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Abstract

Monitoring systems often measure different types of responses of the built or natural environment
at different points in space and time. Bayesian updating offers a robust method to use this
information to update the distribution of involved uncertain system variables and enhance the
predictive ability of the models in light of the new evidence. However, this process can be highly
demanding and prohibitive in cases of sophisticated computational models. Here, we propose a
highly efficient Bayesian updating framework that is integrated with multivariate Kriging
surrogate modeling to quantify heteroscedastic uncertainties in the entire space of uncertain system
variables and capture spatial and temporal dependencies among the responses using non-separable
covariance structures. The advantages of the proposed framework are demonstrated on three
geological and geotechnical examples, since responses in these systems are frequently multivariate
in nature and geological properties are often highly uncertain. Results indicate that the developed
framework is able to accurately and efficiently update uncertainties of system variables compared
to existing Bayesian updating methods that are based on surrogate models. Furthermore, results
show that considering the spatiotemporal dependencies between the responses in the framework
can produce more accurate predictions of the future responses.

Keywords: Bayesian updating; probabilistic calibration; multivariate Kriging; spatiotemporal

correlations; uncertainty quantification
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1. Introduction

Accurate characterization of the performance and in particular the primary failure mechanisms of
systems in the built or natural environments, e.g., flood protection systems, transportation
infrastructure, water and wastewater treatment facilities, and the power grid, is one of the main
requirements to building an effective risk assessment framework. This objective may be achieved
through three main components: computational models, uncertainty characterization, and
reliability analysis. While all three components have significant impacts on the accuracy of the
risk assessment framework, the second component, that is the probabilistic characteristics of
involved system variables, can be particularly important for assessing geological and geotechnical
systems, due to intricacies inherent to the geologic features (Christian, 2004). In this sense, many
authors, using either deterministic methods (Adhikari et al., 2014; Sun et al., 2018) or probabilistic
techniques (Zhang et al., 2010; Wang et al., 2013; Feng and Jimenez, 2015; Ering and Babu, 2016;
Jiangetal., 2018; Yanget al., 2018; Sun et al., 2019; Wang et al., 2019) have addressed the analysis
of uncertainty reduction in geo-mechanical properties through calibration. Whereas deterministic
methods provide no information about the degree of uncertainty, probabilistic techniques of
calibration provide the most likely updated distribution of the involved variables (Sun et al., 2018).

Among probabilistic techniques for calibration, Bayesian updating is shown to be a robust
method for determining the probability density functions of system variables (Gelman et al., 2013;
Zhou et al., 2017). Based on Bayes’ theorem, the prior distribution of uncertain system variables
to be updated and the knowledge learned from the observed data or measurements from full-scale
experiments can be combined in a mathematical expression. This expression, which consists of
prior distributions (from literature or engineering judgement) and a likelihood function (the chance

to observe the response given system variables), very often cannot be solved analytically in the
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case of multi-dimensional systems (i.e., systems with multiple involved random variables). For
solving the Bayesian formulation, Markov Chain Monte Carlo (MCMC) method is a sampling tool
that has become increasingly practical (Gilks et al., 1995). As stated, the idea of MCMC is based
on drawing samples from a proposal distribution in a chain, which requires thousands of
evaluations of the likelihood function, which can be computationally expensive in the case of
complex, computationally demanding numerical simulations, which is often the case in geological
and geotechnical engineering. Moreover, utilizing various types of responses at different locations
of a system during different time instances requires modification in the likelihood function that is
embedded in the mathematical expression of Bayes’ theorem (Zhang et al., 2018). To address the
latter challenge, Juang et al. (2012) integrated two types of responses of a braced excavation,
including maximum wall deflection and maximum ground settlement, in the likelihood function
to simultaneously utilize them in Bayesian updating. Kelly and Huang (2015) also considered
consolidation of a clay layer and then expressed the likelihood function for two types of responses,
including settlement and excess pore water pressure, during various time instances using analytical
formulations. Li et al. (2016¢) combined incremental time-series monitoring data from multi-stage
excavation of a high rock slope that was evaluated with a semi-empirical model into the likelihood
function. These studies pointed out that incorporating more measured responses of different types
and time instances yields higher accuracy in the posterior distribution of involved random
variables. The predictive models in these studies were analytical formulations and semi-empirical
models that are easy to evaluate; therefore, allowing thousands of simulations needed for Bayesian
updating. However, the application of the methods in these studies to problems complex geological

systems involving computationally demanding models may not be feasible.
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Utilizing surrogate models, which are often statistically derived mathematical
approximations of the ‘true’ models, can provide a general solution if integrated appropriately in
the likelihood function. Several studies explored the integration of Response Surface Methodology
(RSM), which is a polynomial regression model, for expressing the likelihood function in the
probabilistic back-analysis process (Zhang et al., 2010; Miro et al., 2015; Li et al., 2016b; Qi and
Zhou, 2017). Zhang et al. (2010) employed RSM as a surrogate model to approximate the safety
factor of a slope calculated through limit equilibrium method. Then, they incorporated the
surrogate model into the likelihood function and tuned the shear strength properties of the soil
layers. They considered the potential error introduced by substituting the ‘true’ model with RSM
as a random variable, and assumed it to follow a normal distribution with a constant standard
deviation. This, however, is not a true representation of the uncertainty. In fact, the variance around
the regression line is most often not constant for the entire space of system variables. Li et al.
(2016b) utilized independent second-order polynomial response surfaces in lieu of the numerical
model of a rock slope to approximate four responses (top vertical displacement, horizontal
displacement of toe, depth of ground water table, and axial force of the rock bolt) and integrated
the independent surrogate models into the likelihood function to update five involved system
variables. In their approach, in addition to the error associated with the homoscedastic assumption
for individual surrogate models, probabilistic associations among responses were entirely
neglected. These drawbacks also exist in the vast majority of surrogate models other than RSM.
Li et al. (2016a) adopted a multi-output support vector regression to approximate the
displacements in a rock slope and integrated the surrogate model in the likelihood function to
update distributions of geo-mechanical properties. Although the dependencies between the

displacements at different locations were considered, similar to RSM, this method does not possess
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the ability to accurately represent the uncertainty in the predictions. Sun et al., (2019) adopted
independent Back Propagation (BP) neural networks as a surrogate model to determine
displacements and anchorage forces of a rock slope during progressive excavation. However, the
deviation of the surrogate model from measurements was assumed to stem from only the
measurement error of the monitoring instruments, and the error of the surrogate models with
respect to the computational model was entirely neglected. Despite improvements offered by
previous studies, the current Bayesian updating frameworks that are integrated with surrogate
models do not properly quantify uncertainties associated with the surrogate models nor the spatial
and temporal dependencies between the responses of the systems of interest in the likelihood
function. The probabilistic associations between responses of different or the same types are often
directly related to the proximity of the data in space and time specifically in geological and
geotechnical systems.

Based on the above discussion, it is of considerable value to develop the most general
formulation of the likelihood function for multi-response physical phenomena using multivariate
surrogate models that can accurately quantify the uncertainties and capture the associations among
responses. In this study, we propose integrating into Bayesian updating a multivariate Kriging
surrogate model that can capture heteroscedastic uncertainties over the entire space of system
variables and moreover consider the probabilistic associations between responses. The
multivariate Kriging model is constructed based on a multi-objective optimization method
developed by Svenson (2011). The proposed representation of the likelihood function is integrated
with Bayes’ theorem and solved using the MCMC algorithm. The merits of this approach are
evaluated for three geological and geotechnical systems with multi-dimensional responses and soil

properties that are highly uncertain. The proposed method is elaborated in Section 2, which
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contains two subsections detailing the formulation of the likelihood function with multivariate
Kriging and MCMC algorithm. Section 3 begins with a summary of the goals pursued in the
application examples, and then provides the examples with a detailed analysis of results. Finally,

concluding remarks are presented in the Conclusion section.

2. Methodology

In this section, we present the details of the proposed Bayesian updating and an extended
formulation for probabilistic calibration for multiple responses, which is built by incorporating
multivariate Gaussian process regression (Kriging) within the expression for the likelihood
function. Use of the Kriging meta-modeling technique provides a means for considering non-
homoscedastic model uncertainty over the input variable space. Furthermore, since responses in
the likelihood function are generally from different types of physical quantities, in this method,
the covariance matrix of the likelihood function considers both the associations over the input
variable space and the associations among the responses by a non-separable covariance structure.
Subsequently, the issues that arise during implementation of the Bayesian updating formulation
for multi-dimensional systems and the sampling method (Markov Chain Monte Carlo, MCMC)

that is used to overcome these issues are discussed.

2.1 Bayesian updating for multiple responses of different types of physical quantities

The Bayesian method for probabilistic calibration statistically integrates information gathered,
about a phenomenon or a system, whose behavior is captured by a predictive model, to arrive at
the most likely representation of involved uncertain variables. Indeed, prior probabilistic
information of uncertain system variables, which is assumed from available measurements and/or
expert belief, may be updated by the Bayesian method to posterior probabilistic information, based
on new information. Such information may be in the form of field observations (qualitative
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information) and/or measurements (quantitative information). The probability of observing new
information can be quantified using a likelihood function, and Bayesian analysis then allows
updating the probabilistic belief about the variables given the likelihood of the new information.
Let us consider @ as the single event of interest, then based on Bayes’ theorem, the probability of
O conditioned on observing data M can be defined as follows,

P(ONM)  P(M|O)P(O)

POIM) =—5an = ~pan

(1)

where P(O|M) is the posterior probability of @, P(0) is the prior probability of @, P(M|®) is the
likelihood function, and P(M) is the probability of observing M. In fact, the observing data are
characterized by the likelihood function, and Bayes’ theorem guides us on how to update the prior
probability information to the posterior probability information using the likelihood function. The
application of Bayes’ theorem for updating of a single event @ in Equation (1) can be to extended

to the calibration of a d-dimensional set of involved variables, @ = [0, ..., 6;, ..., 04] as follows,

L(6)f;(6) __ LO)£(®
S22 L(O)f(8) by ...d8; [ L(B)f5(6)d6

0 (0) = )

where fp(0) and fp'(0) are the prior and posterior Probability Density Functions (PDFs) of 0,
respectively, and L(@) is the likelihood function that describes the occurrence probability of
measurements and/or observations. In Equation (2), 1/ fjooo fjooo L(0)fy(0) db; ...dO; = cis a
normalization constant that assures the posterior distribution integrates to unity. Thereby, Equation
(2) is simplified as follows,
9 (8) = cL(0)f4(0). 3)

In order to introduce the likelihood function in the case of multiple responses, it is helpful
to specify the following definitions: we will use the notation yj; to indicate the particular value of
the k™ response that is measured at the /™ time instance. Consequently, the p measured responses

7-
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(k €{1,..,p}) from t; to t, (j € {1, ...,n}) can be written as a stacked vector, called ¥, of m =

n-p rows as follows,

T
Y= [YL¥L. Y. Y] o)

where Y] = [yj1, ¥jz, o) Vjies ooos yfp]1><p is the p-dimensional vector of the measured responses at the
j™ time instance. Let h;x(8) denote the simulation response corresponding to yj,. Similarly, the

corresponding stacked vector of the simulation responses, H(@), is written as follows,

H(9) = [H](0),H}(6),...,H[(0), ..., H}(0)] (5)

T
mx1’
In Equation (5), HJ-T(G) = [hjl (0),hjz(0), ..., hj(0), ..., hj, (0)]1Xp is the p-dimensional vector
of the simulation responses at the ;% time instance. Let the stacked vector £(@) denote the
deviations of the simulation responses from the measured responses, which are either due to
measurement errors, uncertainties in input system variables, the degree of fidelity of the
computational models, or some combination of these sources. In the case of additive errors, the
response vector is represented as,
Y = H(B) + (0). 4)
Therefore, the likelihood function describing the multivariate PDF of the deviation is as follows,
Le(8) = f:(Y — H(8)). 5)
By assuming the likelihood function to be a multivariate normal distribution with the m X m
covariance matrix of X, that denotes the correlations between the entries of the deviation vector,

€(0), L.(0) takes the following form,

1
L.(6) = p X exp | == [V —H(O)]"Z:'[Y — H(O)]|, (6)

@mZ(|Z,])2



174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

where |X,| is the determinant of the deviation covariance matrix. Each entry of the deviation
covariance matrix denotes the dependency between the errors associated with the corresponding
responses. This error is related to the accuracy of the measurements (e.g. signal to noise ratio of
data measured by sensors) and fidelity of the computational models. Often measurement systems
are calibrated to work properly for a specific range of responses and therefore their accuracy may
not be uniform across a wide range of responses (Khosravi et al., 2017). Additionally, it is often
the case that the confidence in the responses of the computational models may not remain the same
over the output space, and therefore the error of the models may not be uniform when expressed
as a function of model variables. For instance, when the input system variables impose a non-linear
system behavior, numerical simulations may not provide results that are as accurate as for when
the system behaves linearly (Matthies et al., 1997). These variations in the uncertainties that are
associated with measurement systems and computational models can be incorporated in the
deviation covariance matrix, if they can be quantified accurately.

Simulated responses, H(0), can be approximated statistically using a stochastic surrogate
model, K(8), which is especially useful for the case where H (@) is obtained by a computationally
expensive numerical model. Similar to Y and H(@), we define K(@) as a stacked vector that

includes m entries, i.e.,
K(0) = [KT(6),K1(6), .., KT (6), ...,Rz(e)];Xl, (9)
where, IA(]-T(O) = [12]-1(0),12]-2(0), ...,Ejk(e), ...,Ichp(B)]lxp is the p-dimensional vector of the

surrogate model responses at the j time instance. Then the response vector, Equation (6), is

extended as:

Y = H(0) + £(8) = K(0) + £(6) = E[R(8)] + 6(8) + £(0), (10)
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where E[R (0)] corresponds to the mean values of the surrogate model predictions for each
response, and the prediction errors, 8(@), account for the discrepancies between the surrogate
model predictions and those by the ‘true’ model. In addition to the mean values of the surrogate
model predictions, the prediction error of the surrogate model, as shown in Equation (10), directly
influences the response vector that plays an essential role in the likelihood function and hence the
posterior distributions. In the vast majority of surrogate models, such as RSM, the prediction error
is assumed to be homoscedastic, which implies a uniform variance over the entire space of input
variables, 6. This assumption is not close to reality, as predictions for samples that are close to the
design samples of the surrogate model will have higher confidences compared with those that are
far away from the design samples (Rahimi et al., 2019). In the cases where multiple responses of
different types of physical quantities are involved, some surrogate models reduce multi-
dimensional responses of systems to a single response, either by applying weighting functions or
by considering only the most significant response. Alternatively, in these cases, some approaches
construct a univariate surrogate model for each response of interest, and therefore neglect
correlations among responses. The most appropriate way to build a surrogate model is by a
multivariate model that considers heteroscedastic uncertainty over the entire space of input
variables as well as the probabilistic associations between responses of different types of
quantities.

Here, we propose to consider such associations in the formulation of the likelihood function
through multivariate Gaussian process regression, known as multivariate Kriging. This model has
a constant mean vector of f = E[R (0)] and a m X m covariance matrix of X5 that denotes the
dependencies between the entries of 8(0). Since X5 captures two types of correlation: correlations

among responses of one type over the input variable space and correlations between different
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responses, determining its form can be challenging. In some cases where only one type of physical
quantity is involved in the responses (e.g., displacement of a cantilever beam at different locations
of the beam), it may be appropriate to treat the two kinds of correlation as separable and to then
determine the covariance structure. However, when multiple responses arise from different types
of quantities, a separable covariance structure is no longer appropriate, since there is no obvious
index between the responses (Fricker et al., 2010). Fricker et al. (2010) showed that separable
covariance structures have a Markovian type property. For instance, if we have two types of
responses (4 and B) and desire estimating response 4 at location X, and we have already observed
response A at location Y, then observation of response B at location Y gives us no further
information. Therefore, to arrive at a general formulation for the likelihood function, here we
define X5 with a non-separable covariance structure by using a method known as Non-Linear
Model of Coregionalization (NLMC) (Fricker et al., 2010). Using NLMC, K(8) is expressed as a
process of the form:

K(6) = E[K(0)] + 6(8) = B + AZ(6), (11)
where B = [B4, ..., i, .., Bm]T contains the constant mean values for each response of the
numerical simulation (i.e., E[I?(B)] =pB); Z(0) =[2,00),..,2;(0),...,Z,,(0)]" is an m-
dimensional vector of mutually independent stationary Gaussian processes with zero mean, unit
variance, and a Gaussian correlation function; and A is a m X m symmetric, positive-definite
matrix that is the square root of X's computed in the case of two random system variable vectors

of the same values. In more details, the Gaussian correlation function for Z; (@) is as follows:

d

Ri0,6", 1) = | | exp(—nic(6: - 6)7), (12)

t=1
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where, 8" and 8" are two arbitrary d-dimensional vectors of random system variables, and where
1); 1s a d-dimensional vector of correlation coefficients for each response. It is straightforward to

see that Equation (11) together with Equation (12) implies:
cov (R(el)r R(e”)) = Adlag(Rl (0,r 0”r 1’1)! Ty Ri(elr 0”r ni): ey Rm(elr 0”r nm))ATr (13)
where COV (R (0),K (0”)) is the m X m covariance matrix between the multiple responses, and

A is defined through the eigen-decomposition of COV (I? (0", K (0")) when @’ = 0"

There are d - m and m - (m + 1) /2 covariance coefficients in 17 and A, respectively. Here,
we implement the multi-objective optimization method developed by Svenson (2011) to obtain
Restricted Maximum Likelihood (REML) estimates of the covariance coefficients in A and 7. The
adopted optimization process not only fits the model at the initial design of experiment (i.e.,
estimation of A and 71 in the covariance matrix), but also obtains the predictions, E[R (0)], and
prediction errors, 8§(0) = AZ(0), at any desired sample. This probabilistic information is used to
modify the likelihood function based on the multivariate surrogate model as follows,

Les(8) = fos(Y — E[K(0)]). (14)
Equation (14) delineates that the covariance matrix in the likelihood function is now associated

with both &£(0) and §(0), and that likelihood function will have the following form,

1 1 — -
Les(8) = ———— X exp [—5 [v - E[R@®)]] z32[v - E[K(e)]]l, (15)
(22 (|Zes )

The new likelihood function with the covariance matrix X.5 = X, + X5 that considers all the
uncertainties regarding errors associated with the measurements systems, computational models,

and surrogate models, presents the most general formulation of the likelihood function, where
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probabilistic associations among deviations of different types of responses in space and time are

accounted for.

In order to show the general form of the covariance array, X's, as an example, we assume
p = 2 (two responses) and n = 3 (three time instances); therefore, m = 3 - 2 = 6, which means
that the covariance matrix is 6 X 6. Since n = 3 we have 32 = 9 block matrices in the entire

covariance matrix, and since p = 2, those 9 matrices are 2 X 2. Figure 1 provides an illustration

of the covariance matrix for three different cases.
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Figure 1. The covariance matrix of §(0) (X'5) for an example with p =2 and n = 3; (a) fully dependent
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In this figure, the grey boxes in the schematic view denote the dependencies between the
responses. As illustrated in Figure 1a, the 6 X 6 covariance matrix has all non-zero entries in the
case of considering all the dependencies between different types of responses during different time
instances. In the case of considering the dependencies between the types of responses at each time
instance, but independent of other time instances (Figure 1b), the off-diagonal 2 X 2 block matrices
are zero. Finally, one can consider all of the responses to be independent of each other, which
yields a strictly diagonal (i.e., not just block diagonal, as in Figure 1b) covariance matrix, as shown
in Figure lc.

2.2 Markov Chain Monte Carlo (MCMC)

Techniques such as conjugate prior, direct integration method, and Maximum Posterior Density
(MPD) serve as analytical and approximation tools for exploring the posterior distribution through
solving Equation (3); however, solving this equation can be highly demanding for the general
likelihood function in Equation (15). Therefore, in this case one needs to employ a sampling
method, such as MCMC, in order to solve the Bayes’ equation. In this sub-section, the details of
MCMC are provided. The concept of Monte Carlo integration, combined with that of a Markov
Chain (a mathematical description for a stochastic sequential process), yields a strong sampling
method called Markov Chain Monte Carlo (MCMC) that can be used to solve the Bayes’ equation
(Equation 3). MCMC aims to build a Markov Chain with a histogram similar to the target
distribution, which in the case of this study is the posterior distribution of the involved system
variables, fp(0), in Equation (3). MCMC aims to converge to the target distribution irrespective
of the initial values in the chain. To achieve this goal, there are several sequential sampling

algorithms including Metropolis-Hastings (MH), Metropolis, and Gibbs sampler that vary in the
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definition of the transition process in the chain (Gelman et al., 2013). Here, we use the Metropolis
sampler, which produces the following sequential states,

0 9@ - ... 590 ... 9B (16)
where R is the length of the Markov Chain and 87 is the " state in the chain. The first state of

the chain @V = [91(1), . Hi(l), . 9(51)] (d is the dimension of the involved system variables), is

randomly selected from the logical ranges of each 6;. A candidate vector, 8, is produced
subsequently from the conditional proposal distribution q(0|0(r_1)). In this study q(.) is a
multivariate normal distribution with a mean of 87~ and the covariance matrix of (X, where {
is a scaling factor and Xy is the covariance matrix of the prior distribution. To decide whether or
not to accept the candidate vector, 0™, a uniform random number, u, in the interval of zero and
one is generated and compared with the probability of accepting the proposal, a, which in the case

of Metropolis sampler is defined as follows,

") DN F (g™
a=min<1,m>=min<1 CL(G )f(@ ) > (17)

fr(er-1) "cL(8TD)f'(80D)

If u < a, the candidate vector is accepted and the next state is set as 0 =9 Otherwise, the
candidate is rejected and the next state is set as 8 = 87~ This process continues for the entire
length of the chain, R. Since the initial samples in the Markov Chain are unstable, they should be
discarded from the chain. In this study, R is selected to be 10000, and the first 1000 samples, which
are called ‘burnt’ samples, are discarded.

3. Application examples

To evaluate the proposed method, three different geotechnical examples with different dimensions
in random system variables and various types of measured quantities are considered in this study.

Although details of each example with the corresponding results are presented and discussed in
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detail in the following sub-sections, Table 1 illustrates a summary of each example to clarify the

goals we are perusing for each example.

Table 1: Summary of application examples

# Type of example Measured quantity p n d Goals

e Verification of the method for single
response (m = 1)

¢ Impact of homoscedasticity on the
prediction error

1 Homogenous soil slope e Factor of safety 1 1 3

e Verification of the method for
multiple responses (m = 1)
2 Consolidation of a clay layer * Settlement 2 3 4 e Impact of multi-type responses
Pore pressure
e Impact of surrogate type
e Impact of training sample numbers

Wall displacement
Pore pressure 1 3 34 8
Pore pressure 2

e Impact of high model complexity

3 Water rise in a levee . . .
o Impact of high dimensions

3.1 Example 1: Homogenous soil slope

In this example, a three-layered homogenous soil slope was cut back to a steeper design, which
resulted in the slope to fail. Figure 2 shows the steepened geometry and the soil layer profiles of
the slope. Duncan (1999) reported the mean values of the shear strength properties of soil layers,
which are summarized in Table 2. Using these mean values and the strength reduction method
through FLAC3D (Itasca, 2017), we determine the safety factor of the slope as 1.41, which is
consistent with the reported safety factor in (Duncan, 1999; Zhang et al., 2010); however, it
contradicts the true observed failure. This discrepancy motivated Duncan (1999) and Zhang et al.
(2010) to respectively perform deterministic and probabilistic calibrations in order to update the
shear strength properties of the soil layers with the assumption that the slope failure is initiated by
the change in the slope steepness, not changes in the soil properties. Zhang et al. (2010) considered
the shear strength properties of the top soil layers (sandy clay and highly plastic clay) as uncertain
variables and then based on literature and engineering judgement they assumed the prior

probabilistic models that are elaborated in Table 2. They constructed a second order polynomial
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function with seven design samples and then evaluated the accuracy of the surrogate model
through comparing safety factor determined by the surrogate model and numerical simulations on
sixteen more design samples. They subsequently performed MCMC with the likelihood function
integrated with the constructed surrogate model. Although not discussed in their work, their
treatment of the uncertainty in light of the general likelihood structure presented in this research is
to mix the error associated with the numerical simulation, £(@), and the potential error introduced
by substituting the true model with RSM, §(0). The resulting error is considered to have a normal
distribution with a constant non-zero mean and constant standard deviation (i.e., 6(0) + £(0) =
e~N(u, 0¢)). The main issue in that method is the assumption of homoscedasticity, which is not
the true representation of the uncertainty.

In this study, similar to Zhang et al. (2010), we assume that the slope failure is originated
by the change in the slope steepness. With this assumption, we seek to find the updated soil
properties given that the slope has failed, i.e., given that factor of safety is unity. Similar to Zhang
et al. (2010) we consider friction angle and cohesion of sandy clay, and friction angle of highly
plastic clay as random variables that we are interested in updating through the proposed method.
Therefore, d equals to three and 8 = [cq, @1, @,], Where ¢, @1, @, are defined in Table 2. We
also assume that these input system variables are statistically independent and follow lognormal

distributions with the statistical properties shown in Table 2.

-

16.70"

L L 310"
1lighly plastic clay

I 25.80™ | 41.40™ ’ 31.00™ ‘

Sandy clay

Figure 2. Cross section of soil slope in Example 1.
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Table 2: Probabilistic models of slope properties in Example 1.

Soil Parameters Distribution ~ Mean (p) C.O0.VvV
Cohesion of sandy clay, ¢, (kPa) Lognormal 14.4 0.20
Friction angle of sandy clay, ¢, (°) Lognormal 35.0 0.15
Friction angle of highly plastic clay, ¢, (°) Lognormal 25.0 0.15

Figures 3a, 3b, and 3¢ show the MCMC iteration samples with the posterior histograms for
cohesion of sandy clay, friction angle of sandy clay, and friction angle of highly plastic clay.
Among the crucial implementation issues of MCMC, the choices for the number of iterations and
for the starting value are of high importance. The bias caused by the latter can be reduced by
discarding a number of the initial samples, which are considered as belonging to the initial transient

phase of the method (Brooks and Roberts, 1998).
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Figure 3. MCMC iterations and posterior histograms for (a) cohesion of sandy clay, c;; (b) friction
angle of sandy clay, ¢; (¢) friction angle of highly plastic clay, ¢,.

In order to choose a sufficient number of iterations to achieve convergence, various methods exist,
such as making use of autocorrelation plots as suggested by Gelfand and Smith (1990). Here, the
number of samples, R, is chosen to be 10000 and the first 1000 samples are “burnt”.
Autocorrelation tests show that the MCMC chain is stabilized. The scaling factor in the proposal

distribution is { = 0.5, which yields to the acceptance rate of 0.33, as suggested by Gelman et al.
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(2013). As indicated by Figure 3, the posterior mean values of the soil strength parameters are
decreased compared with the prior mean values (Table 2), which is logical, since the prior safety
factor (1.41) was overestimated. Using the updated properties in the FLAC3D simulation yields a

factor of safety that is very close to one, which is consistent with the field observation.

For the next phase of verification, the correlation between cohesion and friction angle of
sandy clay, using the prior and posterior distributions are illustrated in Figure 4a and 4b,
respectively. While Figure 4a shows no correlation between cohesion and friction angle, there is a
negative correlation between them in Figure 4b, which is consistent with previous studies (Li et
al., 2015; Wang and Akeju, 2016) that show the negative correlation between these two variables

is a physical feature of soils.

35 I Te I I I I I I I 35 T T T T T T T T T
R Priors R Posteriors
30 P ‘.- Slope = - 0.0015 - 30 + L Slope = - 0.1223 —
. * .
25 h 25 - .

Cohesion of sandy clay, ¢  (kPa)
(=]
[e=]

Cohesion of sandy clay, ¢ (kPa)

15 20 25 30 35 40 45 50 55 60 65 15 20 25 30 35 40 45 50 55 60 65
Friction angle of sandy clay, él(o) Friction angle of sandy clay, (f)] )

Figure 4. correlation between the friction angle and cohesion of sandy clay (a) priors, (b) posteriors.

The posterior histograms for all three random variables using the proposed method are
compared with the results from Zhang et al. (2010) in Figure 5. As illustrated in this figure, the
mean values of posteriors using the proposed method are close to the results by Zhang et al. (2010).
However, it is seen that the standard deviation is decreased in all the variables using the proposed

method, which yields lower coefficients of variation in the updated soil properties. This decrease
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indicates that the proposed method is more reliable and its difference with RSM for multi-

dimensional systems with multiple responses can be significant.

B Kriging (current study) T—IRSM (Zhang et al., 2010)
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Figure 5. Comparison between the posteriors using RSM and proposed methodology (a) cohesion of
sandy clay, c;; (b) friction angle of sandy clay, ¢; (c) friction angle of highly plastic clay, ¢,.

3.2 Example 2: Consolidation of a clay layer

This example, adapted from Kelly and Huang (2015), is a one-dimensional consolidation soil
problem with an undrained and a drained boundary at the bottom and top, respectively, of a layer
of soft clay soil (Figure 6). In this example, two types of physical quantity including settlements
and excess pore pressures at the base of the soft clay layer are considered to update four involved
system variables @ = {m,,, H,ys, C,,}. Here, m,, is the coefficient of volume compressibility, H is
the thickness of the soil layer, y; is the unit weight of the fill, and C, is the coefficient of
consolidation. In this example, the real material properties are taken from Kelly and Huang (2015)
and are assumed to be true values in Table 3. Moreover, similar to Kelly and Huang (2015) here
we deviate the mean values of prior probabilistic models from the true values in order to evaluate

the accuracy of the method. The prior probabilistic models are presented in Table 3.
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Figure 6. One-dimensional consolidation soil system with an un\dra‘ine‘d‘ and a drained boundary.

Table 3: True material properties and prior distributions in Example 2.

. Prior distributions True

Soil Parameters Distribution Mean (1) CoVv values

Coefficient of volume compressibility, m, (1/kPa) Lognormal 0.001 0.40 0.0014
Thickness of the soil layer, H (m) Lognormal 5.0 0.10 5.50
Unit weight of fill, y; (kN/m’) Lognormal 20.0 0.10 22.0
Coefficient of consolidation, C, (m?/year) Lognormal 40.0 1.00 80.0

Based on Atkinson (2007), the analytical solution for settlements at the bottom of the elastic soft
clay layer is as,

bl 2 e-(g(2q+1))zrv

18
4=0 (3 (2 + 1))? o

s(@) =m,HysHp| 1 — Z

where H is fill thickness, and T, is the time factor determined as T,, = C,t/ H3, where ¢ is time,

and H, is the average longest drain path during consolidation, which in this example Hy,- = H,
since the consolidation is only in one dimension. Similar to Kelly and Huang (2015), in this study
we consider ¢ =9. The second response that we are interested in capturing during the consolidation
process is the excess pore pressures at the base of the soft clay layer, which can be calculated as

follows (Atkinson, 2007),

1
(19)
(0) =ysH ! 3T, T, = !
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Using a fill thickness of 3™ and the true values of material properties from Table 3 in Equations

(18) and (19), the artificial measurements are calculated for 21 time instances (Figure 7).

—e— Settlement measurements
—o— Excess pore pressure measurements
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0.01 0.10 1.00 10.00

Time, t (year)
Figure 7. Artificial measurements based on true values of material properties.

To evaluate the impact of including multiple types of responses in the calibration process,
a total of six cases are considered for determining the posterior responses of pore pressure and
settlement. In the first three cases, the posterior responses for both pore pressure and settlement
are respectively estimated based on considering only measured settlement at first time instance (n
=1, S only), only measured pore pressure at first time instance (n = 1, P only), and both
measurements of settlement and pore pressure at first time instance (n = 1, P and S). The second
three cases are respectively S only, P only, and P and S with the considered responses from first to
third time instance (n = 3). Variations in posterior settlement over all time instances using n = 1
and n = 3 are shown in Figures 8a and 8b, respectively, while Figures 8c and 8d illustrate variations
in posterior pore pressures over all time instances for the cases of » = 1 and » = 3. Regarding the
posterior settlements (Figures 8a and 8b), regardless of the value of n, the posterior responses are
closer to the measurements when both responses, P and S, are considered in the calibration process.
Similar to the settlements, in the case of posterior pore pressures (Figures 8c and 8d), using both

types of responses yield a better agreement with the measurements. However, when using only
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one type of response, using the one that corresponds to the response of interest yields a better
agreement compared with using other responses. As for considering more responses over time,
rather than only the responses at the first time instance, a comparison can be made between Figures
8a, 8c and Figures 8b, 8d. From this comparison, it is evident that for both pore pressure and
settlement n = 3 yields a better agreement with measured responses compared with n = 1. The
outcomes that are achieved by using the analytical formulae are consistent with Kelly and Huang
(2015). In the following, we evaluate the impact of surrogate model type and number of training
samples (n;-) on the posterior distributions of involved system variables.

—+—Measurements, Y - - - Prior responses, H(0)

—=— Posterior responses, S only —o—Posterior responses, P only =~ —#— Posterior responses, P and S

00, :
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Excess pore pressure, u (kPa)
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Figure 8. Impact of types and number of responses on the posterior results.

(e

-10

Based on the results drawn from Figure 8, we consider the case P and S for n = 3 and
implement different types of surrogate models to evaluate the effects of surrogate models on the
posterior responses. For this example, in addition to RSM, three types of surrogate models are

considered to replace the simulation responses. In the first type of surrogate model, pore pressure
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and settlement responses are considered independently from first time instance to third time
instance (Surrogate 1). However, the second type of surrogate model consists of bi-variate
surrogate at each time instance, which are independent of each other (Surrogate 2). In this type of
surrogate model temporal correlations between responses are neglected. Finally, a multivariate
surrogate model is considered for all the responses that incorporates spatiotemporal correlations
of responses (Surrogate 3). The covariance matrix of 6(@) (Zs) for Surrogate 1, Surrogate 2, and
Surrogate 3 are in the format presented in Figure 1(c), 1(b), and 1(a), respectively. Each of these
types of surrogate models are constructed with 15, 25, 40, and 80 training samples. The posterior
results are presented for settlements (Figures 9a, 9b, 9c, and 9d) and pore pressures (Figures 9¢
and 9f). Regardless of the number of initial training samples, RSM cannot provide a sufficiently
accurate surrogate model. This can be attributed to the fact that RSM assumes a homoscedastic
uncertainty over the predictions. Although Surrogate 2 can provide a significantly better posterior
response compared to Surrogate 1, the difference between Surrogate 2 and Surrogate 3 is not
considerable. Therefore, one can conclude that the dependency between different types of
responses at each snapshot of time is important in the results. Moreover, considering the
dependencies between the responses in different snapshots of time can yield results that are closer
to measurements; however, the gained improvements are not significant. Regarding the number of
training samples, it is evident from Figure 9(a) and 9(e) that 15 number of training samples are not
enough for this four dimensional example. As the number of training samples increases, the
surrogate models yield closer results to the analytical formulae. Although 40 number of training
samples are enough to reach acceptable agreement for the posterior responses of excess pore
pressure, in order to achieve acceptable results for the posterior settlements at least 80 training

samples are necessary. This can be attributed to the fact that all four random variables are involved
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in settlement analysis, while three random variables impact excess pore pressures. Moreover, the

extent of nonlinearity of the settlement relationship in Equation (18) is higher than that for pore

pressure in Equation (19).
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Figure 9. Impact of surrogate types and number of training points on the posterior results.

In Figure 9, the posterior responses are the responses obtained when the mean values of

the posterior distributions are used. In other words, the responses in those results are H(E[@]),

which are not necessarily equal to E(H[@]), which corresponds to our desired responses. Since

analytical formulae have been used for the responses in this example, it is not time consuming to
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obtain E(H[@]). Therefore, we generated 100 random samples from the posterior distributions of
settlement and evaluated the true responses of each one of them using the analytical formulae. This
approach yields a distribution of responses for any point from time instance 1 to 21. Figure 10
shows the resultant mean values along with the shaded region that indicates the distribution of
responses. This figure confirms that E(H[@]) is not in general equal to H(E[@]). Moreover, it
indicates that not only 80 training samples improve the mean values of the posterior responses but

also they reduce the uncertainty in the estimated responses.
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Figure 10. Comparisons between E(H[0]) and H(E[@]) for different numbers of training points; (a)
1 = 40, (b) 1y = 80.

3.3 Example 3: Water rise in a levee

A simple simulation of a symmetric levee located in a storm prone zone is used as the third example
to illustrate the capabilities of the proposed method in a more realistic application. The levee is 8™
in height, with a 3™ concrete floodwall and an embedded sheet pile and has a 12™ wide horizontal
crest; the landward and seaward slopes both have grades of 1:1. It is assumed that the levee
materials are built on a sand foundation material (Figure 11a). The model geometry is simplified
for the purpose of this paper; however, this approach can be extended to a real levee system with

more soil layers and complicated internal structures. In this example after the initial steady-state
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conditions are reached in the levee system (where the water elevation seaward side, Hy = 4™); the
seaward water level is raised in 24 hours by 4™ (H24 = 8™) in a linear manner (Figure 11b). As the
water rises, a fully coupled fluid-mechanical analysis is performed using FLAC3D, and the
corresponding excess pore pressures at two locations (PPT 1 and PPT 2) and horizontal top wall
deflection are monitored.

In this example, the levee body is assumed to be constructed from medium sand. The
parameters of interest in the coupled fluid-mechanical analysis are elastic modulus of dam (£4),
soil density of dam (p4), cohesion of dam (c4), friction angle of dam (¢u), elastic modulus of
foundation (E)), soil density of foundation (py), soil permeability (K), and Biot modulus (M). The
statistical properties of these parameters are shown, along with the true values (assumption by the
authors), in Table 5. The process of selecting the true values in this example is similar to that in
Example 2, which is explained in detail there.

Table 5: True material properties and prior distributions in Example 3.

. Prior distributions True
Soil Parameters Distribution _ Mean () _ C.O.V__ values
Elastic modulus of dam, E; (Pa) Lognormal 2.0e8 0.30 2.6e8
Soil density of dam, ps (kg/m?) Lognormal 1500 0.05 1700
Cohesion of dam, ¢, (Pa) Lognormal 3.0e4 0.30 4.0e4
Friction angle of dam, ¢y (degree) Lognormal 35 0.10 40
Elastic modulus of foundation, £, (Pa) Lognormal 1.2e9 0.30 1.3¢9
Soil density of foundation, pr(kg/m?®) Lognormal 1900 0.05 2100
Soil permeability, K (m/s) Lognormal le-6 2.50 1.0e-8
Biot modulus, M (Pa) Lognormal 0.4el0 0.20 1.0el10

Using the true values, the artificial measurements of excess pore pressures in locations 1 and 2

are shown in Figure 11c¢, and for horizontal top wall deflection in Figure 11d.
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Figure 11. An illustration of Example 3: (a) cross section of levee; (b) linear trend of raising water
level due to storm surge; (c¢) Artificial measurements of excess pore pressure at location 1 and 2; (d)
Artificial measurement of horizontal top deflection.

The posterior properties are obtained for two different scenarios including Scenario 1
where the measurements are done every 4 hours, at times 1, 4, and 8 hours, and Scenario 2 where
the measurements are done every 8 hours at times 1, 8, 16, and 24 hours. Consequently, the
multivariate surrogate model has p = 3, and n = 3 in the first scenario; and p = 3, and n = 4 in the
second scenario. Considering that this example has high dimensions (d = 8), the multivariate
surrogate models are constructed with 80 training sample in both scenarios. The results of posterior

responses for these two scenarios are presented in Figure 12.
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Figure 12. Variations of measurements, prior responses, posterior responses in scenario 1 and 2
versus time for (a) PPT1, (b) PPT2, and (c) Horizontal top wall deflection.

As illustrated in this figure, the prior responses and measurements are far from each other. All of
the three responses have two different trends before and after # = 8 hours. Therefore, although the
posterior responses produced by scenario 1 are closer to the measurements, compared with the
prior responses, this scenario cannot provide posterior results that are acceptably close to the
measurements. On the other hand, since scenario 2 uses the information in the whole window of
time, it produces high agreement with the measurements. The updated probabilistic properties
based on Scenario 2 are the most probable values, and they are close to the true values in this

artificial example.
4. Conclusion

This paper proposed a probabilistic calibration method using multivariate surrogate modeling for
multiple types of responses measured at different times and locations. This goal has been achieved
by proposing a general, inclusive structure for the likelihood function and integrating it with
multivariate Kriging modeling with non-homoscedastic model uncertainty over the input variable
space. The proposed likelihood function also accounts for the probabilistic associations among the
responses of different types to most effectively use the measurement data to update model
parameters. Details of the proposed method including the general likelihood structure and the

Bayesian framework, MCMC sampling, and multivariate surrogate modeling are elaborated in the
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paper. The main advantages of the proposed method are: (i) direct applicability to calibration of a
wide range of models for built and natural systems, (i1) suitability for high dimensional problems
with different types of responses measured at different times and locations, and (iii) very high
computational efficiency especially for calibration of demanding computational models.

The proposed method was applied to three examples, two from previous studies and one
new example that contains highly uncertain geo-mechanical properties. These examples captured
different geological and geotechnical phenomena and had different configurations and types of
random variables. In each example, different goals were pursued, which included: (i) assessing the
impact of non-uniform uncertainty over homoscedastic uncertainty in the prediction error, (ii)
comparing the prediction accuracy by incorporating field measurement responses independent in
both time and type; independent in time but dependent in type; and dependent in both time and
type, and (ii1) evaluating the performance of the proposed method for high dimensional systems,
which is often the case in geological and geotechnical systems. The obtained results demonstrate
that the highest prediction accuracy is achieved when the dependencies in time and type are
incorporated in the Bayesian updating framework. Because the framework that is introduced in
this study have the ability to improve the prediction accuracy through consideration of complex
dependencies of multiple responses and heteroscedastic uncertainty in the design space, it can be

highly efficient in geological and geotechnical engineering fields.
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