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ABSTRACT

We show that two recently proposed methods for computing singlet and pair density distributions
without histograms are particular implementations of the general mapped-averaging framework for
deriving alternative ensemble averages for physical properties.
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1. Introduction

Spatial density functions are central quantities in the
formalism of statistical mechanics, as they are used
to characterise inhomogeneities and structural correla-
tions in molecular systems. Singlet (one-body) density
distributions are valuable when dealing with systems
where interfaces, impurities, or inhomogeneous exter-
nal fields generate non-uniformity, as well as systems
that become inhomogeneous spontaneously, such as in
crystals. Computational studies are often performed to
measure singlet density distributions, which are used to
study wetting/drying properties [1], phase coexistence
[2], capillary effects [3], sedimentation [4], and adsorp-
tion [5]. Similarly, the pair distribution functions (or
radial distribution functions) have been extensively used
for disordered systems as a tool to understand the struc-
ture/property relationships like amorphization [6], solid
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dispersions [7], coarse graining [8], biomineralization
processes [9], polymorphism and stability [10].

Given the wealth of knowledge available from these
density distribution functions, their accurate measure-
ment is important. However, the experimental uncer-
tainty induced by quantum counting inefficiencies,
experimental imprecision or sample inhomogeneities,
can lead to errors in drawing meaningful conclu-
sions from density distribution studies. Thus, computa-
tional studies are needed. Computationally, the standard
approach to sample these density distribution functions
is to discretise the space into a 3D grid (bins) and monitor
the filling of the histograms in the course of the simula-
tion. One issue with this approach is the tradeoft between
precision and resolution: as the bin size decreases and
the resolution of the measured density profile increases,
the uncertainty in the calculated values increases because
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2 A.PUROHIT ET AL.

the number of events contributing to each bin is pro-
portional to the volume of the bin. Thus, the variance of
the distributions diverges when the grid spacing tends to
zero. Hence, there is a need for alternatives to the con-
ventional counting based method conventionally used in
literature.

In this regard, a method based on force sampling was
recently developed that leads to a reduced variance of
the results with respect to the counting based technique,
achieving a finite variance even when the grid spacing
tends to zero. The singlet density can be computed via
sampling the instantaneous forces acting on the particles
[11,12]:

pPW =po+p | ds-£(s) (1)
y(©)
where B = (kgT)~! with T the temperature and kg the
Boltzmann constant, p, is the normalisation constant,
y (r) represents a path that connects, say, the origin with
position r, and ds is the differential line element. Also,
f(r) is the force density at position r, defined:

N
f(r) = <Z £id (r; — r)> )
i=1

where f; is the total force acting on molecule i, which is
at position r;, é is the Dirac delta function, and the angle
brackets represent an ensemble average over configura-
tions of the N molecules.

The calculation approach is to sample the force density
during the simulation, and then compute p(r) via spa-
tial integration of it. This method significantly enhances
the convergence of simulations compared to the con-
ventional counting based method [12]. Additionally, the
resolution used for recording the force density as a func-
tion of position has no effect on the statistical uncertainty
of the calculated density, because only the integral of f is
required in Equation (1).

Similarly, the pair distribution function can be com-
puted via force sampling by [11]:

() = p? — _<ZZ H(ry _

,3(f f;) - fij>
i=1 j<i

(3)
H(.) denotes the Heaviside function and r;; = r; —r; is
the position vector between particles i and j, rij = Irjjl,
and f',j = r;j/rij (Equation (3) differs slightly from the

formula presented in [11], which omitted a factor of 2).
In a separate development, we introduced the
‘mapped-averaging’ framework, through which approx-
imate theoretical results derived from statistical mechan-
ics can be reintroduced into the underlying formalism,

yielding new ensemble averages that give exactly the

error in the theory [13]. Among other potential uses,
this result allows direct evaluation of the correction to
the theory by molecular simulation. To the extent that
the theory is accurate, this correction will be small, and
hence measured with small uncertainty. In favourable
cases, the computational effort needed to evaluate a prop-
erty to a given precision via mapped averaging may be
many orders of magnitude less than that required by the
conventional average [14-19].

In this paper, we extend the mapped-averging frame-
work to derive histogram-free expressions for the singlet
and pair density distribution functions. We show that
particular cases of these expressions correspond to the
force-based formulas reviewed above. This observation
is interesting in itself, because it is often instructive to see
how a given result can be generated in different ways. The
development is also potentially useful, because as a gen-
eral framework for deriving ensemble averages, mapped
averaging opens the door to the formulation of new
expressions that can further improve the performance of
density calculations.

The outline of this paper is as follows. The next
section provides a brief overview of the mapped aver-
aging framework. In the two sections following that,
we apply mapped averaging to the formulation of sin-
glet and pair densities, respectively. We finish with some
concluding remarks.

2. Overview of mapped averaging

The mapped averaging framework is derived from the
idea of targeted perturbation, which was suggested by
Jarzynski as a means to improve the calculation of free
energy differences [20]. Let X be a vector of all rele-
vant coordinates describing a configuration (hence for N
monatomic molecules in a 3-dimensional space, X com-
prises 3N coordinate values). Then a coordinate mapping
X — x couples with the parameter perturbation A — 1/,
such that the transformed coordinates x are more rep-
resentative of those encountered in the A’ state. This
increases the overlap of the sets of configurations relevant
to the A and A systems, which consequently enhances
the precision of calculations. When applied for a differen-
tial perturbation [17], the approach yields expressions for
free-energy derivatives, and thereby provides a route to
derive new ensemble averages for thermodynamic prop-
erties [13].

Specifically, we are interested in the change in the
unitless free energy BA: A(BA) = (BA)(V) — (BA)(L).
Jarzynski showed that this can be expressed as a targeted-
perturbation ensemble average in the A system [20]:

—In (]eiA(ﬂ U)>A (4)

A(BA) =



where A(BU) = (Bu)(x; ) — (Bu)(X; 1), ] = |9x/9X|
is the Jacobian of the mapping, and (Bu)(x; 1) is the unit-
less energy for configuration x and parameter value A.

Mapped averaging is the application of targeted
perturbation for the infinitesimal change A — X + dA,
which yields the thermodynamic free-energy derivatives
(with p representing a second parameter along with A in
the second derivative):

Jd(BA
(BA), = % =— () +((BU);) (52)
3*(BA)
(BA)y, = o (T = 1) +((BUs )

— Cov [J = (BU)sJu — (BU), ]
(5b)

where Cov[Y,Z] = (YZ) — (Y) (Z). In this limit, the
mapping is defined as a mapping velocity x*, such that
x = X + x*dA (the X superscript on x indicates the vari-
able ‘driving’ the mapping). A good mapping velocity
is prescribed by conserving the normalised probabilities
(p/q) of configurations in the perturbed and unperturbed

states [13]:
S (p (P =
84 (q) . (qx ) =9 ©

where g is the normalisation constant for the unnor-
malised probability p. This equation cannot be solved
in general for the exact p and ¢, so approximations are
employed with the aim of generating a mapping velocity
x* that is effective if not perfect. This mapping velocity is
used to calculate the derivatives of ] and SU using [13]:

Jp = Vy-X" (7a)
Jow = JnJu = Vi - X, + %+ Vy(Vy - %) (7b)
(BU), = (Bu);, — Bf - X" (7¢)

(BU)s, = (Bway — (X, + % - V") - BE

+x B X — (X (B, + X (BDL),
(7d)

where f = —Vyu is the force vector and ¢ = VyVyu
is the force-constant matrix (Hessian) for a given con-
figuration. Equation (7c) shows how we use (BU), to
represent the variation of the energy due to its direct
dependence on A (if any), plus the effect of the mapping
(i.e. U isin a Lagrangian frame; u is Eulerian).

We may combine Equations (5a), (6), (7a), and (7¢) to
obtain:

(BA), = —(Ing);. + ((np); + (Bu)s,
+x* - (VxInp — Bf)). (8)
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Whereas Equations (5) and (7) are true in general—for
any choice of x*—Equation (8) is correct only if x* is
given according to Equation (6).

We consider the potential #(x) as a sum of singlet (¢;),
pair (¢2), and possibly multibody contributions:

N N

ux) =Y ¢ + Y ot +--- (9)
i i

We use r to represent a spatial-coordinate vector, so r;

represents the position of molecule i.

3. Singlet density
3.1. General equations

The singlet density p(V(r) is given as the functional
derivative of the grand potential BA with respect to the
single-particle potential ¢; (r) [21]:

W () — l( 3pA )
7= 500 )

- <le:3(r - ri)>

This expression as an average of Dirac delta-functions
prescribes the use of histograms to evaluate p(r),
which is the conventional approach.

Given that p(! can be expressed as the first derivative
of the free energy, the mapped-averaging framework can
be applied to develop alternative ensemble averages for it.
Accordingly, in this section we develop a general mapped
average for the singlet density function.

Let p(r;; ¢1) be the approximate unnormalised density
function for particle i, which we assume is independent
of the other positions and with a Boltzmann dependence

on @p:

p(ri; d1(x)) = po(xi) exp(—Be1(r:))
g1 (1)) = / p(Es (1)) dF

(10)

(11a)
(11b)

where py(r) is a ¢-independent contribution to p that
allows for additional flexibility in choosing its form. Then
p(x) is given as a product of p(r;) over alli=1...N.
In this case, the balance equation for the mapping may
be decomposed, yielding the same equation for each
coordinate’s mapping velocity 1"?1 ® (r;), thus [13]:

Vi, (prsgr D)

8 (p(ri;qsl(r)))
Ts1(r) q
p(r;)

= S(r—r) — 2
ﬁp(r)<(r r;) q)

(12)
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For a mapping given according to Equations (11)
and (12), the singlet density can be given via Equation (8),
summed over all molecules:

1
p

+ ,% > (1 [V Inpo(x)

M — _N_
() = =(BA)¢ (v —Ep(r>¢1(r))

—B(Ver() + )] ). (13)

Equation (13) exhibits the general structure typically seen
in a mapped average. The first term on the right-hand
side shows that p(r) forms a baseline estimate of pW(r),
and the ensemble average is the correction to this esti-
mate. In the average, note that the force on atom i, fj,
includes a contribution from the gradient of the singlet
potential ¢1, and this is cancelled by the explicit addi-
tion of Vy,¢; seen here. The ensemble average will be
small to the extent that other atoms do not contribute
much to f; (e.g. at low density), and to the extent that pg
is weakly varying (which means that p is well represented
by exp(—B¢1)).

We note also that the terms (Inp)y, and (Bu)g, that
appear in Equation (8) both give rise to delta functions,
but these cancel, leaving no averages that need to be
evaluated using histograms. Instead, one simply selects
a point in space r (or set of points to get a density pro-
file), which specifies p(r; ¢ (r)) and the mapping velocity,
i'?’l(r) (see Equation (16) below for an example), then the
average specified by Equation (13) is recorded to deter-
mine the singlet density there. The average involves sum-
ming over all other molecules, regardless of their position
(i.e. it is not restricted to atoms in a bin centred on r), and
evaluating the total force on them (and perhaps the gradi-
ent of pg at their position), and accumulating as specified
in (13).

3.2. One-dimensional Cartesian variation

It is easier to proceed further if we have in mind a spe-
cific geometry. Hence we consider the case where the
density is inhomogeneous in only one dimension (say
z), and the system is periodic in all dimensions. Then
derivatives with respect to x and y can be made zero, and
Equation (12) becomes (after trivial integration over x
and y):

d @) 8(z—z) pz)
5 (p@2?) = ﬁp(z)( ; ) (19)

A
where A is the cross-sectional area and now
L2
qg=A p(z)dz (15)

-L)2

such that the simulation box extends from —L/2 to L/2 in
the z dimension. On integrating Equation (14) from z* to
z~ (via the periodic boundary) and using the boundary

condition thn(z) (zh) = —2?1(2) (z7):
o, _ BP@ (1 _C(Zi)_C(Z))
#0e = G2 (5 - e - - 225D,

which introduces the cumulative (unnormalized) proba-
bility distribution function:

c(z)) = /Zi p(z) dz. (17)
—L)2

Also for the 1-D case, Equation (13) is written:

N
_ N 1 .1(2) ' dlnP(Zi)
@) =" b~ <Z 8 Al - —4
(18)
where f, ; is the z-component of the force on molecule i.

3.3. Uniform p and force-sampling method

For the special case of uniform p(z), i.e. p independent
of z, ¢ = V and Equation (16) for the mapping velocity
becomes:

21751(2)(21,) = % (é —H(z—z) — i ; Z) (19)

Substituting Equation (19) in Equation (18):

N 1 N 1 H Zi— 2

p@) =73 - ZZ(E— (z—z) = = )ﬂfz,,
(20)

Equation (20) is the reformulated ensemble average for

singlet density obtained by uniform mapped averaging.

Using this method, the variation in density between any

two z coordinates (say z and z; such that z, > z;) is

(Ap = p(z2) = p(21)):

1 & _
Ap ZZZﬂfz,i (H(Zz —z) — H(zi —z) + 2 I z2>

N
Sy eeeye) w

When Zf\] fzi = 0, the variation in density (Ap) given
by (21) is the same as the difference in singlet densi-
ties between z; and z; coordinates using Equation (1).
However, when the sum of forces on all atoms in the
simulation box is not zero, force sampling gives slightly
different densities at both ends of the simulation box
[12]. In contrast, in the mapped averaging development a
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Figure 1. Monte Carlo simulation results of the singlet
density profiles obtained using uniform mapped-averaging
(Equation (20)), force sampling [12], and conventional histogram
methods. Simulated system is a Lennard-Jones (LJ) fluid under the
influence of parabolic external potential, ¢1 = €(z/0)%, where &
and e are the LJ size and energy parameters, respectively. Plotted
quantities are in units such that o = 1. Inset figure shows the
same curves but with the ordinate scale greatly expanded to
show the behaviour of the tails. Additional simulation details are
provided in the Appendix.

linear term emerges (second term in Equation (21)) that
has the effect of equalising the densities at the two ends
of the box. This effect is demonstrated in Figure 1, which
shows results from Monte Carlo simulations performed
by us of density profiles for a Lennard-Jones fluid under
the influence of a parabolic external potential. The results
obtained using uniform mapped-averaging and force
sampling are nearly indistinguishable from each other.
However, near the ends of the simulation box where no
particles are detected by the conventional approach, for
sufficiently large systems the uniform mapped-averaging
and force-sampling methods densities are statistically
zero, but not identically so. The inset zooms in the den-
sity profiles near the ends of the box, showing an offset
exhibited by the force-sampling method that is corrected
by the mapped-averaging formula. The force-sampling
results reported by de las Heras and Schmidt [12] exhibit
the same offset behaviour, and also show that the effect is
attenuated as more sampling is performed.

4, Pair density
4.1. General equations

For this development we assume a homogeneous system
(in particular, ¢; = 0), so that the pair density p@ (x;, rj)
is a function only of the separation r; — r;.

The pair distribution as a function of the intermolec-
ular separation r can be given as a functional derivative
with respect to the pair potential ¢, [21], and this pro-
vides a route to a mapped-average formulation. We have
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then:
2@ () = Viﬂ (aifé)),g N (22a)
_ ZZ( SBA )
- =5 (11)() SV
_2 XN:Z<M> (22b)
V &\

where r = [r|; the division by V results from functional
differentiation with respect to ¢, (r) rather than ¢, (r1, r»)
[21]. Each atom 7 appears in a pair with every other atom
j, and when we go to develop a mapping for i we do
not want to consider all these interactions at once, which

would be needed for a mapping based on (22a). Accord-

ingly, in (22b) we introduce ¢(]) as the pair potential

for the ij pair, treating it as if it can be changed inde-
pendently of all the other pair interactions. This is just a
formal device for the development, as in the end we take

qb(zj) = ¢, for all i,j. Our aim then is to develop a mapped
average for the functional derivative in (22b). In the pre-
sentation to follow, for clarity of notation we generally
omit the (i) superscript on ¢, except in a few instances
where the distinction needs to be emphasised.

As with the singlet case, let us define p(r;) to depend
on the pair potential but with an additional term that
gives more flexibility to its form, thus:

p(xij; d2(x)) = po(ry) exp(—Ba(ry)) (23a)

q(¢a2(x)) = fP(f‘ijsfﬁz(l‘))df‘ij (23b)

Typically the system volume is much larger than the pair-
interaction volume, and g & V. Similar to Equation (12),

-2 (1) .

the mapping veloc1ty 1" is given by:

Vey - (P 2 )"
= pp(®) <6<r 1) - 1%) (24)

We obtain from Equation (24) a specification of the map-
ping for the pair separation, ¥ ?2( ), which is insufficient
to specify the movements of the actual molecules i and
j. A natural choice is to move the molecules while keep-
ing the pair center-of-mass fixed, which for equal-mass

molecules specifies:

ha(r) _ ¢2(1') 1. ¢ (r)
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From Equation (8) we have, for mapping of just i and j,

SPA
— | = —(ng) i
(M(u)( )> DDy ()

+ (20 (Vi Inp - )
+i20 (Y, Inp - B))

— @ + <r$2(l‘) . (Vrij lnp(rl]) _

2w-1))

(26)

where in the first line we have already imposed the can-
cellation of (Inp), and (Bu),. As with the singlet case,
the Vi, In p(r;j) term includes a contribution from ¢ (r;j),
which cancels the contributions to f; and f; due to their
direct mutual interaction.

Employing this result in Equation (22b), we arrive at
the mapped-average expression for the pair densities:

@, NN=1
p(r) = v p(©)

2 [ & 1
+‘—/<Z rﬁZ(r) (EVrljlnp(rij)

i=1 j<i

L-0)) @)

4.2. Isotropic distribution

For the case of only radial dependence, we will have

22;2(1‘) — ‘fZ(r)’\IJ (28)

Then Equation (24) can be integrated over angular coor-
dinates and simplified as:

1 d e\ 5(r — rij) P(rij)
2dr, (l]pr,] >_,Bp(r) anrr q )’

(29)
$2(r) _ —0 at

Using a boundary condition that rl]p(r,J)r
rij = 0, and integrating from 0 to r;;:

i (8(r—Ty)  p(ry)
$2(r) y J
rp(r# " = Bp(r) /0 drijF i( P )

p(r) (H(nj —-n Cr(nj)) (30)
q

,JP (rlj) 4
where the radial-cumulative probability function is

i ry) =

e (rij) = / ! #p(7) dF. (31)
0

Equation (27) becomes:

N(N-1)

e
L2 <Z 30 < 1 9Inp(ry)
V arij
i=1 j<i

5 6-1) 1) > (32)

4.3. Uniform p and force-sampling method

For the uniform-reference treatment, when p is approx-
imated as independent of r (which requires po(r) =

exp(+B¢2(r))):

20 (ry) = B (H(”—Zr) - r—f) (33)

4 ri
Therefore, pair densities can be calculated by:

@Dy =2 P
prn=pr"-3

B N H(rij — 1) Tij
—V<Z§( pe- _W)

X (f] - f,) . f‘l]> (34)

Equation (34) is the reformulated ensemble average for
pair densities obtained by uniform-reference mapped
averaging, and it is very similar to Equation (3) obtained
via the force sampling approach. The difference involves
only the terms p/V and r;;/3V, which will vanish in the
thermodynamic limit V' — oo.

We note that (34) can be rearranged as follows:

@y 2_ P
p(r)=p v
B H(rij — 1) Tij
— f; -
V<Z Zr”( anrz 3V
i=1 j#i ij

(35)

It is interesting to consider ,0(2) inside the core, wherein
H(rij — r) = 1 for all pairs. In this region the pair density
is zero, requiring that the second term in Equation (35)
must average to p2. It is not obvious that the formula sat-
isfies this, but empirically we observe it to be true (within
statistical uncertainty). We can go a step further and
remove the uncertainty in the core by asserting that the



pair density is zero there, and evaluate the r-dependent
pair density via the difference 0@ (r) — p@(0), yielding

D > (36)

i=1 JFEI nrij

2@ (r) = <Zf ng H(ry2
which uses p@(0) = 0. In contrast to Equation (35),
which involves sums over pairs r;; > r, Equation (36)
requires sums over pairs that are separated by less than
r. This formulation appears to be advantageous as it
requires contributions from fewer pairs (assuming small
r is of interest), and it eliminates potentially problematic
issues with long-range contributions.

5. Conclusion

A uniform-reference mapped-averaging formulation for
the singlet density and pair densities has been presented,
and shown to be equivalent to previous formulas which
were derived based on considerations involving the force
density. We do in fact identify one small difference in
the formulas for the singlet density, but it turns out
that the mapped-average formula provides a correction
needed when the sum of forces over all molecules is
not zero (which may occur due to fluctuations, but will
average to zero with enough sampling). Previous studies
[11,12] have shown that the statistical noise is signifi-
cantly smaller in the density profiles obtained via these
formulas, compared to the conventional histogram based
approach. The force-based and mapped-averaging for-
mulas offer another significant advantage, in that their
uncertainty is insensitive to the grid size, allowing for
evaluation of the densities with arbitrary resolution. The
efficiency of these formulations is of course good in gen-
eral, but it should be particularly valuable in applica-
tions involving ab initio molecular dynamics, where it
is difficult to perform the extensive sampling needed to
generate density distributions to good precision.
Mapped averaging is a general framework, and it is
possible to develop other formulas by making differ-
ent choices for the reference distribution p. A reason-
able alternative would set it equal the form given by
using po = 1 in Equations (11) or (23), which represents
the low-density estimates of p and p®, respectively.
Another choice is to use an estimate of the density distri-
bution at the conditions of interest, generated for example
by a short molecular simulation. It is quite possible that
these choices do not yield improvements in performance,
because it appears that coordinated multi-atom motions
are needed to form a good mapping at high density.
Nevertheless, it is a worthwhile direction to investigate,
and it provides an avenue for generating yet other ideas.

MOLECULARPHYSICS (&) 7

Finally, we note that p® can be given by a second-
order functional derivative with respect to ¢y, and this
can be used to generate a completely different mapped
average involving the Hessian matrix as well as the forces
via Equations (5b) and (7).
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Appendix. Details of calculations

We employed the Lennard-Jones (L]) model defined by the
pair potential: U(r) = 4e((o/r)'2 — (o/7)%), where o and €

are the LJ size and energy parameters, respectively, and r
is the pair separation. The L] potential was truncated at
r. =30, and o and €/kp parameters were set to unity (L]
units). Periodic boundary conditions were employed in all
three orthogonal directions, using a cubic simulation vol-
ume of edge length L =15.874. Simulation runs of 103 MC
steps (107 steps of equilibration) were performed on simu-
lation boxes containing 500 atoms at density p = 0.125 and
temperature T'=5. Data were recorded using a bin width
Az = L/1000.
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