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16 In this Letter, we address the long-range interaction between kinks and antikinks, as well as kinks and
17 kinks, in φ2nþ4 field theories for n > 1. The kink-antikink interaction is generically attractive, while the
18 kink-kink interaction is generically repulsive. We find that the force of interaction decays with the
19 2n=ðn − 1Þth power of their separation, and we identify the general prefactor for arbitrary n. Importantly,
20 we test the resulting mathematical prediction with detailed numerical simulations of the dynamic field
21 equation, and obtain good agreement between theory and numerics for the cases of n ¼ 2 (φ8 model),
22 n ¼ 3 (φ10 model), and n ¼ 4 (φ12 model).

DOI:23

24 Introduction.—The study of field-theoretic models with
25 polynomial potentials has been a topic of wide appeal
26 across a diverse span of theoretical physics areas, including
27 notably cosmology, condensed matter physics, and non-
28 linear dynamics [1–3]. Arguably, the most intensely studied
29 model in this class is the quartic (double well) potential, the
30 so-called φ4 model, connected to the phenomenological
31 Ginzburg-Landau theory [4,5], among numerous other
32 applications [6–9]. While the φ4 model has a time-honored
33 history in its own right [10], more recently, higher-order
34 field theories have emerged as models of phase transitions
35 [11] relevant to materials science [12–14] (see also
36 Ref. [10] (Chap. 11) and Ref. [15]), or in quantum
37 mechanical problems (including supersymmetric ones)
38 [16], among others. There, the prototypical example has
39 been the φ6 field-theoretic model, which has led to
40 numerous insights and novel possibilities with respect to
41 the spectral properties [17] and wave interactions [18].
42 Scattering of solitary waves (topological defects or
43 otherwise) is a long-standing topic of active research

44[19], starting from the early works [7,8]. Our aim here
45is to go beyond the “classical” models, in a direction that,
46admittedly, has already seen some significant activity
47[11,20–26]. One of the particularly appealing aspects of
48this research program (aside from its potential above-
49mentioned applications in materials science or high-energy
50physics or quantum mechanics) is that higher-order field
51theories possess topological defect solutions (kinks) with
52power-law tails, rather than the “standard” exponential tails
53that we are used to in the φ4 and the (usual variants of) φ6

54field theories. The resulting dynamics set by the power-law
55tails endows topological defects with long-range inter-
56actions. Recently, a methodology for quantifying such
57kink-kink and kink-antikink interactions in the φ8 model
58was proposed in Ref. [27]. In our previous work [28], we
59showed that there are some deep challenges in even
60initializing such topological defect configurations numeri-
61cally. Thus, the initial conditions in a direct numerical
62simulation of interactions may substantially affect the
63nature of the observed interactions (cf. also earlier works
64including, e.g., Ref. [26]).
65One of the related motivations of our study stems from
66the expectation that power-law tails may affect the physical
67properties of a system governed by higher-order field
68theories. For instance, the dynamics and interaction of
69domain walls in ferroelastic materials undergoing succes-
70sive phase transitions [13] should affect the elastic
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71 properties in unusual ways. Similarly, the response of
72 crystals undergoing isostructural transitions [14] or the
73 behavior of crystallization of chiral proteins [29] should be
74 altered by the associated long-range interactions between
75 domain walls.
76 The present effort provides an answer to the question of
77 how kink-kink (K-K) and kink-antikink (K-AK) long-range
78 (power-law) interactions occur in higher-order field theo-
79 ries that exhibit such topological defects. We consider
80 particular (yet highly relevant to this problem) potentials
81 for which the highest power of φ in the potential is 2nþ 4,
82 and we analyze the interaction for arbitrary n ≥ 2. We find
83 that kinks repel each other, while kinks and antikinks
84 generically attract, in both cases with a power law decaying
85 as the ð2n=n − 1Þth power of their mutual separation.
86 Furthermore, we adapt the recent methodology of
87 Ref. [27] to the case of arbitrary n ≥ 2, and we identify
88 the prefactor (distinct for K-K and K-AK) of the corre-
89 sponding power-law interaction force. Equally important,
90 we resolve the “uncertainty” of the prefactor indicated in
91 Ref. [27]. We identify the most accurate asymptotic
92 prefactor and test it against direct numerical simulations
93 to find good agreement for φ8 (n ¼ 2), φ10 (n ¼ 3), and
94 φ12 (n ¼ 4) models, for both K-K and K-AK interactions.
95 The increasing trend of the deviations between the two, as n
96 increases, is also explained.
97 First, we present our theoretical results. Then, we
98 compare them to direct numerical simulations. Finally,
99 we offer some conclusions and directions for future work.

100 Theoretical analysis.—Consider a real scalar field φðx; tÞ
101 in (1þ 1) dimensional spacetime, its dynamics set by the
102 Lagrangian density

L ¼ 1

2

�∂φ
∂t

�
2

−
1

2

�∂φ
∂x

�
2

− VðφÞ: ð1Þ

103104 The dynamic equation of motion of this field is

∂2φ

∂t2 ¼ ∂2φ

∂x2 −
dV
dφ

: ð2Þ

105106 The potential V is, specifically, of the form

VðφÞ ¼ 1

2
ð1 − φ2Þ2φ2n: ð3Þ

107108 This potential has three minima: φ̄1 ¼ −1, φ̄2 ¼ 0, and
109 φ̄3 ¼ 1. Hence, there are two kinks in this model, φð−1;0ÞðxÞ
110 and φð0;1ÞðxÞ, and two corresponding antikinks, φð0;−1ÞðxÞ
111 and φð1;0ÞðxÞ. All of these defects exhibit one power-law
112 and one exponential asymptotic decay to the respective
113 equilibria (0 and �1) as jxj → ∞. We study the interaction
114 force between the kink φð0;1ÞðxÞ and the kink φð−1;0ÞðxÞ.
115 Their time-dependent positions are x ¼ �AðtÞ, respec-
116 tively, and their long-range tails overlap. Similarly, for

117the K-AK interaction, we employ the antikink φð0;−1ÞðxÞ
118and the corresponding mirror kink φð−1;0ÞðxÞ located at
119x ¼ �AðtÞ, respectively.
120In Ref. [28], the interaction via power-law tail asymp-
121totics was studied numerically for n ¼ 2 (φ8 model). In
122Ref. [27], the force between a well-separated kink-kink and
123kink-antikink was analyzed, again for n ¼ 2. Our aim here
124is to generalize the (most sophisticated among the different)
125approach(es) of the very recent work [27], and to calculate
126the result for arbitrary n. Then, we blend this theoretical
127analysis with the delicate computational approach from
128Ref. [28] to fully flesh out the K-K and K-AK long-range
129interactions in such higher-order field theoretic models
130involving power-law tails.
131Below, we model the accelerating kink solution of
132Eq. (2) by a field of the form φðx; tÞ ¼ ϕðyÞ, where y ¼
133x − AðtÞ and ϕ ¼ φð0;1Þ or φð0;−1Þ.
134Kink-kink interaction.—Substituting the kink profile into
135Eq. (2) yields the static equation for ϕ:

ϕ00 þ aϕ0 −
dV
dφ

����
φ¼ϕ

¼ 0; ð4Þ

136137where a ¼ Ä is the acceleration (assumed small) and
138Lorentz contraction terms (∝ _A2) have been neglected.
139Here, _A ¼ dA=dt, and ϕ0 ¼ dϕ=dy. Following Ref. [27],
140the Bogomolny equation ϕ0 ¼ ðdW=dφÞjφ¼ϕ, where
141V ¼ ð1=2ÞðdW=dφÞ2, is used to eliminate ϕ0 from
142Eq. (4). Treating a as slowly varying, we define an effective
143potential ṼðϕÞ ≈ VðϕÞ − aWðϕÞ. Then, from the first
144integral of Eq. (4) (setting the constant of integration in
145the limit of y → ∞), we obtain

�
dϕ
dy

�
2

¼2ṼðϕÞþ2aWð1Þ∼ϕ2nþ 4a
ðnþ1Þðnþ3Þ : ð5Þ

146147This calculation is asymptotic [dropping oðϕ2nÞ terms],
148using the fact that our chosen family of potentials is such
149that VðϕÞ ∼ 1

2
ϕ2n as ϕ → 0. Meanwhile, the second term in

150Eq. (5) (from the contribution of Wð1Þ −Wð0Þ, independ-
151ently of the normalization of W) is effectively proportional
152to the kink’s rest mass M ¼ 2=½ðnþ 1Þðnþ 3Þ� (for arbi-
153trary n). Requesting (as in Ref. [27]) that ϕðyÞ should have
154the properties that ϕð−AÞ ¼ 0 while ϕð0Þ diverges, we can
155rearrange Eq. (5) into a quadrature:

Z
∞

0

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2n þ 4a

ðnþ1Þðnþ3Þ
q ¼ A: ð6Þ

156157The change of variables ϕ ¼ ð4a=½ðnþ 1Þðnþ 3Þ�Þ1=2nλ in
158Eq. (6) yields
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�
4a

ðnþ 1Þðnþ 3Þ
�ð1−nÞ=2n Z ∞

0

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n þ 1

p ¼ A: ð7Þ

159160 The relevant integral can be computed as

Z
∞

0

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n þ 1

p ¼ Γðn−1
2n ÞΓð 1

2nÞ
2n

ffiffiffi
π

p ; ð8Þ

161162 yielding the acceleration during the K-K interaction:

a ¼
�
Γðn−1

2n ÞΓð 1
2nÞ

2n
ffiffiffi
π

p
�
2n=ðn−1Þ ðnþ 1Þðnþ 3Þ

4
A2n=ð1−nÞ: ð9Þ

163164165 For the φ8 model, n ¼ 2, and Eq. (9) yields
166 a ¼ 44.3139=A4. From Newton’s second law (F ¼ Ma),
167 the force is F ¼ 2

15
a ¼ 5.9085=A4. Similarly, for the φ10

168 model, n ¼ 3, and we get a ¼ 16.5411=A3 and F ¼ 1
12
a ¼

169 1.3784=A3. Finally, for the φ12 model, n ¼ 4, and we get
170 a ¼ 16.1871=A8=3 and F ¼ 2

35
a ¼ 0.9250=A8=3.

171 Kink-antikink interaction.—The calculation in the K-AK
172 case proceeds in the same way with the main difference that
173 now a ¼ −Ä due to the attraction, in this case, between
174 kink and antikink. From the corresponding version of
175 Eq. (6), we have

Z
∞

½ 4a
ðnþ1Þðnþ3Þ�1=2n

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2n − 4a

ðnþ1Þðnþ3Þ
q ¼ A: ð10Þ

176177 Notice that, now, the integral must be from the turning point
178 rather than from 0, related to the sign change of the
179 Bogomolny equation satisfied by the antikink.
180 Using the same change of variables as above, Eq. (10)
181 becomes

�
4a

ðnþ 1Þðnþ 3Þ
�ð1−n=2nÞ Z ∞

1

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n − 1

p ¼ A: ð11Þ

182183 Once again, the integral can be calculated:

Z
∞

1

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n − 1

p ¼ −
ffiffiffi
π

p
Γðn−1

2n Þ
Γð− 1

2nÞ
; ð12Þ

184185 yielding the acceleration during the K-AK interaction:

a ¼
�
−

ffiffiffi
π

p
Γðn−1

2n Þ
Γð− 1

2nÞ
�
2n=ðn−1Þ ðnþ 1Þðnþ 3Þ

4
A2n=ð1−nÞ: ð13Þ

186187188 An intriguing observation stems from the ratio of
189 Eqs. (13) and (9). In particular, using the well-known
190 identities aΓðaÞ ¼ Γðaþ 1Þ, and ΓðaÞΓð1 − aÞ ¼ π=
191 sinðπaÞ, we can express the ratio of the K-AK to K-K
192 forces as

R ¼ FK-AK

FK-K
¼ −

�
sin

�
π

2n

��
2n=ðn−1Þ

: ð14Þ

193194This expression suggests that, contrary to what is known
195about “standard” models such as sine-Gordon or φ4 and
196their exponentially decaying kinks and antikinks [2,3,10],
197here the ratio of the K-AK to K-K force is not equal (in
198absolute value) to 1, but rather decreases with n. Therefore,
199a fundamental characteristic of long-range-interacting
200kinks is that this feature becomes more dramatic (with
201the ratio, in principle, tending to 0 as n → ∞), as the tails
202become “heavier”.
203For n ¼ 2 (φ8 model), from Eq. (13), we get a ¼
20411.0785=A4 and F ¼ − 2

15
a ¼ −1.4771=A4. Similarly,

205for n ¼ 3 (φ10 model), we get a ¼ 2.0676=A3 and
206F ¼ − 1

12
a ¼ −0.1723=A3. Finally, for n ¼ 4 (φ12 model),

207we get a ¼ 1.2495=A8=3 and F ¼ − 2
35
a ¼ −0.0714=A8=3.

208Armed with these specific predictions for K-K and K-AK
209interactions, we turn to verification of our general theory
210via direct numerical simulations.
211Numerical results.—Here, we deploy our recent meth-
212odology [28], which is critical to obtaining accurate
213simulations of the interactions between topological defects
214with power-law tails (long-range interactions). Briefly, a
215pseudospectral differentiation matrix with periodic boun-
216dary conditions [30] replaces the spatial derivatives in
217Eq. (2) on the interval x ∈ ½−200; 200� with N ¼ 2000
218discrete points (hence, the grid spacing is Δx ¼ 0.2). The
219resulting system of ordinary differential equation (ODE)
220(after discretizing in x) is integrated numerically using
221MATLAB’s ODE45 solver with built-in error control.
222FollowingRef. [28], for theK-AK interactionswe startwith
223a “split-domain” ansatz φsplitðxÞ ¼ ½1 −HðxÞ�φð−1;0ÞðxÞþ
224HðxÞφð0;−1ÞðxÞ, where HðxÞ is the Heaviside unit step
225function. That is, φsplitðxÞ ¼ φð−1;0ÞðxÞ on the interval
226ð−∞; 0�, while φsplitðxÞ ¼ φð0;−1ÞðxÞ on the interval
227ð0;∞Þ. Then, φsplitðxÞ is used as the initializer for the
228MATLAB function LSQNONLIN, which minimizes (using non-
229linear least squares) the l2 norm of the discretized version of
230the opposite of the right-hand side ofEq. (2), subject to the two
231additional constraints of keeping the positions of the kink and
232antikink fixed. The result is a smoothed andminimizedversion
233of φsplitðxÞ, which is then used as the initial condition for
234solving the partial differential equation (PDE) Eq. (2)
235numerically.
236The K-K case is similar, except that φsplitðxÞ ¼ ½1−
237HðxÞ�φð−1;0ÞðxÞ þHðxÞφð0;1ÞðxÞ. As a result, there is a
238discontinuity at x ¼ 0, which becomes large for φ10 and
239even larger for φ12. With N ¼ 2000, LSQNONLIN fails to
240converge for some cases; however, for smaller N it does
241converge. Thus, the output from smaller N can be used as
242the initializer for LSQNONLIN with N ¼ 2000, which then
243converges quickly. Except for this detail, the procedure is
244the same as for the K-AK case. As explained in Ref. [28],
245this type of minimization procedure is crucial in order to
246avoid inaccurate interaction observations stemming from a
247more naive sum or product (of kinks) ansatz.
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248 In Figs. 1–3, the top-right panel shows the K-K and
249 K-AK configuration initializers used to evolve the PDE,
250 i.e., Eq. (2), under the φ8, φ10, and φ12 models, respec-
251 tively. The bottom-left and bottom-right panels of each
252 figure show, respectively, the space-time evolution of the
253 field for the K-AK case (attraction) and K-K case (repul-
254 sion). Cyan curves with circle symbols are solutions to the
255 Newtonian equation of motion Ma ¼ F, where F was
256 obtained above in the form F ¼ MγiðnÞA2n=ð1−nÞ with γiðnÞ
257 as the corresponding prefactor (i ¼ K-K or K-AK). Since
258 a ¼ Ä for K-K and a ¼ −Ä for K-AK, then both cases
259 require solving the initial value problem (IVP) for the kink
260 location x ¼ A: ẍ ¼ �γiðnÞx2n=ð1−nÞ, _xð0Þ ¼ 0, and
261 xð0Þ given.
262 Note that in all three figures, especially in Figs. 2 and 3,
263 the bottom-left plots show that the attractive force between
264 the kink and antikink leads them to collide at x ¼ 0 at some
265 instant of time, upon which “bounces” are observed. Our
266 theory of the interaction force is asymptotic for large
267 separation; therefore it does not in any way address the
268 instant of collision and beyond. Therefore, the cyan curves
269 (with circle symbols) are not expected to agree with the
270 contours of the numerical solution as the kink and antikink
271 locations approach the origin (x ¼ 0).
272 Next, we numerically calculate the relation between the
273 location of the kink (i.e., half-separation) A and its

274acceleration a (from rest) by solving the PDE in Eq. (2)
275over a very short time interval (from t ¼ 0 to t ¼ 0.01). A is
276then calculated as a function of t over this interval, which is
277used to estimate the acceleration a ¼ Ä, which is nearly
278constant during this time interval. Then, a least-squares
279model of the form a ¼ b=Ak was fit to the simulation data.
280The numerically fit results are shown graphically in log-log
281plots in the upper-left panels of Figs. 1–3. Therein, the
282numerically fit models are also compared to the results
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F1:9 the solution to the initial value problem (IVP): ẍðtÞ ¼
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50 100 150 200 250 300
10-7

10-6

10-5

10-4

10-3

-40 -20 0 20 40

-1

-0.5

0

0.5

1

0 50 100 150 200 250
-30

-20

-10

0

10

20

30

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

0 50 100 150
-60

-40

-20

0

20

40

60

-1

-0.5

0

0.5

1

F3:1FIG. 3. Equivalent of Figs. 1 and 2 for the φ12 model. Bottom
F3:2left is the space-time plot of the K-AK interaction, and the cyan
F3:3curve with circle symbols is the solution to the IVP:
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283 from the theoretical analysis above. The fit between the
284 asymptotic prediction and the numerical results is good in
285 all the cases considered, and nearly perfect for the φ8

286 model. The kink location predicted by solving the appro-
287 priate IVP is superimposed onto the contour plots in the
288 bottom panels of Figs. 1–3.
289 In Tables I and II we summarize our findings, both
290 theoretical and numerical. In calculating the error between
291 the theoretical and numerical models we find that, for
292 smaller values of A, the error between the models is greater
293 (especially as n becomes larger). The reason for this
294 discrepancy is twofold: (i) the theoretical model derived
295 above is valid only asymptotically for large separations,
296 and (ii) for large n, the domain walls exhibit “fatter” tails;
297 thus it becomes increasingly difficult to prepare a “well-
298 separated” initial condition. Therefore, we restrict our-
299 selves to A ≥ 50 when calculating the fit to the numerical
300 simulation data and when comparing it against the theo-
301 retical prediction.
302 For the K-AK interaction, we used six A values (data
303 points) in the interval [50, 300], while for the K-K
304 interaction we used six A values in the interval [50,
305 150]. For the K-K case it is difficult to find accurate initial
306 conditions for the PDE for A > 150 (because MATLAB’s
307 LSQNONLIN takes longer, or fails, to converge to an
308 appropriate field configuration to be used as an initial
309 condition). The relative error between the theoretical model
310 and the numerical fit is calculated over the same range as
311 the range of data points used to obtain the numerical
312 models. In all cases, the maximum error occurs at the first
313 data value (A ¼ 50). A more computationally intensive
314 investigation of the suitable distance regime in which the
315 asymptotic theoretical predictions are valid may signifi-
316 cantly reduce the error in Tables I and II for larger n. Thus,

317on the basis of the currently available results, we conclude
318that further investigation would be required to determine
319such a range.
320Conclusions and future work.—In the present work, we
321have taken a significant step beyond the standard field-
322theoretic models for topological defects and their inter-
323actions, which have been studied for a number of decades.
324Up to now, the vast majority of the associated one-
325dimensional efforts have focused on kinks with exponential
326tail decay, thus endowing the coherent structures with a
327“short-range” exponential tail-tail interaction. Using poten-
328tials with the highest power going as φ2nþ4, for arbitrary n,
329as the vehicle of choice in this work, we have systemati-
330cally examined the long-range pairwise kink-kink and
331kink-antikink interactions. We have blended state-of-the-
332art asymptotic tools with carefully crafted numerical
333simulations to elucidate the power-law nature of the decay
334of the interaction force with the 2n=ðn − 1Þth power of the
335separation between the topological defects. Equally impor-
336tant, we have identified the prefactor of this interaction (for
337arbitrary n) and have confirmed its agreement with numeri-
338cal simulations for n ¼ 2, n ¼ 3, and n ¼ 4.
339Our results will likely provide valuable insights into
340domain wall interaction in materials [13,14] and biophysi-
341cal [29] contexts that are governed by higher-order field
342theories. We also hope that this study will pave the way for
343the formulation of novel collective coordinate treatments
344[31] of long-range interactions, and a systematic under-
345standing of their outcomes (including the role of initial
346kinetic energy; here, to crystallize the relevant phenom-
347enology we restricted ourselves to kinks initially at rest).
348Another direction of future work concerns the exploration
349of coherent structures in higher dimensions [32] and the
350understanding of the existence, stability, and dynamics of
351localized and vortical patterns therein. Finally, the meth-
352odology developed herein can be applied to kink inter-
353actions in other recently proposed higher-order field
354theories harboring power-law tails [11,25,33].
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