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Abstract

Many applications in robotics and human-computer in-

teraction can benefit from understanding 3D motion of

points in a dynamic environment, widely noted as scene

flow. While most previous methods focus on stereo and

RGB-D images as input, few try to estimate scene flow di-

rectly from point clouds. In this work, we propose a novel

deep neural network named FlowNet3D that learns scene

flow from point clouds in an end-to-end fashion. Our net-

work simultaneously learns deep hierarchical features of

point clouds and flow embeddings that represent point mo-

tions, supported by two newly proposed learning layers for

point sets. We evaluate the network on both challenging

synthetic data from FlyingThings3D and real Lidar scans

from KITTI. Trained on synthetic data only, our network

successfully generalizes to real scans, outperforming vari-

ous baselines and showing competitive results to the prior

art. We also demonstrate two applications of our scene flow

output (scan registration and motion segmentation) to show

its potential wide use cases.

1. Introduction

Scene flow is the 3D motion field of points in the

scene [27]. Its projection to an image plane becomes 2D

optical flow. It is a low-level understanding of a dynamic

environment, without any assumed knowledge of structure

or motion of the scene. With this flexibility, scene flow can

serve many higher level applications. For example, it pro-

vides motion cues for object segmentation, action recogni-

tion, camera pose estimation, or even serve as a regulariza-

tion for other 3D vision problems.

However, for this 3D flow estimation problem, most pre-

vious works rely on 2D representations. They extend meth-

ods for optical flow estimation to stereo or RGB-D images,

and usually estimate optical flow and disparity map sepa-

rately [33, 28, 16], not directly optimizing for 3D scene

flow. These methods cannot be applied to cases where point

clouds are the only input.

Very recently, researchers in the robotics community

started to study scene flow estimation directly in 3D point
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Figure 1: End-to-end scene flow estimation from point

clouds. Our model directly consumes raw point clouds

from two consecutive frames, and outputs dense scene flow

(as translation vectors) for all points in the 1st frame.

clouds (e.g. from Lidar) [7, 25]. But those works did not

benefit from deep learning as they built multi-stage systems

based on hand-crafted features, with simple models such as

logistic regression. There are often many assumptions in-

volved such as assumed scene rigidity or existence of point

correspondences, which make it hard to adapt those systems

to benefit from deep networks. On the other hand, in the

learning domain, Qi et al. [19, 20] recently proposed novel

deep architectures that directly consume point clouds for

3D classification and segmentation. However, their work

focused on processing static point clouds.

In this work, we connect the above two research frontiers

by proposing a deep neural network called FlowNet3D that

learns scene flow in 3D point clouds end-to-end. As illus-

trated in Fig. 1, given input point clouds from two consec-

utive frames (point cloud 1 and point cloud 2), our network

estimates a translational flow vector for every point in the

first frame to indicate its motion between the two frames.

The network, based on the building blocks from [19], is

able to simultaneously learn deep hierarchical features of

point clouds and flow embeddings that represent their mo-

tions. While there are no correspondences between the

two sampled point clouds, our network learns to associate

points from their spatial localities and geometric similar-

ities, through our newly proposed flow embedding layer.

Each output embedding implicitly represents the 3D mo-

tion of a point. From the embeddings, the network further

up-samples and refines them in an informed way through

another novel set upconv layer. Compared to direct feature
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up-sampling with 3D interpolations, the set upconv layers

learn to up-sample points based on their spatial and feature

relations.

We extensively study the design choices in our model

and validate the usefullness of our newly proposed point

set learning layers, with a large-scale synthetic dataset

(FlyingThings3D). We also evaluate our model on the

real LiDAR scans from the KITTI benchmark, where our

model shows significantly stronger performance compared

to baselines of non-deep learning methods and competitive

results to the prior art. More remarkably, we show that our

network, even trained on synthetic data, is able to robustly

estimate scene flow in point clouds from real scans, showing

its great generalizability. With fine tuning on a small set of

real data, the network can achieve even better performance.

The key contributions of this paper are as follows1:

• We propose a novel architecture called FlowNet3D

that estimates scene flow from a pair of consecutive

point clouds end-to-end.

• We introduce two new learning layers on point clouds:

a flow embedding layer that learns to correlate two

point clouds, and a set upconv layer that learns to prop-

agate features from one set of points to the other.

• We show how we can apply the proposed FlowNet3D

architecture on real LiDAR scans from KITTI and

achieve greatly improved results in 3D scene flow es-

timation compared with traditional methods.

2. Related Work

Scene flow from RGB or RGB-D images. Vedula et

al. [27] first introduced the concept of scene flow, as three-

dimensional field of motion vectors in the world. They as-

sumed knowledge of stereo correspondences and combined

optical flow and first-order approximations of depth maps

to estimate scene flow. Since this seminal work, many oth-

ers have tried to jointly estimate structure and motion from

stereoscopic images [12, 18, 34, 26, 5, 33, 28, 29, 1, 30, 16],

mostly in a variational setting with regularizations for

smoothness of motion and structure [12, 1, 26], or with as-

sumption of the rigidity of the local structures [29, 16, 30].

With the recent advent of commodity depth sensors, it

has become feasible to estimate scene flow from monocu-

lar RGB-D images [9], by generalizing variational 2D flow

algorithms to 3D [10, 14] and exploiting more geometric

cues provided by the depth channel [21, 11, 23]. Our work

focuses on learning scene flow directly from point clouds,

without any dependence on RGB images or assumptions on

rigidity and camera motions.

1The code is available at https://github.com/xingyul/

flownet3d.

Scene flow from point clouds. Recently, Dewan et

al. [7] proposed to estimate dense rigid motion fields in 3D

LiDAR scans. They formulate the problem as an energy

minimization problem of a factor graph, with hand-crafted

SHOT [24] descriptors for correspondence search. Later,

Ushani et al. [25] presented a different pipeline: They train

a logistic classifier to tell whether two columns of occu-

pancy grids correspond and formulate an EM algorithm to

estimate a locally rigid and non-deforming flow. Compared

to these previous works, our method is an end-to-end solu-

tion with deep learned features and no dependency on hard

correspondences or assumptions on rigidity.

Concurrent to our work, [2] estimate scene flow as rigid

motions of individual objects or background with network

that jointly learns to regress ego-motion and detect 3D ob-

jects. [22] jointly estimate object rigid motions and segment

them based on their motions. A recent work [32] also ex-

plored to estimate scene flow with a newly proposed learn-

ing network on point clouds but little detail was revealed on

its specific implementation.

Related deep learning based methods. FlowNet [8]

and FlowNet 2.0 [13] are two seminal works that propose to

learn optical flow with convolutional neural networks in an

end-to-end fashion, showing competitive performance with

great efficiency. [15] extends FlowNet to simultaneously es-

timating disparity and optical flow. [32] proposed paramet-

ric continuous convolution for scene flow in point clouds.

Our work is inspired by the success of those deep learning

based attempts at optical flow prediction, and can be viewed

as the 3D counterpart of them. However, the irregular struc-

ture in point clouds (no regular grids as in image) presents

new challenges and opportunities for design of novel archi-

tectures, which is the focus of this work.

3. Problem Definition

We design deep neural networks that estimate 3D mo-

tion flow from consecutive frames of point clouds. Input to

our network are two sets of points sampled from a dynamic

3D scene, at two consecutive time frames: P = {xi|i =
1, . . . , n1} (point cloud 1) and Q = {yj |j = 1, . . . , n2}
(point cloud 2), where xi, yj ∈ R

3 are XY Z coordinates of

individual points. Note that due to object motion and view-

point changes, the two point clouds do not necessarily have

the same number of points or have any correspondences be-

tween their points. It is also possible to include more point

features such as color and Lidar intensity. For simplicity we

focus on XY Z only.

Now consider the physical point under a sampled point

xi moves to location x′
i at the second frame, then the trans-

lational motion vector of the point is di = x′
i − xi. Our

goal is, given P and Q, to recover the scene flow for every

sampled point in the first frame: D = {di|i = 1, . . . , n1}.
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Figure 2: Three trainable layers for point cloud processing. Left: the set conv layer to learn deep point cloud features.

Middle: the flow embedding layer to learn geometric relations between two point clouds to infer motions. Right: the set

upconv layer to up-sample and propagate point features in a learnable way.

4. FlowNet3D Architecture

In this section, we introduce FlowNet3D (Fig. 3), an end-

to-end scene flow estimation network on point clouds. The

model has three key modules for (1) point feature learn-

ing, (2) point mixture, and (3) flow refinement. Under these

modules are three key deep point cloud processing layers:

set conv layer, flow embedding layer and set upconv layer

(Fig. 2). In the following subsections, we describe each

modules with their associating layers in details, and spec-

ify the final FlowNet3D architecture in Sec. 4.4.

4.1. Hierarchical Point Cloud Feature Learning

Since a point cloud is a set of points that is irregular and

orderless, traditional convolutions do not fit. We therefore

follow a recently proposed PointNet++ architecture [20],

a translation-invariant network that learns hierarchical fea-

tures. Although the set conv layer 2 was designed for 3D

classification and segmentation, we find its feature learning

layers also powerful for the task of scene flow.

As shown in Fig. 2 (left), a set conv layer takes a point

cloud with n points, each point pi = {xi, fi} with its XY Z

coordinates xi ∈ R
3 and its feature fi ∈ R

c (i = 1, ..., n),

and outputs a sub-sampled point cloud with n′ points, where

each point p′j = {x′
j , f

′
j} has its XY Z coordinates x′

j and

an updated point feature f ′
j ∈ R

c′ (j = 1, ...n′).

Specifically, as described more closely in [20], the layer

firstly samples n′ regions from the input points with farthest

point sampling (with region centers as x′
j), then for each re-

gion (defined by a radius neighborhood specified by radius

r), it extracts its local feature with the following symmetric

function

f ′
j = MAX

{i|‖xi−x′

j
‖≤r}

{

h(fi, xi − x′
j)
}

. (1)

where h : Rc+3 → R
c′ is a non-linear function (realized as

a multi-layer perceptron) with concatenated fi and xi − x′
j

as inputs, and MAX is element-wise max pooling.

2Noted as set abstraction layer in [20]. We name it set conv here to

emphasize its spatial locality and translation invariance.

4.2. Point Mixture with Flow Embedding Layer

To mix two point clouds we rely on a new flow embed-

ding layer (Fig. 2 middle). To inspire our design, imagine a

point at frame t, if we know its corresponding point in frame

t+1 then its scene flow is simply their relative displacement.

However, in real data, there are often no correspondences

between point clouds in two frames, due to viewpoint shift

and occlusions. It is still possible to estimate the scene flow

though, because we can find multiple softly corresponding

points in frame t+ 1 and make a “weighted” decision.

Our flow embedding layer learns to aggregate both (ge-

ometric) feature similarities and spatial relationships of

points to produce embeddings that encode point motions.

Compared to the set conv layer that takes in a single point

cloud, the flow embedding layer takes a pair of point

clouds: {pi = (xi, fi)}
n1

i=1
and {qj = (yj , gj)}

n2

j=1
where

each point has its XY Z coordinate xi, yj ∈ R
3, and a fea-

ture vector fi, gj ∈ R
c. The layer learns a flow embedding

for each point in the first frame: {ei}
n1

i=1
where ei ∈ R

c′ .

We also pass the original coordinates xi of the points in

the first frame to the output, thus the final layer output is

{oi = (xi, ei)}
n1

i=1
.

The underneath operation to compute ei is similar to the

one in set conv layers. However, their physical meanings

are vastly different. For a given point pi in the first frame,

the layer firstly finds all the points qj from the second frame

in its radius neighborhood (highlighted blue points). If a

particular point q∗ = {y∗, g∗} corresponded to pi, then the

flow of pi were simply y∗−xi. Since such case rarely exists,

we instead use a neural layer to aggregate flow votes from

all the neighboring qj’s

ei = MAX
{j|‖yj−xi‖≤r}

{h(fi, gj , yj − xi)} . (2)

where h is a non-linear function with trainable parameters

similar to the set conv layer and MAX is the element-wise

max pooling. Compared to Eq. (1), we input two point fea-

tures to h, expecting it to learn to compute the “weights” to

aggregate all potential flow vectors dij = yj − xi.

An alternative formulation is to explicitly specify how

we relate point features, by computing a feature distance

531



set conv

layers

set conv

layers

(2

3
(1

3

(1/8	
3

64

(2/8	
3

64

flow

embedding
set upconv

layers

(1
3

(1/128	 3

512

p
o
in
t
cl
o
u
d
1

p
o
in
t
cl
o
u
d
2

sc
e
n
e
fl
o
w

point feature learning point mixture flow refinement

skip connections

set conv

layers

(1/8	
3

128

Figure 3: FlowNet3D architecture. Given two frames of point clouds, the network learns to predict the scene flow as

translational motion vectors for each point of the first frame. See Fig. 2 for illustrations of the layers and Sec. 4.4 for more

details on the network architecture.

dist(fi, gj). The feature distance is then fed to the non-

linear function h (instead directly feeding the fi and gj).

In ablation studies we show that our formulation in Eq. (2)

learns more effective flow embeddings than this alternative.

The computed flow embeddings are further mixed

through a few more set conv layers so that we obtain spa-

tial smoothness. This also help resolve ambiguous cases

(e.g. points on the surface of a translating table) that require

large receptive fields for flow estimation.

4.3. Flow Refinement with Set Upconv Layer

In this module, we up-sample the flow embeddings as-

sociated with the intermediate points to the original points,

and at the last layer predict flow for all the original points.

The up-sampling step is achieved by a learnable new layer

– the set upconv layer, which learns to propagate and refine

the embeddings in an informed way.

Fig. 2 (right) illustrates the process of a set upconv

layer. The inputs to the layer are source points {pi =
{xi, fi}|i = 1, . . . , n}, and a set of target point coordinates

{x′
j |j = 1, . . . , n′} which are locations we want to propa-

gate the source point features to. For each target location

x′
j the layer outputs its point feature f ′

j ∈ R
c′ (propagated

flow embedding in our case) by aggregating its neighboring

source points’ features.

Interestingly, just like in 2D convolutions in images

where upconv2D can be implemented through conv2D, our

set upconv can also be directly achieved with the same set

conv layer as defined in Eq. (1), but with a different local re-

gion sampling strategy. Instead of using farthest point sam-

pling to find x′
j as in the set conv layer, we compute features

on specified locations by the target points {x′
j}

n′

j=1.

Note that although n′ > n in our up-sampling case, the

set upconv layer itself is flexible to take any number of target

locations which unnecessarily correspond to any real points.

It is a flexible and trainable layer to propagate/summarize

features from one point cloud to another.

Compared to an alternative way to up-sample

point features – using 3D interpolation (f ′
j =

∑

{i|‖xi−x′

j
‖≤r} w(xi, x

′
j)fi with w as a normalized

inverse-distance weight function [20]), our network learns

how to weight the nearby points’ features, just as how the

flow embedding layer weights displacements. We find that

the new set upconv layer shows significant advantages in

empirical results.

4.4. Network Architecture

The final FlowNet3D architecture is composed of four

set conv layers, one flow embedding layer and four set up-

conv layers (corresponding to the four set conv layers) and

a final linear flow regression layer that outputs the R
3 pre-

dicted scene flow. For the set upconv layers we also have

skip connections to concatenate set conv output features.

Each learnable layer adopts multi-layer perceptrons for the

function h with a few Linear-BatchNorm-ReLU layers pa-

rameterized by its linear layer width. The detailed layer

parameters are as shown in Table 1.

5. Training and Inference wtih FlowNet3D

We take a supervised approach to train the FlowNet3D

model with ground truth scene flow supervision. While this

dense supervision is hard to acquire in real data, we tap

large-scale synthetic dataset (FlyingThings3D) and show

that our model trained on synthetic data generalizes well

to real Lidar scans (Sec. 6.2).
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Layer type r Sample rate MLP width

set conv 0.5 0.5× [32, 32, 64]
set conv 1.0 0.25× [64, 64, 128]

flow embedding 5.0 1× [128, 128, 128]
set conv 2.0 0.25× [128, 128, 256]
set conv 4.0 0.25× [256, 256, 512]

set upconv 4.0 4× [128, 128, 256]
set upconv 2.0 4× [128, 128, 256]
set upconv 1.0 4× [128, 128, 128]
set upconv 0.5 2× [128, 128, 128]

linear - - 3∗

Table 1: FlowNet3D architecture specs. Note that the last

layer is linear thus has no ReLU and batch normalization.

Training loss with cycle-consistency regularization.

We use smooth L1 loss (huber loss) for scene flow su-

pervision, together with a cycle-consistency regularization.

Given a point cloud P = {xi}
n1

i=1
at frame t and a point

cloud Q = {yj}
n2

j=1
at frame t + 1, the network predicts

scene flow as D = F (P,Q; Θ) = {di}
n1

i=1
where F is the

FlowNet3D model with parameters Θ. With ground truth

scene flow D∗ = {d∗i }
n1

i=1
, our loss is defined as in Eq. (3).

In the equation, ‖d′i + di‖ is the cycle-consistency term that

enforces the backward flow {d′i}
n1

i=1
= F (P ′,P; Θ) from

the shifted point cloud P ′ = {xi + di}
n1

i=1
to the original

point cloud P is close to the reverse of the forward flow

L(P,Q,D∗,Θ) =
1

n1

n1
∑

i=1

{

‖di − d∗i ‖+λ‖d′i + di‖
}

(3)

Inference with random re-sampling. A special chal-

lenge with regression problems (such as scene flow) in point

clouds is that down-sampling introduces noise in predic-

tion. A simple but effective way to reduce the noise is to

randomly re-sample the point clouds for multiple inference

runs and average the predicted flow vectors for each point.

In the experiments, we will see that this re-sampling and

averaging step leads to a slight performance gain.

6. Experiments

In this section, we first evaluate and validate our design

choices in Sec. 6.1 with a large-scale synthetic dataset (Fly-

ingThings3D), and then in Sec. 6.2 we show how our model

trained on synthetic data can generalize successfully to real

Lidar scans from KITTI. Finally, in Sec. 6.3 we demonstrate

two applications of scene flow on 3D shape registration and

motion segmentation.

6.1. Evaluation and Design Validation on FlyingTh­
ings3D

As annotating or acquiring dense scene flow is very ex-

pensive on real data, there does not exist any large-scale real

Method Input EPE
ACC

(0.05)

ACC

(0.1)

FlowNet-C [8]
depth 0.7887 0.20% 1.49%

RGBD 0.7836 0.25% 1.74%

ICP [3] points 0.5019 7.62% 21.98%

EM-baseline (ours) points 0.5807 2.64% 12.21%

LM-baseline (ours) points 0.7876 0.27% 1.83%

DM-baseline (ours) points 0.3401 4.87% 21.01%

FlowNet3D (ours) points 0.1694 25.37% 57.85%

Table 2: Flow estimation results on the FlyingThings3D

dataset. Metrics are End-point-error (EPE), Acc (<0.05 or

5%, <0.1 or 10%) for scene flow.

dataset with scene flow annotations to the best of our knowl-

edge 3. Therefore, we turn to a synthetic, yet challenging

and large-scale dataset, FlyingThings3D, to train and eval-

uate our model as well as to validate our design choices.

FlyingThings3D [15]. The dataset consists of stereo and

RGB-D images rendered from scenes with multiple ran-

domly moving objects sampled from ShapeNet [6]. There

are in total around 32k stereo images with ground truth dis-

parity and optical flow maps. We randomly sub-sampled

20,000 of them as our training set and 2,000 as our test set.

Instead of using RGB images, we preprocess the data by

popping up disparity maps to 3D point clouds and optical

flow to scene flow. We will release our prepared data.

Evaluation Metrics. We use 3D end point error (EPE)

and flow estimation accuracy (ACC) as our metrics. The

3D EPE measures the average L2 distance between the es-

timated flow vector to the ground truth flow vector. Flow

estimation accuracy measures the portion of estimated flow

vectors that are below a specified end point error, among

all the points. We report two ACC metrics with different

thresholds.

Results. Table 2 reports flow evaluation results on the test

set, comparing FlowNet3D to various baselines. Among

the baselines, FlowNet-C is a CNN model adapted from

[13] that learns to predict scene flow from a pair of depth

images or RGB-D images (depth images transformed to

XY Z coordinate maps for input), instead of optical flow

from RGB images as originally in [13] (more architecture

details in supplementary). However, we see that this image-

based method has a hard time predicting accurate scene flow

probably because of strong occlusions and clutters in the 2D

projected views. We also compare with an ICP (iterative

3The KITTI dataset we test on in Sec. 6.2 only has 200 frames with

annotations. [31] mentioned a larger dataset however it belongs to Uber

and is not publicly available.
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Figure 4: Three meta-architectures for scene flow net-

work. FlowNet3D (Fig. 3) belongs to the deep mixture.

closest point) baseline that finds a single rigid transform for

the entire scene, which matches large objects in the scene

but is unable to adapt to the multiple independently moving

objects in our input. Surprisingly, this ICP baseline is still

able to get some reasonable numbers (even better than the

2D FlowNet-C one).

We also report results of three baseline deep models that

directly consume point clouds (as instantiations of the three

meta-architectures in Fig. 4). They mix point clouds of

two frames at early, late, or intermediate stages. The EM-

baseline combines two point clouds into a single set at input

and distinguishes them by appending each point with a one-

hot vector of length 2. The LM-baseline firstly computes a

global feature for the point cloud from each frame, and then

concatenates the global features as a way to mix the points.

The DM-baseline is similar in structure to our FlowNet3D

(they both belong to the DM meta-architecture) but uses a

more naive way to mix two intermediate point clouds (by

concatenating all features and point displacements and pro-

cessing it with fully connected layers), and it uses 3D in-

terpolation instead of set upconv layers to propagate point

features. More details are provided in the supplementary.

Compared to those baseline models, our FlowNet3D

achieves much lower EPE as well as significantly higher

accuracy.

Ablation studies. Table 3 shows the effects of several de-

sign choices of FlowNet3D. Comparing the first two rows,

we see max pooling has a significant advantage over aver-

age pooling, probably because max pooling is more selec-

tive in picking “corresponding” point and suffers less from

noise. From row 2 to row 4, we compare our design to the

alternatives of using feature distance functions (as discussed

in Sec. 4.2) with cosine distance and its unnormalized ver-

sion (dot product). Our approach gets the best performance,

Feature

distance
Pooling Refine

Multiple

resample

Cycle-

consistency
EPE

dot avg interp ✗ ✗ 0.3163

dot max interp ✗ ✗ 0.2463

cosine max interp ✗ ✗ 0.2600

learned max interp ✗ ✗ 0.2298

learned max upconv ✗ ✗ 0.1835

learned max upconv ✓ ✗ 0.1694

learned max upconv ✓ ✓ 0.1626

Table 3: Ablation studies on the FlyingThings3D dataset.

We study the effects of distance function, type of pooling in

h, layers used in flow refinement, as well as effects of re-

sampling and cycle-consistency regularization.

Method Input
EPE

(meters)

outliers

(0.3m or 5%)

KITTI

ranking

LDOF [4] RGB-D 0.498 12.61% 21

OSF [16] RGB-D 0.394 8.25% 9

PRSM [30]
RGB-D 0.327 6.06%

3
RGB stereo 0.729 6.40%

Dewan et al. [7] points 0.587 71.74% -

ICP (global) points 0.385 42.38% -

ICP (segmentation) points 0.215 13.38% -

FlowNet3D (ours) points 0.122 5.61% -

Table 4: Scene flow estimation on the KITTI scene flow

dataset (w/o ground points). Metrics are EPE, outlier ra-

tio (>0.3m or 5%). KITTI rankings are the methods’ rank-

ings on the KITTI scene flow leaderboard. Our FlowNet3D

model is trained on the synthetic FlyingThings3D dataset.

with (11.6% error reduction compared to using the cosine

distance. Looking at row 4 and row 5, we see that our newly

proposed set upconv layer significantly reduces flow error

by 20%. Lastly, we find multiple re-sampling (10 times)

during inference (second last row) and training with cycle-

consistency regularization (with λ = 0.3) further boost the

performance. The final row represents the final setup of our

FlowNet3D.

6.2. Generalization to Real Lidar Scans in KITTI

In this section, we show that our model, trained on the

synthetic dataset, can be directly applied to detect scene

flow in point clouds from real Lidar scans from KITTI.

Data and setup. We use the KITTI scene flow dataset [17,

16], which is designed for evaluations of RGB stereo based

methods. To evaluate point cloud based method, we use

its ground truth labels and trace raw point clouds associ-

ated to the frames. Since no point cloud is provided for the
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Figure 5: Scene flow on KITTI point clouds. We show scene flow predicted by FlowNet3D on four KITTI scans. Lidar

points are colored to indicate points as from frame 1, frame 2 or as translated points (point cloud 1 + scene flow).

Method
PRSM [30]

(RGB stereo)

PRSM [30]

(RGB-D)

ICP

(global)

FlowNet3D

(without finetune)

FlowNet3D + ICP

(without finetune)

FlowNet3D

(with finetune)

3D EPE 0.668 0.368 0.281 0.211 0.195 0.144

3D outliers 6.42% 6.06% 24.29% 20.71% 13.41% 9.52%

Table 5: Scene flow estimation on the KITTI sceneflow dataset (w/ ground points). The first 100 frames are used to

finetune our model. All methods are evaluated on the rest 50 frames.

test set (and part of the train set), we evaluate on all 150

out of 200 frames from the train set with available point

clouds. Furthermore, to keep comparison fair with the pre-

vious method [7], we firstly evaluation our model on Lidar

scans with removed grounds 4 (see supplementary for de-

tails) in Table 4. We then report another set of results with

the full Lidar scans including the ground points in Table 5.

Baselines. LDOF+depth [4] uses a variational model to

solve optical flow and treats depth as an extra feature di-

mension. OSF [16] uses discrete-continuous CRF on su-

perpixels with the assumption of rigid motion of objects.

PRSM [30] uses energy minimization on rigidly moving

segments and jointly estimates multiple attributes together

including rigid motion. Since the three RGB-D image based

methods do not output scene flow directly (but optical flow

and disparity separately), we either use estimated disparity

4The ground is a large piece of flat geometry that provides little cue to

its motion but at the same time occupies a large portion of points, which

biases the evaluation results.

(fourth row) or pixel depth change (first three rows) to com-

pute depth-wise flow displacements.

ICP (global) estimates a single rigid motion for the en-

tire scene. ICP (segmentation) is a stronger baseline that

first computes connected components on Lidar points after

ground removal and then estimates rigid motions for each

individual segment of point clouds.

Results. In Table 4, we compare FlowNet3D with prior

arts optimized for 2D optical flow as well as the two ICP

baselines on point clouds. Compared to 2D-image based

methods [4, 16, 30], our method shows great advantages on

scene flow estimation – achieving significantly lower 3D

end-point error (63% relative error reduction from [30])

and 3D outlier ratios. Our method also outperforms the two

ICP baselines that rely more on rigidity of global scene or

correctness of segmentation. Additionally, we conclude that

our model, although only trained on synthetic data, remark-

ably generalizes well to the real Lidar point clouds.

Fig. 5 visualizes our scene flow prediction. We can see
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ICP 
registration Scene flow Ours
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Figure 6: Partial scan registration of two chair scans.

The goal is to register point cloud 1 (red) to point cloud 2

(green). The transformed point cloud 1 is in blue. We show

a case where ICP fails to align the chair while our method

grounded by dense scene flow succeeds.

ICP Scene flow (SF) SF + Rigid motion

EPE 0.384 0.220 0.125

Table 6: Point cloud warping errors.

our model can accurately estimate flows for dynamic ob-

jects, such as moving vehicles and pedestrians.

In Table 5 we report results on the full Lidar scans with

ground point clouds. We also split the data to use 100

frames to finetune our FlowNet3D model on Lidar scans,

and use the rest 50 for testing. We see that including ground

points negatively impacted all methods. But our method

still outperforms the ICP baseline. By adopting ICP es-

timated flow on the segmented grounds and net estimated

flow for the rest of points (FlowNet3D+ICP), our method

can also beat the prior art (PRSM) in EPE. The PRSM leads

in outlier ratio because flow estimation for grounds is more

friendly with methods taking images input. By finetuning

FlowNet3D on the Lidar scans, our model even achieves

better results (the last column).

6.3. Applications

While scene flow itself is a low-level signal in under-

standing motions, it can provide useful cues for many

higher level applications as shown below (more details on

the demo and datasets are included in supplementary).

6.3.1 3D Scan Registration

Point cloud registration algorithms (e.g. ICP) often rely

on finding correspondences between the two point sets.

However due to scan partiality, there are often no direct

correspondences. In this demo, we explore in using the

dense scene flow predicted from FlowNet3D for scan reg-

istration. The point cloud 1 shifted by our predicted scene

flow has a natural correspondence to the original point cloud

1 and thus can be used to estimate a rigid motion between

them. We show in Fig. 6 that in partial scans our scene flow

Figure 7: Motion segmentation of a Lidar point cloud.

Left: Lidar points and estimated scene flow in colored

quiver vectors. Right: motion segmented objects and re-

gions.

based registration can be more robust than the ICP method

in cases when ICP stucks at a local minimum. Table 6 quan-

titatively compares the 3D warping error (the EPE from

warped points to ground truth points) of ICP, directly us-

ing our scene flow and using scene flow followed by a rigid

motion estimation.

6.3.2 Motion Segmentation

Our estimated scene flow in Lidar point clouds can also

be used for motion segmentation of the scene – segment-

ing the scene into different objects or regions depending on

their motions. In Fig. 7, we demonstrate motion segmen-

tation results in a KITTI scene, where we clustered Lidar

points based on their coordinates and estimated scene flow

vectors. We see that different moving cars, grounds, and

static objects are clearly segmented from each other. Re-

cently, [22] also tried to jointly estimate scene flow and mo-

tion segmentation from RGB-D input. It is interesting to

augment our pipeline for similar tasks in point clouds in the

future.

7. Conclusion

In this paper, we have presented a novel deep neural net-

work architecture that estimates scene flow directly from 3D

point clouds, as arguablely the first work that shows success

in solving the problem end-to-end with point clouds. To

support FlowNet3D, we have proposed a novel flow em-

bedding layer that learns to aggregate geometric similar-

ities and spatial relations of points for motion encoding,

as well as a new set upconv layer for trainable set feature

propagation. On both challenging synthetic dataset and real

Lidar point clouds, we validated our network design and

showed its competitive or better results to various baselines

and prior arts. We have also demonstrated two example ap-

plications of using scene flow estimated from our model.
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