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We present a computational analysis of the long-range interactions of solitary waves in higher-order field
theories. Our vehicle of choice is the ¢® field theory, although we explore similar issues in example ¢'* and
@'> models. In particular, we discuss the fundamental differences between the latter higher-order models
and the standard ¢* model. Upon establishing the power-law asymptotics of the model’s solutions’
approach towards one of the steady states, we make the case that such asymptotics require particular care in
setting up multisoliton initial conditions. A naive implementation of additive or multiplicative ansdtze gives
rise to highly pronounced radiation effects and eventually leads to the illusion of a repulsive interaction
between a kink and an antikink in such higher-order field theories. We propose and compare several
methods for how to “distill” the initial data into suitable ansdtze, and we show how these approaches
capture the attractive nature of interactions between the topological solitons in the presence of power-law
tails (long-range interactions). This development paves the way for a systematic examination of solitary
wave interactions in higher-order field theories and raises some intriguing questions regarding potential
experimental observations of such interactions. As an Appendix, we present an analysis of kink-antikink

interactions in the example models via the method of collective coordinates.
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I. INTRODUCTION

Field-theoretic models with polynomial potentials are of
great interest in many areas of modern theoretical physics,
from cosmology [1,2] to condensed matter [3,4]. For
example, the scalar ¢* model with two minima of the
potential is widely used to model spontaneous symmetry
breaking. Besides that, the quartic potential arises in the
phenomenological Ginzburg-Landau model of supercon-
ductivity [5,6] (see also Refs. [4,7] for an overview of
different areas of application). In this setting, the dynamics
of the complex scalar field of Cooper pairs is described by a
polynomial self-interaction of the fourth degree. Models
with polynomial potentials of higher degrees are commonly
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used, e.g., to model consecutive phase transitions [8],
which arise in material science [9], as recently summarized
in [10]. It has also been shown that scalar field theories can
describe distinct quantum mechanical problems (including
supersymmetric ones) [11], leading to new applications of
field theories of the type @*". Another possibility is to
consider scalar ¢*" field theories as Lane-Emden trunca-
tions of a periodic potential, which then leads to applica-
tions of these theories as toy models for dark matter halos
[12]. Field-theoretic models with polynomial potentials that
can exhibit topological solutions (kinks) are also important
in cosmological applications of the Higgs field [13,14].
Beyond field-theoretic models with polynomial potentials,
finite-gap potentials of Lamé type also lead to scalar field
theories with exotic kink solutions, now relevant in the
context of supersymmetric quantum mechanics [15,16] and
extended to P7 -symmetric situations [17].

Although the above-mentioned models with polynomial
potentials are nonintegrable, studying their properties in
(1 + 1)-dimensional space-time is of common interest
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because, in this setting, a variety of analytical (and
numerical) methods can be straightforwardly deployed to
fully understand the dynamics of coherent structures.
Moreover, (1 4 1)-dimensional solutions may be relevant
to more realistic situations in higher dimensions; for
example, the equations for certain five-dimensional
brane-world phenomenologies can be reduced to differ-
ential equations similar to those of (1 4 1)-dimensional
field theories [18]. Such models with polynomial potentials
of even degree allow kinks—topological solutions that
interpolate between neighboring minima of the potential,
i.e., vacua of the model [19]. Properties of kinks of the ¢*
and ¢° models are well studied, yielding many important
results [4,7,20-31]. At the same time, polynomial poten-
tials of higher degrees have not been studied systematically.
Nevertheless, the work has been started [8,10,32-39]. In
particular, exact (but implicit) solutions for the kink shapes
of various ¢%, ¢'°, and ¢'*> field theories have been
obtained [8], the excitation spectra of the ¢® kinks have
been studied, resonance phenomena in the kink-antikink
scattering have been found, and their relation to the kinks’
vibrational excitations has been discussed [35,36,38,39].
As described below, we use the purely theoretical foundation
established in [8] to develop a novel understanding of long-
range kink interactions, reassessing in significant detail the
interaction picture first put forth in [38,39]. However, issues
of vibrational modes in higher-order field theory [35,36]
remain beyond the distinct scope of the present work.

Until recently, the dynamics of kink-(anti)kink inter-
actions had been studied only for kinks with exponential
tail asymptotics. At the same time, it is easy to show that,
for certain potentials of sixth or higher degree, there exist
kinks that exhibit power-law asymptotics of either or both
tails connecting two distinct equilibria. Although condi-
tions for algebraic soliton solutions of the nonlinear
Schrodinger, Korteweg—de Vries, and related integrable
models have long been known [40,41], the case of kinks
with algebraic tails in nonintegrable ¢*" field theories
remain less explored in comparison.

In this paper, building upon the preliminary report of
some of the present authors [37], we systematize restric-
tions on the potential and obtain general formulas for the
kinks’ tail asymptotics (see also Refs. [8,32,34,42]),
including the conditions for power-law tail asymptotics
in a sextic potential. The existence of kinks with power-
law tails is of particular interest because such tails lead
to long-range interaction between a kink and an antikink.
Studying such long-range interactions at the effective
“particle” level is a topic of significant current interest.
Thus, we undertake the exploration of the interaction
chiefly via direct numerical simulations of the relevant
field equation. An Appendix complements our computa-
tions with analytical considerations based on the
variational technique known as the “collective coordinate
approximation,” which is widely used in various

field-theoretic problems (see, e.g., [7,25-27,30,43-50]).
We note, in passing, that other approaches have been used
to interrogate long-range interactions, such as evaluating
the field’s potential energy at the center of mass of two
superimposed (anti)kinks [51,52]. Also, the effect of
minima of the potential and their relative depth (including
inflection points in between) on the kink asymptotics and
their mutual forces was considered in [53]. An alternative
method for identifying the interactions of solitary waves is
the so-called Manton’s method that has been widely used
in solitonic equations [2,54-57]. A very recent attempt to
utilize this and other methods to infer a power-law depend-
ence of the force on the kink-antikink separation, in the
case of the ¢® model, has just been posted in [58,59]. The
result in [58] corroborates our previous observation in [37]
that, for an example eighth-order potential with three
degenerate minima and one-sided power-law tail asymp-
totics of the kink, a kink and an antikink attract each other
with a force proportional to their separation to the —4 power.
In this work, we provide numerical evidence for this type of
power-law attractive force. However, a more conclusive
theoretical investigation (including discussion of the pre-
factor on this power law) is deferred to future work (see also
the relevant discussion in Sec. V).

Our presentation is structured as follows. In Sec. II, we
begin by providing the kink asymptotics in higher-order
@*" field theories (and specifically for our principal @3
example). Subsequently, in Sec. III, we delve into our
numerical considerations, starting with how numerical
experiments of kink-antikink collisions are set up, explain-
ing the difficulties of such a setup for higher-order field
theories and proposing a corresponding methodology for
handling such difficulties in the ¢® model. The latter are
complemented by parallel considerations of ¢'° and ¢!
field theories. A discussion of the force of interactions
between a kink and an antikink via power-law tails is
presented in Sec. IV. We then summarize our work and
propose some (among the many intriguing) questions for
future work in Sec. V. In the Appendix, we explain how to
perform a calculation of long-range interactions based on
the method of collective coordinates.

II. ANALYTICAL CONSIDERATIONS

A. Power-law asymptotics of kinks

Consider a real scalar field ¢(x, ¢) in (1 + 1)-dimensional
space-time, with its dynamics determined by the Lagrangian

density
1 (0p\? 1 [0p\?
E‘E(az) _§<ax) Vi) M)

where V() is a potential that defines the self-interaction
of the field ¢. The energy functional corresponding to the
Lagrangian (1) is
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+oo [1 (0p\2 1 [(0¢)\2

E[(p] = /_oo |:§ (E) +§ (a) + V((p):| dx. (2)
Assume that the potential V(@) is a non-negative poly-
nomial of even degree (denoted in shorthand as “p*"”)
having two or more minima @y, §,, ..., , of equal depth
V(@) =V(p,) =---=V(p,) =0. Consider two adja-
cent minima @; and @, ;. Let gk (x) be akink (see, e.g., [2]
Chap. 5) interpolating between these minima, i.e.,

lim g (x) = piy1. - (3)

X—>+00

fo}lm¢K(x) = @i,
According to conventional notation, we can say that this
kink belongs to the topological sector (@;, ®;,;), and we
denote it by @, 5, ,)(%)-

The Euler-Lagrange equation of motion, which is the
condition for extremizing the action generated by the
Lagrangian density (1), is

P o
—_— = = . 4
atz ax2 V ((p) ( )

The kink shape function ¢ = ¢k (x) is a time-independent
solution of Eq. (4), and it can be shown that it satisfies a
first-order ordinary differential equation

Y Vi), 5

A static field configuration that satisfies Eq. (5) has the
minimal energy among all the configurations in a given
topological sector. The solutions that satisfy Eq. (5) are
called Bogomolny-Prasad-Sommerfield (BPS)-saturated
configurations [60]. Moving kinks can be obtained from
solutions of Eq. (5) via a boost transformation owing to the
Lorentz invariance of the field theory. Using Eq. (5), the
energy (2) can be rewritten as

Elgl = | T V2V@) VVgldx. (6)

Taking into account that \/2V (¢)dx = dg, the energy (rest
mass) of a static BPS-saturated field configuration is

M= "’ V2V (gVdo. (7)

Now, we formulate general conditions that must be
satisfied in order for the model to have kinks with
power-law tail asymptotics. We also give general formulas
for such asymptotics. Let us turn our attention to the
potential V(¢). Let @; and @;, be zeros of the function
V(@) of orders k; and k;_ , respectively. Notice that k; and
k;,, must be even. We assume §; < @;,, for definiteness.
Then, the potential V(¢) can be written as

V(p) = (@ —0)" (@ = i) Vi(0). (8)

where V(@;) >0, V{($iy1) > 0. Inserting Eq. (8) into
Eq. (5) and recalling that ; < ¢ < @;,;, we obtain after
integrating

_ dg
Je=] =3 o = P )

To find asymptotics of the kink ¢, 5,1 (x) as x — —co, we
use the fact that ¢ — @, in this limit. Then, there are slowly
varying factors within the integrand on the right-hand side
of Eq. (9) at ¢ — @,. These factors can be (approximately)
taken out from the integral. As a result, we obtain an
asymptotic equality

(10)

1 / d
dx = - .
/ (Piv1 — @)n/2/2V (@) ) (9 - @;)kil?

Integration of the right-hand side gives power-law depend-
ence if k; > 2. Taking this observation into account, we
obtain the asymptotics of the kink as x - —oo0,

PGigi) (X)
- ) 2/(ki—2)
R Q; - S =
(ki =2)(@is1 — @) i1 /2/2V (1)
1
X7|x|2/<ki_2)‘ (11)

Similarly, for case of k;,; > 2, we obtain asymptotics of
the kink as x - +oco0,

PG.50) (X)
~ 2 2/(kiy1-2)
RPiy1 — . L =
(ki+l -2) ((Pi+1 - %)k’/z 2V, ((/’i+1)
1
x 2/ (kip1=2) (12)

Below, we will use Egs. (11) and (12) to find power-law
asymptotics of kinks of a ¢® model. Note that exponential
asymptotics could be found by integrating Eq. (10) for the
case of k; = 2, but a further refinement of our approxima-
tions is needed to capture the prefactor of the exponential.

B. Power-law tails of the ¢® kinks

As our featured example, we consider the triple-well 3
potential

Vip) = ¢*(1 - ¢?). (13)

This potential has three minima: §; = —1, p, = 0, and
@3 = 1. Hence, there are two kinks in the model, ¢_; ¢)(x)
and @ )(x), and two corresponding antikinks.
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Inserting the potential (13) into Eq. (5) and requiring that
0 < |¢p| < 1, we have

% == \/_dx (14)

Integrating this equation, we obtain (implicitly) the two
kinks belonging to the topological sectors (—1,0) and
0,1),

1

2V2x = ——+1 1+—¢ (15)
The corresponding antikinks can be obtained from (15)
by the transformation x — —x,

2 1
2V2x==-In to

S (16)

It can be directly inferred from Eq. (16) that the asymptotics
of the kink ¢ )(x) as x = —co is of power-law type;
likewise, for the asymptotics of the kink ¢_;g)(x) as

x = +oo0. Using (7) we obtain the energy of the static
kink (15),

M = % (17)
15
Of course, this energy is the same for all possible kinks of
the model with the potential (13) (see also Ref. [8]).
Now, we derive the asymptotic behavior of the kinks
@ (-1,0)(x) and @ 1)(x). We can do this in two ways: first,
by using the approach from Sec. I A and, second, by
expanding Eq. (15) in a Taylor series around the appro-
priate limiting point(s). Consider the kink ¢_;g)(x).
According to the notation of Sec. Il A, for this kink,

(pi = —1, ki = 2, (183)
$iv1 =0, kiyi =4, (18b)
Vilg) = (1-9)*. (18¢)

Equations (11) and (12) are approximately applicable only
if k; or k;, is greater than 2, respectively. So, Eq. (12) gives
power-law asymptotics of the kink

1
V2x'

This asymptotic expression can also be obtained from
Eq. (15) as shown in [8]. Indeed, the tail asymptotics
emerge rather straightforwardly from the implicit kink
solution as the logarithmic term becomes a small correction
in the limit. At the same time, the asymptotics at x — —oo is
exponential, and it can be obtained from Eq. (15),

(p(_lq())(x) ~— x — +oo. (19)

(/)(—1,0)( ) -1 + 2\/§x X — —00. (20)

For the kink ¢ )(x), we have

(Z)i = O, ki = 4, (213)
§_0i+] = 1, ki+l = 2, (21]3)
Vile) = (1+¢)% (21c¢)

Similar to the previous case, from Eq. (11) we obtain
power-law asymptotics at x — —oo,

1
Va2x

and the exponential asymptotics at x — +oco can be
obtained from Eq. (15),

40(0,1)()‘) ~ = X = —oo, (22)

Po.1(x) =1 —%e‘zﬁx, X = +o0. (23)

To summarize, in this section, we discussed the kinks in
topological sectors (—1,0) and (0, 1) for the featured ¢®
model with the potential (13). In particular, we highlighted
that both of these kinks have one power-law and one
exponential asymptotic decay to their equilibrium back-
ground states (vacua) at |x| = oo. In what follows, we use
the kink ¢_ ¢)(x) and its corresponding antikink to study
their interaction via their power-law tail asymptotics. We
will argue that power-law asymptotics lead to long-range
interaction: a kink and an antikink “feel” each other at very
large separations. This situation is quite different from the
case of exponential tail asymptotics [for example, if
@(-1,0)(x) and its antikink were reversed in their initial

configuration, or as in the classical ¢* field theory], in
which case the kink-antikink interaction is exponentially
decaying.

II1. DIRECT NUMERICAL SIMULATION
OF COLLISIONS

The nonintegrability of models such as the above-
mentioned " field theories suggests that exact multi-
soliton solutions are not available in these systems.
Nevertheless, as it is well known from numerous prior
works [7,21-23,26,27,44,61-64], the study of kink-anti-
kink collisions is both particularly interesting in its own
right and potentially presents a very rich phenomenology.
Among the many phenomena observed in such collisions
are multibounce windows, the fractal structure thereof, the
role of the presence (or even absence [23]) of internal
vibration modes, the ability to describe such phenomena
via collective coordinate methods (or complications [26,27]
thereof), and many others. Of critical importance to all of
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the above is the computational feasibility of interrogating
collision phenomena via direct numerical simulations of the
(1 + 1)-dimensional field theory. Indeed, the main message
of the present work is that the standard approaches for
setting up such simulations do not work for higher-order
field theories, such as the ones considered herein. In light of
this observation, we begin by discussing the well-known ¢*
field theory. Subsequently, we compare and contrast it with
the specific ¢® model from Sec. II B, and finally we present
some possibilities for handling the complications due to
long-range interactions of kinks.

Prior to discussing the numerical results, it is relevant to
briefly describe the methods used to obtain them. We
discretize the governing equation of motion (4) on the
spatial domain x € [-200,200] with the increment Ax =
0.2 (which fixes the number of Fourier modes used). We
use a Fourier-based pseudospectral differentiation matrix
D, as in [65] to approximate 9?¢/0x> as D, subject to
periodic boundary conditions. This step turns the partial
differential equation (PDE) into a semidiscrete system
of second-order-in-time ordinary differential equations
(ODEs). These are trivially rewritten as a first-order system
of ODEs and integrated forward in time using MATLAB’S
ODE45 differential equations solver with adaptive time
stepping and error control.

A. The standard example: ¢* field theory

The classical ¢* field theory is determined by the
potential V(¢p) =1(¢> — 1) (see, e.g., [2,19.44]). The
stationary kink solution of this model in the (—1,1)
topological sector, i.e., the solution of the BPS equation (5),
is ¢(_11)(x) = tanh(x). By Lorentz boosting the stationary
solution, we obtain a traveling kink solution

X — vt X — vt
a8 = o [ =) = tann (2221 24
e = o () —wn(S=5) @0

for any kink velocity » such that —1 < » < 1. A traveling
antikink solution is given by —¢,(x,) for this model.
A kink moving to the right with velocity v, shifted to the
left by the amount x,, is then given by ¢,(x + x¢, 1) =

X+Xx9—01

(p(_l_l)(ﬁ), and an antikink moving to the left with

—

opposite velocity, shifted to the right by the amount x,
x—x0+vr)'

is likewise given by —¢_,(x — x¢, 1) = —¢(_1.1)(ﬁ
Therefore, the function

(p()C, t) = (pv<x =+ Xo, t) - §0—L'(x — Xo, t) -1

X+ xg— vt
A

X =X+ vt
() -

represents a waveform consisting of a kink and an antikink
with initial separation 2x,. The kink and antikink in this

pair have equal and opposite velocities +v. Furthermore,
@(x, 1) given by Eq. (25) is an approximate solution to the
PDE (4), for x, sufficiently large and ¢ sufficiently small.
In fact, as long as the (midpoints of the) kink and antikink
are separated by about 20 units (for example, a stationary
solution with x, = 10, or a traveling solution with v = 1/2,
xp =20 and 0 <t <20), ¢(x,t) from Eq. (25) satisfies
the field equation (4) to approximately standard machine
precision, i.e., on the order of 107'6. Specifically, by
“satisfies the PDE,” we mean that the residual, as measured
by the value of

82

2
maxAbsPde(t) :== max ?9—;20 - 8—;5 +V'(p),  (26)

X

is suitably small. Therefore, it is reasonable to use Eq. (25)
to generate initial conditions for kink-antikink collisions
with

P(x,0) = @y (x +x0,0) = (x = x0,0) = 1

_ X+ Xp X — Xy 1
Srevie) e =2 T

(27)
and
O _ Oy, dp_,
E(X, 0) 6t (X+X0,0) 6[ (x .X'(),O)

/

v X — Xy
T VIS 2T\
v , X+ X
Vi-2 Y1 (\/1 - 1}2>’ 28)

where primes denote differentiation with respect to the
function’s argument. However, for separations 2x, < 20
units, the value of maxAbsPde [evaluated from the
numerical solution of the PDE starting from the initial
conditions in Eqgs. (27) and (28) with » = 0] decreases
exponentially with x,; for stationary solutions, its magni-
tude is on the order of 1077 at a separation of 2x, = 10 and
on the order of 1073 at a separation of 2x, = 5.

It is relevant to mention here that the ansatz in Egs. (27)
and (28) is suitable not only for direct numerical simu-
lations, but also for collective coordinate approximations of
the PDE dynamics [7,25-27,30,43-50]. In particular, one
can use Egs. (27) and (28) with xy — vt — X () as a new
variable (the collective coordinate) that determines the
dynamic location of the kink’s center. In some of the latter
references, more elaborate ansdtze involving also a coor-
dinate characterizing the kink’s internal (vibration) mode
were considered. However, these considerations are beyond
the scope of the present study. The principal features of a
collective coordinate approach to kink-antikink interactions
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in the higher-order field theories of interest herein are
presented in the Appendix for completeness.

B. The present case: @3 field theory

Now, consider the governing PDE (4) with the potential
V(p) = ¢*(p* —1)? as in Sec. Il B above. We can study a
kink-antikink collision interaction by adapting the ansatz
from Eq. (25) as follows:

X+ x9— vt X —Xxg + vt
(p(x, 1) = @P(-1,0 ﬁ + @0.-1) ﬁ )
(29)

where ¢_; o) and ¢ ) are given implicitly by Eq. (15).
As in the ¢* example above, we can use Eq. (29) to
generate initial conditions for a collision simulation.
However, because of the power-law tails of the kink and
antikink, we are presented with a problem. In Fig. 1, we
show a graph of the ansatz given in Eq. (29) for v = 0 and
Xo = 20. Near the point at which the kink starts to rise from
@ = —1 (at x = —20), one can see that the shape dips below
@ = —1; there is a similar undershoot at the symmetric
point on the other side of x = 0. The left undershoot is due
to power-law nature of the antikink (it is still significantly
less than zero) and vice versa for the right undershoot. Also,
note that this function does not get very close to ¢ = 0 for
|x| & 0. These observations imply that the kink and antikink
are not sufficiently well separated for Eq. (29) to be a
suitable ansatz for a kink-antikink interaction-collision
simulation. Let us now make this notion of poor approxi-
mation quantitatively precise.

To this end, consider the PDE residual maxAbsPde
defined in Eq. (26). Now, we substitute Eq. (29) into
Eq. (26) to determine whether this ansatz provides a
suitable approximate kink-antikink solution to the PDE
(4). Evaluating maxAbsPde numerically (keeping in mind
that ?¢/0t*> = 0 for the stationary solution with v = 0),
using the pseudospectral differentiation matrix D, to

0 , :
02t ﬂ
0.4t
06}

-0.8¢

-1

-200 -100 0 100 200
T

FIG. 1. Graph of the ¢® kink-antikink linear superposition
given in Eq. (29) at t = 0 with xy = 20.

TABLE 1. absPde for the nonminimized and minimized sum
ansditze for the PDE initial condition.

Half-separation x, Nonminimized Minimized
100 0.029 1.4 x 1078
50 0.058 22 %1077
20 0.15 8.7 x 1076
10 0.32 1.4x 107
5 0.72 2.5%x 1073

approximate 9?>/9x* as mentioned above, for x, = 5, 10,
and 20, we obtain the values 0.72, 0.32, and 0.15,
respectively, all on the order of 107" (see Table I and
discussion below). Recall that, for the ¢* model (Sec. I1I A),
with xo =5 (i.e., a stationary kink-antikink pair at a
separation of 10) we found that maxAbsPde was on the
order of 10~7. Thus, in contrast to the ¢* case, even for a
separation as large as 40, we find that the linear superposition
(i.e., sum) ansatz in Eq. (29) does not provide an approximate
solution to the ¢® equation of motion in a quantitative sense.
We thus warn the numerous practitioners of such numerical
computations regarding the substantial obstacles to using the
classical sum ansditze to study collisional dynamics of kinks
and their interactions numerically.

Next, consider what happens when we use Eq. (29) to
create initial conditions for a prototypical kink-antikink
collision simulation. We restrict ourselves to the case in
which the kink and antikink are initially stationary, i.e.,
v = 0; we do this to avoid the complication(s) of how an
initial kinetic energy may affect the dynamics. In Fig. 2(a),
we show a contour plot of the space-time evolution of the
PDE solution, ¢(x, t); superimposed onto the contour plot
(in this and all subsequent figures) are the curves x = xg (¢)
(the location of the kink’s center) and x = xg(¢) (the
location of the antikink’s center). In Fig. 2(b), we show
a plot of the velocity of the kink as a function of time.
Specifically, we define xg [bottom bold curve in Fig. 2(a)]
as the (approximate) intersection of ¢ with —0.83356 =
®(-1,0)(0). (Note that this is the ¢ value of the single kink
profile at x = 0 with x, = 0.) The approximation is done
through linear interpolation of the two points on the shape
with the ¢ values closest to —0.83356. Similarly, xg
[top bold curve in Fig. 2(a)] denotes the approximate
intersection of ¢ with —0.83356 = ¢ _)(0). The velocity
of the kink is calculated by using the formula »(z;) =
[xk (tis1) — xg(t;i21)]/(tip1 — ti—1), given the solution at
three discrete time values #,_, #;, and t; | for any i.

Earlier work [39] has suggested that a repulsive force
might exist between the example kink and antikink
considered above. Yet, we argue that this apparent repul-
sion is a result of the ansatz selected in Eq. (29) being a
poor quantitative approximation of a kink-antikink solu-
tion. Recall the undershoot below ¢ = —1 near x = +20 in
Fig. 1. We can think of this undershoot as providing a kind
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FIG. 2. Using the sum ansatz, i.e., Eq. (29), to generate the initial conditions for the ¢® model, we obtain (a) the contour space-time
plot of the evolution of ¢(x, t) with the bottom blue curve corresponding to the kink center xi and the top blue curve corresponding to
the antikink center xg, and (b) the plot of the velocity the kink, both from the PDE (4) evolution for x, = 20 and v = 0.

of initial “springboard,” which pushes the “points” just
above the springboard upward, and consequently causes
the kink to move to the left and the antikink to move to the
right. Furthermore, this upward motion creates disturb-
ances at x &~ +20 that move upwards and then along the top
of the kink-antikink combination until they meet at x = 0.
One can see these effects clearly in the contour plot in
Fig. 2(a). One can also see that, after meeting at x = 0,
these disturbances are trapped between the centers of the
kink and antikink, which they reach again just before
t = 50. From the plot of the kink velocity in Fig. 2(b), it is
clear that just at this time the arrival of the disturbance
gives another boost to the velocity of the kink in the
negative direction. Again, the disturbances are reflected
back towards x = 0 and out again to the centers of the kink
and antikink for another boost to the velocities, pushing
them apart faster. This phenomenology holds for other
values of the initial half-separation x;, down to x, = 2.5.

Thus, we have accounted for the apparent repulsive
force, in the long-range interaction between a ¢® kink and
antikink, by showing that this “force” is simply the result of
initial conditions that have been derived from an inaccurate
sum ansatz. More specifically, we have quantified how this
ansatz does not lead to a sufficiently accurate description
of the motion of a kink-antikink pair. An additional (albeit
weaker) effect along this vein consists of the radiative wave
packets, emitted from each kink, that affect both of them in
the process.

C. Improved initial conditions for simulating
kinks with long-range interactions

A steady-state solution of Eq. (4) satisfies —9?¢/0x* +
V/(p) =0. The last equation can be discretized as
—D>p + V'(¢), where D, is again the pseudospectral
differentiation matrix as in [65], on N discrete and equally
spaced x and ¢ values. Furthermore, we want the initial
positions of the two topological solitons (given by —x, and
Xp) to have specified values, which adds two more discrete

equations (for a total of N + 2). These two additional
equations are ¢(—xy) — @ = 0 and @(xq) — @ = 0, where @
is the ¢ value of a single kink or antikink at x = 0. The
resulting set of equations is overdetermined and has no
solution.

As a remedy, we propose to improve the initial con-
ditions introduced in the previous section by employing
Eq. (29) as the initializer for a weighted nonlinear least-
squares minimization of the objective function

Zlp] = || = Dagp + V()13 + Clop(=x0) —
+ Clo(xo) — P, (30)
where || - ||, is the usual Euclidean norm, and C is an

empirical constant. Then, we can use the minimizer ¢, (x)
of 7 as the initial condition for a direct numerical
simulation of kink-antikink collisions, ensuring that our
initial condition quantitatively satisfies the PDE to some
preset accuracy. We take C = 50, which is sufficient to
keep the initial kink and antikink locations nearly fixed at
+xy during the minimization process. The optimization
problem is solved using MATLAB’S optimization toolkit,
specifically via the LSQNONLIN subroutine.

In Fig. 3, for xy = 20, we compare the sum ansatz
from Eq. (29) (in dark blue) with the minimizer ¢,;,(x) of
7 (light blue). Specifically, note that we no longer observe
the undershoot below ¢ = —1 in the plot of the minimized
function. Additionally, ¢@;,(x) comes closer to ¢ = 0 near
x = 0. Table I shows a more detailed quantitative com-
parison of maxAbsPde for the minimized and (nonmini-
mized) sum ansdtze. Specifically, the maximum value of
maxAbsPde when taking ¢ = ¢, (x) is several orders of
magnitude smaller than when using the sum ansatz from
Eq. (29). Thus, we conjecture that the initial conditions
generated from ¢, (x) will more accurately reflect the
actual kink-antikink solution of this nonintegrable field
theory, at least considerably better than the nonminimized
sum ansatz from Eq. (29).
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FIG. 3. Graphs of the unminimized sum ansatz @=

@ (<1.0)(x+20)+¢(0.—1)(x—20) (dark blue) and the maxAbsPde-
minimized ansatz ¢ = @ (x) (light blue). (Insets) Enlargement
of the solution near x = 0 and near ¢ = —1.

To support our conjecture, Fig. 4 shows the result of a
direct numerical simulation of the PDE (4), for our ¢%
model, using the minimized function ¢;,(x) to generate
the initial conditions. As before, this simulation corre-
sponds to a kink-antikink interaction with v = 0 because
@min(x) approximates a stationary solution of the PDE. As
in Fig. 2, we show both a contour space-time plot and a
velocity plot in Fig. 4. Now, we observe an attractive force
between the kink and antikink. Also, there are no visibly
discernible small disturbances moving back and forth
between x = £20. This example simulation, along with
numerous other similar simulations for different x, values,
suggests that we have eliminated the significant detrimental
effects of the algebraic kink and antikink tails (and of
radiation), and we can thus now observe the proper
(effective) interparticle interaction between the kink and
antikink. Also, note that this interaction is more in line with
what one would naturally expect from a PDE of the type in
Eq. (4), in that the ’¢/0x* term tends to “pull points
down” (pulling the kink and antikink together) when the
function is concave down. Finally, the minimized ansatz

30
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10 -0.4
8 0
-0.6
-10
20 -0.8
30,

100 200 300 400 500
t

(a)

@min(X) serves not only as an initial condition for the PDE
simulations, but also as an appropriate ansatz for the
collective coordinates approach described in the Appendix.

D. Other possible ansdtze

Besides finding ¢ such that 7 in Eq. (30) is minimized,
there are other possible setups that could be used to
generate initial conditions for direct numerical simulation
of the PDE (4) (and possibly for collective coordinate
approaches as well). For example, one can use a product
(rather than a sum) ansatz. Such an ansatz, customized for
our ¢® model, is

X+ xg— vt
§0(.X7 t) = |:§0<_1,0) <10_U2) + 1:|

X —Xxo + vt
x [éﬂ(o,—l)(i,—lo_vz >+1] ~1, (31)

which we term the “product ansatz.”

Numerical simulations starting from Eq. (31) as an initial
condition (again with v = 0), once again exhibit a repul-
sion initially (though, weaker than for the sum ansatz) for
Xy > x., where 6.2 < x. < 6.3. For x; < x, attraction is
found in the direct numerical simulations. Figure 5 shows
the contour and the velocity plots for x, = 6.2, which leads
to attraction, and for x, = 6.3, which leads to repulsion,
having used the product ansatz in Eq. (31) to generate the
initial conditions. In other words, the product ansatz creates
the illusion of a possible saddle point configuration near
Xo = X., such that attraction ensues for smaller (and
repulsion for larger) initial separations between the kink
and the antikink. Minimization can be applied to the
product ansatz from Eq. (31) as well, along the lines of
Sec. III C. The results are similar to those corresponding to
using the minimized sum ansatz; in fact, the resulting
minimized functions are nearly identical. Naturally, the
output of this procedure decreases the undershoot from —1

0.015
0.01
IS}
0.005
0 L L L L
0 100 200 300 400 500
t
(b)

FIG. 4. Using the minimizer of Eq. (30) with the sum ansatz from Eq. (29) as an initial guess for the optimization to generate the initial
conditions for the ¢® model, we obtain (a) the contour space-time plot of the evolution of ¢ and (b) the plot of the velocity, both

computed from the PDE evolution, for xo = 20 and v = 0.
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Using the product ansatz from Eq. (31) (not minimized) to generate the initial conditions for the ¢® model, we obtain (a) the

contour space-time plot and (b) the velocity plot of PDE evolution for x, = 6.2 (v = 0), and (c) the contour space-time plot and (d) the

velocity plot of PDE evolution for xy = 6.3 (v = 0).

(admittedly weaker with the product ansatz than with the
sum ansatz) and passes even closer to ¢ = 0 in the vicinity
of x = 0 (see Fig. 6). Minimizing the product ansatz also
leads to generic attraction, as we have come to expect, at
this point, from the ¢® field theory. All of these observa-
tions are illustrated in Fig. 7.

A third option is to treat the kink and antikink completely
separately, meaning to use the kink formula for x < 0 and
the antikink formula for x > 0. To accomplish such a feat,
we define

' ' -0.05'
-0.2+ 1
-0.1
-0.4} -10 0 10 |
0.6+
-0.8
-1
-200 -100 0 100 200

X

FIG. 6. Graph comparing the product ansatz from Eq. (31)
(dark red) and its minimized counterpart (light red).

p(x,t) = [1 = Hx)lp10) (%/i—_vzm)
+ H(x)p.-1) <%> (32)

which we term the “split-domain ansatz.” Here, H(x) is the
Heaviside unit-step function. Using this ansatz to generate
the initial conditions for a PDE simulation, we plot the
contours of ¢ and the kink velocity for x, = 6.2 and x;, =
6.3 in Fig. 8. Contrary to what was the case for the product
ansatz, we observe attraction for both x, values. It is
perhaps natural to expect that the split-domain ansatz is the
most accurate unminimized one (i.e., among the more
standard ones that have not been “optimized” via our
proposed minimization procedure), but it is expected to be
limited in accuracy in the vicinity of x =0 due to the
derivative discontinuity introduced in Eq. (32). This obser-
vation is substantiated by the kink-antikink dynamics
shown in Fig. 8.

In this case, the ansatz is continuous at x = 0, but its
first derivative is not. The minimized version for the split-
domain ansatz is quite similar to the nonminimized
version; the point created where the kink and antikink
meet at x = 0 (due to the discontinuity in the derivative)
is smoothed by the minimization procedure, but the two
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FIG. 7. Using the product ansatz from Eq. (31) (not minimized) to generate the initial conditions for the ¢® model, we obtain (a) the
contour space-time plot and (b) the velocity plot, while using minimization of the product ansatz, we obtain the corresponding
(c) contour space-time plot and (d) velocity plot; all panels are for x, = 20, v = 0.

look rather similar otherwise. Figure 9 shows how the
minimized version of the split-domain ansatz differs from
its nonminimized counterpart. The dynamics of the split-
domain ansatz comes closest to the minimized case in
that it generically leads to attraction of the kink and
antikink.

One other property of the various ansdtze that is worth
mentioning is the relative smoothness of the velocity
graphs. One sees significant oscillations in the velocity
of the center of the kink (or antikink) for all of the
nonminimized ansdtze (see, e.g., Fig. 2). The minimized
versions of all three ansditze, on the other hand, show a
steadily increasing velocity function (see, e.g., Fig. 4).

In Table II, we show a comparison of the minimized
versus nonminimized values of the PDE residual,
maxAbsPde, for the product and split-domain ansditze.
Note that, for the nonminimized split-domain case,
D?@/0x* is not defined due to the discontinuity in the
derivative at x = 0, and hence the value of maxAbsPde is
not available (shown with three center dots). Another
reason as to why we have elected not to provide this value
is that the ansatz was constructed from the (numerically
evaluated) exact solution of the BPS equation (no mini-
mization) for each x > 0 and x < 0, which already satisfy
maxAbsPde = 0 numerically. Figure 10 shows the equiv-
alent plots of those in Fig. 2 (nonminimized sum ansatz)

and Fig. 4 (minimized sum ansatz) for the split-domain
ansatz from Eq. (32).

A plot giving a sense of how the initial conditions for
the @® model compare for the different ansitze is shown in
Fig. 11 for xo =4.5 and v =0. We observe that all
minimized ansdtze lie between the sum and product and
the split-domain ansatz. Interestingly, the results of the
different minimization procedures are close to each other
functionally, and the differences between them are difficult
to detect without enlargement.

To summarize, our results indicate that the correct
interpretation of the nature of the pairwise kink-antikink
interaction is that the kink and antikink attract each other.
We proposed the minimization procedure in Sec. [II C as a
way to distill the initial data and thus observe the genuine
interaction dynamics of the kink and antikink without the
detrimental side effects of the undershoot caused by their
tails, as well as the radiation caused by the inexact initial
conditions. While it is impossible to push the objective
functional Z from Eq. (30) to zero exactly (due to the
absence of multisoliton solutions for such a nonintegrable
model), the minimization of Z brings the initial ¢ field as
close as possible to a distilled configuration involving the
superposition of a kink and an antikink. On the other hand,
in the absence of access to such a minimization procedure,
our recommendation is to use the split-domain ansatz from
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Using the split-domain ansatz from Eq. (32) (not minimized) to generate the initial conditions for the ¢® model, we obtain

(a) the space-time contour plot of ¢ and (b) the kink velocity plot, both from the PDE evolution, for x, = 6.2 and v = 0. Meanwhile,
(c) the space-time contour plot of ¢ and (d) the kink velocity plot correspond to the PDE evolution for x, = 6.3 and v = 0.

Eq. (32) directly, as it is the one that bears the least spurious
byproducts among the ‘“standard” multisoliton ansdtze,
even though it introduces a derivative discontinuity at
x=0.

E. Other examples: '’ and ¢'*> models

We find similar behaviors when considering ansditze for
the corresponding ¢'° and ¢'?> field theories with three
degenerate minima. In particular, we considered the models

0 . ;
-0.04
-0.2¢
-0.06
04} -0.08
-0 0 10
-0.6¢
-0.8¢
-1
-200 -100 0 100 200

FIG. 9. Graph of the split-domain ansatz from Eq. (32) (dark
green) and its minimized counterpart (light green).

represented by the potentials V(gp) = ¢°(1 — ¢?)* ([8]
Sec. IVD.3) and V(¢) = ¢®(1 — ¢*)? ([8] Sec. IVD.1),
respectively. These examples come from the systematic
classification of higher-order field theory potentials with
degenerate minima [8] for which exact (albeit implicit) kink
solutions are possible. Using the methodology introduced
in Sec. Il A, it can be shown that these potentials satisfy the
conditions for the existence of kinks with power-law tails.
More specifically, a kink of the model ¢'° potential above
approaches —1 exponentially as x — —oo, but approaches 0
as k/x'/? (for some k constant) when x — -+co. Similarly, a
kink of the model ¢'> potential above approaches —1
exponentially as x — —co, but approaches 0 as k/x'/3

TABLE II. maxAbsPde for minimized (min) and nonmini-
mized (non) product (prod) and split-domain (split) ansdtze for
the example % model.

X0 Prod (non) Prod (min) Split (non) Split (min)
100 0.0024 1.6 x 1078 1.5x 1078
50 0.0048 2.2x 1077 2.2 x 1077
20 0.012 8.6 x 107° 8.6 x 107°

0.025 1.4 x 107 1.4 x 1074
5 0.053 2.0x 1073 2.0x 1073
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FIG. 10. Using the split-domain ansatz from Eq. (32) (not minimized) to create initial conditions for the ¢® model, we obtain (a),(b).
While using minimization of the split-domain ansatz, we obtain (c),(d). (a),(c) Contour plots of the solution, while (b),(d) are the
velocity plots stemming from solving the PDE. All panels are for x, = 20 and » = 0.

(for some k constant) when x — +o0. Thus, these higher-
order field theory models possess solutions with “fatter”
tails.

Table III shows the maxAbsPde residuals for the ¢'°
model in a way that parallels Tables I and I for the ¢® case.
Table IV shows the equivalent results for the ¢'> model.
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FIG. 11. Comparison graph of all the different kink-antikink

ansitze for example @® model and x, = 4.5. From top to bottom,
respectively: split domain (dark green), minimized split domain
(light green), minimized product (light red), minimized sum
(light blue), product (dark red), sum (dark blue).

We observe similar trends for these models to what we saw
in the ¢® case; once again, the minimization procedure
significantly improves the quantitative agreement between
an initial condition ansatz profile and a hypothetical one
that exactly satisfies the PDE (4).

Though the contour and velocity plots for the ¢'* and
®'? models are generally quite similar to the ¢® plots for
many cases, we point out a few cases in which the collisions
in the higher-order field theories differ. Primarily, the
differences occur for the nonminimized sum ansatz, for
which we find that the initial conditions chosen based on
this ansatz do not lead to clearly attracting or repelling

TABLE III. maxAbsPde for minimized (min) and nonmini-
mized (non) sum, product (prod), and split-domain (split) ansdtze
applied to the example ' model.

Sum Sum Prod Prod Split Split

Xg  (non) (min) (non) (min) (non) (min)

100 0.51 2.8x 1077 0.020 2.9 x 1077 2.9 x 1077
50 0.85 24x10° 0.028 24 x10° 2.4 x107°°
20 1.8 44x107 0.046 4.1 x107 4.1x 107
10 35 44x10™* 0067 3.8x10™* 3.7 %1074
5 74  6.1x1073 0.10 3.7x1073 3.4 %1073
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TABLE IV. maxAbsPde for minimized (min) and nonmini-
mized (non) sum, product (prod), and split-domain (split) ansdtze
applied to the example ¢'> model.

Sum Prod Prod Split Split
Xg (non) Sum (min) (non) (min) (non) (min)
100 3.0 56x10° 0.039 1.6x107° 7.6 x 1077
50 51 53x10° 0.049 5.1x10° 5.1x107°
20 114 7.7x107 0.067 6.8 x 107 6.7 x 1073
10 225 75x10™* 0.087 52x107* 5.0x 1074
5 485 1.7x107%2 0.116 44x 1073 3.9x 1073

kink-antikink pairs, for certain values of x,. Rather, for
these cases, the ansatz leads to solutions that show
oscillations in the range ¢ = —1 to @ = 1 rather than
topological solitons connecting ¢ = —1 to ¢ = 0.

A way to explain this strange result is to consider the fact
that, for such fatter-tail cases, as the ones arising from the
example ¢'° and ¢'? field theories considered herein, the
undershoot of the kinks is so substantial that not only is
the ¢ = 0 fixed point not reached between the kinks, but
also neither is the asymptotic value of ¢ = —1 as |x| > I.
In other words, the (nonminimized) sum ansatz provides an
extremely poor initial condition for the fatter-tail cases.

We can obtain some further insight into this quantitative
disagreement by considering the graphs of the sum ansatz
for the three cases (see Fig. 12: ¢® on top, ¢'* in middle,
and ¢'? at the bottom). The “fat tails” of the ¢'? kink give
such a large boost to the points in the middle (springboard
effect) that they travel past the potential minimum at ¢ = 0
to the neighborhood of ¢ = 1 under the evolution of the
PDE (4). This effect persists for x, = 5, 10, 20, 50, and 100
for the !> model (recall Table IV) and to a lesser extent for
Xo = 5, 10, and 20 for the ¢'° model (recall Table III). In all
of these cases, the notions of “attracting kinks” and
“repelling kinks” are no longer meaningful.

15 L L L i
-200 -100 0 100 200

X

FIG. 12. Graphs of initial conditions generated for the ¢® (top
curve), ¢'° (middle curve), and ¢'? (bottom curve) models using
the sum ansatz (no minimization), showing the worsening quality
of representation of the kink-antikink configuration.

IV. POTENTIAL ENERGY AND FORCE OF
INTERACTION AS A FUNCTION OF
SEPARATION DISTANCE

Lastly, we can illustrate the attractive nature of the force
between a kink and antikink in two additional ways.
In Fig. 13, we show the potential energy E[g] as defined
in Eq. (2) (assuming a stationary solution as before, so
Op/0r =0) for a kink-antikink pair; i.e., we plot
[3(89/0x)* + V(p)dx as a function of x,. Here, we
employ only the minimized split-domain ansatz, which
we concluded above was the most accurate.

Also, we have calculated the acceleration of the left kink
(a proxy for the kink-antikink force of interaction) from
the previously computed kink velocity v from the PDE
evolution, as a function of x; for a minimized split-domain
initial condition ansatz and zero initial velocity. In this case,
the acceleration is quite steady for a short period of time.
Six data points were collected for the ¢'* and ¢'? models
and seven for the ¢® model, with x, € [20,300], and a
power-law model ax; b was fit to the data. In all cases, an
excellent fit was obtained. Specifically, we find b =
3.998 +£0.002 for the chosen ¢8 model, b = 3.067 +
0.019 for the chosen ¢'® model, and b = 2.764 4 0.025
for the chosen ¢'> model, all within the 95% confidence
interval for the fit. Figure 14 shows the simulation data and
fits on a log-log plot, for all three cases.

We note that this scaling (i.e., b = 4 for the example @3
model) of the acceleration (thus, the force of interaction)
with the half-separation is in line with the theoretical
prediction for the —4 power-law decay of the force for the
same ¢ model in [37] and, more recently, in [58,59]. A
systematic study of this interaction force and its depend-
ence on the kink-antikink separation, for arbitrary power-
law tails, is the subject of future work [66], as it is a topic
of interest in its own right; we would digress from the

0.3f
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(8p/0x)* + V (p)da
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1
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J
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FIG. 13. Graphs of the field’s potential energy [ (0p/0x)* +
V(¢)dx of an initial condition ¢ as a function of x;, for the ¢ (top
curve), ¢'° (middle curve), and ¢'? (bottom curve) models, all
calculated using the minimized split-domain ansatz.
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FIG. 14. Log-log plots of the kink’s acceleration computed
from the PDE evolution simulation data and the corresponding
fitted power-law model, as a function of x, for the (p8 (bottom
curve), ¢'° (middle curve), and ¢'> (top curve) models. All
simulations used initial conditions generated using the minimized
split-domain ansatz.

main theme of the present study if we were to pursue
it here.

V. CONCLUSIONS AND FUTURE WORK

In the present work, we have systematically interrogated
the dynamics of kink-antikink interactions in higher-order
polynomial field-theoretic models (of degree eight and
higher) with degenerate minima. The specific feature of
these models that we have sought to capture is the presence
of long-range interactions via kink tail asymptotics that do
not decay exponentially, but rather decay algebraically.
Although a ¢® model was used as our featured example, we
also demonstrated that our discussion of how to properly
generate initial conditions for direct numerical simulations
of kink-antikink interactions applies to ¢'° and ¢'> models
with fatter tails. Our main finding was that, for all of these
higher-order field theories, the standard sum ansdtze (of a
kink plus an antikink, spaced some distance apart) for direct
numerical simulation of collision are problematic. These
ansdtze exhibit a significant undershoot around the two
kinks in the combined profile, which leads to considerable
radiation in the numerical solution for f> 0. These
unwanted effects, in turn, are responsible for the apparent
observation of unwarranted features such as repulsive
dynamics (for a sum ansatz) or transitions between repul-
sive and attractive dynamics (for a product ansatz). We
have argued that, among the simpler ansdtze available, the
one leading to the most realistic kink-antikink interaction
dynamics (i.e., the final results are not contaminated by the
details of the initial conditions for a simulation) is the one
we have termed the split-domain ansatz. Moreover, we
have argued towards the usefulness of a suitable minimi-
zation procedure that distills a given ansatz further by
seeking a closer match to a stationary kink-antikink
solution of the problem. The minimization procedure

reduces the undershoots in the combined profile and thus
reduces radiation wave packets (as well as their side effects)
in simulations. Once an initial condition was thus suitably
prepared, we observed attraction between a kink and an
antikink in all of the higher-order field theories (i.e., our
prototypical ¢® example, as well as ¢'® and ¢'> models),
much like in the classical ¢* field theory. This type of
improvement in the kink-antikink state construction
allowed us also to unambiguously obtain the power-law
nature of the kink-antikink interaction force and how its
exponent varies among the different higher-order field
theories examined.

Naturally, this study opens up numerous avenues for
future work on the interactions of topological solitons in
higher-order field theories. The most canonical extension of
this work concerns the outcome of collisional events for
different initial speeds of the kink and antikink (in this
work, we took » = 0 in all of our examples) and across our
proposed variety of initial condition ansdtze. Such an
exploration and a corresponding systematic study will be
reported elsewhere in the future. Another open question is
how much of the above-described interaction picture can be
captured through a semianalytical approximation such as
the method of collective coordinates (CCs). A first attempt
is given in the Appendix that follows, yet as can be seen
there, it is somewhat limited in its ability to capture in detail
the kink-antikink interactions. Moreover, at the present
stage, the CC model is lacking the inclusion of the internal
vibration mode of the kink; incorporating the latter appears
to be extremely cumbersome in the present setup. Lastly,
another important question is how much of the above-
described phenomenology can be captured in an experi-
ment. We are not immediately aware of experiments
involving higher-order field theories. However, for com-
plex variants of the ¢* field theory, such as nonlinear
Schrodinger models, kinks can be introduced via interfer-
ence events [67] or imprinting processes [68], among
others. In all of these examples, creation of kinks is
accompanied by radiation and by tails. It is then natural
to ask, to what extent can long-range interactions of kinks
and antikinks be captured in a realistic experimental setup?
The answers to such questions is currently under consid-
eration and will be reported in future publications.
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APPENDIX: COLLECTIVE COORDINATE
APPROACH AND CONNECTION TO
THE NUMERICAL RESULTS

In this Appendix, we apply the method of collective
coordinates using the minimized initial condition ansdtze,
which we introduced in the main text above to analyze
the kink-antikink interactions numerically. To this end,
recall that the Lagrangian for our neutral scalar field
theories is

A T A
(A1)

where the Lagrangian density is given in Eq. (1) and the
potential is given in Eq. (13) for the chosen ¢® model.
Now, for all minimized ansdtze, we can reduce the PDE
(4) to a Hamiltonian dynamical system with one degree
of freedom as follows. First, we obtain an effective
Lagrangian by evaluating Eq. (Al) using the ansatz
for ¢, having identified “x — v¢” as the collective coor-
dinate X(7). The manipulation is formally denoted as

Lot = bo(X)X* = by(X), (A2)
where different ansdtze yield different functions by(X)
and b, (X). In the following subsections, we will present
the formulas for these coefficients for each ansatz. The
Euler-Lagrange equation rendering the functional L.y in
Eq. (A2) stationary is

OLyy d <3Leff> —0

OX dt\ 9X (A3)

-0.27

041

-0.67

-0.87

-50 0 50
X

(a)
FIG. 15.

The resulting dynamical evolution equation, written as a
first-order system, is
X=v, (Ada)

__15(X) y2 _10(X)
2by(X) 2by(X)"

(A4b)

We solve this first-order ODE system (A4), subject to the
initial conditions X(0) = xy, Y(0) = 0 (corresponding to
v = 0). As before, x; is the initial half-separation between
the kink and the antikink, and it is assumed that the initial
speed of the kink and antikink is zero. For integration of the
system, we use MATLAB’S ODE45 differential equations
solver with adaptive time stepping and error control.

1. CC method for the
improved (minimized) sum ansatz
Let f,(x) be the function obtained by using the mini-
mization of sum ansatz (corresponding to the light blue
curve in Fig. 11 for x; =4.5) for the (p8 model, i.e.,
Eq. (29). Then, assume a colliding kink-antikink scenario
with the following field configuration:

(p(x, [) = Kal (X+X([) _XO) +Ka2(x_X(t) +x0) _fa(o)’
(AS)

where X(¢) is the half-distance between the kink and
antikink and

fa(x), x<0
S
Kaz(x):{;“g’ i;())' (A6)

Observe that, when X(0) = x4, we have ¢(x,0) = f,(x),
which implies that the initial conditions for the ¢® equation

0 T
______ <
02 == === .
1!
-0.4 p !
-0.6 1!
1!
0.8 !
1!
-1
50 0 50
T
(b)

(a) Curves represent an initial condition ¢(x, 0), for a direct numerical simulation under the ¢® model that has been generated

via minimization of the sum ansatz, i.e., Eq. (29). (b) Solid curves represent K, (x) and dashed curves represent K,, (x). (a),(b) x is
varied from 5 to 10 to 20 (darker color curves to lighter color curves, respectively).
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FIG. 16. Using the minimized sum ansarz, overlays of the ODE model (A4) solution X(7) (solid bold curve) on top of PDE model
contour plot of ¢(x, ) for the evolution of an initially stationary (v = 0) kink-antikink configuration with (a) x, = 4.5 and (b) x, = 6.

of motion (4) (i.e., PDE model) and the CC approach
(i.e., ODE model) match. Figure 15 presents such functions
for xo =5, 10, 20.

Using the ansatz in Eq. (A5), and defining K =
K, (x+X(t)—x)) and K, =K, (x—X(1) + xp), we
calculate the coefficient functions in Eq. (A2) as follows:

(A7)

1
ho(X) =5 / (K% + Koy .

i) =5 [[(KE; + K
+ [ ViKG + Ke - fa0)ar (a9

where the integration is to be over (—oo, +o0) (or a suitably
large x interval for numerical purposes).

When the initial velocity is zero, both the ODE model
and the PDE model predict attraction for x, < x., where
6 < x,. < 7. The ODE model results agree better with the
PDE model results as x;, becomes smaller, as shown
in Fig. 16.

2. CC method for the improved (minimized)
product ansatz

As in the previous subsection, here we split the function
that we obtain by using the minimization of the product
ansatz for the ¢® model. If we call that function f,(x)
(corresponds to the light red curve in Fig. 11 for x, = 4.5),
then we define a colliding kink-antikink system with the
following field configuration:

p(x,1) = (K, (x+X(t) —x) + 1)

b
fp0)+1)

x (K, (x = X(£) + x0) + 1] = 1, (A9)

where X(7) is the half-distance between the kink and
antikink and

fp(x), x<0
Kpl(x):{fp(O), >0 and
0), x<O
“J”={§f$,x§o- (A10)

Observe that, when X(0) = x,, we have ¢(x,0) = f,(x),
which implies that the initial conditions for the ¢® field
theory’s equation of motion (PDE model) and the CC
method (ODE model) both match. Using the ansatz in
Eq. (A9), and defining K, =K, (x + X(t) —x;) and
K, =K, (x—X(t) + xo), we calculate the coefficient
functions in Eq. (A2) as follows:

1 o
bo(X) = W/[Kpl (Kp, +1)
(K5 + DK, (AL1)
1
B =F o
x {%/[K/;(K,—,Z +1)+ (K, + DK 2dx

+/v((1<,tl +1)(Ky, + 1) - l)dx}. (A12)

For a zero initial velocity, both the ODE model and the
PDE model show attraction for x, < x., where 6 < x,. < 7.
The ODE model’s results agree better with the PDE results
as x becomes smaller. Figure 17(a) shows the ODE and
PDE agreement, for x, = 4.5 and v = 0, until the kink in
the ODE model is expelled from the system. Meanwhile,
Fig. 17(b) shows attraction for x, = 6 and v = 0; however,
for this value of x, the agreement between the ODE and
PDE models is not as good.

3. CC method for the improved (minimized)
split-domain ansatz

Again, we split the function that we obtain by using
the minimization of split-domain ansatz for the ¢® model.
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Using minimized product ansatz, overlays of the ODE model (A4) solution X(z) (solid line curve) on top of PDE model

contour plot for the evolution of an initially stationary (v = 0) kink-antikink configuration with (a) x, = 4.5 and (b) xq = 6.
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Using the minimized split-domain ansatz, overlays of the ODE model (A4) solution X(7) (solid bold curve) on top of PDE

model contour plot of ¢(x, ) for the evolution of an initially stationary (v=0) kink-antikink configuration with (a) x, = 4.5

and (b) xq = 6.

If we denote that function as f(x) (corresponds to light
green curve in Fig. 11 for x, = 4.5), then we define a
colliding kink-antikink system with the following field
configuration:

p(x. 1) = [1 = H(x)|K;, (x + X(1) = x0) + H(x)

x [Ky, (x = X (1) + xo)], (A13)

where X(¢) is the half-separation of the kink and antikink,
H(x) is the Heaviside function, and

(. x50
K ={7 o voo ™
C(£(0), x<0
0= {3 oo A

Observe that, when X(0) = x,, we have ¢(x,0) = f,(x),
which implies that the initial conditions for the ¢? field
theory’s equation of motion (PDE model) and the CC
method (ODE model) both match. Using the ansatz in
Eq. (A13), and defining K7 = K, (x + X(t) —x,) and

K3, = K,,(x = X(t) + x0), we calculate the coefficient
functions in Eq. (A2) as follows:

bo(x) = [ (1= HWIKY - HKG Pax. (A19
(%) =5 [ {11 = HIKS + HOK, P
+ / V(1 - HX)IK] + H(x)K;)dx.  (A16)

For zero initial velocity, both the ODE model and the
PDE model show attraction when x; < x,., where 6 <
X, < 7. The ODE model’s results agree better with the PDE
results as x, becomes smaller. Figure 18(a) shows the ODE
and PDE models’ agreement, for x, = 4.5 and v = 0, until
the kink is expelled from the system in the ODE model.
Meanwhile, Fig. 18(b) also shows attraction for x, = 6 and
v = 0; however, as before, the agreement between the ODE
and PDE results is not as good.
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