation, but it is defined in conjunction with a
mapping X — x of the system coordinates; J is the Jaco-
bian for this mapping.

The aim of the mapping is to put the system in a
configuration x that is more representative of a configura-
tion at A’ than X is. This is illustrated in Figure 2. More
specifically, one would like the relative weight of config-
urations in the neighborhood of x at A’ to equal those
around X at A; the mapping may cause these two neigh-
borhoods to differ in size, and that is accounted for by the
Jacobian. The relative weight at X may change with
A — A because the absolute weight at X changes, and/
or because the normalizing constant (i.e., the partition
function) changes. Regardless, the mapping aims to move
to a new configuration x that preserves this relative

Figure 2
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lllustration of the objective of the mapping. Large gray square
represents the full 3N-dimensional phase space I', and shaded regions
represent the configurations important to the system at states 2
(yellow shades) and 1’ (blue shades), respectively. Lines show
mapping X — x of particular points in phase space. The aim of the
procedure is to map points in the A-important configurations into new
points having the same relative weight in the set important at 1’, while
configurations not important to A map to others not important to A’.
(The mapping is bijective, so the lines could be drawn with arrows on
both ends).

weight. In the original context of Jarzynski’s targeted
perturbation, this prescription ensures that the important
phase space at A’ is adequately sampled even though the
system at A governs sampling—it is as if the two important
phase spaces were fully overlapping. The result is a more
precise and accurate free-energy difference via Eq. (4).

Jarzynski demonstrated the approach to evaluate the free-
energy change associated with the formation of a cavity in a
dense fluid [16]. Subsequently, Tan etal. [17,18] proposed
“harmonically-targeted temperature perturbation” as an
application to improve calculation of free energies of crys-
tals, and Paliwal and Shirts [19] demonstrated targeted
perturbation for several applications in the context of
multistate free-energy calculations.

A broader range of applications of targeted perturbation
can be found by considering a differential perturbation of
A, which then can be used to develop expressions for the
first [7,16] and second [7,12°°] derivatives of the free
energy. In this manner, targeted perturbation can be used
to evaluate thermodynamic properties. Thus, for the
perturbation A — A + &\ we define the mapping accord-
ing to X —» X +x*71. The key quantity here is the
mapping velocity x*, which defines the rate of change of
the coordinates as A is varied from its base value (which
typically is the one that governs the simulation). Straight-
forward analysis yields expressions for the free-energy
derivatives: (with wu representing a second parameter
along with A in the second derivative):

), = 2P0~y + (o0, (52
2
(B) = )

= _<JML _])u]u> + < (IBU)A;J_)

— Cov [J,\ — (BU), T — (ﬂ(/)ﬂ] (5b)

The Jacobian and energy derivatives are expressed in
terms of the mapping velocity [12°°]:

Ji = VX (6)
Jip = Jod = VX, + X" Ve (Vex") (6b)
(BU), = (Bu), — Bfx" (6¢)

(BU),,, = (Bu)y, — ( +v) B+ %P

- (w00, 000, ). (6d)
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where f= — V,u is the phase-space force vector and
¢ =V, V,u is the force-constant matrix (Hessian) for a
given configuration. Note that we use uppercase U to
denote a function that varies with A due to its direct
dependence on XA as well as the effect of the mapping
(Lagrangian frame); lowercase # depends on A only
through its direct effect (if any), and does not include
the effects of mapping (Eulerian frame).

These equations are rigorous, and will yield correct
formulas for the free-energy derivatives—and thus alter-
native ensemble averages for propcrtles—glven any map-
ping velocity. The choice of X is important however in
generating new expressions that are useful in practice,
that is, that yield simulation averages having low uncer-
tainties for a given amount of sampling. A perfect map-
ping is one that will leave the averaged quantity in Eq. (4)
unchanged with the perturbation in A. We have shown
that such a mapping will satisfy this conservation equa-
tion for the relative weight p/g [12°°]:

20 ) -

where p(x; ) = exp(— Bu(x)), and g(A) = f[)(x; Mdx. This
is a high-dimensional partial differential equation, and it
cannot be solved for any realistic molecular system (we
cannot even evaluate ¢(A)). However, we are permitted to
use an approximate p(x; A), one which allows an expres-
sion for ¢(1) and for which a solution to Eq. (7) is possible;
the X' so obtained can be used to generate still-rigorous
ensemble averages via Egs. (5) and (6). This is the way
that approximate theory can be used to generate alterna-
tive ensemble averages that lead to molecular simulations
with improved performance. This route is indicated in
Figure 1 with the yellow arrows. We refer to these
alternative ensemble averages as “mapped averages.”

It is amusing to find that a very familiar formula in
statistical mechanics results from a simple application
of this framework, showing that we already know of an
example of mapped averaging. Considering a volume
derivative (A = V) and employing an ideal-gas reference,
we have p(x) = 1 and ¢(V) = V‘V, and a solution of Eq. (7) is
(denoting r; as the element of x relating to molecule 7):

.V r;

Thus, the mapping velocity corresponds to a simple
homogeneous affine expansion of positions with volume.
The volume derivative yields the pressure, which accord-
ing to Eq. (5a), (6a), and (6¢) is:

B = =145 <Nzr, > ©)

which is the well-established virial formula for the pres-
sure [1,20,21].

Leveraging theory to enhance simulation

The framework outlined in the previous section opens up
a vast space of possibilities to improve the performance of
molecular simulations, and relatively little has been done
so far to explore these opportunities. For example,
recently we have shown [22] that the alternative averages
for the density functions, Egs. (2) and (3), can be obtained
from the mapped-averaging framework by using p(x) =
1—in these two cases the relevant free-energy derivative
is a functional derivative with respect to the pair or singlet
potential, respectively. In fact, one drawback in these
formulas is that they do not handle well the parts of the
density function that are practically zero, such as inside
the core of the pair potential. They correctly give a zero
density, but only on average, and hence they are noisy
where conventional histogram methods give the zero
density with no uncertainty. This performance is a con-
sequence of the use of an ideal-gas implicit reference,
which assumes uniform density everywhere. We can
improve this by instead selecting p(x) to account for
interactions pair-by-pair. The mapped-averaging frame-
work then yields the following new formula for the pair
distribution:

g(r) =

i)

iy<i
(10)

where #,(7) is the (spherically-symmetric) pair potential
and the * on the total-force difference indicates that both
forces are exclusive of the direct f;; contribution.

In a similar manner, the virial formula for the pressure,
Eq. (9), can be extended [12°°]:

P N o
?—14‘8210—"_ NZZ ,/rzj fl) l’l] )

i y<i

(11a)

where B, is the second virial coefficient [1], and the pair-
distance mapping velocity is:
1)52’?

[N
v v —Bluz(F)—uz(ry))
Firy) = / (—) ( o
y\" v 0 i

Whereas Eq. (9) can be viewed as providing an ensemble
average that corrects the ideal-gas law, we have in Eq. (11)

(11b)
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a formula that provides an ensemble average that corrects
the second-order virial series.

Mapped averaging has given its most impressive perfor-
mance in the application where it was originally con-
ceived—crystalline systems [7-11,12°%,23,24]. For mon-
atomic crystals, the energy can be approximated by a
simple isotropic harmonic form, corresponding to a
Gaussian density about each lattice site:

1\7

p(x,B) = [ exp(—BelAri[) (12)

i=1

where Ar; is the displacement of atom 7 from its lattice-
site position, and ¢ is a constant (it has no effect on the
result, so it may be left undetermined). Taking A = 8,
from Eq. (7) the mapping velocity is:

Ar;
.ﬁ:—il 13
=52, (13)

and we arrive at an expression for the thermodynamic
energy:

IBUavg = (IBA)ﬂ =

JASI N

1 N
(N—1)+ ,8<U + EZAr,-.f,-> (14)

We recognize the first term on the right-hand side to be
the harmonic contribution, showing that the average
provides a direct measurement of U*", the anharmonic
contribution to the energy. We refer to averages such as
this, which are formulated in reference to the behavior of
a harmonic system, as Jarmonically mapped averages
(HMA). Note that we could not formulate an alternative
average via the more obvious approach of directly sub-
tracting a configuration-dependent harmonic energy:

N
ﬁUwg,#%(N—1>+ﬂ<U—cZ|Arz~|2>, (15)

because B{c XV |Ar;|?) # 3(NV — 1)/2 (the equality holds
only if the average is taken while sampling a true har-
monic system). The ability to generate mapped-averag-
ing expressions methodically, rather than just intuitively,
is important to the formulation of alternative ensemble
averages that are correct and effective in practice. This is
true a fortiori when considering properties based on
higher-order free-energy derivatives, such as the heat
capacity [7].

By enabling its direct calculation, I*" can be computed to
a given precision tens to thousands of times (depending

on temperature and density) more quickly than via con-
ventional averaging [7,8°9,10°]. The greatest speedup is
obtained at low temperature or high density, where the
harmonic-reference starting point is most applicable.
Even though the anharmonic contribution is smallest at
these conditions, its precise measurement is important for
computing the free energy [7,8°,9]: if employing thermo-
dynamic integration from zero temperature, the integrand
requires U*"/7%, so any noise in the simulation average is
greatly amplified at 77— 0 while the ratio remains finite in
this limit. This low-temperature part to the integral is by
far the largest contributor to the uncertainty in the free
energy at, say, the melting temperature when performing
temperature integration.

We mention in passing that we recently presented an
HMA formula for the temperature for use in microcano-
nical (NVE) simulations of crystals [11]:

1 Y o(p: 1
T:—S(N—l)éB ; Z—M—EAri-fi> , (16)

where p; is the momentum of molecule 7. This formula-
tion exhibits a very small variance, but its advantage is not
as much as it might be, due to strong negative correlations
that reduce the uncertainty of the conventional form for
the temperature [11]. Still, this representation might
provide an interesting basis for a new thermostat.

We are currently engaged in a project to implement HMA
formulas in some well-used molecular simulation codes
(mapped averaging in all its forms is implemented rou-
tinely in Etomica, our in-house molecular simulation code
base [25]). Specifically, we have written scripts to process
output from VASP [26], and have developed capabilities
in LAMMPS [27] to compute crystalline properties this
way. We plan to perform similar implementations for
HOOMD-blue [28,29] and Cassandra [30]. We hope that
these developments will make the HMA advances acces-
sible to the community of molecular simulation practi-
tioners. The usefulness of these methods might induce
developers to implement options for computing coordi-
nate second derivatives (Hessian matrix) in addition to
first derivatives (forces), as a standard development
practice.

Additional considerations

We collect here a few worthwhile observations and points
that have not been mentioned or highlighted above.
Mapped averaging . . .

e ... does not provide something for nothing. It gains
its advantages by input from the underlying molecular
theory, and by information obtained from the configu-
rational derivatives (forces and Hessian) that appear in
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the averages. Generally we find that the improved
precision of the mapped averages is worth any added
expense incurred by evaluating these derivatives.

e ... does not affect sampling of configurations. It can
be used with any molecular dynamics or Monte Carlo
method. The only thing changed is the quantity that is
averaged. Consequently, any number of properties can
be evaluated by mapped averaging in a single simula-
tion—its use for one property does not interfere with a
mapped average for any other.

e ... is not (as of yet) suitable for transport or kinetic
properties, nor related quantities such as time-correla-
tion functions. As currently constituted, mapped aver-
aging applies only to properties expressible as equilib-
rium free-energy derivatives. A route to application to
transport properties might be found through the for-
malism of maximum caliber [31-33], but no develop-
ment has yet been attempted in this direction.

e ... can help offset deficiencies in sampling, and
thereby provide enhancements in accuracy as well as
precision. This is suggested by applications which have
shown that HMA averages [7]: (a) are less susceptible to
finite-size effects; (b) are less affected by truncation of
the potential; (c¢) de-correlate more quickly, and
thereby provide more statistically independent config-
urations for a given number of samples; (d) are faster to
equilibrate from a non-equilibrium initial condition; (e)
are less affected by small errors introduced by having a
larger time step in MD simulations [11].

e ... is not the only way to derive a given alternative
ensemble average. The advantage of the mapped-
averaging framework reviewed here is that it provides
a methodical approach to do this, given a clear formu-
lation for the molecular structure.

e ... isefficient only to the extent that the theory used
to approximate the molecular structure is accurate.
Although the alternative averages derived from a the-
ory do not become inaccurate where the theory fails,
their effectiveness in reducing the uncertainty is
diminished. We have found for example that
mapped-averaging formulas based on gas-phase struc-
ture are not particularly efficient when computing
properties of liquid phases [12°°,13].

Outlook

In principle, limits on the effectiveness of mapped aver-
aging might be remedied by invoking more sophisticated
theories for the structure. However, theories that are too
complex will preclude finding a practical solution of the
mapping equation, Eq. (7). This challenge, coupled with
the promise demonstrated by application of HMA to
crystals, can spur efforts to cleverly synthesize molecular
theory, the mapping equation, and molecular simulation
toward more effective outcomes.

Indeed, the formulation of alternative ensemble averages
represents a strategy to enhance molecular simulation

that is qualitatively distinct from other well studied
families of methods, such as non-Boltzmann sampling,
biased selection of configurations, or other techniques to
accelerate sampling or convergence. Arguably, mapped
averaging is a concept that has merits independent of its
role in molecular simulation, and can be more properly
viewed as occupying the foundations of statistical
mechanics itself. Regardless, it is not often that one is
presented with a qualitatively new direction to improve
molecular simulations, so there is much room to invent,
explore and be creative. It remains to be seen though
whether mapped averaging will play out as an important
new path to advance the field, or whether it is a curiosity
with a few useful applications but limited general
effectiveness.
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