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Instituto de Matemáticas de la Universidad de Sevilla (IMUS). Edificio Celestino Mutis. Avda. Reina Mercedes s/n, 41012-Sevilla, Spain

P. G. Kevrekidis
Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003-4515, USA

Boris A. Malomed
Department of Physical Electronics, School of Electrical Engineering,

Faculty of Engineering, and Center for Light-Matter Interaction,
Tel Aviv University, P.O.B. 39040, Tel Aviv 69978, Israel

Lijuan Guo
Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003-4515, USA and

School of Mathematical Sciences, USTC, Hefei, Anhui 230026, P.R. China

We introduce a generalized version of the Ablowitz-Ladik model with a power-law nonlinearity, as a dis-
cretization of the continuum nonlinear Schrödinger equation with the same type of the nonlinearity. The model
opens a way to study the interplay of discreteness and nonlinearity features. We identify stationary discrete-
soliton states for different values of nonlinearity power σ, and address changes of their stability as frequency
ω of the standing wave varies for given σ. Along with numerical methods, a variational approximation is
used to predict the form of the discrete solitons, their stability changes, and bistability features by means of
the Vakhitov-Kolokolov criterion (developed from the first principles). Development of instabilities and the
resulting asymptotic dynamics are explored by means of direct simulations.

I. INTRODUCTION

The study of models of the discrete nonlinear-Schrödinger (DNLS) type has been a focal point within the broader theme of
nonlinear dynamical lattices over the past two decades [1]. First, DNLS systems are obviously relevant to the discretization
of the ubiquitous continuum nonlinear Schrödinger equations [2–4]. Still more important is, arguably, the relevance of DNLS
equations in their own right as physical models in a multitude of settings. In particular, they have been extensively used for
modeling light propagation in arrays of optical waveguides [5, 6]. They have been also greatly employed for the development of
the broad topic of dynamics of atomic Bose-Einstein condensates (BECs) trapped in deep optical lattices [7]. Other important
applications of DNLS models are the study of the denaturation of the DNA double strand [8], breathers in granular crystals [9],
the dynamics of protein loops [10], etc.

A model that plays a critical role in the understanding of DNLS dynamical lattices is their integrable sibling, namely, the
Ablowitz-Ladik (AL) equation [11] (see also [3]). In addition to offering the unique integrability structure [3], the AL model is
a reference point for the examination of numerous features of nonlinear discrete settings, such as stability of solitary waves [12],
Bloch oscillations [13], etc. The AL equation is also important as an ingredient of the Salerno model, which combines it with the
nonintegrable DNLS equation [14]. The Salerno model was widely used, as a platform for developing perturbation theory and
exploring direct numerical simulations [15], in various contexts, including, in particular, the challenging problem of collisions
between solitary waves in dynamical lattices [17]. Further, the AL equation by itself, and in the form of its Salerno generalization,
provides for the mean-field limit of the class of quantum systems in the form of the so-called “nonstandard” Bose-Hubbard
lattices (BHLs), in which the inter-site coupling depends on the sites’ populations (hence the coupling is nonlinear, in terms of
the mean-field approximation). Numerous realizations of such BHLs, including their mean-field realizations, were reviewed in
a recent survey article [16]. Actually, the list of applications of the AL model is anything but exhaustive, as relevant applications
continue to emerge through the examination, e.g. more recently, of features such as rogue waves in the AL model [18, 19], and
their comparison to the DNLS case [20].

In the present work, we consider a variant of the AL model with a power-law nonlinearity instead of the particular case of the
cubic one. This is motivated by many previous studies —see e.g. [2] and references therein for the continuum case, as well as
Refs. [21–25] for the discrete case— of the generalized NLS model with nonlinear term |ψ|2σψ instead of the usual cubic one
corresponding to the particular value of σ = 1. In particular, in the one-dimensional (1D) case the Lee-Huang-Yang correction
to the mean-field nonlinearity in two-component Bose-Einstein condensates (BECs) corresponds to the self-attractive term with
σ = 0.5 [26, 27]. The model with a general nonlinear term is particularly appealing because it offers, at the continuum level
and for one spatial dimension, the potential to study the transition from integrability (at σ = 1) and the existence of stable
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solitary waves (at σ < 2) to the emergence of catastrophic self-focusing (at σ ≥ 2). In the DNLS variant of the model, there
exist interesting features too, such as bistability (for a range of values of σ), as well as the emergence of energy thresholds for
the existence of discrete solitons, again for σ > 2 in one spatial dimension. However, the AL generalization to a power-law
nonlinearity was not explored before, to the best of our knowledge. It is the aim of the present work to report this analysis.

More specifically, our aim is to examine the nature of discrete solitons for the AL-type lattice nonlinearity, ∝ |ψn|2σ(ψn+1 +
ψn−1), with different values of σ (characterizing also the structure of these discrete solitons by means of a variational approach)
and to explore whether these modes change their stability with the variation of their intrinsic frequency (alias chemical potential,
in terms of BEC) for given σ. In particular, we aim to find out if the stability change can be predicted by a variant of the Vakhitov-
Kolokolov (VK) criterion, which is well known in other contexts [1, 28] — In the DNLS (and NLS) settings, the VK criterion
suggests that a change of the monotonicity of the l2 (or L2, respectively) norm vs. the soliton’s intrinsic frequency dependence
induces a change of its stability [1].Finally, we explore the full stability (via the spectral stability analysis) and evolution of
instabilities in the model, by means of numerical computations. This allows us, among other features, to corroborate predictions
of the VK criterion and analyze manifestations of the bistability in the model.

Our presentation is structured as follows. In section II, we offer our analytical considerations, including the model setup,
the present variant of the VK criterion, and the variational approximation. In section III, we show numerical computations
concerning both the existence and spectral stability of discrete solitons and their nonlinear evolution. Finally, in section IV we
summarize our findings and discuss directions for further work.

II. ANALYTICAL CONSIDERATIONS

A. The general Setup, conservation laws, and stability analysis

Our generalized AL model with the power-law nonlinearity is introduced as

iψ̇n + C(ψn+1 + ψn−1) + β(ψn+1 + ψn−1)|ψn|2σ = 0. (1)

Here, C is the (linear) coupling constant between adjacent sites, while σ represents, as defined above, the nonlinearity power.
In what follows below, we fix β = 1 by means of obvious rescaling, considering the focusing sign of the nonlinearity (β > 0).
This model can be thought of as a discretization of the NLS model with the general power-law nonlinearity [2]. At the same
time, as mentioned above, it is an intriguing setup for exploring differences (for sufficiently large σ, such as σ > 2 in the 1D
case considered here) of the collapse phenomenology in discrete vs. continuum models. With these motivations in mind, we will
construct localized states of the model, investigate their stability through computation of eigenvalues of small perturbations, and
numerically examine evolution of unstable states.

An important property of Eq. (1) is that it preserves a suitably defined norm-like quantity. The derivation of this property, that
we will develop here, is generally applicable to nonlinear lattice equations of the form

iψ̇n + (C + f(|ψn|2))(ψn+1 + ψn−1) = 0, (2)

where f may be an arbitrary real function of |ψn|2. We assuming that P (which should revert to the usual L2 norm in the
continuum limit) depends only on the on-site intensity |ψn|2:

P =
∑
n

g(|ψn|2). (3)

From here it follows that

i
dP

dt
=
∑
n

g′(C + f)
[(
ψ⋆
n+1ψn − ψn+1ψ

⋆
n

)
−
(
ψ⋆
nψn−1 − ψnψ

⋆
n−1

)]
, (4)

where Eq. (1) is used to substitute dψn/dt, and g′ stands for the derivative of g. Thus, the selection of g′ = 1/(C + f) leads
dP/dt = 0, due to the telescopic nature of the resulting summation. For the particular case of f(x) = xσ , this results in

P =
1

C

∑
n

|ψn|22F1

(
1, 1/σ; 1 + 1/σ;−|ψn|2σ

C

)
≡
∑
n

Pn, (5)

where Pn is the density associated with the conserved quantity at each node, and 2F1 is the Gauss hypergeometric function. In
the special case of σ = 1, it is straightforward to see that this falls back to the simple expression relevant for the cubic integrable
AL model [15], (Pn)σ=1 = ln

(
1 + 1

C |ψn|2
)
(up to a C-dependent constant prefactor). We have thus obtained an important,

even if somewhat cumbersome, conservation law for Eq. (1).
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3

A further important observation for Eq. (1) is that a natural way to analyze the system can be to explore its similarity to the
integrable case of σ = 1 and the perturbation theory around it [15, 16]. In particular, we conclude that the Hamiltonian of the
general AL equation remains the same as in the integrable case,

H = −
∑
n

(
ψnψ

⋆
n+1 + ψ⋆

nψn+1

)
, (6)

being a conserved quantity too. It is also relevant to define the Poisson brackets corresponding to this Hamiltonian:

{B, B̃} = i
∑
n

(
∂B

∂ψn

∂B̃

∂ψ⋆
n

− ∂B

∂ψ⋆
n

∂B̃

∂ψn

)
(C + f), (7)

whereB and B̃ are two arbitrary functionals. This definition leads to {ψn, ψ
⋆
m} = i(C+f)δnm, while {ψnψm} = {ψ⋆

n, ψ
⋆
m} =

0. The respective Hamiltonian form of Eq. (2) is

ψ̇n = {H,ψn}. (8)

In our numerical computations, we sought for stationary solutions with frequency −ω, in the form of ψn(t) = ϕne
i(ω+2C)t

with real ϕn obeying the following set of algebraic equations:

−ωϕn + C(ϕn+1 + ϕn−1 − 2ϕn) + (ϕn+1 + ϕn−1)ϕ
2σ
n = 0. (9)

The linear stability was explored by considering perturbations with infinitesimal amplitude δ around the stationary solutions.
To this end, we substitute ansatz ψn(t) = ei(ω+2C)t

[
ϕn + δ(ane

λt + b∗ne
λ∗t)

]
in Eq. (9), and then solve the ensuing linearized

eigenvalue problem: λ(an, bn)T = M(an, bn)
T , with matrix

M = i

 L1 L2

−L∗
2 −L∗

1

 , (10)

where submatrices L1 and L2 in Eq. (10) are composed of the following entries:

(L1)n,m =
[
−ω − 2C + σ(ϕn+1 + ϕn−1)ϕ

2σ−2
n ϕn

]
δn,m + (C + ϕ2σn )(δn,m+1 + δn,m−1), (11)

(L2)n,m = σ(ϕn+1 + ϕn−1)ϕ
2σ−1
n δn,m (12)

The stationary solutions are spectrally stable if the eigenvalue problem produces purely imaginary λ. On the contrary, the
existence of eigenvalues with nonzero real parts implies instability. In the latter case, it is of particular interest to simulate
nonlinear evolution of unstable states.

B. The stationary variational approximation

Before turning to numerical computations, it is natural to apply a variational approximation (VA) [29] to the stationary equa-
tion (9). This will allow us to examine how well numerical solutions, that are produced in the next section, can be approximated
by the simple (exponentially decaying) analytical expressions. To this end, we define

ϕn ≡ C1/(2σ)χn ,
ω

C
≡ Ω, (13)

and thus rewrite Eq. (9) as

(χn+1 + χn−1)−
(2 + Ω)χn

1 + χ2σ
n

= 0, (14)

which may generate bright solitons for Ω > 0.
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4

The Lagrangian from which Eq. (14) can be derived is

L =
+∞∑

n=−∞

[
χn+1χn − (2 + Ω)

∫
χndχn

1 + χ2σ
n

]
. (15)

The integral in this expression can be formally expressed in terms of the hypergeometric function, similar to Eq. (5), but such a
formula is not really needed.

The simplest ansatz for the stationary soliton follows the pattern of Ref. [22]:

χn = A exp (−a|n|) , (16)

with a > 0. Then, the first term in Eq. (15) is easily calculated, following the substitution of ansatz (16):

+∞∑
n=−∞

χn+1χn =
A2

sinh a
. (17)

The variational (Euler-Lagrange) equations intended to provide stationary discrete solitons solutions, derived from Lagrangian
(15), in which ansatz (16) is substituted, read:

∂L

∂A
=
∂L

∂a
= 0. (18)

The explicit form of the resulting equations is:

2

sinh a
− (2 + Ω)

+∞∑
n=−∞

exp (−2a|n|)
1 +A2σ exp (−2σa|n|)

= 0, (19)

cosh a

sinh2 a
− (2 + Ω)

+∞∑
n=−∞

|n| exp (−2a|n|)
1 +A2σ exp (−2σa|n|)

= 0. (20)

The system of Eqs. (19) and (20) can be solved numerically for variableA and a if Ω > 0 and σ are given. Although the solution
of this system is still performed numerically, hence our approach is not fully analytical, the VA provides a significant insight into
the problem, as it converts the infinite-dimensional original system into a much simpler system of two equations (19) and (20)
for A and a.

III. NUMERICAL RESULTS

First of all, we consider the dependence of the stability of 1-site (site-centered) and 2-site (inter-site centered) discrete solitons
on the nonlinearity power σ for fixed frequency ω = 1 and coupling C = 1. Such solutions, e.g., for both kinds of modes at
σ = 1.7, σ = 1.75 and σ = 2 are depicted in Fig. 1. 1-site solitons are compared therein with profiles predicted by the VA,
demonstrating close agreement between the two; while the VA is formulated for 1-site solitons, the numerical profiles of the
inter-site centered counterparts are also given for completeness.

As it is well known [1], in the case of the cubic (σ = 1) AL equation, there are two eigenvalue pairs at zero, as a consequence
of the translational and phase (gauge) invariance of the model. One of these invariances, namely the effective translational
invariance, is broken in the non-integrable case, σ ̸= 1. We start by analyzing the situation for σ > 1. For 1-site solitons,
computations demonstrate that the eigenvalue corresponding to the translational mode moves along the imaginary axis, whereas,
at the same time, another mode departs from the linear-mode band; at σ = σc (with σc = 1.674 for the particular value of
C = 1), the latter mode becomes associated with a real eigenvalue pair, hence the 1-site solitons are unstable at σ > σc.
For 2-site solitons, the translational mode moves along the real axis immediately beyond the integrable limit, consequently the
relevant solutions are unstable for every σ > 1. The scenario is quite different for σ < 1, where the situation is reversed for
1-site and 2-site modes. In particular, in that case, the translational mode moves along the real (imaginary) axis for the 1-site
(2-site) soliton, giving rise to exchange of the stability between them. It is worthy to note that a second stability exchange occurs
at σ = σt, with σt = 0.5 for all values of C (recall that σ = 0.5 corresponds to the LHY nonlinearity in the two-component
BEC [26]). All these phenomena are summarized in Fig. 2.

Secondly, we have analyzed the effect of varying the coupling constant on the critical values σc and σt. The approach helps to
reach the continuum limit, C → ∞. Figure 3 shows the dependence of σc on C for ω = 1. One can observe that the minimum
value of σc is ≈ 1.669, a value that is attained at C ≈ 1.16; furthermore, σc tends to 2 when C → 0 and C → ∞. The latter
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FIG. 1: (Top panels) Exact numerically demonstrated profiles of the discrete soliton (blue lines and dots), and their counterparts predicted
by the variational approximation (red circles), for 1-site solutions with ω = 1 and C = 1. The displayed solutions are characterized by the
respective values of σ, namely σ = 1.7 (left), σ = 1.75 (center) and σ = 2 (right). (Bottom panels) Numerical profiles of discrete 2-site
solitons with the same parameters of the 1-site soliton above.

retrieves the well-known continuum limit of the corresponding eigenvalue bifurcation towards the collapse [2]. As mentioned
in the above paragraph, the critical value σt is independent of C and is equal to 1/2. Interestingly, the spectrum of solitons for
σ = σt = 0.5 is the same as in the integrable Ablowitz-Ladik lattice σ = 1 except for the occurrence of two (pairs of) localized
eigenmodes, one at the top and another one at the bottom of the linear modes band. Notice that both 1-site and 2-site solitons
possess the same spectrum,as illustrated in Fig. 4, and an associated neutral mode, as confirmed in Fig. 2. Notice, however, that
the system in this case is not translationally invariant as the eigenvector that corresponds to the neutral mode (see right panel of
the same figure) is not fully anti-symmetric, as is the case in the cubic (σ = 1) limit.

Next we test the validity of the VK criterion in the present setting (see, e.g., [1] for its application to DNLS equations). It
suggests that the change of monotonicity of the frequency dependence of the norm-like conserved quantity, defined as per Eq. (5)
amounts to a change of stability. To examine this, we take 1-site solitons and vary ω, fixing, e.g., σ = 1.7 and C = 1. The result
is shown in Fig. 5, where one can indeed see the direct correlation between the slope of P (ω) dependence and the actual stability,
as expected from the VK criterion, and from the general Grillakis-Shatah-Straus theory [30]; see Ref. [32] for a recent overview.
More specifically, the discrete solitons are found to be stable (unstable) when the slope is positive (negative). Additionally, in the
case in which the emergence of an unstable linearization eigenvalue is not associated with a change of slope of the P (ω) curve
one can compute the spectrum of the Hessian of the Hamiltonian (6) which can predict the existence of bifurcations through an
eigenvalue zero crossing; this fact was illustrated in Fig. 2.

We have also compared the predictions of the VA, presented in subsection II B, with the results stemming from numerically
exact (up to a prescribed accuracy) calculations for the discrete solitons. Figure 6 shows the amplitude, ϕ0, and the conserved
quantity P of 1-site solitons versus ω, for three selected values of the nonlinearity power, σ (namely, σ = 1.7, 1.75 and 2) at
fixed C = 1; for other values of C, the VA predictions can be obtained by the rescaling defined in Eq. (13). Note that, as
seen in Fig. 6, the VA predicts quite accurately the amplitude of the discrete soliton in all the cases considered, but there are
some discrepancies in the dependence of the conserved quantity P . In any case, the VA approach is more accurate for higher
frequencies. In the limit of ω → ∞ such models, including the DNLS equation, are tantamount to their so-called anti-continuum
(AC), isolated node limit. Here, the VA tends to the corresponding exact analytical solitary structure result, as shown in [31].

More specifically, in the case of σ = 1.7 the power is predicted to be a monotonic function of ω by the VA, while the
monotonicity is not held by the numerical solution. This inaccuracy is a consequence of the oversimplified ansatz adopted in Eq.
(16); on the other hand, a more sophisticated ansatz would not be amenable to the semi-analytical treatment considered herein.
As a result, the VA misses the bistability interval and the associated changes in the stability. The situation is better at σ = 1.75,
for which the VA correctly predicts the nonmonotonicity, although the critical value of the frequency is not accurately captured.
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FIG. 2: Top left panel: linear stability eigenvalues for 1-site (full blue line) and 2-site (dashed red line) discrete solitons as a function of σ
for ω = C = 1; top right panel: the dependence of the Hessian eigenvalue Λ closest to zero for 1-site solitons with the same parameters
set. Bottom panels provide zoom around points σ = 1 (left panel) and σ = 0.5 (right panel) of the top left panel, illustrating two stability
exchanges occurring between the 1- and 2-site modes in the present model. The critical values of σ for which the main bifurcations take place,
namely σc = 1.674 and σt = 0.5 are highlighted by means of vertical dashed lines.

FIG. 3: The dependence of critical value σc on C for ω = 1.

Finally, for σ = 2, both the VA and numerical results yield a monotonic P (ω) dependence, in reasonable agreement with each
other. There is also some discrepancy in the value of σc, for which the VA predicts σc = 1.710 with independence of the value
of the coupling constant, C.
Finally, we mention the main features of unstable discrete solitons evolution for different typical examples of the instability

that are identified above. Figures 7 and 8 show the outcome of the evolution for unstable 1-site solitons with σ > 1: it is observed
that the soliton density at n = 0, |ψ0|2, deviates from the equilibrium value and subsequently performs oscillations around a
new equilibrium value. In cases when bistability takes place, as, e.g., at σ = 1.7 in Fig. 7, the unstable dynamical evolution,
depending on a particular choice of the initial perturbation, may result in oscillations around states belonging, in the top and
bottom panels, to two different branches of stable solutions. One can also observe that the soliton sustains together with the
increasing of the density at n = 0, a narrowing during the oscillations that manifest e.g. as a simultaneous decreasing of |ψ±1|2.
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FIG. 4: (Left panel) The dependence of the imaginary part of the stability eigenvalues for both 1-site and 2-site solitons with C = 1 and
σ = σt = 0.5 with respect to ω. (Right panel) 0-eigenmode for the 1-site soliton with σ = 0.5 and C = ω = 1

FIG. 5: Dependences of the square of the relevant stability eigenvalue, λ2, and conserved quantity P on frequency ω (left and right panels,
respectively) for 1-site solitons with C = 1 and σ = 1.7. The soliton is unstable in the interval of ω ∈ (0.56, 1.29). Inset in right panel
depicts the range ω ∈ (0, 3] confirming the existence of only two extrema in the P (ω) curve.

In addition, the maximum of |ψ0|2 increases with σ, and for σ = 1.8634 it leads to computational overflow. Beyond this limit,
despite using multiple algorithms, we have been unable to converge to a solution. Because of this, we cannot go beyond this value
of σ in our simulations. Our phenomenology basically involves an extremely fast increasing of |ψ0|2 that cannot be compensated
by the decreasing of the term (ψ1 + ψ−1) and hence, our numerical integrators fail to converge. It is important to note here that
contrary to the DNLS case or the cubic nonlinearity limit (i.e. of logarithmic divergence), the conservation laws in the present
case do not a priori preclude the density of a single site from becoming infinite. Clearly, identifying the phenomenology of the
model for sufficiently large σ is an important open topic that merits considerable additional study including from a theoretical
point of view.

The dynamics of unstable 2-site solitons with σ > 1 is somewhat different when σ is close to 1. If σ is close enough to 1 (as
e.g. σ = 1.01 for ω = C = 1), the soliton becomes mobile but, if σ − 1 is high enough (as e.g. σ = 1.05 for ω = C = 1),
the soliton gets pinned and its profile oscillates between a 1-site and 2-site soliton (see Fig. 9). When σ is increased (as e.g. to
σ = 1.2 for ω = C = 1), one can observe that the soliton undergoes a breaking of the symmetry between its two central sites
(here, these are n = −1 and n = 0). As a result, a dominant fraction of the mass concentrates at one of the two sites, e.g., at
n = 0, although a relatively high density remains at n = −1 too, decreasing with the increase of σ (see Fig. 10). The high
density fraction that concentrates at n = 0 experiences a similar trend to the observed in the 1-site case.
It is also worthy to mention that unstable 1-site solitons with σ < 1 feature mobility in the underlying lattice (not shown here

in detail), which is a consequence of the stability-exchange bifurcation associated with the translational perturbation mode.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In the present work we have explored a non-integrable generalization of the AL (Ablowitz-Ladik) model, bearing the power-
law nonlinearity. The model by itself is interesting for a variety of reasons, such as the discretization of the continuum problem
with the power-law nonlinearity, an extension of the integrable AL model, the mean-field limit of the Bose-Hubbard lattice with
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8

FIG. 6: The amplitude (ϕ0) and norm-like quantity P of 1-site discrete solitons (top and bottom panels, respectively) versus ω for σ = 1.7
(left panels), σ = 1.75 (middle panels) and σ = 2 (right panels), fixing C = 1. Blue (red) line corresponds to the numerical (variational)
solution.

FIG. 7: The evolution of the soliton density (left panel) and central-site density (right panel) for 1-site solitons with ω = C = 1 and σ = 1.7.
In the top (bottom) row, the soliton is perturbed along direction {an} ({bn}), with [{an}, {bn}] being the eigenvector corresponding to the
most unstable eigenvalue.
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FIG. 8: The evolution of the soliton density (left panel) and the central sites density (right panel) for the 1-site soliton with ω = C = 1 and
σ = 1.8. A small random perturbation was added to the (unstable) discrete solitons.

FIG. 9: The evolution of the soliton density for 2-site solitons with ω = C = 1 and σ = 1.01 (left panel), and σ = 1.05 (right panel). In this
case too, a small random perturbation was added to the unstable discrete solitons.

the population-dependent inter-site coupling, and as a testbed for addressing the interplay of discreteness and the potential for
collapse (for a sufficiently large nonlinearity power, σ).
Our analysis has revealed essential features of the model. We have identified its conservation laws, including an unprecedented

form of the conserved quantity (which falls back to the well-known logarithmic expression for the AL norm at σ = 1) and the
Hamiltonian. We have demonstrated how the modified norm-like quantity can be used (through its frequency dependence) to
predict potential changes of stability, by means of the extended VK (Vakhitov-Kolokolov) criterion. We have also formulated
the VA (variational approximation) based on the exponential ansatz, which is well capable of capturing the amplitude of the
discrete solitons, but is considerably less accurate (due to limitations imposed by the fixed form of the analytically tractable
ansatz) in capturing the quantity P , and, hence, the corresponding VK-predicted stability changes. We have identified a number
of stability alternations between the 1- and 2-site (alias site- and inter-site-centered) modes, and addressed their dynamical
implications. Importantly, for sufficiently large σ, the present model, on the contrary to the standard DNLS equation, appears to
feature extreme amplitudes, which are not precluded a priori from the conservation laws. Whether indeed some form of collapse
is present is an intriguing question that merits further study both from a theoretical and from a numerical perspective.

The present study paves the way for numerous questions worthwhile of further examination. Elaborating a better variational
ansatz, if it may be (semi-) analytically tractable, will certainly help to develop more accurate understanding of the model’s
features. An exploration of stability switchings, such as the one at the above-mentioned stability-exchange point σt, and of the
origin of these phenomena, are certainly relevant issues in their own right. Extending the model to higher dimensions, and, in
particular, the study of phenomenology of discrete vortices [1] is relevant too, while higher-dimensional AL models were, thus
far, addressed in a very limited set of studies [33, 34]. Lastly, as regards the focusing case with β = 1, it should be interesting
to address a possibility of the existence of rogue-wave modes, such as the (discrete variant of the) Peregrine soliton [18, 19]. At
the same time, exploring the defocusing case with β = −1 and the corresponding discrete dark solitons, as well as delocalized
vortices, would be a subject of interest in its own right. Efforts along some of these directions are currently in progress and will
be reported in future studies.
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FIG. 10: The evolution of the soliton density (left panel) and the central sites density (right panel) for 2-site solitons with ω = C = 1 and
σ = 1.2, σ = 1.5, or σ = 1.7 (top, middle, and bottom rows, respectively). In this case too, a small random perturbation was added to the
unstable discrete solitons.
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