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1. Introduction

Spatial density functions are central quantities in the

formalism of statistical mechanics, as they are used

to characterise inhomogeneities and structural correla-

tions in molecular systems. Singlet (one-body) density

distributions are valuable when dealing with systems

where interfaces, impurities, or inhomogeneous exter-

nal fields generate non-uniformity, as well as systems

that become inhomogeneous spontaneously, such as in

crystals. Computational studies are often performed to

measure singlet density distributions, which are used to

study wetting/drying properties [1], phase coexistence

[2], capillary effects [3], sedimentation [4], and adsorp-

tion [5]. Similarly, the pair distribution functions (or

radial distribution functions) have been extensively used

for disordered systems as a tool to understand the struc-

ture/property relationships like amorphization [6], solid
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dispersions [7], coarse graining [8], biomineralization

processes [9], polymorphism and stability [10].

Given the wealth of knowledge available from these

density distribution functions, their accurate measure-

ment is important. However, the experimental uncer-

tainty induced by quantum counting inefficiencies,

experimental imprecision or sample inhomogeneities,

can lead to errors in drawing meaningful conclu-

sions from density distribution studies. Thus, computa-

tional studies are needed. Computationally, the standard

approach to sample these density distribution functions

is to discretise the space into a 3D grid (bins) andmonitor

the filling of the histograms in the course of the simula-

tion. One issue with this approach is the tradeoff between

precision and resolution: as the bin size decreases and

the resolution of the measured density profile increases,

the uncertainty in the calculated values increases because
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the number of events contributing to each bin is pro-

portional to the volume of the bin. Thus, the variance of

the distributions diverges when the grid spacing tends to

zero. Hence, there is a need for alternatives to the con-

ventional counting based method conventionally used in

literature.

In this regard, a method based on force sampling was

recently developed that leads to a reduced variance of

the results with respect to the counting based technique,

achieving a finite variance even when the grid spacing

tends to zero. The singlet density can be computed via

sampling the instantaneous forces acting on the particles

[11,12]:

ρ(1)(r) = ρo + β

∫

γ (r)

ds · f(s) (1)

where β ≡ (kBT)−1 with T the temperature and kB the

Boltzmann constant, ρo is the normalisation constant,

γ (r) represents a path that connects, say, the origin with

position r, and ds is the differential line element. Also,

f(r) is the force density at position r, defined:

f(r) =

〈

N
∑

i=1

fiδ(ri − r)

〉

(2)

where fi is the total force acting on molecule i, which is

at position ri, δ is the Dirac delta function, and the angle

brackets represent an ensemble average over configura-

tions of the N molecules.

The calculation approach is to sample the force density

during the simulation, and then compute ρ(r) via spa-

tial integration of it. This method significantly enhances

the convergence of simulations compared to the con-

ventional counting based method [12]. Additionally, the

resolution used for recording the force density as a func-

tion of position has no effect on the statistical uncertainty

of the calculated density, because only the integral of f is

required in Equation (1).

Similarly, the pair distribution function can be com-

puted via force sampling by [11]:

ρ(2)(r) = ρ2 −
1

V

〈

N
∑

i=1

∑

j<i

H(rij − r)

4πr2ij
β(fj − fi) · r̂ij

〉

(3)

H(.) denotes the Heaviside function and rij = rj − ri is

the position vector between particles i and j, rij = |rij|,

and r̂ij = rij/rij (Equation (3) differs slightly from the

formula presented in [11], which omitted a factor of 2).

In a separate development, we introduced the

‘mapped-averaging’ framework, through which approx-

imate theoretical results derived from statistical mechan-

ics can be reintroduced into the underlying formalism,

yielding new ensemble averages that give exactly the

error in the theory [13]. Among other potential uses,

this result allows direct evaluation of the correction to

the theory by molecular simulation. To the extent that

the theory is accurate, this correction will be small, and

hence measured with small uncertainty. In favourable

cases, the computational effort needed to evaluate a prop-

erty to a given precision via mapped averaging may be

many orders of magnitude less than that required by the

conventional average [14–19].

In this paper, we extend the mapped-averging frame-

work to derive histogram-free expressions for the singlet

and pair density distribution functions. We show that

particular cases of these expressions correspond to the

force-based formulas reviewed above. This observation

is interesting in itself, because it is often instructive to see

how a given result can be generated in different ways. The

development is also potentially useful, because as a gen-

eral framework for deriving ensemble averages, mapped

averaging opens the door to the formulation of new

expressions that can further improve the performance of

density calculations.

The outline of this paper is as follows. The next

section provides a brief overview of the mapped aver-

aging framework. In the two sections following that,

we apply mapped averaging to the formulation of sin-

glet and pair densities, respectively. We finish with some

concluding remarks.

2. Overview of mapped averaging

The mapped averaging framework is derived from the

idea of targeted perturbation, which was suggested by

Jarzynski as a means to improve the calculation of free

energy differences [20]. Let X be a vector of all rele-

vant coordinates describing a configuration (hence for N

monatomic molecules in a 3-dimensional space, X com-

prises 3N coordinate values). Then a coordinatemapping

X → x couples with the parameter perturbation λ → λ′,

such that the transformed coordinates x are more rep-

resentative of those encountered in the λ′ state. This

increases the overlap of the sets of configurations relevant

to the λ and λ′ systems, which consequently enhances

the precision of calculations.When applied for a differen-

tial perturbation [17], the approach yields expressions for

free-energy derivatives, and thereby provides a route to

derive new ensemble averages for thermodynamic prop-

erties [13].

Specifically, we are interested in the change in the

unitless free energy βA: �(βA) ≡ (βA)(λ′) − (βA)(λ).

Jarzynski showed that this can be expressed as a targeted-

perturbation ensemble average in the λ system [20]:

�(βA) = − ln
〈

Je−�(βU)
〉

λ
(4)
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where �(βU) ≡ (βu)(x; λ′) − (βu)(X; λ), J ≡ |∂x/∂X|

is the Jacobian of themapping, and (βu)(x; λ) is the unit-

less energy for configuration x and parameter value λ.

Mapped averaging is the application of targeted

perturbation for the infinitesimal change λ → λ + dλ,

which yields the thermodynamic free-energy derivatives

(with µ representing a second parameter along with λ in

the second derivative):

(βA)λ ≡
∂(βA)

∂λ
= −〈Jλ〉 +

〈

(βU)λ
〉

(5a)

(βA)λµ ≡
∂2(βA)

∂λ∂µ
= −

〈

Jλµ − JλJµ
〉

+
〈

(βU)λµ

〉

− Cov
[

Jλ − (βU)λ, Jµ − (βU)µ
]

(5b)

where Cov[Y, Z] ≡ 〈YZ〉 − 〈Y〉 〈Z〉. In this limit, the

mapping is defined as a mapping velocity ẋ
λ, such that

x = X + ẋ
λdλ (the λ superscript on ẋ indicates the vari-

able ‘driving’ the mapping). A good mapping velocity

is prescribed by conserving the normalised probabilities

(p/q) of configurations in the perturbed and unperturbed

states [13]:

δ

δλ

(

p

q

)

+ ∇x ·

(

p

q
ẋ
λ

)

= 0 (6)

where q is the normalisation constant for the unnor-

malised probability p. This equation cannot be solved

in general for the exact p and q, so approximations are

employed with the aim of generating a mapping velocity

ẋ
λ that is effective if not perfect. This mapping velocity is

used to calculate the derivatives of J and βU using [13]:

Jλ = ∇x · ẋλ (7a)

Jλµ − JλJµ = ∇x · ẋλ
µ + ẋ

µ · ∇x(∇x · ẋλ) (7b)

(βU)λ = (βu)λ − βf · ẋλ (7c)

(βU)λµ = (βu)λµ −
(

ẋ
λ
µ + ẋ

µ · ∇xẋ
λ
)

· βf

+ ẋ
µ · βφ · ẋλ −

(

ẋ
λ · (βf)µ + ẋ

µ · (βf)λ
)

,

(7d)

where f ≡ −∇xu is the force vector and φ ≡ ∇x∇xu

is the force-constant matrix (Hessian) for a given con-

figuration. Equation (7c) shows how we use (βU)λ to

represent the variation of the energy due to its direct

dependence on λ (if any), plus the effect of the mapping

(i.e. U is in a Lagrangian frame; u is Eulerian).

We may combine Equations (5a), (6), (7a), and (7c) to

obtain:

(βA)λ = −(ln q)λ +
〈

(ln p)λ + (βu)λ

+ẋ
λ ·

(

∇x ln p − βf
)〉

. (8)

Whereas Equations (5) and (7) are true in general—for

any choice of ẋλ—Equation (8) is correct only if ẋλ is

given according to Equation (6).

We consider the potential u(x) as a sum of singlet (φ1),

pair (φ2), and possibly multibody contributions:

u(x) =

N
∑

i

φ1(ri) +

N
∑

i,j

φ2(ri, rj) + · · · (9)

We use r to represent a spatial-coordinate vector, so ri

represents the position of molecule i.

3. Singlet density

3.1. General equations

The singlet density ρ(1)(r) is given as the functional

derivative of the grand potential βA with respect to the

single-particle potential φ1(r) [21]:

ρ(1)(r) =
1

β

(

δβA

δφ1(r)

)

β ,V ,µ

=

〈

N
∑

i

δ(r − ri)

〉

(10)

This expression as an average of Dirac delta-functions

prescribes the use of histograms to evaluate ρ(1)(r),

which is the conventional approach.

Given that ρ(1) can be expressed as the first derivative

of the free energy, the mapped-averaging framework can

be applied to develop alternative ensemble averages for it.

Accordingly, in this section we develop a general mapped

average for the singlet density function.

Let p(ri;φ1) be the approximate unnormalised density

function for particle i, which we assume is independent

of the other positions and with a Boltzmann dependence

on φ1:

p(ri;φ1(r)) = p0(ri) exp(−βφ1(ri)) (11a)

q(φ1(r)) =

∫

p(r̃;φ1(r)) dr̃ (11b)

where p0(r) is a φ1-independent contribution to p that

allows for additional flexibility in choosing its form. Then

p(x) is given as a product of p(ri) over all i = 1 . . .N.

In this case, the balance equation for the mapping may

be decomposed, yielding the same equation for each

coordinate’s mapping velocity ṙ
φ1(r)
i (ri), thus [13]:

∇ri ·
(

p(ri;φ1(r))ṙ
φ1(r)
i

)

= −q
δ

δφ1(r)

(

p(ri;φ1(r))

q

)

= βp(r)

(

δ(r − ri) −
p(ri)

q

)

(12)
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For a mapping given according to Equations (11)

and (12), the singlet density can be given via Equation (8),

summed over all molecules:

ρ(1)(r) =
1

β
(βA)φ1(r) =

N

q
p(r;φ1(r))

+
1

β

∑

i

〈

ṙ
φ1(r)
i ·

[

∇ri ln p0(ri)

−β(∇riφ1(ri) + fi)
]

〉

. (13)

Equation (13) exhibits the general structure typically seen

in a mapped average. The first term on the right-hand

side shows that p(r) forms a baseline estimate of ρ(1)(r),

and the ensemble average is the correction to this esti-

mate. In the average, note that the force on atom i, fi,

includes a contribution from the gradient of the singlet

potential φ1, and this is cancelled by the explicit addi-

tion of ∇riφ1 seen here. The ensemble average will be

small to the extent that other atoms do not contribute

much to fi (e.g. at low density), and to the extent that p0
is weakly varying (whichmeans that p is well represented

by exp(−βφ1)).

We note also that the terms (ln p)φ1 and (βu)φ1 that

appear in Equation (8) both give rise to delta functions,

but these cancel, leaving no averages that need to be

evaluated using histograms. Instead, one simply selects

a point in space r (or set of points to get a density pro-

file), which specifies p(r;φ1(r)) and themapping velocity,

ṙ
φ1(r)
i (see Equation (16) below for an example), then the

average specified by Equation (13) is recorded to deter-

mine the singlet density there. The average involves sum-

ming over all othermolecules, regardless of their position

(i.e. it is not restricted to atoms in a bin centred on r), and

evaluating the total force on them (and perhaps the gradi-

ent of p0 at their position), and accumulating as specified

in (13).

3.2. One-dimensional Cartesian variation

It is easier to proceed further if we have in mind a spe-

cific geometry. Hence we consider the case where the

density is inhomogeneous in only one dimension (say

z), and the system is periodic in all dimensions. Then

derivatives with respect to x and y can be made zero, and

Equation (12) becomes (after trivial integration over x

and y):

d

dzi

(

p(zi)ż
φ1(z)
i

)

= βp(z)

(

δ(z − zi)

A
−

p(zi)

q

)

(14)

whereA is the cross-sectional area and now

q = A

∫ L/2

−L/2
p(z̃) dz̃ (15)

such that the simulation box extends from−L/2 to L/2 in

the z dimension.On integrating Equation (14) from z+ to

z− (via the periodic boundary) and using the boundary

condition ż
φ1(z)
i (z+) = −ż

φ1(z)
i (z−):

ż
φ1(z)
i (zi) =

β

A

p(z)

p(zi)

(

1

2
− H(z − zi) −

c(zi) − c(z)

c(L/2)

)

,

(16)

which introduces the cumulative (unnormalized) proba-

bility distribution function:

c(zi) =

∫ zi

−L/2
p(z̃) dz̃. (17)

Also for the 1-D case, Equation (13) is written:

ρ(z) =
N

q
p(z) −

1

β

〈

N
∑

i

ż
φ1(z)
i

(

βfz,i −
d ln p(zi)

dzi

)

〉

(18)

where fz,i is the z-component of the force on molecule i.

3.3. Uniform p and force-samplingmethod

For the special case of uniform p(z), i.e. p independent

of z, q = V and Equation (16) for the mapping velocity

becomes:

ż
φ1(z)
i (zi) =

β

A

(

1

2
− H(z − zi) −

zi − z

L

)

(19)

Substituting Equation (19) in Equation (18):

ρ(z) =
N

V
−

〈

1

A

N
∑

i

(

1

2
− H(z − zi) −

zi − z

L

)

βfz,i

〉

(20)

Equation (20) is the reformulated ensemble average for

singlet density obtained by uniform mapped averaging.

Using this method, the variation in density between any

two z coordinates (say z2 and z1 such that z2 > z1) is

(�ρ = ρ(z2) − ρ(z1)):

�ρ =
1

A

N
∑

i

βfz,i

(

H(z2 − zi) − H(z1 − zi) +
z1 − z2

L

)

=
β

A

(

∑

z1<zi<z2

fz,i +
z1 − z2

L

N
∑

i

fz,i

)

(21)

When
∑N

i fz,i = 0, the variation in density (�ρ) given

by (21) is the same as the difference in singlet densi-

ties between z2 and z1 coordinates using Equation (1).

However, when the sum of forces on all atoms in the

simulation box is not zero, force sampling gives slightly

different densities at both ends of the simulation box

[12]. In contrast, in themapped averaging development a
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Figure 1. Monte Carlo simulation results of the singlet
density profiles obtained using uniform mapped-averaging
(Equation (20)), force sampling [12], and conventional histogram
methods. Simulated system is a Lennard-Jones (LJ) fluid under the
influence of parabolic external potential, φ1 = ǫ(z/σ)2, where σ

and ǫ are the LJ size and energy parameters, respectively. Plotted
quantities are in units such that σ = 1. Inset figure shows the
same curves but with the ordinate scale greatly expanded to
show the behaviour of the tails. Additional simulation details are
provided in the Appendix.

linear term emerges (second term in Equation (21)) that

has the effect of equalising the densities at the two ends

of the box. This effect is demonstrated in Figure 1, which

shows results from Monte Carlo simulations performed

by us of density profiles for a Lennard-Jones fluid under

the influence of a parabolic external potential. The results

obtained using uniform mapped-averaging and force

sampling are nearly indistinguishable from each other.

However, near the ends of the simulation box where no

particles are detected by the conventional approach, for

sufficiently large systems the uniformmapped-averaging

and force-sampling methods densities are statistically

zero, but not identically so. The inset zooms in the den-

sity profiles near the ends of the box, showing an offset

exhibited by the force-sampling method that is corrected

by the mapped-averaging formula. The force-sampling

results reported by de las Heras and Schmidt [12] exhibit

the same offset behaviour, and also show that the effect is

attenuated as more sampling is performed.

4. Pair density

4.1. General equations

For this development we assume a homogeneous system

(in particular, φ1 ≡ 0), so that the pair density ρ(2)(ri, rj)

is a function only of the separation rj − ri.

The pair distribution as a function of the intermolec-

ular separation r can be given as a functional derivative

with respect to the pair potential φ2 [21], and this pro-

vides a route to a mapped-average formulation. We have

then:

ρ(2)(r) =
2

Vβ

(

δβA

δφ2(r)

)

β ,V ,N

(22a)

≡
2

Vβ

N
∑

i=1

∑

j<i

(

δβA

δφ
(ij)
2 (r)

)

β ,V ,N

=
2

V

N
∑

i=1

∑

j<i

〈

δ(r − rij)

4πr2

〉

(22b)

where r ≡ |r|; the division by V results from functional

differentiationwith respect toφ2(r) rather thanφ2(r1, r2)

[21]. Each atom i appears in a pair with every other atom

j, and when we go to develop a mapping for i we do

not want to consider all these interactions at once, which

would be needed for a mapping based on (22a). Accord-

ingly, in (22b) we introduce φ
(ij)
2 as the pair potential

for the ij pair, treating it as if it can be changed inde-

pendently of all the other pair interactions. This is just a

formal device for the development, as in the end we take

φ
(ij)
2 ≡ φ2 for all i,j. Our aim then is to develop a mapped

average for the functional derivative in (22b). In the pre-

sentation to follow, for clarity of notation we generally

omit the (ij) superscript on φ2, except in a few instances

where the distinction needs to be emphasised.

As with the singlet case, let us define p(rij) to depend

on the pair potential but with an additional term that

gives more flexibility to its form, thus:

p(rij;φ2(r)) = p0(rij) exp(−βφ2(rij)) (23a)

q(φ2(r)) =

∫

p(r̃ij;φ2(r))dr̃ij (23b)

Typically the system volume is much larger than the pair-

interaction volume, and q ≈ V . Similar to Equation (12),

the mapping velocity ṙ
φ2(r)
ij is given by:

∇rij ·
(

p(rij;φ2(r))ṙ
φ2(r)
ij

)

= βp(r)

(

δ(r − rij) −
p(rij)

q

)

(24)

We obtain from Equation (24) a specification of the map-

ping for the pair separation, ṙ
φ2(r)
ij , which is insufficient

to specify the movements of the actual molecules i and

j. A natural choice is to move the molecules while keep-

ing the pair center-of-mass fixed, which for equal-mass

molecules specifies:

ṙ
φ2(r)
j = −ṙ

φ2(r)
i = 1

2 ṙ
φ2(r)
ij (25)
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From Equation (8) we have, for mapping of just i and j,

(

δβA

δφ
(ij)
2 (r)

)

= −(ln q)
φ

(ij)
2 (r)

+
〈

ṙ
φ2(r)
j ·

(

∇rj ln p − βfj

)

+ṙ
φ2(r)
i ·

(

∇ri ln p − βfi
)

〉

=
βp(r)

q
+

〈

ṙ
φ2(r)
ij ·

(

∇rij ln p(rij) −
β

2

(

fj − fi

)

)〉

(26)

where in the first line we have already imposed the can-

cellation of (ln p)λ and (βu)λ. As with the singlet case,

the∇rij ln p(rij) term includes a contribution fromφ2(rij),

which cancels the contributions to fj and fi due to their

direct mutual interaction.

Employing this result in Equation (22b), we arrive at

the mapped-average expression for the pair densities:

ρ(2)(r) =
N(N − 1)

Vq
p(r)

+
2

V

〈

N
∑

i=1

∑

j<i

ṙ
φ2(r)
ij ·

(

1

β
∇rij ln p(rij)

−
1

2

(

fj − fi

)

)

〉

(27)

4.2. Isotropic distribution

For the case of only radial dependence, we will have

ṙ
φ2(r)
ij = ṙ

φ2(r)
ij r̂ij (28)

Then Equation (24) can be integrated over angular coor-

dinates and simplified as:

1

r2ij

d

drij

(

r2ijpṙ
φ2(r)
ij

)

= βp(r)

(

δ(r − rij)

4πr2
−

p(rij)

q

)

.

(29)

Using a boundary condition that r2ijp(rij)ṙ
φ2(r)
ij = 0 at

rij = 0, and integrating from 0 to rij:

r2ijp(rij)ṙ
φ2(r)
ij = βp(r)

∫ rij

0
dr̃ijr̃

2
ij

(

δ(r − r̃ij)

4πr2
−

p(r̃ij)

q

)

ṙ
φ(r)
ij (rij) = β

p(r)

r2ijp(rij)

(

H(rij − r)

4π
−

cr(rij)

q

)

(30)

where the radial-cumulative probability function is

cr(rij) =

∫ rij

0
r̃2p(r̃) dr̃. (31)

Equation (27) becomes:

ρ(2)(r) =
N(N − 1)

Vq
p(r)

+
2

V

〈

N
∑

i=1

∑

j<i

ṙ
φ2(r)
ij

(

1

β

∂ ln p(rij)

∂rij

−
1

2

(

fj − fi

)

· r̂ij

)

〉

. (32)

4.3. Uniform p and force-samplingmethod

For the uniform-reference treatment, when p is approx-

imated as independent of r (which requires p0(r) =

exp(+βφ2(r))):

ṙ
φ(r)
ij (rij) = β

(

H(rij − r)

4πr2ij
−

rij

3V

)

(33)

Therefore, pair densities can be calculated by:

ρ(2)(r) = ρ2 −
ρ

V

−
β

V

〈

N
∑

i=1

∑

j<i

(

H(rij − r)

4πr2ij
−

rij

3V

)

× (fj − fi) · r̂ij

〉

(34)

Equation (34) is the reformulated ensemble average for

pair densities obtained by uniform-reference mapped

averaging, and it is very similar to Equation (3) obtained

via the force sampling approach. The difference involves

only the terms ρ/V and rij/3V , which will vanish in the

thermodynamic limit V → ∞.

We note that (34) can be rearranged as follows:

ρ(2)(r) = ρ2 −
ρ

V

−
β

V

〈

N
∑

i=1

fi ·
∑

j
=i

r̂ij

(

H(rij − r)

4πr2ij
−

rij

3V

)〉

(35)

It is interesting to consider ρ(2) inside the core, wherein

H(rij − r) = 1 for all pairs. In this region the pair density

is zero, requiring that the second term in Equation (35)

must average to ρ2. It is not obvious that the formula sat-

isfies this, but empirically we observe it to be true (within

statistical uncertainty). We can go a step further and

remove the uncertainty in the core by asserting that the
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pair density is zero there, and evaluate the r-dependent

pair density via the difference ρ(2)(r) − ρ(2)(0), yielding

ρ(2)(r) =
β

V

〈

N
∑

i=1

fi ·
∑

j 
=i

r̂ij
1 − H(rij − r)

4πr2ij

〉

, (36)

which uses ρ(2)(0) = 0. In contrast to Equation (35),

which involves sums over pairs rij > r, Equation (36)

requires sums over pairs that are separated by less than

r. This formulation appears to be advantageous as it

requires contributions from fewer pairs (assuming small

r is of interest), and it eliminates potentially problematic

issues with long-range contributions.

5. Conclusion

A uniform-reference mapped-averaging formulation for

the singlet density and pair densities has been presented,

and shown to be equivalent to previous formulas which

were derived based on considerations involving the force

density. We do in fact identify one small difference in

the formulas for the singlet density, but it turns out

that the mapped-average formula provides a correction

needed when the sum of forces over all molecules is

not zero (which may occur due to fluctuations, but will

average to zero with enough sampling). Previous studies

[11,12] have shown that the statistical noise is signifi-

cantly smaller in the density profiles obtained via these

formulas, compared to the conventional histogram based

approach. The force-based and mapped-averaging for-

mulas offer another significant advantage, in that their

uncertainty is insensitive to the grid size, allowing for

evaluation of the densities with arbitrary resolution. The

efficiency of these formulations is of course good in gen-

eral, but it should be particularly valuable in applica-

tions involving ab initio molecular dynamics, where it

is difficult to perform the extensive sampling needed to

generate density distributions to good precision.

Mapped averaging is a general framework, and it is

possible to develop other formulas by making differ-

ent choices for the reference distribution p. A reason-

able alternative would set it equal the form given by

using p0 = 1 in Equations (11) or (23), which represents

the low-density estimates of ρ(1) and ρ(2), respectively.

Another choice is to use an estimate of the density distri-

bution at the conditions of interest, generated for example

by a short molecular simulation. It is quite possible that

these choices do not yield improvements in performance,

because it appears that coordinated multi-atom motions

are needed to form a good mapping at high density.

Nevertheless, it is a worthwhile direction to investigate,

and it provides an avenue for generating yet other ideas.

Finally, we note that ρ(2) can be given by a second-

order functional derivative with respect to φ1, and this

can be used to generate a completely different mapped

average involving the Hessian matrix as well as the forces

via Equations (5b) and (7).
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Appendix. Details of calculations

We employed the Lennard-Jones (LJ) model defined by the
pair potential: U(r) = 4ǫ((σ/r)12 − (σ/r)6), where σ and ǫ

are the LJ size and energy parameters, respectively, and r
is the pair separation. The LJ potential was truncated at
rc = 3σ , and σ and ǫ/kB parameters were set to unity (LJ
units). Periodic boundary conditions were employed in all
three orthogonal directions, using a cubic simulation vol-
ume of edge length L= 15.874. Simulation runs of 108 MC
steps (107 steps of equilibration) were performed on simu-
lation boxes containing 500 atoms at density ρ = 0.125 and
temperature T = 5. Data were recorded using a bin width
�z = L/1000.
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