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Abstract—Resolution enhancements are often desired in imaging
applications where high-resolution sensor arrays are difficult
to obtain. Many computational imaging methods have been
proposed to encode high-resolution scene information on low-
resolution sensors by cleverly modulating light from the scene
before it hits the sensor. These methods often require movement
of some portion of the imaging apparatus or only acquire
images up to the resolution of a modulating element. Here
a technique is presented for resolving beyond the resolutions
of both a pointwise-modulating mask element and a sensor
array through the introduction of a controlled blur into the
optical pathway. The analysis contains an intuitive and exact
expression for the overall superresolvability of the system, and
arguments are presented to explain how the combination of
random coding and blurring makes the superresolution problem
well-posed. Experimental results demonstrate that a resolution
enhancement of approximately 4x is possible in practice using
standard optical components, without mechanical motion of the
imaging apparatus, and without any a priori assumptions on
scene structure.

Index Terms—Superresolution, Random Coding, Digital Mi-
cromirror Device

I. INTRODUCTION

OR most of the history of imaging, the use of photo-

graphic film (i.e. analog sensors) meant that the resolution
of images was largely a function of how well the impulse
response of the collection optics approximated the delta func-
tion at the image plane. With the advent of digital sensor
arrays, the outputs of which could more easily be processed
computationally, new possibilities emerged for sensing and
interpreting images. The field of computational imaging is now
concerned with the co-design of light-modulation schemes
and image reconstruction algorithms to better capture desired
scene information. This typically leads to imaging systems
which capture measurements that do not resemble traditional
photographs, but contain scene information in an encoded form
that may be recovered with suitable algorithms.
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Adding a programmable mask to an imaging system is a sim-
ple modification that can significantly increase its flexibility
[1]. In applications where high-resolution sensor arrays are
unavailable or prohibitively expensive, adding a programmable
mask can improve the resolution of a low-resolution focal
plane array, even those consisting of a single sensor [2].
In a configuration where the mask pointwise-attenuates the
scene, a series of modulated images may be measured on the
low-resolution array, and a high-resolution image computed
from these measurements. Measuring a set of images using a
sufficient number of diverse (or even random) mask patterns
allows us to reconstruct the scene up to the resolution of the
programmable mask.

The main contribution of this paper is to show that if an
imaging system using a pointwise-modulating programmable
mask is followed by an appropriate blurring, the image can be
superresolved past the resolutions of both the mask and sensor
array.

A. Superresolution

The resolution of a conventional imaging system is typically
limited by either the quality of its optical components or
the resolution of the sensor array. For systems not already
imaging at the diffraction limit, many methods exist for
obtaining enhanced resolution images from a series of low-
resolution measurements, collectively known as multiframe
superresolution techniques. In its early manifestations, su-
perresolution consisted of acquiring multiple images from
different, barely varying perspectives and merging them into
a high-resolution image [3]. These techniques interleave the
pixels of multiple images and then interpolate to obtain the
scene at a higher resolution. However, obtaining samples at the
sub-pixel displacements required for meaningful enhancement
from a series of randomly varying perspectives is difficult,
typically requiring a fairly large number of measurements and
a complex registration procedure. Better and more reliable
results can be obtained by introducing precisely known, struc-
tured modulations into the imaging process.

Precise modulations can be introduced in the form of exact
sub-pixel translations using a motorized stage [4], patterned
illumination [5], a sequence of controlled point spread func-
tions [6], placing a coded mask in the aperture [7], random
lenses [8], and many other techniques. Introducing a high-
resolution occlusive programmable mask somewhere into the
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optical pathway is a simple way of introducing high-resolution
variability, and eliminates the need for fine mechanical move-
ments. Combined with reconstruction algorithms that exploit
highly efficient image models, computational imaging schemes
using occlusive masks are able to acquire images at the
resolution of the modulating mask with a small number of total
measurements obtained on a low-resolution sensing array.

B. Related Work

Introducing light modulators and kernels into the optical path
to increase the efficiency of the acquisition has a long history
in computational imaging. In this section, we contrast our con-
tributions against previous methods with similar motivations.

In [4], Ashok and Neifeld considered introducing a blurring
operation into a multiframe superresolution system based on
mechanical shifts, demonstrating that the system with a blur
outperformed one that was in-focus. An extended PSF was
created by placing a psuedorandom phase mask with optimized
roughness and correlation length into the aperture. In contrast
to [4], the proposed method grants superresolution capability
to a system rather than improves a system that can already
superresolve, and uses varying patterns on a programmable
mask rather than mechanical shifts to obtain sufficiently di-
verse information about the scene to perform superresolution.
A merger of our approach with this one could be possible by
using a psuedorandom phase mask optimized in the fashion [4]
describes to implement the blur in our system. Such a system
would interestingly employ randomness in both the coding and
blurring operations.

In a more recent work, Kashter et al. superresolved beyond
the diffraction limit in a digital holography configuration by
placing a psuedorandom phase mask in front of the aperture
[9]. While the phase mask naturally introduces a distortion, in
their case it acts to retain information about the higher spatial
frequencies that would have been filtered out by the original
system’s limited numerical aperture. If the point spread func-
tion is measured prior to imaging, it can be correlated with the
diffused hologram measured in a particular scene to produce
a superresolved hologram. Both [9] and [4] demonstrate that
introducing a controlled blurring operation into the optical
pathway can actually be advantageous, provided that the
blurring can be stably inverted. The same principle applies to
this work as well, although in our case the blur is introduced
after a coding stage.

Zlotnik et al. used a combination of two digital micromirror
devices (DMDs) in the aperture and intermediate image planes
to realize a random operator for compressive sensing, where
a DMD in the aperture was used to generate random point
spread functions and a DMD in an intermediate image plane
was used for pointwise coding [6]. This work addressed the
possibility of pointwise modulating the scene with a DMD,
but relied on fine mechanical positioning of the DMD relative
to the sensor or a second DMD in the aperture to obtain
high-resolution information. Rather than requiring two DMDs
or perfect alignment, our method involves only the rough

positioning of a single lens after the coding stage and only
requires a single DMD. Along with this simplified system, we
present a more detailed analysis of the expected performance.

In [10], Mohan et al. merged multiple images differing by
sub-pixel shifts by combining a mask in the aperture plane
with a slightly defocused lens. With the mask component sizes
fixed and an appropriately defocused lens, changing which
element is open on the mask shifts a blurred image of the
scene by a precise fraction of a pixel. While the idea of
introducing a defocus in a system with an occlusive mask
to enable superresolution is similar to what we propose here,
the function of the mask in our approach is fundamentally
different: here the mask point-wise modulates a focused image
of the scene and then blurs it, rather than shifting a blurred
scene image. It should be noted that [10] found that the blur
kernel when the aperture is fully open should be exactly
one sensor pixel in diameter, whereas in our approach the
desired blur size is 1.5-2 sensor pixels in diameter. Our method
could potentially offer several advantages over [10], based
on advantages that a superresolution method using pointwise
modulation would have over a method using sub-pixel shifting.
For example in applications where deliberately masking out
bright elements is desirable to avoid glare, as in certain
astronomical imaging scenarios, the proposed method offers a
distinct advantage over [10], where the entire scene is sampled
in every measurement. Our method could also be adapted
to scenarios where a variable-resolution image is desired, by
adapting the set of masks to contain more variability in the
regions where high-resolution information is desired, whereas
[10] necessarily acquires the full scene at uniform resolution.

Our work also points to the possibility of extending the
achievable resolution of mask-based compressive imaging
systems in a way that is straightforward and relatively easy
to implement. The core idea of compressive sensing [11]
is to exploit sparsity-based image models to make sensing
more efficient, typically using random linear measurements.
The prototypical imaging example of compressive sensing is
the single-pixel camera [2], which measures a series of inner
products between the scene and random patterns displayed on
an occlusive mask. Notably, both the single-pixel camera and
its straightforward extension to a multi-pixel sensor [12] both
only reconstruct the scene at the resolution of the mask.

Instead of using a programmable mask to realize a random
measurement operator for compressive sensing, it is possible
to use any optical element that introduces sufficient distortions
into the optical pathway such that each sensor element ef-
fectively measures a random combination of scene intensities.
Psuedorandom phase masks have been to perform compressive
imaging at both optical [13] and infrared [14] wavelengths. In
[15] it was demonstrated that even simple spherical aberration
could be used to create a sufficiently diverse measurement
operator. Multiply scattering materials are another way of
introducing randomness for performing compressive imaging
using coherent light [16]. However, digital micromirror de-
vices, which are used in the single-pixel camera as well as the
proposed method, have a number of advantages over these al-
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ternative optical modulators. DMDs are high-resolution, high-
speed, high-precision light modulators. They can be adapted
to (and operate consistently between) different wavelengths;
different mirror coatings can be applied at relatively low-cost.
DMDs are also optically efficient, reflecting practically 50% of
the incoming photons in the case of a half-on pattern, whereas
phase masks can absorb a larger percentage of the light. Speed-
wise, DMDs can be switched very rapidly (in the tens of
KHz) relative to liquid crystal-based spatial light modulators.
DMDs are clearly more flexible in the patterns that can be
displayed than fixed masks, which have various manufacturing
constraints. For these reasons, a DMD is an excellent choice of
optical modulator for a compressive or computational imaging
system. Demonstrating a way to resolve beyond the resolution
of the mask likely implies that compressive imaging systems
using a DMD to implement a random measurement operator
can be similarly extended to resolve beyond both mask and
Sensor.

II. MATHEMATICAL MODEL

We now present the basic imaging architecture under consider-
ation along with a corresponding mathematical model. After
an appropriate discretization, the problem of superresolving
amounts to solving a system of linear equations. Our ability
to superresolve an arbitrary scene is then determined by the
eigenvalue spectrum of the resulting system matrix, giving us a
systematic method to compare different choices of blur kernels
and the effect of using multiple masks. In Section II-C below,
we show how introducing the blur after the modulation allows
this spectrum to be bounded away from zero.

An illustration of a general random mask imaging system is
shown in Figure 1. The basic setup contains two lenses, a
programmable mask, and a sensor. The first lens focuses light
from the scene onto the plane of an occlusive programmable
mask, forming an image which the mask pointwise attenuates
in blocks. A second lens blurs this modulated image onto
the plane of the sensor, which integrates the light falling on
each individual sensor element to produce a measurement. An
image of the full scene may be computationally reconstructed
from a series of such measurements taken with varying mask
patterns. An example of how an image is modified as it moves
through such a system is shown in Figure 2.

A. Model

Let us denote the resolution of the mask as IV, the resolution of
the sensor array as M, and the resolution of the image we aim
to measure as R. We will use the vector = € R” to represent
the R-pixel discrete approximation of the continuous two-
dimensional image projected onto the mask by the first lens.
Note that the scene may be three-dimensional, but ultimately
we are trying to obtain a digital image that is a piecewise-
constant approximation of whatever two-dimensional image is
present on the plane of the mask. This image is assumed to
be unchanging over the course of the measurement period.

Fig. 1. Optical system for random mask imaging. Light from the scene is
focused onto an occlusive programmable mask or digital micromirror device
(DMD), which pointwise-modulates an image of the scene according to a
programmed pattern. The modulated scene image is then focused (or blurred)
onto a sensor. An image of the scene may be computationally reconstructed
from a series of sensor measurements acquired using different mask patterns.

Here we are also implicitly assuming that the limiting factor
in the resolution of a conventional imaging system using this
mask and/or sensor array would be the resolutions of those
components and not the optical resolving power of the first
lens.

A single measurement by the imaging system may be ex-
pressed as
yr = SBiDyx + noise, (D)

where 3, € RM is the vectorized output of the sensor array,
D, represents the operation of the mask, By represents the
blur between the mask and the sensor, and S represents the
sampling performed by the sensor.

Let us describe each of the matrices in this expression in more
detail:

e Dy is an R x R binary diagonal matrix which captures
how the mask point-wise modulates the pixels of the
discrete approximation of the scene image x on or off. If
we let d, = diag(Dy,), then another way of expressing
the action of the matrix Dy, is Dyx = dj. o x, where o
denotes entry-wise vector multiplication (the Hadamard
product). Because there is a resolution mismatch between
the image and the mask, the vector d; must be an N-
pixel pattern scaled up to resolution R. In other words,
the action of Dy is piecewise-constant over ¢ X ¢ blocks
of pixels in the R-pixel image x, where ¢ = \/R/N.

e By is an R x R matrix which represents the blurring
operation of the second lens. If the system is spatially
invariant, the rows of this matrix consist of different shifts
of the vectorized point spread function.

e Sisan M x R sub-sampling matrix which sums together
blocks of the blurry, modulated image to produce the
measurement yy.

Note that the blurring matrices By, are indexed individually for
notational convenience, although this is not meant to suggest
the use of a different blur kernel for every measurement. In
the presented results there are only a total of 1 to 3 unique
By in each experiment.
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The sensor sampling matrix S can safely be assumed constant,
so we combine it with By to form a general weighting matrix
W, = SBj; which describes how the image that passes
through the programmable mask is converted to a measure-
ment. We stack the set of measurement vectors {yj}r_,
column-wise to yield the vector Y € REM representing a
complete set of K measurements. The full linear model of the
imaging system may then be written as

Y1 W, D,
Y = = x
Wgk| | Dk

=Azx (2

YK

B. Recovery using Least-Squares

Given the system model A and the measurements Y, we may
estimate the discrete approximation of the scene image x by
solving the least-squares problem

1
minimize || Az - Y3 +6)=3,
the Tikhonov-regularized solution of which is
i=(ATA +6I)7'ATY. (3)

where the regularization parameter 4 > 0 is user-defined. The
effectiveness' of (3) in estimating = depends critically on the
eigenvalue spectrum of the system matrix AT A — if there are
R nonzero eigenvalues bounded safely away from 0, then we
can confidently reconstruct the image for even small values of
d. Thus, we want to choose the matrices {Dy} and {By} in
such a way that AT A is well-conditioned, where

K
ATA =) DW[W,D;. 4)
k=1

Both the matrix ATA and the vector

K
ATY =) DyW{y, 5)
k=1
can be computed efficiently. Considered as a linear operator,
A consists of modulations (point-wise multiplications), con-
volutions, and local averaging, all of which scale to very high
resolutions. Moreover, if the blurring matrices By use highly
localized kernels (as they do in our numerical simulations
below), then both A and ATA will be sparse and can be
explicitly constructed, held in memory, and applied directly
even at large scale.

Our numerical simulations below take 32 x 32 measurements to
64 x 64 reconstructed images — in this case, all of the matrix
calculations (including the inversion) can be done directly,
and the spectrum can be explicitly computed. For larger-scale
problems, (3) can be computed using an iterative method (e.g.

1Of course, another factor in the effectiveness of (3) is how accurately A
models the optical system. In practice, the accuracy of the reconstruction could
vary depending on how we discretize the image. But, as the experiments in
Section IV-C support, using a straightforward pixelization is often sufficient.

conjugate gradients), with the component parts of A and AT
carefully implemented.

There is no doubt that more sophisticated reconstruction
methods, particularly those those that take advantage of the
expected structure in the scene (e.g. using total variation
or sparsity as a regularizer), would result in better-quality
reconstructions. But what we are interested in here is how the
placement of different optical components affect the matrix
ATA these are best manifested in the least-squares recon-
struction (3), and so we use this throughout the paper.

C. How Modulated Blurring Enables Superresolution

To develop some intuition for how the introduction of a blur
after the modulation gives us meaningful sub-pixel discern-
ablility, we compare two cases as shown in Figure 3: (a) when
the system is perfectly in-focus, and (b) when there is blurring
between the mask and the sensor.

Assume for both cases that the field of view of the sensor
exactly covers the mask, and suppose we fix the resolution of
the scene image x to be 4N, where NV is the resolution of the
mask. Then if any single mask element is on while the rest
are off, the modulated image contains exactly 4 pixels. If we
can determine the intensities of each of the 4 pixels in each
of the N mirrors, then we will have effectively captured a 4N
resolution image.

With the system in focus, all the rays passing through each
open mask element strike a single sensor element. Regardless
of what patterns or what number of patterns are displayed,
each sensor element records only the total intensity of the light
passing through one mask element, S = s4 + sp + S¢ + Sp,
observing none of the sub-pixel variation. In this case, the
resolution at which we can resolve is essentially the resolution
of the mask.

By introducing a blurring operation into the optical pathway,
we are able to obtain more information about the sub-pixel
regions through crosstalk of the sensors. Now multiple sensor
elements can be made to measure different linear combinations
of the sub-pixels, as shown in Figure 3(b). If these linear
combinations are diverse enough, we will be able to invert
the resulting systems of linear equations to obtain the scene at
a higher resolution. The switching of the DMD patterns over
time is therefore effectively acting to disentangle portions of
the scene that would normally be sensed concomitantly. By
separating the contributions from neighboring pixels over a
given set of measurements we are able to sense pixels of = at
a higher resolution than both the mask and sensor.

D. An Example in ID

We can be even more explicit about how the combination of
modulation and blurring helps us to superresolve by examining
a one-dimensional example using a single blur kernel. Suppose
z is the “high-resolution” vector of length R which we are
trying to resolve using a mask of resolution N = R/2, and
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B subsampling
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Fig. 2. How an example image is modified as it passes through a random mask imaging system. A scene image x is pointwise modulated by a pattern matrix
D, which represents the action of an occlusive programmable mask. The modulated image is then blurred, as represented by the operator Bj. This blurry,
modulated image is then subsampled by the sensor, represented by the operator S, to obtain the measurement yy,.

Focused

Introduced blur

Fig. 3. Top row: sensor response S to different sub-pixels (s4, sB, sc, Sp)
when the system is in focus, Bottom row: sensor response to different sub-
pixels when a blur is introduced between the mask and sensor. When a blur
is introduced, the sensor S and its neighboring sensors N; observe different
responses to combinations of individual sub-pixels within one mask element.

we use a blurring operator with impulse response [1 2 1]
Then the matrices from section II-A are

[1 1 0 0 0 0
0 0 1 1 0 0

S = ,
0 0 0 0 1 1
i 1 0 0 0
1 2 1 0 0

B= ) ;
10 1 2
_pl,k !

D1k
D2,k
Dk} = p2,k s
PN,k

L PNE |

where the values p,, ;. correspond to the pattern displayed on

the mask during the k™ measurement. To make the exposition
simpler, at this point we will take p, , € {—1,1}, and will
note what changes when p,, , € {0,1} at the end.

With the system in-focus, we have W = S and the system
matrix ATA in (4) is

S1 81 0 0 0
s1 s1 0 O 0
K 0 0 SS9  S9 0
ZDkSTSDk: 0 0 sy 89 0

k=1 .
SN SN
0 0 0 0 SN SN

where

K
2
Sn = E :pn,k
k=1

Each of the 2 x 2 matrices along the block diagonal is at most
rank one, so ATA has rank at most N. Thus measurements
with this system will contain no information about the image
other than what is averaged over every mask element, and the
least-squares solution in (3) will be piecewise constant (as will
the Tikhonov-regularized solution).

Initially it is not immediately obvious how adding a blur will
improve the conditioning of this system, especially considering
that B itself is not well-conditioned; its spectrum is shown in
Figure 4(a). However, we will see that the interaction between
the blurring and the mask patterns makes AT A full rank. With
the blurring included, the inner matrix WTW in (4) is

9 9 3 0 0 0 0 0
910 6 3 1 0 0 0
e 3 6 10 9 3 0 0 0
B'SSB=|p 3 9 10 6 3 1 0
01 3 6 10 9 3 0

This matrix is at most rank N = R/2, since it cannot be higher
rank than S; its eigenvalue spectrum is shown in Figure 4(b).
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Fig. 4. The eigenvalue spectra for the key imaging matrices in the one-dimensional example. Here R = 256, N = 128, and we are trying
to super-resolve by a factor of two. (a) The eigenvalues of BT B. This operator is essentially non-invertible over R**. (b) The eigenvalues of
W'W = B"S"SB. This operator inherits the rank of STS, and is only 128. (c) The eigenvalues of E[AT A] are bi-level, shown by the black
line. The spectra for ten realizations of %ATA for K = 50 are overlaid. All of these systems are full rank and stably invertible.

However, when we include the modulation, the full system is
given by (4), i.e.

K
ATA = ZDkWTWDk
k=1

The system matrix is now random, and for sufficiently
many measurements &, we have the approximation ATA =~
E[DkWTWDk] (where we are omitting a constant factor of
K). If we consider the expectation as approximated by a sum
over increasingly many patterns, as K increases the terms
along the block diagonal remain unchanged, but those off the
diagonal are divided by an increasing factor. Thus we obtain

E[D,WTWD,] = 9 10

We see that the random coding, in the limit, makes the system

matrix block diagonal and full rank. The ei[genvalues of this

10 9

matrix are simply the two eigenvalues of 10] (which

9
are 19 and 1) repeated N — 2 times, and the eigenvalues of

repeated twice on the boundaries. The spectrum of

9 10

t[\e expectation matrix is shown in Figure 4(c). The imaging
system matrix has become full-rank, with a reasonable condi-
tion number of ~ 19.

Of course, for a finite number of measurements, the eigen-
values will not have exactly this simple two-value structure.
But with a modest number of measurements, the spectrum of
ATA will have the same essential structure. In Figure 4(c)
we plot 10 different realizations of AT A, each using K = 50
patterns. The conditioning of each of these is similar to that
of E[ATA].

In practice, the entries in the Dy are better modeled as
random variables with values in {0, 1}. Of course, if a single

measurement is taken with all of the p,. = 1, then other
measurements can be subtracted digitally from this one, giving
us ppk € {—1, 1} as above. If the system matrices are formed
directly, then the expression for E[D,WTWD,] above is
augmented by adding 1/41 + 1/4117, where I is the identity
and 1 is the vector of all ones. As this matrix is positive
definite, its addition will only increase the size of the smallest
eigenvalue, and thus the eigenvalues of the expected system
matrix are bounded away from zero.

Although we will not explore it further here, it may be possible
to design the blurring kernel B to optimize the conditioning
of the imaging system. In fact, a simple calculation shows that
for a general symmetric length-3 filter [a b a| and the case
of 2x superresolution, we have

a’ + (a+b)?
(a+b)?

(a+b)?

E[ATA}: a2—|—(a+b)2

which has eigenvalues of a® + 2(a + b)? and a?. The ratio of
these takes the optimal value of one when b = 0.

Stable super-resolution at larger factors is possible, but is
more delicate. As the super-resolution factor increases, the
blurring kernel must get larger and more diverse. Numerical
experiments indicate that in this simple 1D scenario, the length
of the filter must grow quadratically with the super-resolution
factor. The key /R/N x y/R/N matrices involved also
become more poorly conditioned, although they typically have
3 or 4 significant eigenvalues, indicating that stable super-
resolution to these factors (9x or 16x) may be possible.

III. SIMULATIONS

With superresolution posed as a linear inverse problem, the
superresolving capability of the system is ultimately dependent
on the spectrum of the system matrix ATA. To validate the
proposed method and better understand when we could expect
to achieve good superresolution results, the system model was
simulated under a range different conditions. In particular, we
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focused on identifying a blur kernel and a set of mask patterns
that led to meaningful superresolution.

A. Methodology

The scene image formed at the plane of the mask was
represented as an unchanging, discrete image of resolution
Q x Q, for Q% > R. For all simulations both the mask and
sensor were fixed to be 32 x 32 arrays (N = M = 1024), and
the aim was to superresolve by a factor of 4, i.e. to recover a
64 x 64 pixel image (R = 4096). The noise level was fixed at
a level corresponding to a peak signal to noise ratio (PSNR)
of 40dB, which for the scene image used in the simulations
corresponds to a noise standard deviation of 1.7 pixel units.

The sensor was modeled as a square array of identical square
elements flush with one another, and the magnification such
that if the second lens were focused the masked image would
map exactly into the sensor. Thus S was implemented by
simple block-averaging. Assuming spatial invariance of the
blur kernel, the Bj matrices were constructed as standard
convolution matrices for each of the considered kernels. To
ensure parity with respect to the mask, a single set of 500
32x32 random binary patterns was used in all experiments.
For K < 500, the same subset of this set of patterns was
employed. The Dy matrices were formed by straightforwardly
scaling the 32x 32 patterns up to resolution () x () and storing
the vectorizations dj, of these patterns (the diagonals of the
Dy). The product Dyz was then implemented as the pointwise
product dj o z.

Given the matrix S and the matrix sets {By}X , and
{Dy}£ |, a set of measurements {yj} was simulated by
applying the linear operators representing the actions of the
mask, blur, and sensor in sequence to the scene image as in
(1), then adding noise.

Given the set of measurements, we first computed the matrix
ATA asin (4) and vector ATY as in (5). The superresolved
estimate was then obtained by directly solving (3), for some
Tikhonov parameter. In the results that follow, we report error
metrics obtained when using the optimal (in terms of the
mean of the squared errors) Tikhonov factor. In practice this
parameter may be easily tuned for a specific application.

B. Choice of Blur Kernel

Once the idea of introducing a blur between the mask and
sensor is established, a natural next question is what particular
blur kernel is best suited for superresolution. Towards identi-
fying a reasonable kernel, the system was simulated using a
number of different kernels, examples of which are shown in
Figure 5.

As previously mentioned, the superresolving capability of the
system (across all SNRs) is ultimately a function of the spec-
trum of the system matrix AT A. Plotted in Figure 6 are the
spectra of systems employing some representative kernels and
combinations of multiple kernels that were studied. If we were

Disk 1 Disk 2 Disk 3 Small Coded

Large Coded

Fig. 5. Example blur kernels considered in simulation, including disks
of several sizes as well as coded kernels of different sizes, patterns, and
resolutions. Grid lines indicating the divisions between sensor pixels are
shown for scale. Below each kernel is the response observed at the sensor
when exactly one mask element is open.

attempting to resolve at the resolution of the sensor/mask, we
would be interested only in the largest M = 1024 eigenvalues.
In this case it is clear that the in-focus system performs best.
However, given that we are trying to superresolve, the portion
of the spectrum that interests us is what lies beyond the first
M eigenvalues. Here we see that for an in-focus system all
eigenvalues after the first M are zero, showing that the in-focus
system has no superresolving capability. Different blur kernels
lead to systems with different spectra, and a comparison of
the different cases shows that the overall best-performing PSF
among those considered was a disk with diameter slightly
less than that of two sensor pixels. Coded kernels can lead
to better conditioned systems than larger or smaller disk
kernels, however using an occlusive mask to code the second
lens necessarily results in a loss of light, and coded systems
generally perform slightly worse than systems using a simple
blur (for an equivalent number of measurements).

C. Choice of Mask Patterns

Another way of thinking about the superresolution problem
presented here is as a set of N sub-problems, one for each
mask element, in each of which the aim is to estimate the
sub-pixels that a particular mask element co-modulates. If
a single mask element is open, the sensor measures only
linear combinations of the sub-pixels which that mask element
interacts with.

When multiple mask elements are open simultaneously, each
sensor element in general measures a linear combination of
sub-pixels from multiple mask elements, and this mixing
effect will in general make the recovery worse-conditioned.
The ”spectrum upper bound” for a particular kernel would
be obtained when only one mask element is open in each
measurement, and the spectrum degrades monotonically from
this upper bound as we use patterns with more mask elements
open in each measurement. Choosing a set of patterns is thus
to some extent application-dependent, determined by temporal
and noise constraints. In what follows we employ random
mask patterns with half of the mask elements open in each
measurement, which performs well in both simulations and
practice.
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Fig. 6. Eigenvalue spectra of the full system matrix ATA when using
different blur kernels (or combinations of multiple blur kernels) for the
second lens, plotted with the y-axis in log-scale. Because what matters is
not the absolute values of the eigenvalues Ay, but their ratios with respect to
the largest eigenvalue, every spectrum was divided by its largest eigenvalue
(denoted A1). The variance of the noise will determine the number of
components that can be robustly resolved (and hence the effective super-
resolution factor). Note that to create a coded kernel some amount of light
is necessarily blocked by the coding mask, meaning coded kernels will tend
to perform worse in practice in comparison to a simple disk kernel for an
equivalent number of measurements.

D. Simulation Results

After simulating the measurements for a specified blur kernel
and number of patterns, we recover the superresolved scene
by Tikhonov-regularized least squares (3). For every case we
report error metrics obtained after identifying and using the
Tikhonov parameter that minimizes the mean of the squared
errors (MSE) between the result and the ground truth.

Example results for different kernels are shown in Figure 7.
Systems employing a simple defocus performed better overall
in terms of the error metrics relative to the coded kernels. Note
that the edges of the images tend to be noisier and blurrier than
their centers, because light from the edge pixels is measured
at fewer total sensors. Because of the asymmetry of coded
kernels particular edges can be worse-conditioned than others,
such as the top edge in the first coded system shown in the
figure. Truncating the edges results in better error metrics,
but still not better than those obtained when using the best-
performing disk kernel.

Figure 8 shows the structural similarity (SSIM) [17] of the
recovered image from systems using different kernels and a
varying number of measurements in the case of a natural
image. The performance improves rapidly for all kernels
before leveling off around about 100 measurements. Notably
all systems employing a blur demonstrated meaningful su-
perresolution capability. Overall, the best performance was
obtained with a blur kernel with a diameter of 1% sensor pixels
wide, although kernels between 1.5 and 2 sensor pixels in

diameter performed similarly, so that is the range we targeted
in the construction of the system.

IV. REAL-WORLD IMPLEMENTATION
A. Optical Layout

After validating the concept in simulations, we designed
and built an optical system to achieve superresolved images
in the laboratory. The experimental setup used to perform
the superresolution procedure is illustrated in Figure 9. A
ViALUX DLPC410 digital micromirror device (DMD) chipset
was used as the light modulator/image encoder to display the
mask patterns. The DMD consists of hundreds of thousands of
micromirrors whose orientations can be precisely controlled
to tilt either left or right of the surface normal into ON or
OFF states, either reflecting light towards the sensor or away
from it, respectively. The ON/OFF values of the individual
micromirrors of the DMD directly correspond to the elements
of the binary pattern matrices {Dy}. The highest switching
speed of the DMD is in the tens of kilohertz, allowing for
very fast optical modulation. In the implemented system, the
switching speed was 100 Hz to coincide with the frame rate
of the focal plane array, which was a Gazelle camera from
Point Grey.

The pseudorandom binary patterns displayed on the DMD
were of resolution 32 x 32, where at each measurement only
half of the total DMD mirrors are turned to ON. Since the
center portion of the DMD used was resolution 512x512, the
target resolution was achieved by turning groups of 16x16
mirrors ON or OFF simultaneously. The scene was focused
onto the DMD with a lens, then modulated by the pattern
on the DMD, and then this modulated image was projected
onto a CMOS focal plane array (FPA) through a second
lens. The FPA was placed slightly behind the image plane
of the second lens to implement the blurring operation. The
distance between the image plane and the FPA determines
the effective blur kernel size, and thereby the achievable
superresolution performance. For the case of coded kernels,
we simply put a coded mask in front of the second lens. The
mask we implemented was the same as the small coded shape
in Figure5, a simple 2 x 2 binary pattern that has a size of
7 x 7 mm?. The FPA employed had a native resolution of
2048 x 1048; in order to simulate the low-resolution sensor
array, we combined blocks of sensor pixels in the center of
the FPA together to obtain an effective resolution of 32 x 32.
For this experiment we used the approximate blur kernel size
discovered in simulations which produced the best results for
4 x superresolution, so the reconstructed superresolved images
have a resolution of 64 x 64.

B. Calibration

Ideally the blur kernel can be estimated based on the distance
between the second lens and the FPA. However the imaging
system also involves distortion and an imperfect mapping
between the micromirrors of the DMD and the sensor pixels
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Fig. 7. Example results simulated using different blur kernels, where we attempt to superresolve from a 32 x 32 image to a 64 x 64 image using K = 100
random mask patterns/measurements taken at a PSNR of 40dB. The mean of the squared errors (MSE), relative error (RE), structural similarity index (SSIM),
and peak signal-to-noise ration (PSNR) are computed for each result relative to the ground truth image. Also shown for comparison is a bicubic interpolation

of the downsampled 32 x 32 image to 64 X 64.
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Fig. 8. Simulated performance plots of structural similarity index (SSIM)
of each system on an example image for different numbers of measurement.
The bicubically interpolated image SSIM is given by the green line at the
bottom. The red line along the bottom shows the SSIM for a random mask
imaging system when the system is in-focus. The dark green line just above
that represents the SSIM of the bicubically interpolated low-resolution image.
The kernel that gerformed best in terms of SSIM was the disk-shaped kernel
with diameter 1% sensor-pixels.

of the FPA. Thus the assumption of a spatially invariant blur
was violated, and the purely mathematical estimation of the
matrices Wy was not sufficient for a good reconstruction of
the high-resolution image.

To obtain an estimate of the matrix W, = SBj in the
forward model (1), we performed a point spread function
(PSF) calibration process for higher density pixels on the
DMD while maintaining the total number of micromirrors
being used (512x512). This was achieved by turning on
blocks of 8x8 pixels on the DMD to capture the response
of our imaging system to point sources of effective resolution
of 64x64. In the red box within Figure 9 are the PSFs of
a perfectly focused system and a blurred system obtained
through calibration. The W, matrices acquired through the
calibration process contain all the information about the optical

7
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In-focus PSF De-focus PSF

[—

Fig. 9. Illustration of the experimental setup. The sensor response when a
single mirror of the DMD is in the ON state is shown for both the focused
and blurred systems.

system, including the blur kernel, optical distortion, and the
precise mapping between the DMD and FPA. We can then
use the estimated W, to reconstruct the superresolved image
from the randomly modulated measurements.

C. Results

We directly solved the Tikhonov-regularized linear system
to reconstruct the super-resolved image at resolution 64x64
resolution from a series of random measurements taken with a
32x32 resolution DMD and a 32x32 resolution sensor array.
Figure 10 shows several superresolved images obtained for
different blur kernels using 100 DMD patterns. Error metrics
show that the proposed method meaningfully enhances the
resolution of the imaging system beyond the resolution of both
the mask and sensor array.

For every kernel, both a nonuniform illumination correction
and a magnification and translation correction were performed
for the sake of fair comparison. The nonuniform illumination
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Fig. 10. Example results computed from 100 measurements taken with the system using different blur kernels. The Tikhonov parameter yielding the optimal
MSE was used for each kernel. Error metrics are the mean of the squared errors (MSE), relative error (RE), structural similarity index (SSIM), and peak

signal-to-noise ratio (PSNR).

correction was performed by first acquiring an image of a
blank piece of paper with all the mirrors of the DMD set to
ON, representing the effective background illumination pattern
for the kernel. The obtained superresolved result was then
divided by a version of this background pattern that was
normalized to the [0, 1] range. For multiple kernels the back-
ground illumination pattern corresponded to the average of the
individual kernel backgrounds. This correction compensates
for the varying illumination observed in the scene that is
created by the presence of the blur kernel.

A magnification and translation correction was also performed
after it was discovered that using different blur kernels intro-
duced slightly different magnifications and translations, com-
plicating fair comparison to a single ground truth image. To
correct for these effects, for each kernel the ground truth image
was simultaneously magnified and translated appropriately by
trimming a small number of pixels from the edges of the
512x512 target image before down-sampling to the 64x64
resolution. For each kernel the cropping that yielded the
minimal MSE is reported.

V. ANALYSIS
A. Performance Characterization

Performance curves for systems using different kernels are
shown in Figure 11. The curves roughly track the ordering of
the results obtained in simulations, with all kernels and kernel
combinations achieving meaningful superresolution. Similar to
the simulated cases, the performance improves asymptotically
with the number of measurements, yielding only marginal
improvements after 50-100 measurements. We note that for a
sufficiently fast DMD and sensor array, the total time required
to take this many measurements could be on the order of
milliseconds.

In Figure 12 we compare a result obtained using the pro-
posed method against results obtained by using several single-
image superresolution techniques, including superresolution
via patch-wise sparse representation [18], example-based su-
perresolution [19], and a superresolving convolutional neural
network trained on patches taken from natural images [20].
This comparison demonstrates the capacity of the system to
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Fig. 11. Structural similarity index (SSIM) versus number of random measure-
ments for different kernels, obtained from reconstructions using measurements
from the implemented systems.

resolve the image at a higher-level of detail than could be
expected with software-based methods alone.

B. Modulation Transfer Function Analysis

To quantify the effect of our method on the spatial frequen-
cies of the output image, the Modulation Transfer Function
(MTF)[21] was evaluated by calculating the contrast of line
pairs in the fan target. Circles with different radii were drawn
around the center of the fan target, where the bright/dark line
pairs (Ip) versus the circle circumference (expressed in Ip/mm)
decreases as the radius increases. For each circle, the contrast
was calculated as (Lnaz — Imin)/(Imaz + Lmin ), Where Lyqq
and I,,;, are the maxima and minima of the bright/dark line
pairs matching their locations. Figure 13 shows the MTF for
each scenario displayed in Figure 10. The MTF plot clearly
verifies the superresolution capability of the proposed method.
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VI. CONCLUSION

We have demonstrated a novel method for superresolving an
imaging system containing an occlusive programmable mask
beyond the resolution of both the mask and sensor array.
This is distinct from certain compressive imaging systems,
such as the single pixel camera, where the resolution of the
recovered image is upper-bounded by the resolution of the
modulating element. The approach outlined here could be ideal
for situations where high-resolution sensor arrays are desired
but prohibitively expensive, such as when imaging outside the
visible spectrum, in LIDAR, or even for high-speed cameras
in the visible range, which usually have resolutions limited by
the rate of data transfer off the sensor array.

The resolution enhancement was achieved by inserting a
known blur between the mask and sensor and acquiring a
series of measurements during which the mask element was
randomly modulated. Introducing this blur causes each sensor
element to measure a different linear combination of the
sub-pixel intensities in the scene, effectively re-casting the

superresolution problem into that of inverting a system of
linear equations. For a suitable kernel and with sufficiently
many random measurements, the resulting linear system can
be stably inverted to obtain a superresolved image, and an
argument was presented that this will be reliably true for
certain kernels in the one-dimensional case.

Under sufficiently many random measurements, the choice of
kernel is equivalent (in expectation) to choosing the eigenvalue
spectrum of the overall system matrix. The resulting spectrum
is then an exact quantitative description of the system’s ex-
pected performance. We found that a simple defocus gives
the imaging system a favorable spectrum, allowing us to
superresolve both the mask and sensor by a factor of 4x,
although it was found that many different choices of the blur
kernel lend the system superresolving capability. Using more
complex kernels or multiple kernels did not appear to make a
meaningful difference over using a simple blur of a particular
size in the case of 4 x superresolution, although could at larger
superresolution factors. Building on these results, it is likely
possible for a specific application to design an optimal PSF
that is more complex than the ones presented here. Extensions
to fluttered shutter methods [22] could lead to combined
superresolution and motion deblurring. The approach outlined
here could also potentially be used to extend the resolution of
compressive video systems such as CS-MUVI [23].

In this proof-of-concept study we used a simple ¢5-regularized
least squares recovery to obtain the superresolved image, but
more sophisticated recovery methods are possible. Reasonable
models for the structure in natural images, such as low total
variation or representation sparsity in a particular dictionary,
have been used to regularize multi-image superresolution
([24], [25]), and could be applied here to yield further im-
provements. It should also be possible to use this system in a
compressive manner, obtaining a superresolved image from a
much smaller number of measurements.
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