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Abstract 8 

Monitoring systems often measure different types of responses of the built or natural environment 9 

at different points in space and time. Bayesian updating offers a robust method to use this 10 

information to update the distribution of involved uncertain system variables and enhance the 11 

predictive ability of the models in light of the new evidence. However, this process can be highly 12 

demanding and prohibitive in cases of sophisticated computational models. Here, we propose a 13 

highly efficient Bayesian updating framework that is integrated with multivariate Kriging 14 

surrogate modeling to quantify heteroscedastic uncertainties in the entire space of uncertain system 15 

variables and capture spatial and temporal dependencies among the responses using non-separable 16 

covariance structures. The advantages of the proposed framework are demonstrated on three 17 

geological and geotechnical examples, since responses in these systems are frequently multivariate 18 

in nature and geological properties are often highly uncertain. Results indicate that the developed 19 

framework is able to accurately and efficiently update uncertainties of system variables compared 20 

to existing Bayesian updating methods that are based on surrogate models. Furthermore, results 21 

show that considering the spatiotemporal dependencies between the responses in the framework 22 

can produce more accurate predictions of the future responses.    23 
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1. Introduction 26 

Accurate characterization of the performance and in particular the primary failure mechanisms of 27 

systems in the built or natural environments, e.g., flood protection systems, transportation 28 

infrastructure, water and wastewater treatment facilities, and the power grid, is one of the main 29 

requirements to building an effective risk assessment framework. This objective may be achieved 30 

through three main components: computational models, uncertainty characterization, and 31 

reliability analysis. While all three components have significant impacts on the accuracy of the 32 

risk assessment framework, the second component, that is the probabilistic characteristics of 33 

involved system variables, can be particularly important for assessing geological and geotechnical 34 

systems, due to intricacies inherent to the geologic features (Christian, 2004). In this sense, many 35 

authors, using either deterministic methods (Adhikari et al., 2014; Sun et al., 2018) or probabilistic 36 

techniques (Zhang et al., 2010; Wang et al., 2013; Feng and Jimenez, 2015; Ering and Babu, 2016; 37 

Jiang et al., 2018; Yang et al., 2018; Sun et al., 2019; Wang et al., 2019) have addressed the analysis 38 

of uncertainty reduction in geo-mechanical properties through calibration. Whereas deterministic 39 

methods provide no information about the degree of uncertainty, probabilistic techniques of 40 

calibration provide the most likely updated distribution of the involved variables (Sun et al., 2018). 41 

Among probabilistic techniques for calibration, Bayesian updating is shown to be a robust 42 

method for determining the probability density functions of system variables (Gelman et al., 2013; 43 

Zhou et al., 2017). Based on Bayes’ theorem, the prior distribution of uncertain system variables 44 

to be updated and the knowledge learned from the observed data or measurements from full-scale 45 

experiments can be combined in a mathematical expression. This expression, which consists of 46 

prior distributions (from literature or engineering judgement) and a likelihood function (the chance 47 

to observe the response given system variables), very often cannot be solved analytically in the 48 
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case of multi-dimensional systems (i.e., systems with multiple involved random variables). For 49 

solving the Bayesian formulation, Markov Chain Monte Carlo (MCMC) method is a sampling tool 50 

that has become increasingly practical (Gilks et al., 1995). As stated, the idea of MCMC is based 51 

on drawing samples from a proposal distribution in a chain, which requires thousands of 52 

evaluations of the likelihood function, which can be computationally expensive in the case of 53 

complex, computationally demanding numerical simulations, which is often the case in geological 54 

and geotechnical engineering. Moreover, utilizing various types of responses at different locations 55 

of a system during different time instances requires modification in the likelihood function that is 56 

embedded in the mathematical expression of Bayes’ theorem (Zhang et al., 2018). To address the 57 

latter challenge, Juang et al. (2012) integrated two types of responses of a braced excavation, 58 

including maximum wall deflection and maximum ground settlement, in the likelihood function 59 

to simultaneously utilize them in Bayesian updating. Kelly and Huang (2015) also considered 60 

consolidation of a clay layer and then expressed the likelihood function for two types of responses, 61 

including settlement and excess pore water pressure, during various time instances using analytical 62 

formulations. Li et al. (2016c) combined incremental time-series monitoring data from multi-stage 63 

excavation of a high rock slope that was evaluated with a semi-empirical model into the likelihood 64 

function. These studies pointed out that incorporating more measured responses of different types 65 

and time instances yields higher accuracy in the posterior distribution of involved random 66 

variables. The predictive models in these studies were  analytical formulations and semi-empirical 67 

models that are easy to evaluate; therefore, allowing thousands of simulations needed for Bayesian 68 

updating. However, the application of the methods in these studies to problems complex geological 69 

systems involving computationally demanding models may not be feasible.  70 
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Utilizing surrogate models, which are often statistically derived mathematical 71 

approximations of the ‘true’ models, can provide a general solution if integrated appropriately in 72 

the likelihood function. Several studies explored the integration of Response Surface Methodology 73 

(RSM), which is a polynomial regression model, for expressing the likelihood function in the 74 

probabilistic back-analysis process (Zhang et al., 2010; Miro et al., 2015; Li et al., 2016b; Qi and 75 

Zhou, 2017). Zhang et al. (2010) employed RSM as a surrogate model to approximate the safety 76 

factor of a slope calculated through limit equilibrium method. Then, they incorporated the 77 

surrogate model into the likelihood function and tuned the shear strength properties of the soil 78 

layers. They considered the potential error introduced by substituting the ‘true’ model with RSM 79 

as a random variable, and assumed it to follow a normal distribution with a constant standard 80 

deviation. This, however, is not a true representation of the uncertainty. In fact, the variance around 81 

the regression line is most often not constant for the entire space of system variables. Li et al. 82 

(2016b) utilized independent second-order polynomial response surfaces in lieu of the numerical 83 

model of a rock slope to approximate four responses (top vertical displacement, horizontal 84 

displacement of toe, depth of ground water table, and axial force of the rock bolt) and integrated 85 

the independent surrogate models into the likelihood function to update five involved system 86 

variables. In their approach, in addition to the error associated with the homoscedastic assumption 87 

for individual surrogate models, probabilistic associations among responses were entirely 88 

neglected. These drawbacks also exist in the vast majority of surrogate models other than RSM. 89 

Li et al. (2016a) adopted a multi-output support vector regression to approximate the 90 

displacements in a rock slope and integrated the surrogate model in the likelihood function to 91 

update distributions of geo-mechanical properties. Although the dependencies between the 92 

displacements at different locations were considered, similar to RSM, this method does not possess 93 
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the ability to accurately represent the uncertainty in the predictions. Sun et al., (2019) adopted 94 

independent Back Propagation (BP) neural networks as a surrogate model to determine 95 

displacements and anchorage forces of a rock slope during progressive excavation. However, the 96 

deviation of the surrogate model from measurements was assumed to stem from only the 97 

measurement error of the monitoring instruments, and the error of the surrogate models with 98 

respect to the computational model was entirely neglected. Despite improvements offered by 99 

previous studies, the current Bayesian updating frameworks that are integrated with surrogate 100 

models do not properly quantify uncertainties associated with the surrogate models nor the spatial 101 

and temporal dependencies between the responses of the systems of interest in the likelihood 102 

function. The probabilistic associations between responses of different or the same types are often 103 

directly related to the proximity of the data in space and time specifically in geological and 104 

geotechnical systems.  105 

Based on the above discussion, it is of considerable value to develop the most general 106 

formulation of the likelihood function for multi-response physical phenomena using multivariate 107 

surrogate models that can accurately quantify the uncertainties and capture the associations among 108 

responses. In this study, we propose integrating into Bayesian updating a multivariate Kriging 109 

surrogate model that can capture heteroscedastic uncertainties over the entire space of system 110 

variables and moreover consider the probabilistic associations between responses. The 111 

multivariate Kriging model is constructed based on a multi-objective optimization method 112 

developed by Svenson (2011). The proposed representation of the likelihood function is integrated 113 

with Bayes’ theorem and solved using the MCMC algorithm. The merits of this approach are 114 

evaluated for three geological and geotechnical systems with multi-dimensional responses and soil 115 

properties that are highly uncertain. The proposed method is elaborated in Section 2, which 116 
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contains two subsections detailing the formulation of the likelihood function with multivariate 117 

Kriging and MCMC algorithm. Section 3 begins with a summary of the goals pursued in the 118 

application examples, and then provides the examples with a detailed analysis of results. Finally, 119 

concluding remarks are presented in the Conclusion section. 120 

2. Methodology 121 

In this section, we present the details of the proposed Bayesian updating and an extended 122 

formulation for probabilistic calibration for multiple responses, which is built by incorporating 123 

multivariate Gaussian process regression (Kriging) within the expression for the likelihood 124 

function. Use of the Kriging meta-modeling technique provides a means for considering non-125 

homoscedastic model uncertainty over the input variable space. Furthermore, since responses in 126 

the likelihood function are generally from different types of physical quantities, in this method, 127 

the covariance matrix of the likelihood function considers both the associations over the input 128 

variable space and the associations among the responses by a non-separable covariance structure. 129 

Subsequently, the issues that arise during implementation of the Bayesian updating formulation 130 

for multi-dimensional systems and the sampling method (Markov Chain Monte Carlo, MCMC) 131 

that is used to overcome these issues are discussed.  132 

2.1 Bayesian updating for multiple responses of different types of physical quantities 133 

The Bayesian method for probabilistic calibration statistically integrates information gathered, 134 

about a phenomenon or a system, whose behavior is captured by a predictive model, to arrive at 135 

the most likely representation of involved uncertain variables. Indeed, prior probabilistic 136 

information of uncertain system variables, which is assumed from available measurements and/or 137 

expert belief, may be updated by the Bayesian method to posterior probabilistic information, based 138 

on new information. Such information may be in the form of field observations (qualitative 139 
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information) and/or measurements (quantitative information). The probability of observing new 140 

information can be quantified using a likelihood function, and Bayesian analysis then allows 141 

updating the probabilistic belief about the variables given the likelihood of the new information. 142 

Let us consider 𝛩𝛩 as the single event of interest, then based on Bayes’ theorem, the probability of 143 

𝛩𝛩 conditioned on observing data M can be defined as follows, 144 

 P(𝛩𝛩|𝑀𝑀) =
P(𝛩𝛩 ∩𝑀𝑀)

P(𝑀𝑀) =  
P(𝑀𝑀|𝛩𝛩)P(𝛩𝛩)

P(𝑀𝑀)  , (1) 

where P(𝛩𝛩|𝑀𝑀) is the posterior probability of 𝛩𝛩, P(𝛩𝛩) is the prior probability of 𝛩𝛩,  P(𝑀𝑀|𝛩𝛩) is the 145 

likelihood function, and P(𝑀𝑀) is the probability of observing M. In fact, the observing data are 146 

characterized by the likelihood function, and Bayes’ theorem guides us on how to update the prior 147 

probability information to the posterior probability information using the likelihood function. The 148 

application of Bayes’ theorem for updating of a single event 𝛩𝛩 in Equation (1) can be to extended 149 

to the calibration of a d-dimensional set of involved variables, 𝜽𝜽 = [𝜃𝜃1, … ,𝜃𝜃𝑡𝑡 , … ,  𝜃𝜃𝑑𝑑] as follows, 150 

 𝑓𝑓𝜽𝜽′′(𝜽𝜽) =
𝐿𝐿(𝜽𝜽)𝑓𝑓𝜽𝜽′(𝜽𝜽)

∫ …∫ 𝐿𝐿(𝜽𝜽)𝑓𝑓𝜽𝜽′(𝜽𝜽) d𝜃𝜃1 … d𝜃𝜃𝑑𝑑
∞
−∞

∞
−∞

=
𝐿𝐿(𝜽𝜽)𝑓𝑓𝜽𝜽′(𝜽𝜽)

∫ 𝐿𝐿(𝜽𝜽)𝑓𝑓𝜽𝜽′(𝜽𝜽)d𝜽𝜽𝜽𝜽
 (2) 

where 𝑓𝑓𝜽𝜽′(𝜽𝜽) and 𝑓𝑓𝜽𝜽′′(𝜽𝜽) are the prior and posterior Probability Density Functions (PDFs) of 𝜽𝜽, 151 

respectively, and 𝐿𝐿(𝜽𝜽) is the likelihood function that describes the occurrence probability of 152 

measurements and/or observations. In Equation (2), 1 ∫ …∫ 𝐿𝐿(𝜽𝜽)𝑓𝑓𝜽𝜽′(𝜽𝜽) d𝜃𝜃1 … d𝜃𝜃𝑑𝑑
∞
−∞

∞
−∞⁄ = c is a 153 

normalization constant that assures the posterior distribution integrates to unity. Thereby, Equation 154 

(2) is simplified as follows, 155 

  𝑓𝑓𝜽𝜽′′(𝜽𝜽) = c𝐿𝐿(𝜽𝜽)𝑓𝑓𝜽𝜽′(𝜽𝜽). (3) 

In order to introduce the likelihood function in the case of multiple responses, it is helpful 156 

to specify the following definitions: we will use the notation 𝑦𝑦𝑗𝑗𝑗𝑗 to indicate the particular value of 157 

the kth response that is measured at the jth time instance. Consequently, the p measured responses 158 
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(𝑘𝑘 ∈ {1, … , 𝑝𝑝}) from 𝑡𝑡1 to 𝑡𝑡𝑛𝑛 (𝑗𝑗 ∈ {1, … ,𝑛𝑛}) can be written as a stacked vector, called 𝒀𝒀, of 𝑚𝑚 =159 

𝑛𝑛 ∙ 𝑝𝑝  rows as follows, 160 

 𝒀𝒀 = �𝒀𝒀1T,𝒀𝒀2T, … ,𝒀𝒀𝑗𝑗T, … ,𝒀𝒀𝑛𝑛T�𝑚𝑚×1

T
, (4) 

where 𝒀𝒀𝑗𝑗T = �𝑦𝑦𝑗𝑗1,𝑦𝑦𝑗𝑗2, … ,𝑦𝑦𝑗𝑗𝑗𝑗 , … ,𝑦𝑦𝑗𝑗𝑗𝑗�1×𝑝𝑝
 is the p-dimensional vector of the measured responses at the 161 

jth time instance. Let ℎ𝑗𝑗𝑗𝑗(𝜽𝜽) denote the simulation response corresponding to 𝑦𝑦𝑗𝑗𝑗𝑗. Similarly, the 162 

corresponding stacked vector of the simulation responses, 𝑯𝑯(𝜽𝜽),  is written as follows, 163 

 𝑯𝑯(𝜽𝜽) = �𝑯𝑯1
T(𝜽𝜽),𝑯𝑯2

T(𝜽𝜽), … ,𝑯𝑯𝑗𝑗T(𝜽𝜽), … ,𝑯𝑯𝑛𝑛
T(𝜽𝜽)�

𝑚𝑚×1

T
. (5) 

In Equation (5), 𝑯𝑯𝑗𝑗T(𝜽𝜽) = �ℎ𝑗𝑗1(𝜽𝜽),ℎ𝑗𝑗2(𝜽𝜽), … ,ℎ𝑗𝑗𝑗𝑗(𝜽𝜽), … , ℎ𝑗𝑗𝑗𝑗(𝜽𝜽)�
1×𝑝𝑝

 is the p-dimensional vector 164 

of the simulation responses at the jth time instance. Let the stacked vector 𝜺𝜺(𝜽𝜽) denote the 165 

deviations of the simulation responses from the measured responses, which are either due to 166 

measurement errors, uncertainties in input system variables, the degree of fidelity of the 167 

computational models, or some combination of these sources. In the case of additive errors, the 168 

response vector is represented as, 169 

 𝒀𝒀 = 𝑯𝑯(𝜽𝜽) + 𝜺𝜺(𝜽𝜽). (4) 

Therefore, the likelihood function describing the multivariate PDF of the deviation is as follows, 170 

  𝐿𝐿𝜀𝜀(𝜽𝜽) = 𝑓𝑓𝜀𝜀�𝒀𝒀 − 𝑯𝑯(𝜽𝜽)�. (5) 

By assuming the likelihood function to be a multivariate normal distribution with the 𝑚𝑚 × 𝑚𝑚 171 

covariance matrix of 𝜮𝜮𝜖𝜖 that denotes the correlations between the entries of the deviation vector, 172 

𝝐𝝐(𝜽𝜽), 𝐿𝐿𝝐𝝐(𝜽𝜽) takes the following form, 173 

 𝐿𝐿𝜀𝜀(𝜽𝜽) =
1

(2π)
𝑚𝑚
2 (|𝜮𝜮𝜀𝜀|)

1
2

× exp �−
1
2

[𝒀𝒀 − 𝑯𝑯(𝜽𝜽)]T𝜮𝜮𝜀𝜀−1[𝒀𝒀 −𝑯𝑯(𝜽𝜽)]�, (6) 
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where |𝜮𝜮𝜀𝜀| is the determinant of the deviation covariance matrix. Each entry of the deviation 174 

covariance matrix denotes the dependency between the errors associated with the corresponding 175 

responses. This error is related to the accuracy of the measurements (e.g. signal to noise ratio of 176 

data measured by sensors) and fidelity of the computational models. Often measurement systems 177 

are calibrated to work properly for a specific range of responses and therefore their accuracy may 178 

not be uniform across a wide range of responses (Khosravi et al., 2017). Additionally, it is often 179 

the case that the confidence in the responses of the computational models may not remain the same 180 

over the output space, and therefore the error of the models may not be uniform when expressed 181 

as a function of model variables. For instance, when the input system variables impose a non-linear 182 

system behavior, numerical simulations may not provide results that are as accurate as for when 183 

the system behaves linearly (Matthies et al., 1997). These variations in the uncertainties that are 184 

associated with measurement systems and computational models can be incorporated in the 185 

deviation covariance matrix, if they can be quantified accurately. 186 

Simulated responses, 𝑯𝑯(𝜽𝜽), can be approximated statistically using a stochastic surrogate 187 

model, 𝑲𝑲�(𝜽𝜽), which is especially useful for the case where 𝑯𝑯(𝜽𝜽) is obtained by a computationally 188 

expensive numerical model. Similar to 𝒀𝒀 and 𝑯𝑯(𝜽𝜽), we define 𝑲𝑲�(𝜽𝜽) as a stacked vector that 189 

includes m entries, i.e., 190 

 𝑲𝑲�(𝜽𝜽) = �𝑲𝑲�1T(𝜽𝜽),𝑲𝑲�2T(𝜽𝜽), … ,𝑲𝑲�𝑗𝑗T(𝜽𝜽), … ,𝑲𝑲�𝑛𝑛T(𝜽𝜽)�
𝑚𝑚×1

T
, (9) 

where, 𝑲𝑲�𝑗𝑗
T(𝜽𝜽) = �𝑘𝑘�𝑗𝑗1(𝜽𝜽),𝑘𝑘�𝑗𝑗2(𝜽𝜽), … ,𝑘𝑘�𝑗𝑗𝑗𝑗(𝜽𝜽), … ,𝑘𝑘�𝑗𝑗𝑗𝑗(𝜽𝜽)�

1×𝑝𝑝
 is the p-dimensional vector of the 191 

surrogate model responses at the jth time instance. Then the response vector, Equation (6), is 192 

extended as: 193 

 𝒀𝒀 = 𝑯𝑯(𝜽𝜽) + 𝜺𝜺(𝜽𝜽) = 𝑲𝑲�(𝜽𝜽) + 𝜺𝜺(𝜽𝜽) = E�𝑲𝑲�(𝜽𝜽)�+ 𝜹𝜹(𝜽𝜽) + 𝜺𝜺(𝜽𝜽), (10) 
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where E�𝑲𝑲�(𝜽𝜽)� corresponds to the mean values of the surrogate model predictions for each 194 

response, and the prediction errors, 𝜹𝜹(𝜽𝜽), account for the discrepancies between the surrogate 195 

model predictions and those by the ‘true’ model. In addition to the mean values of the surrogate 196 

model predictions, the prediction error of the surrogate model, as shown in Equation (10), directly 197 

influences the response vector that plays an essential role in the likelihood function and hence the 198 

posterior distributions. In the vast majority of surrogate models, such as RSM, the prediction error 199 

is assumed to be homoscedastic, which implies a uniform variance over the entire space of input 200 

variables, 𝜽𝜽. This assumption is not close to reality, as predictions for samples that are close to the 201 

design samples of the surrogate model will have higher confidences compared with those that are 202 

far away from the design samples (Rahimi et al., 2019). In the cases where multiple responses of 203 

different types of physical quantities are involved, some surrogate models reduce multi-204 

dimensional responses of systems to a single response, either by applying weighting functions or 205 

by considering only the most significant response. Alternatively, in these cases, some approaches 206 

construct a univariate surrogate model for each response of interest, and therefore neglect 207 

correlations among responses. The most appropriate way to build a surrogate model is by a 208 

multivariate model that considers heteroscedastic uncertainty over the entire space of input 209 

variables as well as the probabilistic associations between responses of different types of 210 

quantities.  211 

Here, we propose to consider such associations in the formulation of the likelihood function 212 

through multivariate Gaussian process regression, known as multivariate Kriging. This model has 213 

a constant mean vector of 𝜷𝜷 = E�𝑲𝑲�(𝜽𝜽)� and a 𝑚𝑚 × 𝑚𝑚 covariance matrix of 𝜮𝜮𝛿𝛿 that denotes the 214 

dependencies between the entries of 𝜹𝜹(𝜽𝜽). Since 𝜮𝜮𝛿𝛿 captures two types of correlation: correlations 215 

among responses of one type over the input variable space and correlations between different 216 
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responses, determining its form can be challenging. In some cases where only one type of physical 217 

quantity is involved in the responses (e.g., displacement of a cantilever beam at different locations 218 

of the beam), it may be appropriate to treat the two kinds of correlation as separable and to then 219 

determine the covariance structure. However, when multiple responses arise from different types 220 

of quantities, a separable covariance structure is no longer appropriate, since there is no obvious 221 

index between the responses (Fricker et al., 2010). Fricker et al. (2010) showed that separable 222 

covariance structures have a Markovian type property. For instance, if we have two types of 223 

responses (A and B) and desire estimating response A at location X, and we have already observed 224 

response A at location Y, then observation of response B at location Y gives us no further 225 

information. Therefore, to arrive at a general formulation for the likelihood function, here we 226 

define 𝜮𝜮𝛿𝛿 with a non-separable covariance structure by using a method known as Non-Linear 227 

Model of Coregionalization (NLMC) (Fricker et al., 2010). Using NLMC, 𝑲𝑲�(𝜽𝜽) is expressed as a 228 

process of the form: 229 

 𝑲𝑲�(𝜽𝜽) = E�𝑲𝑲�(𝜽𝜽)� + 𝜹𝜹(𝜽𝜽) = 𝜷𝜷 + 𝑨𝑨𝒁𝒁(𝜽𝜽), (11) 

where 𝜷𝜷 = [𝛽𝛽1, … ,𝛽𝛽𝑖𝑖, … ,𝛽𝛽𝑚𝑚]T contains the constant mean values for each response of the 230 

numerical simulation (i.e., E�𝑲𝑲�(𝜽𝜽)� = 𝜷𝜷); 𝒁𝒁(𝜽𝜽) = [𝑍𝑍1(𝜽𝜽), … ,𝑍𝑍𝑖𝑖(𝜽𝜽), … ,𝑍𝑍𝑚𝑚(𝜽𝜽)]T is an m-231 

dimensional vector of mutually independent stationary Gaussian processes with zero mean, unit 232 

variance, and a Gaussian correlation function; and 𝑨𝑨 is a 𝑚𝑚 × 𝑚𝑚 symmetric, positive-definite 233 

matrix that is the square root of 𝜮𝜮𝛿𝛿 computed in the case of two random system variable vectors 234 

of the same values. In more details, the Gaussian correlation function for 𝑍𝑍𝑖𝑖(𝜽𝜽) is as follows: 235 

 𝑅𝑅𝑖𝑖(𝜽𝜽′,𝜽𝜽′′,𝜼𝜼𝑖𝑖) = � exp�−𝜂𝜂𝑖𝑖,𝑡𝑡(𝜃𝜃𝑡𝑡′ − 𝜃𝜃𝑡𝑡′′)2�,
𝑑𝑑

𝑡𝑡=1

 (12) 



-12- 
 

where, 𝛉𝛉′ and 𝜽𝜽′′ are two arbitrary d-dimensional vectors of random system variables, and where 236 

𝜼𝜼𝑖𝑖 is a d-dimensional vector of correlation coefficients for each response. It is straightforward to 237 

see that Equation (11) together with Equation (12) implies:     238 

𝑪𝑪𝑪𝑪𝑪𝑪�𝑲𝑲�(𝜽𝜽′),𝑲𝑲�(𝜽𝜽′′)� = 𝑨𝑨diag�𝑅𝑅1(𝜽𝜽′,𝜽𝜽′′,𝜼𝜼1), … ,𝑅𝑅i(𝜽𝜽′,𝜽𝜽′′,𝜼𝜼𝑖𝑖), … ,𝑅𝑅𝑚𝑚(𝜽𝜽′,𝜽𝜽′′,𝜼𝜼𝑚𝑚)�𝑨𝑨T,   (13) 239 

where 𝑪𝑪𝑪𝑪𝑪𝑪�𝑲𝑲�(𝜽𝜽′),𝑲𝑲�(𝜽𝜽′′)� is the 𝑚𝑚 × 𝑚𝑚 covariance matrix between the multiple responses, and 240 

𝑨𝑨 is defined through the eigen-decomposition of 𝑪𝑪𝑪𝑪𝑪𝑪�𝑲𝑲�(𝜽𝜽′),𝑲𝑲�(𝜽𝜽′′)� when 𝜽𝜽′ = 𝜽𝜽′′.  241 

There are 𝑑𝑑 ∙ 𝑚𝑚 and 𝑚𝑚 ∙ (𝑚𝑚 + 1) 2⁄  covariance coefficients in 𝜼𝜼 and 𝑨𝑨, respectively. Here, 242 

we implement the multi-objective optimization method developed by Svenson (2011) to obtain 243 

Restricted Maximum Likelihood (REML) estimates of the covariance coefficients in 𝑨𝑨 and 𝜼𝜼. The 244 

adopted optimization process not only fits the model at the initial design of experiment (i.e., 245 

estimation of 𝑨𝑨 and 𝜼𝜼 in the covariance matrix), but also obtains the predictions, E�𝑲𝑲�(𝜽𝜽)�, and 246 

prediction errors, 𝜹𝜹(𝜽𝜽) = 𝑨𝑨𝒁𝒁(𝜽𝜽), at any desired sample. This probabilistic information is used to 247 

modify the likelihood function based on the multivariate surrogate model as follows,  248 

  𝐿𝐿𝜀𝜀𝛿𝛿(𝜽𝜽) = 𝑓𝑓𝜀𝜀𝛿𝛿�𝒀𝒀 − E�𝑲𝑲�(𝜽𝜽)��. (14) 

Equation (14) delineates that the covariance matrix in the likelihood function is now associated 249 

with both 𝜺𝜺(𝜽𝜽) and 𝜹𝜹(𝜽𝜽), and that likelihood function will have the following form,  250 

 𝐿𝐿𝜖𝜖𝜖𝜖(𝜽𝜽) =
1

(2π)
𝑚𝑚
2 (|𝜮𝜮𝜀𝜀𝛿𝛿|)

1
2

× exp �−
1
2
�𝒀𝒀 − E�𝑲𝑲�(𝜽𝜽)��

T
𝜮𝜮𝜀𝜀𝛿𝛿−1 �𝒀𝒀 − E�𝑲𝑲�(𝜽𝜽)���, (15) 

The new likelihood function with the covariance matrix 𝜮𝜮𝜀𝜀𝛿𝛿 = 𝜮𝜮𝜀𝜀 + 𝜮𝜮𝛿𝛿 that considers all the 251 

uncertainties regarding errors associated with the measurements systems, computational models, 252 

and surrogate models, presents the most general formulation of the likelihood function, where 253 
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probabilistic associations among deviations of different types of responses in space and time are 254 

accounted for. 255 

In order to show the general form of the covariance array, 𝜮𝜮𝛿𝛿, as an example, we assume 256 

𝑝𝑝 = 2 (two responses) and 𝑛𝑛 = 3 (three time instances); therefore, 𝑚𝑚 = 3 ∙ 2 = 6, which means 257 

that the covariance matrix is 6 × 6. Since 𝑛𝑛 = 3 we have 32 = 9  block matrices in the entire 258 

covariance matrix, and since 𝑝𝑝 = 2, those 9 matrices are 2 × 2. Figure 1 provides an illustration 259 

of the covariance matrix for three different cases.  260 

 261 
Figure 1. The covariance matrix of 𝜹𝜹(𝜽𝜽) (𝜮𝜮𝛿𝛿) for an example with p = 2 and n = 3; (a) fully dependent 262 
responses, (b) independent responses in time, and (c) fully independent responses.  263 

 264 
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In this figure, the grey boxes in the schematic view denote the dependencies between the 265 

responses. As illustrated in Figure 1a, the 6 × 6 covariance matrix has all non-zero entries in the 266 

case of considering all the dependencies between different types of responses during different time 267 

instances. In the case of considering the dependencies between the types of responses at each time 268 

instance, but independent of other time instances (Figure 1b), the off-diagonal 2 × 2 block matrices 269 

are zero. Finally, one can consider all of the responses to be independent of each other, which 270 

yields a strictly diagonal (i.e., not just block diagonal, as in Figure 1b) covariance matrix, as shown 271 

in Figure 1c. 272 

2.2 Markov Chain Monte Carlo (MCMC) 273 

Techniques such as conjugate prior, direct integration method, and Maximum Posterior Density 274 

(MPD) serve as analytical and approximation tools for exploring the posterior distribution through 275 

solving Equation (3); however, solving this equation can be highly demanding for the general 276 

likelihood function in Equation (15). Therefore, in this case one needs to employ a sampling 277 

method, such as MCMC, in order to solve the Bayes’ equation. In this sub-section, the details of 278 

MCMC are provided. The concept of Monte Carlo integration, combined with that of a Markov 279 

Chain (a mathematical description for a stochastic sequential process), yields a strong sampling 280 

method called Markov Chain Monte Carlo (MCMC) that can be used to solve the Bayes’ equation 281 

(Equation 3). MCMC aims to build a Markov Chain with a histogram similar to the target 282 

distribution, which in the case of this study is the posterior distribution of the involved system 283 

variables, 𝒇𝒇𝜽𝜽′′(𝜽𝜽), in Equation (3). MCMC aims to converge to the target distribution irrespective 284 

of the initial values in the chain. To achieve this goal, there are several sequential sampling 285 

algorithms including Metropolis-Hastings (MH), Metropolis, and Gibbs sampler that vary in the 286 
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definition of the transition process in the chain (Gelman et al., 2013). Here, we use the Metropolis 287 

sampler, which produces the following sequential states, 288 

 𝜽𝜽(1) ⟶ 𝜽𝜽(2) ⟶⋯⟶ 𝜽𝜽(𝑟𝑟) ⟶⋯⟶ 𝜽𝜽(𝑅𝑅), (16) 

where 𝑅𝑅 is the length of the Markov Chain and 𝜽𝜽(𝑟𝑟) is  the 𝑟𝑟th state in the chain. The first state of 289 

the chain 𝜽𝜽(1) = �𝜃𝜃1
(1), … ,𝜃𝜃𝑖𝑖

(1), … ,𝜃𝜃𝑑𝑑
(1)� (d is the dimension of the involved system variables), is 290 

randomly selected from the logical ranges of each 𝜃𝜃𝑖𝑖. A candidate vector, 𝜽𝜽(∗), is produced 291 

subsequently from the conditional proposal distribution 𝑞𝑞�𝜽𝜽�𝜽𝜽(𝑟𝑟−1)�. In this study 𝑞𝑞(. ) is a 292 

multivariate normal distribution with a mean of 𝜽𝜽(𝑟𝑟−1) and the covariance matrix of 𝜁𝜁𝜮𝜮𝜽𝜽, where 𝜁𝜁 293 

is a scaling factor and 𝜮𝜮𝜽𝜽 is the covariance matrix of the prior distribution. To decide whether or 294 

not to accept the candidate vector, 𝜽𝜽(∗), a uniform random number, 𝑢𝑢, in the interval of zero and 295 

one is generated and compared with the probability of accepting the proposal, 𝛼𝛼, which in the case 296 

of Metropolis sampler is defined as follows, 297 

 𝛼𝛼 = min�1,
𝒇𝒇"�𝜽𝜽(∗)�
𝒇𝒇"(𝜽𝜽(𝑟𝑟−1))

�  = min�1,
c𝐿𝐿�𝜽𝜽(∗)�𝑓𝑓′�𝜽𝜽(∗)�

c𝐿𝐿(𝜽𝜽(𝑟𝑟−1))𝑓𝑓′(𝜽𝜽(𝑟𝑟−1))
� . (17) 

If 𝑢𝑢 ≤ 𝛼𝛼, the candidate vector is accepted and the next state is set as 𝜽𝜽(𝑟𝑟) = 𝜽𝜽(∗). Otherwise, the 298 

candidate is rejected and the next state is set as 𝜽𝜽(𝑟𝑟) = 𝜽𝜽(𝑟𝑟−1). This process continues for the entire 299 

length of the chain, R. Since the initial samples in the Markov Chain are unstable, they should be 300 

discarded from the chain. In this study, R is selected to be 10000, and the first 1000 samples, which 301 

are called ‘burnt’ samples, are discarded.  302 

3. Application examples  303 

To evaluate the proposed method, three different geotechnical examples with different dimensions 304 

in random system variables and various types of measured quantities are considered in this study. 305 

Although details of each example with the corresponding results are presented and discussed in 306 
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detail in the following sub-sections, Table 1 illustrates a summary of each example to clarify the 307 

goals we are perusing for each example. 308 

 309 

Table 1: Summary of application examples 310 
# Type of example Measured quantity p n d Goals 

1 Homogenous soil slope • Factor of safety 1 1 3 

• Verification of the method for single 
response (m = 1) 

• Impact of homoscedasticity on the 
prediction error 

2 Consolidation of a clay layer • Settlement  
• Pore pressure 2 3 4 

• Verification of the method for 
multiple responses (𝑚𝑚 ≥ 1) 

• Impact of multi-type responses 
• Impact of surrogate type 
• Impact of training sample numbers 

3 Water rise in a levee 
• Wall displacement 
• Pore pressure 1 
• Pore pressure 2 

3 3,4 8 • Impact of high model complexity 
• Impact of high dimensions 

3.1 Example 1: Homogenous soil slope 311 

In this example, a three-layered homogenous soil slope was cut back to a steeper design, which 312 

resulted in the slope to fail. Figure 2 shows the steepened geometry and the soil layer profiles of 313 

the slope. Duncan (1999) reported the mean values of the shear strength properties of soil layers, 314 

which are summarized in Table 2. Using these mean values and the strength reduction method 315 

through FLAC3D (Itasca, 2017), we determine the safety factor of the slope as 1.41, which is 316 

consistent with the reported safety factor in (Duncan, 1999; Zhang et al., 2010); however, it 317 

contradicts the true observed failure. This discrepancy motivated Duncan (1999) and Zhang et al. 318 

(2010) to respectively perform deterministic and probabilistic calibrations in order to update the 319 

shear strength properties of the soil layers with the assumption that the slope failure is initiated by 320 

the change in the slope steepness, not changes in the soil properties. Zhang et al. (2010) considered 321 

the shear strength properties of the top soil layers (sandy clay and highly plastic clay) as uncertain 322 

variables and then based on literature and engineering judgement they assumed the prior 323 

probabilistic models that are elaborated in Table 2. They constructed a second order polynomial 324 
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function with seven design samples and then evaluated the accuracy of the surrogate model 325 

through comparing safety factor determined by the surrogate model and numerical simulations on 326 

sixteen more design samples. They subsequently performed MCMC with the likelihood function 327 

integrated with the constructed surrogate model. Although not discussed in their work, their 328 

treatment of the uncertainty in light of the general likelihood structure presented in this research is 329 

to mix the error associated with the numerical simulation, 𝜀𝜀(𝜽𝜽), and the potential error introduced 330 

by substituting the true model with RSM, 𝛿𝛿(𝜽𝜽). The resulting error is considered to have a normal 331 

distribution with a constant non-zero mean and constant standard deviation (i.e., 𝛿𝛿(𝜽𝜽) + 𝜀𝜀(𝜽𝜽) =332 

𝜀𝜀~N(𝜇𝜇𝜀𝜀 ,𝜎𝜎𝜀𝜀)). The main issue in that method is the assumption of homoscedasticity, which is not 333 

the true representation of the uncertainty. 334 

In this study, similar to Zhang et al. (2010), we assume that the slope failure is originated 335 

by the change in the slope steepness. With this assumption, we seek to find the updated soil 336 

properties given that the slope has failed, i.e., given that factor of safety is unity. Similar to Zhang 337 

et al. (2010) we consider friction angle and cohesion of sandy clay, and friction angle of highly 338 

plastic clay as random variables that we are interested in updating through the proposed method. 339 

Therefore, d equals to three and 𝜽𝜽 = [𝑐𝑐1,𝜑𝜑1,  𝜑𝜑2], where 𝑐𝑐1,𝜑𝜑1,  𝜑𝜑2 are defined in Table 2. We 340 

also assume that these input system variables are statistically independent and follow lognormal 341 

distributions with the statistical properties shown in Table 2.   342 

 343 
Figure 2. Cross section of soil slope in Example 1. 344 

 345 
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Table 2: Probabilistic models of slope properties in Example 1. 346 
Soil Parameters Distribution Mean (µ) C.O.V 
Cohesion of sandy clay, c1 (kPa) Lognormal 14.4 0.20 
Friction angle of sandy clay, 𝜑𝜑1 (o) Lognormal 35.0 0.15 
Friction angle of highly plastic clay, 𝜑𝜑2 (o) Lognormal 25.0 0.15 

Figures 3a, 3b, and 3c show the MCMC iteration samples with the posterior histograms for 347 

cohesion of sandy clay, friction angle of sandy clay, and friction angle of highly plastic clay. 348 

Among the crucial implementation issues of MCMC, the choices for the number of iterations and 349 

for the starting value are of high importance. The bias caused by the latter can be reduced by 350 

discarding a number of the initial samples, which are considered as belonging to the initial transient 351 

phase of the method (Brooks and Roberts, 1998).  352 
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 353 
Figure 3. MCMC iterations and posterior histograms for (a) cohesion of sandy clay, c1; (b) friction 354 
angle of sandy clay, 𝝋𝝋𝟏𝟏; (c) friction angle of highly plastic clay, 𝝋𝝋𝟐𝟐. 355 
 356 

In order to choose a sufficient number of iterations to achieve convergence, various methods exist, 357 

such as making use of autocorrelation plots as suggested by Gelfand and Smith (1990). Here, the 358 

number of samples, R, is chosen to be 10000 and the first 1000 samples are “burnt”. 359 

Autocorrelation tests show that the MCMC chain is stabilized. The scaling factor in the proposal 360 

distribution is 𝜁𝜁 = 0.5, which yields to the acceptance rate of 0.33, as suggested by Gelman et al. 361 
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(2013). As indicated by Figure 3, the posterior mean values of the soil strength parameters are 362 

decreased compared with the prior mean values (Table 2), which is logical, since the prior safety 363 

factor (1.41) was overestimated. Using the updated properties in the FLAC3D simulation yields a 364 

factor of safety that is very close to one, which is consistent with the field observation.  365 

For the next phase of verification, the correlation between cohesion and friction angle of 366 

sandy clay, using the prior and posterior distributions are illustrated in Figure 4a and 4b, 367 

respectively. While Figure 4a shows no correlation between cohesion and friction angle, there is a 368 

negative correlation between them in Figure 4b, which is consistent with previous studies (Li et 369 

al., 2015; Wang and Akeju, 2016) that show the negative correlation between these two variables 370 

is a physical feature of soils.  371 

 372 
Figure 4. correlation between the friction angle and cohesion of sandy clay (a) priors, (b) posteriors. 373 

 374 
The posterior histograms for all three random variables using the proposed method are 375 

compared with the results from Zhang et al. (2010) in Figure 5. As illustrated in this figure, the 376 

mean values of posteriors using the proposed method are close to the results by Zhang et al. (2010). 377 

However, it is seen that the standard deviation is decreased in all the variables using the proposed 378 

method, which yields lower coefficients of variation in the updated soil properties. This decrease 379 
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indicates that the proposed method is more reliable and its difference with RSM for multi-380 

dimensional systems with multiple responses can be significant.     381 

 382 
Figure 5. Comparison between the posteriors using RSM and proposed methodology (a) cohesion of 383 
sandy clay, c1; (b) friction angle of sandy clay, 𝝋𝝋𝟏𝟏; (c) friction angle of highly plastic clay, 𝝋𝝋𝟐𝟐. 384 
 385 

3.2 Example 2: Consolidation of a clay layer 386 

This example, adapted from Kelly and Huang (2015), is a one-dimensional consolidation soil 387 

problem with an undrained and a drained boundary at the bottom and top, respectively, of a layer 388 

of soft clay soil (Figure 6). In this example, two types of physical quantity including settlements 389 

and excess pore pressures at the base of the soft clay layer are considered to update four involved 390 

system variables 𝜽𝜽 = �𝑚𝑚𝑣𝑣,𝐻𝐻, 𝛾𝛾𝑓𝑓 ,𝐶𝐶𝑣𝑣�. Here, 𝑚𝑚𝑣𝑣 is the coefficient of volume compressibility, 𝐻𝐻 is 391 

the thickness of the soil layer, 𝛾𝛾𝑓𝑓 is the unit weight of the fill, and 𝐶𝐶𝑣𝑣 is the coefficient of 392 

consolidation. In this example, the real material properties are taken from Kelly and Huang (2015) 393 

and are assumed to be true values in Table 3. Moreover, similar to Kelly and Huang (2015) here 394 

we deviate the mean values of prior probabilistic models from the true values in order to evaluate 395 

the accuracy of the method. The prior probabilistic models are presented in Table 3. 396 
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 397 
Figure 6. One-dimensional consolidation soil system with an undrained and a drained boundary. 398 

Table 3: True material properties and prior distributions in Example 2. 399 

Soil Parameters 
Prior distributions True 

values Distribution Mean (µ) C.O.V 
Coefficient of volume compressibility, mv (1/kPa) Lognormal 0.001 0.40 0.0014 
Thickness of the soil layer, H (m) Lognormal 5.0 0.10 5.50 
Unit weight of fill, 𝛾𝛾𝑓𝑓 (kN/m3) Lognormal 20.0 0.10 22.0 
Coefficient of consolidation, Cv (m2/year) Lognormal 40.0 1.00 80.0 

Based on Atkinson (2007), the analytical solution for settlements at the bottom of the elastic soft 400 

clay layer is as, 401 

 𝑠𝑠(𝜽𝜽) = 𝑚𝑚𝑣𝑣𝐻𝐻𝛾𝛾𝑓𝑓𝐻𝐻𝑓𝑓 �1 −�
2

(π2 (2𝑞𝑞 + 1))2
e−�

π
2(2𝑞𝑞+1)�

2
𝑇𝑇𝑣𝑣

∞

𝑞𝑞=0
� (18) 

where 𝐻𝐻𝑓𝑓 is fill thickness, and 𝑇𝑇𝑣𝑣 is the time factor determined as 𝑇𝑇𝑣𝑣 = 𝐶𝐶𝑣𝑣𝑡𝑡 Hdr
2⁄  where t is time, 402 

and 𝐻𝐻𝑑𝑑𝑑𝑑 is the average longest drain path during consolidation, which in this example 𝐻𝐻𝑑𝑑𝑑𝑑 = 𝐻𝐻, 403 

since the consolidation is only in one dimension. Similar to Kelly and Huang (2015), in this study 404 

we consider q = 9. The second response that we are interested in capturing during the consolidation 405 

process is the excess pore pressures at the base of the soft clay layer, which can be calculated as 406 

follows (Atkinson, 2007), 407 

  𝑢𝑢(𝜽𝜽) = 𝛾𝛾𝑓𝑓𝐻𝐻𝑓𝑓                                     𝑇𝑇𝑣𝑣 <
1

12
 

(19) 

 𝑢𝑢(𝜽𝜽) = 𝛾𝛾𝑓𝑓𝐻𝐻𝑓𝑓exp(
1
4
− 3𝑇𝑇𝑣𝑣)            𝑇𝑇𝑣𝑣 ≥

1
12
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 Using a fill thickness of 3m and the true values of material properties from Table 3 in Equations 408 

(18) and (19), the artificial measurements are calculated for 21 time instances (Figure 7).   409 

 410 
Figure 7. Artificial measurements based on true values of material properties. 411 

 412 
To evaluate the impact of including multiple types of responses in the calibration process, 413 

a total of six cases are considered for determining the posterior responses of pore pressure and 414 

settlement. In the first three cases, the posterior responses for both pore pressure and settlement 415 

are respectively estimated based on considering only measured settlement at first time instance (n 416 

= 1, S only), only measured pore pressure at first time instance (n = 1, P only), and both 417 

measurements of settlement and pore pressure at first time instance (n = 1, P and S). The second 418 

three cases are respectively S only, P only, and P and S with the considered responses from first to 419 

third time instance (n = 3). Variations in posterior settlement over all time instances using n = 1 420 

and n = 3 are shown in Figures 8a and 8b, respectively, while Figures 8c and 8d illustrate variations 421 

in posterior pore pressures over all time instances for the cases of n = 1 and n = 3. Regarding the 422 

posterior settlements (Figures 8a and 8b), regardless of the value of n, the posterior responses are 423 

closer to the measurements when both responses, P and S, are considered in the calibration process. 424 

Similar to the settlements, in the case of posterior pore pressures (Figures 8c and 8d), using both 425 

types of responses yield a better agreement with the measurements. However, when using only 426 
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one type of response, using the one that corresponds to the response of interest yields a better 427 

agreement compared with using other responses. As for considering more responses over time, 428 

rather than only the responses at the first time instance, a comparison can be made between Figures 429 

8a, 8c and Figures 8b, 8d. From this comparison, it is evident that for both pore pressure and 430 

settlement n = 3 yields a better agreement with measured responses compared with n = 1. The 431 

outcomes that are achieved by using the analytical formulae are consistent with Kelly and Huang 432 

(2015). In the following, we evaluate the impact of surrogate model type and number of training 433 

samples (ntr) on the posterior distributions of involved system variables.  434 

 435 
Figure 8. Impact of types and number of responses on the posterior results.  436 

 437 
Based on the results drawn from Figure 8, we consider the case P and S for n = 3 and 438 

implement different types of surrogate models to evaluate the effects of surrogate models on the 439 

posterior responses. For this example, in addition to RSM, three types of surrogate models are 440 

considered to replace the simulation responses. In the first type of surrogate model, pore pressure 441 
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and settlement responses are considered independently from first time instance to third time 442 

instance (Surrogate 1). However, the second type of surrogate model consists of bi-variate 443 

surrogate at each time instance, which are independent of each other (Surrogate 2). In this type of 444 

surrogate model temporal correlations between responses are neglected. Finally, a multivariate 445 

surrogate model is considered for all the responses that incorporates spatiotemporal correlations 446 

of responses (Surrogate 3).  The covariance matrix of 𝛿𝛿(𝜽𝜽) (𝜮𝜮𝛿𝛿) for Surrogate 1, Surrogate 2, and 447 

Surrogate 3 are in the format presented in Figure 1(c), 1(b), and 1(a), respectively. Each of these 448 

types of surrogate models are constructed with 15, 25, 40, and 80 training samples. The posterior 449 

results are presented for settlements (Figures 9a, 9b, 9c, and 9d) and pore pressures (Figures 9e 450 

and 9f). Regardless of the number of initial training samples, RSM cannot provide a sufficiently 451 

accurate surrogate model. This can be attributed to the fact that RSM assumes a homoscedastic 452 

uncertainty over the predictions. Although Surrogate 2 can provide a significantly better posterior 453 

response compared to Surrogate 1, the difference between Surrogate 2 and Surrogate 3 is not 454 

considerable. Therefore, one can conclude that the dependency between different types of 455 

responses at each snapshot of time is important in the results. Moreover, considering the 456 

dependencies between the responses in different snapshots of time can yield results that are closer 457 

to measurements; however, the gained improvements are not significant. Regarding the number of 458 

training samples, it is evident from Figure 9(a) and 9(e) that 15 number of training samples are not 459 

enough for this four dimensional example. As the number of training samples increases, the 460 

surrogate models yield closer results to the analytical formulae. Although 40 number of training 461 

samples are enough to reach acceptable agreement for the posterior responses of excess pore 462 

pressure, in order to achieve acceptable results for the posterior settlements at least 80 training 463 

samples are necessary. This can be attributed to the fact that all four random variables are involved 464 
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in settlement analysis, while three random variables impact excess pore pressures. Moreover, the 465 

extent of nonlinearity of the settlement relationship in Equation (18) is higher than that for pore 466 

pressure in Equation (19).   467 

 468 

Figure 9. Impact of surrogate types and number of training points on the posterior results.   469 
 470 

In Figure 9, the posterior responses are the responses obtained when the mean values of 471 

the posterior distributions are used. In other words, the responses in those results are 𝑯𝑯(E[𝜽𝜽]), 472 

which are not necessarily equal to E(𝑯𝑯[𝜽𝜽]), which corresponds to our desired responses. Since 473 

analytical formulae have been used for the responses in this example, it is not time consuming to 474 
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obtain E(𝑯𝑯[𝜽𝜽]). Therefore, we generated 100 random samples from the posterior distributions of 475 

settlement and evaluated the true responses of each one of them using the analytical formulae. This 476 

approach yields a distribution of responses for any point from time instance 1 to 21. Figure 10 477 

shows the resultant mean values along with the shaded region that indicates the distribution of 478 

responses. This figure confirms that E(𝑯𝑯[𝜽𝜽]) is not in general equal to 𝑯𝑯(E[𝜽𝜽]). Moreover, it 479 

indicates that not only 80 training samples improve the mean values of the posterior responses but 480 

also they reduce the uncertainty in the estimated responses.   481 

 482 

Figure 10. Comparisons between E(𝑯𝑯[𝜽𝜽]) and 𝑯𝑯(E[𝜽𝜽]) for different numbers of training points; (a) 483 
ntr = 40, (b) ntr = 80.  484 
 485 

3.3 Example 3: Water rise in a levee 486 

A simple simulation of a symmetric levee located in a storm prone zone is used as the third example 487 

to illustrate the capabilities of the proposed method in a more realistic application. The levee is 8m 488 

in height, with a 3m concrete floodwall and an embedded sheet pile and has a 12m wide horizontal 489 

crest; the landward and seaward slopes both have grades of 1:1. It is assumed that the levee 490 

materials are built on a sand foundation material (Figure 11a). The model geometry is simplified 491 

for the purpose of this paper; however, this approach can be extended to a real levee system with 492 

more soil layers and complicated internal structures. In this example after the initial steady-state 493 
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conditions are reached in the levee system (where the water elevation seaward side, H0 = 4m); the 494 

seaward water level is raised in 24 hours by 4m (H24 = 8m) in a linear manner (Figure 11b). As the 495 

water rises, a fully coupled fluid-mechanical analysis is performed using FLAC3D, and the 496 

corresponding excess pore pressures at two locations (PPT 1 and PPT 2) and horizontal top wall 497 

deflection are monitored.     498 

In this example, the levee body is assumed to be constructed from medium sand. The 499 

parameters of interest in the coupled fluid-mechanical analysis are elastic modulus of dam (Ed), 500 

soil density of dam (ρd), cohesion of dam (cd), friction angle of dam (φd), elastic modulus of 501 

foundation (Ef), soil density of foundation (ρf), soil permeability (K), and Biot modulus (M). The 502 

statistical properties of these parameters are shown, along with the true values (assumption by the 503 

authors), in Table 5. The process of selecting the true values in this example is similar to that in 504 

Example 2, which is explained in detail there.   505 

Table 5: True material properties and prior distributions in Example 3. 506 

Soil Parameters Prior distributions True 
values Distribution Mean (µ) C.O.V 

Elastic modulus of dam, Ed (Pa) Lognormal 2.0e8 0.30 2.6e8 
Soil density of dam, ρd (kg/m3) Lognormal 1500 0.05 1700 
Cohesion of dam, cd (Pa) Lognormal 3.0e4 0.30 4.0e4 
Friction angle of dam, φd (degree) Lognormal 35 0.10 40 
Elastic modulus of foundation, Ef (Pa) Lognormal 1.2e9 0.30 1.3e9 
Soil density of foundation, ρf (kg/m3) Lognormal 1900 0.05 2100 
Soil permeability, K (m/s) Lognormal 1e-6 2.50 1.0e-8 
Biot modulus, M (Pa) Lognormal 0.4e10 0.20 1.0e10 

Using the true values, the artificial measurements of excess pore pressures in locations 1 and 2 507 

are shown in Figure 11c, and for horizontal top wall deflection in Figure 11d.    508 
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 509 
Figure 11. An illustration of Example 3: (a) cross section of levee; (b) linear trend of raising water 510 
level due to storm surge; (c) Artificial measurements of excess pore pressure at location 1 and 2; (d) 511 
Artificial measurement of horizontal top deflection. 512 
 513 

The posterior properties are obtained for two different scenarios including Scenario 1 514 

where the measurements are done every 4 hours, at times 1, 4, and 8 hours, and Scenario 2 where 515 

the measurements are done every 8 hours at times 1, 8, 16, and 24 hours. Consequently, the 516 

multivariate surrogate model has p = 3, and n = 3 in the first scenario; and p = 3, and n = 4 in the 517 

second scenario. Considering that this example has high dimensions (d = 8), the multivariate 518 

surrogate models are constructed with 80 training sample in both scenarios. The results of posterior 519 

responses for these two scenarios are presented in Figure 12.  520 
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 521 

Figure 12. Variations of measurements, prior responses, posterior responses in scenario 1 and 2 522 
versus time for (a) PPT1, (b) PPT2, and (c) Horizontal top wall deflection. 523 
 524 
As illustrated in this figure, the prior responses and measurements are far from each other. All of 525 

the three responses have two different trends before and after t = 8 hours. Therefore, although the 526 

posterior responses produced by scenario 1 are closer to the measurements, compared with the 527 

prior responses, this scenario cannot provide posterior results that are acceptably close to the 528 

measurements. On the other hand, since scenario 2 uses the information in the whole window of 529 

time, it produces high agreement with the measurements. The updated probabilistic properties 530 

based on Scenario 2 are the most probable values, and they are close to the true values in this 531 

artificial example.      532 

4. Conclusion  533 

This paper proposed a probabilistic calibration method using multivariate surrogate modeling for 534 

multiple types of responses measured at different times and locations. This goal has been achieved 535 

by proposing a general, inclusive structure for the likelihood function and integrating it with 536 

multivariate Kriging modeling with non-homoscedastic model uncertainty over the input variable 537 

space. The proposed likelihood function also accounts for the probabilistic associations among the 538 

responses of different types to most effectively use the measurement data to update model 539 

parameters. Details of the proposed method including the general likelihood structure and the 540 

Bayesian framework, MCMC sampling, and multivariate surrogate modeling are elaborated in the 541 
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paper. The main advantages of the proposed method are: (i) direct applicability to calibration of a 542 

wide range of models for built and natural systems, (ii) suitability for high dimensional problems 543 

with different types of responses measured at different times and locations, and (iii) very high 544 

computational efficiency especially for calibration of demanding computational models.  545 

The proposed method was applied to three examples, two from previous studies and one 546 

new example that contains highly uncertain geo-mechanical properties. These examples captured 547 

different geological and geotechnical phenomena and had different configurations and types of 548 

random variables. In each example, different goals were pursued, which included: (i) assessing the 549 

impact of non-uniform uncertainty over homoscedastic uncertainty in the prediction error, (ii) 550 

comparing the prediction accuracy by incorporating field measurement responses independent in 551 

both time and type; independent in time but dependent in type; and dependent in both time and 552 

type, and (iii) evaluating the performance of the proposed method for high dimensional systems, 553 

which is often the case in geological and geotechnical systems. The obtained results demonstrate 554 

that the highest prediction accuracy is achieved when the dependencies in time and type are 555 

incorporated in the Bayesian updating framework. Because the framework that is introduced in 556 

this study have the ability to improve the prediction accuracy through consideration of complex 557 

dependencies of multiple responses and heteroscedastic uncertainty in the design space, it can be 558 

highly efficient in geological and geotechnical engineering fields.  559 
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