
µDPM: Dynamic Power Management for the Microsecond Era

Chih-Hsun Chou†⇤ Laxmi N. Bhuyan§ Daniel Wong†

†Department of Electrical & Computer Engineering

University of California, Riverside

Email: cchou011@cs.ucr.edu, dwong@ece.ucr.edu

§Department of Computer Science & Engineering

University of California, Riverside

Email: bhuyan@cs.ucr.edu

Abstract—The complex, distributed nature of data centers
have spawned the adoption of distributed, multi-tiered software
architectures, consisting of many inter-connected microservices.
These microservices exhibit extremely short request service
times, often less than 250µs. We show that these “killer
microsecond” service times can cause state-of-the-art dynamic
power management techniques to break down, due to short
idle period length and low power state transition overheads. In
this paper, we propose µDPM, a dynamic power management
scheme for the microsecond era that coordinates request
delaying, per-core sleep states, and voltage frequency scaling.
The idea is to postpone the wake up of a CPU as long as
possible and then adjust the frequency so that the tail latency
constraint of requests are satisfied just-in-time. µDPM reduces
processor energy consumption by up to 32% and consistently
outperforms state-of-the-art techniques by 2x.

Keywords-Dynamic power management, DVFS, Sleep states

I. INTRODUCTION

With the growth of large-scale distributed systems and

platform-as-a-service cloud systems, a new design pattern

of software architecture has emerged. These distributed,

multi-tiered software consists of numerous interconnected

smaller services, popularly called microservices [1]. The

simplified functionality of microservices has ushered in the

era of microsecond service times. In addition to software

applications entering the microsecond era, new breeds of

low-latency I/O devices with microsecond access latencies

are also emerging [2, 3]. Most recently, Google dubbed this

the “era of the killer microsecond” and made a call for

computer scientists to design “microsecond-aware” systems

stacks as many existing systems are not well-designed for

the challenges of microsecond latencies. This paper explores

the implications of application’s microsecond service times

on state-of-the-art dynamic power management techniques.

These applications are typically latency sensitive with

quality-of-service largely determined by tail latency, not

average latency [4]. Servers running latency-critical work-

loads are usually kept lightly loaded to meet strict tail

latency targets, with utilization between 10% and 50% [5–

10]. However, this low utilization results in poor server

energy efficiency as servers are not energy-proportional and

consume significant power at low server utilization [11–16].

⇤Work performed during Ph.D. studies at UCR. Currently at Xilinx, Inc.

To reduce power consumption, modern processors are

commonly equipped with two classes of dynamic power

management (DPM) mechanisms: performance scaling and

sleep states. Performance scaling, such as dynamic voltage

and frequency scaling (DVFS), provides power savings by

providing superlinear power savings for linear slowdown in

frequency. Unfortunately, the effectiveness of DVFS is di-

minishing with improved technology scaling as the operating

voltage approaches the transistor threshold voltage [17, 18].

While frequency scaling only reduces dynamic power, static

power is equally important[19–21]. To reduce static power,

sleep states (also called C-states) are designed to save power

during idle periods. These sleep states trade sleep/wake-up

latency for power savings by powering down different parts

of the core (such as core clock, PLL, and caches). As a

result, idle power consumption is determined by the C-state

that the core enters.

Although servers are usually kept lightly loaded, peak

load is considered when setting the proper target tail latency.

Due to this, the observed tail latency of servers running

under low load will be far lower than the target tail la-

tency. This “latency slack” that exists between the observed

and target tail latency has been exploited by many recent

state-of-the-art dynamic power management. For example,

DVFS-based techniques [11, 13, 22, 23] and sleep-based

techniques [6, 18, 24, 25], have been proposed to slow down

processing, or delay processing, so that requests finish just-

in-time before the target tail latency. While proven effective,

it is unclear how these management techniques will hold up

in the microsecond era.

In this paper, we make the following contributions:

• In section II, we present the first exploratory study

on the implications of microsecond request service time on

existing DPM mechanisms and their limitations. We find that

existing DPM schemes break down— specifically, DVFS-

based schemes cannot find enough opportunities to slow

down, and sleep-based schemes cannot enter a deep enough

sleep state to be effective.

• In section III, we propose µDPM, a power management

scheme for the micro-second era. The key insight driving

µDPM is that by carefully coordinating DVFS, sleep and

request delaying, we can achieve energy savings where

Table I: Measured CPU core C-states.
State State tran. time Residency time Power per core

C0 N/A N/A ⇠4W

C1 1µs 1µs 1.43W

C3 59µs 156µs 0.43W

C6 89µs 300µs ⇠0W

evaluation server, along with the target residency time.

CPU cores consume significantly lower power in deeper C-

states, along with increasing transition overheads since it

takes more time to disable/enable the corresponding on-chip

components. During state transitions, the core consumes full

power. Thus, the CPU core should only enter a particular

C-state only if the idle duration is greater than a threshold,

called the target residency time [31], in order to achieve net

energy savings. Therefore, C1 is optimal with idle period

length of 1-156 µs, C3 with period length 156-300 µs, and

C6 with period length 300 µs. The Linux menu idle governor

estimates the idle period length and selects the best state

for that idle period, while the ladder governor enters the

shallowest state and move to a deeper state if the processor

remains in a long enough sleep state. If idle periods are

short, as is common with short request service times, then

governors will consistently select shallow sleep states.

In the Baseline scheme, the processor operates at maxi-

mum frequency and uses the Linux menu governor [32] to

select C-states. We similarly use the Linux menu governor

to manage sleep states for Rubik (VFS-only), with fre-

quency states updated at every incoming request. SleepScale

(VFS+Sleep) selects the optimal C-state and optimal fre-

quency based on historical profiling of idle lengths. Rather

than predicting idle period length at every idle event, and

frequency at every request arrival, SleepScale sets this at

a coarse-grain epoch level (every 60 seconds) to reduce

transition overheads, but at the cost of fine-grain opportuni-

ties. DynSleep (Deep Sleep) directly enters C6 and runs at

maximum frequency when active.

Observation 2: Dynamic power management breaks

down at microsecond request service times

Figure 1b shows the average power consumption of vari-

ous state-of-the-art dynamic power management techniques

across different request service times. For this experiment,

we simulated an exponential service distribution with vary-

ing average service time, shown on the x-axis, at a medium

(40%) load. We observed similar trends across other loads.

Based on our empirical experiments, we observed a typical

target tail latency to service time ratio of 5x, and therefore

set the target tail latency at 5x the average service time.

In general, as the request service time decreases, power

increases due to fewer opportunities for low power states.

In the 250-1000µs range, we observe that dynamic power

management schemes that utilize DVFS provide the lowest

power due to having ample opportunity to slow down request

processing to save power. However, once the average service

request times drop below 250µs, both DVFS-based and

Sleep-based techniques begin to break down. This is because

DVFS techniques cannot handle the short-term variability

of short request service times and cannot find enough

opportunities to slow down request processing. Meanwhile,

Sleep techniques cannot enter a deep enough sleep state due

to short idle cycles. Surprisingly, techniques utilizing Sleep

begin to outperform techniques utilizing DVFS! This can be

explained by the trend in idle period lengths.

Observation 3: Short service times fragment idle periods

It is well known that utilization has a significant impact

on sleep opportunities [6, 18]. We additionally find that

request service time also have a significant impact on sleep

opportunities. Specifically, short request service time can

fragment idle periods into short idle periods that sleep states

cannot take advantage of. Figure 1c shows the idle period

length (in µs) under 200µs service time (dotted line) and

500µs service time (solid line). Similarly, we conservatively

set the target tail latency to 5x the service time.

Clearly, as service time decreases, idle period lengths

similarly decreases eventually leading to the ineffectiveness

of low power states. For example, the baseline curve in

Figure 1b can no longer save any power at ~80µs service

time due to the inability to enter a deep sleep state. The

pervasiveness of shallow sleep states has already been ob-

served in Google’s production data center [13, 14].

In Figure 1c, we also observe that DPM schemes can

have a great effect on idle period length. Specifically, Sleep-

based techniques are able to significantly extend idle period

lengths, even under very short service times, by consolidat-

ing idle periods through delayed request processing. This

can be seen with the lack of short idle periods (<200µs)

which is dominant in Rubik. In addition, the idle periods

for DynSleep with 200µs service time is at least double that

of Rubik at 500µs service time, enabling ample opportunities

for sleep states in latency-critical scenarios. Therefore, the

key to sustaining power savings under short service time is

by coalescing idle periods into longer idle periods that are

better utilized by sleep states.

Observation 4: State-of-the-art dynamic power manage-

ment suffers from significant transition and/or idle power

Existing state-of-the-art power management technique has

focused primarily on exploiting latency slack to save

power.In our experiments, we found that the energy over-

heads of idleness and state transition can accumulate and

account for a non-trivial fraction of energy consumption.

Figure 1d shows the energy consumption breakdown of

state-of-the-art power management techniques. For this ex-

periment, we ran a synthetic workload with average service

time 80 µs, at the point where Baseline no longer saves

power. In this figure, total energy consumption is broken

down into 4 parts: (1) energy to process requests (busy),

(2) energy consumed when a core is idle—can also be in

a shallow C-state—and waiting for requests(idle), (3) the

which runs at highest frequency; and DreamWeaver which

uses static timeout-based request delaying.

Figure 3(b) illustrates a scenario where a second request,

R1, arrives during an idle period and is determined to

violate QoS constraints given the current wake-up time and

frequency configuration. We define requests that will violate

QoS constraints as a critical request. Since we know that the

previous request satisfies QoS constraints, we can simply

detect a critical request by comparing if the inter-arrival

time between these two most recent requests is less than

the predicted tail service time of the incoming request.

Whenever a critical request arrives, we reconfigure the

wake-up time and frequency configuration. We first increase

the frequency until R1 meets QoS. Unlike Rubik, we only

increase frequency, and not decrease, to limit DVFS transi-

tion overhead. Since frequency increased, R1 will complete

faster enabling µDPM to sleep longer, increasing the idle

period length and still satisfy QoS.

Figure 3(c) shows a normative case where another arriving

request, R2, is not critical. In this scenario, R2 is satisfied

with the given wake-up time and frequency, and will there-

fore simply queue. Also, if a critical request arrives during

an active period, this simply triggers a frequency increase

as the wake-up time is void.

µDPM needs to determine: (1) When to wake up after

sleeping? and (2) What frequency to run at? The key is

to estimate the incoming request’s service time. This is

especially challenging in data centers due to short request

service time, which causes significant short-term variability

that often dominates tail latency [11, 38]. To account for this,

µDPM utilizes a statistical-based performance model [11]

and criticality-aware scheduling to recalculate wake-up time

and frequency at every critical request arrival. In addition,

µDPM will also consider transition overheads while deter-

mining the optimal wake-up time and runtime frequency.

B. Performance Modeling

Estimating Request Tail Service Time: To estimate

the tail service time of processing and queued requests,

we utilize a statistical performance model based on [11].

This model has been previously shown to be able to highly

accurate and can account for the high-variability in latency-

critical applications, as well as in capturing uncertainties

from co-location and memory interference through online

periodic resampling (ever 100ms) of service cycles distribu-

tion. With the addition of precomputed target tail tables, this

model can also compute the required frequency constraints

for each incoming request.

At a high-level, this model breaks down request pro-

cessing into two probability distributions: cycles spent in

compute, P[C = c], and time spent memory-bound, P[M =

t]. These probability distributions can be sampled online

through performance counters, for P[C = c], and through

CPI stacks[11, 39, 40] for P[M = t]. Because of the non-

deterministic request demands, the service time of a request

is often considered as a random variable. Previous work

similarly assumes that the service time for each request

is drawn independently from a single distribution [5, 11].

While it has been shown previously that different request

types can also have different distributions [27], we choose

to utilize a single distribution for simplicity, trading off a

small amount of power savings opportunity.

When multiple requests are in the queue, it is not suffi-

cient to just estimate request tail service time. We require

estimating the completion time of the requests upon wake up.

Therefore, the estimated completion cycle of a request Ri is a

random variable S i, with probability distribution P[S i = c].

The completion cycle distributions all draw from a single

distribution P[S = c], where S gives how many cycles it

takes to process one request. S is essentially a combination

of the compute cycle distribution, C, and memory time

distribution, M; S = C + M f . To obtain the tail service

request time, we draw the 95th percentile of the distributions.

The cycle at which Ri completes, P[S i = c], can then

be computed as the n-fold convolution (⇤) of S , where n

is the number of queued request and processing request.

Unlike [11], we simplify our model by not conditioning the

currently processing request on elapsed cycles completed.

For example, in Figure 3(d), the estimated completion cycle

of R2 (the random variable S 2) is the sum of the random

variables S 0, S 1, and S , and is estimated as the following

convolution: P[S 2 = c] = P[S 0 = c] ⇤ P[S 1 = c] ⇤ P[S = c].

Completion cycle can be simply converted to completion

time by dividing the core’s frequency.

Estimating Request Tail Latency: In order to determine

whether a request is critical or not, we first need to estimate

that latency of a given request. The estimated tail latency of

the request, Li, is given as follows:

Li = W + Twake + Tdv f s +
S i

f
(1)

, where W is the time until the core is scheduled to wake

up, Twake is wake up transition time, Tdv f s is the DVFS

transition time, and S i is the estimated tail completion

cycle to service request Ri as discussed prior, and f is the

operating frequency. Based on this latency model, we can

relate target tail latency, core frequency, and wake up time

to determine µDPMconfigurations.

Determining Critical Requests After estimating the la-

tency of arriving requests, we need to check whether or

not the arriving request is critical to determine whether a

configuration update is needed. By observing Figure 3 and

equation (1), a request is critical if

tRi
� tRi�1


S tail

f
(2)

, where tR is the arrival time of a request R, and S

is the completion cycle distribution for a single request

(service only, no queueing). This is because the arrival time

between the current and previous request is too short for

processing one request. Intuitively, for a given wake-up/VFS

configuration, when the processor wakes up, it can process

a request every S i

f
seconds and meet the target tail latency

just in time. If requests arrive too close together, since the

previous request is scheduled to finish just in time to meet

the target tail latency, the current request will experience

longer latency than the previous one, exceeding the tail

latency target (as illustrated in Figure 3(b)). We will now

leverage this insight to simplify the calculation for new

wake-up time and frequency configurations.

Determining New Wake-Up Time and Frequency Con-

figuration. A critical request occurs when the incoming

request cannot meet QoS requirements. Therefore, we take

a 2-step approach. First, we need to determine the new

frequency. Conceptually, this can be illustrated in Figure 3(b)

as, What is the frequency requires to squeeze R1 to fit

between R0 and the red line? This can be achieved as

TRiTargetCompletion � TRi�1Completion =
S tail

f 0
(3)

, where TRiTargetCompletion is the target tail latency completion

time of Ri, and TRi�1Completion is the completion time of Ri-1,

S is the completion cycle distribution for a single request,

and f 0 is the new frequency. Since all of these variables are

available by the time a request is determined to be critical,

the new frequency can be computed directly. To minimize

DVFS transition overheads, we limit frequency changes to

only increase, and not decrease. The frequency would then

reset to a lower level upon the next idle period.

Next, we determine the wake-up time. If a critical re-

quest arrives during an active period, then this step is not

necessary. As illustrated in Figure 3(b), this can be achieved

by essentially shifting all requests to the right, or as late

as possible, while still satisfying latency constraints. This

requires re-estimation of completion cycles for all queued

requests. [11] observed that queue size are typically under

10, and can be quickly re-sampled using target tail tables.

To determine the new wake-up time, we only need to get

the new completion time for the first queued request, S 0,

and then utilize Equation 1 to compute the new wake-up

time. If the wake-up time is determined to be shorter than

the residency time, then µDPM will wake up at the cost of

some energy overhead, as illustrated in Figure 2(c).

Impact of Mispredictions: A misprediction on request

service time is equivalent to misidentifying a critical request

and potentially violating SLA. Since our target tail latency

is based on 95th percentile tail latency, 5% of requests are

allowed to finish slower without violating SLA. Similarly,

we estimate 95th percentile tail service time, where there is

a 5% chance of misprediction for the first delayed request.

The chance of SLA violation decreases significantly for

subsequent queued requests due to summing the random

variables S i. For example, S 1’s estimate is that the two

queued requests (R0 and R1) will both finish at the tail,

which is extremely rare (0.25% chance). Therefore, our

estimates are already very conservative.

C. Minimizing State Transition Overheads

As shown in Figure 1d, transition overheads can account

for significant portions of power consumption. In µDPM, we

incur low power state transition overhead whenever a critical

request triggers configuration updates. While effective at

meeting the tail latency target, these configuration updates

result in wasted power. It is because the core will sleep less

and do no useful work during the state transition. In this

section, we propose a criticality-aware configuration scheme

to redirect requests and avoid unnecessary configuration

updates. In addition, this also helps absorb bursty request

spikes. Algorithm 1 shows the pseudo-code for this scheme.

When a request arrives at a core, there are 4 possible states

that the request could face based on its criticality and core’s

status: (1) the request is critical and the core is sleeping

(critical-sleeping); (2) the request is critical and the core is

active (critical-active); (3) the request is not critical and the

core is sleeping (noncritical-sleeping) and (4) the request is

not critical and the core is active (noncritical-active).

When a request is either noncritical-sleeping or

noncritical-active, no configuration update is needed, thus no

additional state transition will occur. A noncritical-sleeping

core is a core that is sleeping and already scheduled to

wake up so that the request will meet tail latency target.

When a request is critical-sleeping, the wake-up time and/or

frequency need to be updated. No additional C-state or

DVFS transition is introduced because the core is sleeping

and only the frequency after wakeup and/or the scheduled

time of wakeup are changed.

The only case where a new transition is introduced is

when the core is sleeping with no scheduled wakeup (the

core is sleeping and have no arrived requests), and when a

request is critical-active where an additional DVFS transition

is needed. The goal of the criticality-aware scheduler is

to redirect the request to the core which makes it non-

critical. By doing so, we decrease the chances of triggering

configuration updates and DVFS state changes.

Based on equation (2), we define the criticality score of

a request for a core as:

criticality =
S tail/ f

tRi
� tRi�1

(4)

, hence non-critical request will have criticality score less

than 1. Our algorithm first computes the criticality score of

that request for each core, and if there exists only one core

which makes the request non-critical, that core is selected

for processing. However, it is more than likely that multiple

cores can make the incoming request non-critical. In this

case, the non-critical sleeping cores are chosen for the

request to avoid the possibilities for future DVFS transition.

If multiple cores are still candidates, we select the core

which will process a request with the lowest extra energy.

The energy consumption for a given configuration (wake-

up time W and frequency f) is:

E (W, f) =
⇣

W � Tsleep

⌘

Pidle +
⇣

Tsleep + Twake

⌘

Pmax + Tdv f sPdv f s +

S i

f

!

P f

(5)

The first term in equation (5) is the idle period energy

with the idle power Pidle and sleep transition time Tsleep.

The second term is the transition energy overhead of going

into and out of sleep mode. The third term is the DVFS

transition energy, and the last term is the active period energy

consumption with the estimated completion time of the last

queued request, S i/ f , multiplied by the active power P f .

Note that we assume the idle period started at t = 0. If a

core candidate is already active, then the transition terms will

be 0. On the other hand, there are some cases that no core

can make the request non-critical, then we favor mapping

the request to the core where it initially arrived.

Another benefit brought from our criticality-aware sched-

uler is to mitigate bursty requests. When a burst of requests

arrives, especially during prolonged sleep periods, most of

the requests will be identified as critical. Our scheduler will

attempt to schedule them to cores that make them “non-

critical”, resolving burstiness. From algorithm 1, we can see

that the overhead of the criticality-aware scheduler is linear

to the number of cores in the processor. In our experiment,

this overhead is less than 2 µs and is considered as part of

the request service time.

µDPM Implementation: µDPM simply requires the

performance models detailed previously. In order to derive

and calculate service time distributions, we make use of

Algorithm 1: Criticality-aware scheduling

1: non critical cores = φ,non critical sleep cores = φ
2: for each core do

3: compute corei’s criticality
4: if criticality  1 then

5: non critical cores non critical cores [corei

6: if corei is sleeping then

7: non critical sleep cores
non critical sleep cores [corei

8: end if

9: end if

10: end for

11: if non critical cores , φ then

12: if non critical sleep cores , φ then

13: return min (extra energy) in non critical sleep cores
14: else

15: return min (extra energy) in non critical cores
16: end if

17: else

18: return min (extra energy) in all cores
19: end if

precomputed target tail tables [11]. Prior work has shown

that these tables can be periodically updated every 100ms

with only 0.2% overhead. Since we assume per-core DVFS

and per-core sleep state, we require a µDPM implementation

within every core. Due to the frequency of resampling

service time distribution, target tail tables are load sensative

and are able to capture high-variability unknowns such as in-

terference effects from co-location or multi-core interference

on shared resources. In addition, these target tail tables can

be incorporated into processor’s PCU to calculate wake-up

time and frequency state directly.

To detect critical request, we showed previously that we

only need to keep track of the previous incoming request’s

timestamp and the service time of the new request. In

addition, to calculate wake-up time in Equation (1) and

frequency in Equation (3) only requires simple arithmetic

computations once the service time has been determined

by the precomputed target tail tables. To support request

redirection for criticality-aware scheduling, we require either

software-level support through the request handling stack

(network, or asynchronous event libraries such as libevent),

or through hardware support with SmartNICs, where the

scheduling is offloaded to the NIC interface.

IV. EVALUATION

We evaluate µDPM using an in-house simulator with

various latency-critical data center workloads representative

of common microservices. Our simulator is a framework for

stochastic discrete-time simulation of a generalized system

driven by empirical profiles of a target workload (based on

BigHouse [30]). Empirical inter-arrival and service distri-

butions are collected from measurements of real systems

at fine time-granularity. Using these distributions, synthetic

arrival/service traces are generated and fed to a discrete-

event simulation that models the server’s active and idle low-

power modes. Latency measures (e.g., tail response latency)

are obtained by logging the start and finish time of each

request. Similarly, energy measures are obtained through the

weighted sum of the duration of idle, busy and transition pe-

riods with their corresponding power consumption. Similar

to previous works [11, 13, 14, 24, 41], we focus on CPU

power which is the single largest contributor to server power.

The power consumption at each processor C-state and fre-

quency step is collected from measurements of real systems

and is shown in Table I. Also, the uncore power (LLC and

some peripheral circuit) is measured as 10W. We model a 12-

core server, similar to our experimental server. Our processor

can support frequency from 1.2GHz to 2.7GHz. At peak, our

processor consumes 45W overall and 18W at active idle.

Unless otherwise stated, we use 10 µs as DVFS transition

time, respectively. As mentioned previously, we use a 10µs

DVFS transition time as many prior works have empirically

observed DVFS transition times between 6-70µs [33–37],

even with fast on-chip integrated voltage regulators.

[12] D. Wong and M. Annavaram, “Knightshift: Scaling the energy pro-
portionality wall through server-level heterogeneity,” in International

Symposium on Microarchitecture (MICRO), 2012.
[13] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,

“Towards energy proportionality for large-scale latency-critical work-
loads,” in Intl. Symposium on Computer Architecuture (ISCA), 2014.

[14] S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks, “Tradeoffs
between power management and tail latency in warehouse-scale appli-
cations,” in International Symposium on Workload Characterization

(IISWC), 2014.
[15] D. Wong and M. Annavaram, “Implications of high energy propor-

tional servers on cluster-wide energy proportionality,” in Intl. Symp.

on High Performance Computer Architecture (HPCA), 2014.
[16] D. Wong, “Peak efficiency aware scheduling for highly energy propor-

tional servers,” in International Symposium on Computer Architecture

(ISCA), 2016.
[17] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling:

The laws of diminishing returns,” in HotPower, 2010.
[18] D. Meisner and T. F. Wenisch, “Dreamweaver: Architectural support

for deep sleep,” in International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2012.
[19] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J.

Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s
law meets static power,” IEEE computer, vol. 36, no. 12, 2003.

[20] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson,
and P. Bose, “Microarchitectural techniques for power gating of exe-
cution units,” in International Symposium on Low Power Electronics

and Design (ISLPED), 2004.
[21] A. Lungu, P. Bose, A. Buyuktosunoglu, and D. J. Sorin, “Dynamic

power gating with quality guarantees,” in International Symposium on

Low Power Electronics and Design (ISLPED), 2009.
[22] Y. Liu, S. C. Draper, and N. S. Kim, “Sleepscale: Runtime joint speed

scaling and sleep states management for power efficient data centers,”
in International Symposium on Computer Architecuture (ISCA), 2014.

[23] B. Vamanan, H. B. Sohail, J. Hasan, and T. N. Vijaykumar, “Time-
trader: Exploiting latency tail to save datacenter energy for online
search,” in Intl. Symposium on Microarchitecture (MICRO), 2015.

[24] C.-H. Chou, D. Wong, and L. N. Bhuyan, “Dynsleep: Fine-grained
power management for a latency-critical data center application,” in
Intl. Symp. on Low Power Electronics and Design (ISLPED), 2016.

[25] X. Zhan, R. Azimi, S. Kanev, D. Brooks, and S. Reda, “Carb: A c-
state power management arbiter for latency-critical workloads,” IEEE

Computer Architecture Letters, vol. PP, no. 99, pp. 1–1, 2016.
[26] D. H. K. Kim, C. Imes, and H. Hoffmann, “Racing and pacing to idle:

Theoretical and empirical analysis of energy optimization heuristics,”
in International Conference on Cyber-Physical Systems, Networks,

and Applications (ICCPS), 2015.
[27] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch,

L. Tang, J. Mars, and R. G. Dreslinski, “Adrenaline: Pinpointing and
reining in tail queries with quick voltage boosting,” in Intl. Symp. on

High Performance Computer Architecture (HPCA), 2015.
[28] C. H. Chou and L. N. Bhuyan, “A multicore vacation scheme for

thermal-aware packet processing,” in International Conference on

Computer Design (ICCD), 2015.
[29] M. Elnozahy, M. Kistler, and R. Rajamony, “Energy conservation poli-

cies for web servers,” in USENIX Symposium on Internet Technologies

and Systems (USITS), 2003.
[30] D. Meisner, J. Wu, and T. F. Wenisch, “Bighouse: A simulation

infrastructure for data center systems,” in International Symposium

on Performance Analysis of Systems and Software (ISPASS), 2012.
[31] “Intel idle driver for linux,” http://lxr.free-electrons.com/source/

drivers/idle/intel idle.c.
[32] V. Pallipadi, S. Li, and A. Belay, “cpuidle: Do nothing, efficiently,”

in Proceedings of the Linux Symposium, 2007.
[33] E. A. Burton, G. Schrom, F. Paillet, J. Douglas, W. J. Lambert,

K. Radhakrishnan, and M. J. Hill, “Fivrfully integrated voltage
regulators on 4th generation intel® core socs,” in Applied Power

Electronics Conference and Exposition (APEC), 2014.
[34] J.-T. Wamhoff, S. Diestelhorst, C. Fetzer, P. Marlier, P. Felber, and

D. Dice, “The TURBO diaries: Application-controlled frequency
scaling explained,” in USENIX Annual Technical Conference, 2014.

[35] D. Hackenberg, R. Schne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An energy efficiency feature survey of the intel haswell
processor,” in International Parallel and Distributed Processing Sym-

posium Workshop, 2015.
[36] A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby, “Evaluation of

cpu frequency transition latency,” Computer Science - Research and

Development, vol. 29, no. 3, pp. 187–195, Aug 2014.
[37] Y. Bai, V. W. Lee, and E. Ipek, “Voltage regulator efficiency

aware power management,” in Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2017.
[38] M. Jeon, Y. He, S. Elnikety, A. L. Cox, and S. Rixner, “Adaptive

parallelism for web search,” in European Conference on Computer

Systems (EuroSys), 2013.
[39] R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt, “Predicting perfor-

mance impact of dvfs for realistic memory systems,” in International

Symposium on Microarchitecture (MICRO), 2012.
[40] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A perfor-

mance counter architecture for computing accurate cpi components,”
in International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), 2006.
[41] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a

warehouse-sized computer,” in International Symposium on Computer

Architecture (ISCA), 2007.
[42] M. Arora, S. Manne, I. Paul, N. Jayasena, and D. M. Tullsen,

“Understanding idle behavior and power gating mechanisms in the
context of modern benchmarks on cpu-gpu integrated systems,” in Intl.

Symp. on High Performance Computer Architecture (HPCA), 2015.
[43] “Memcached,” http://memcached.org/.
[44] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,

D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: A study of emerging scale-out workloads on
modern hardware,” in Intl. Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2012.
[45] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of the

tail: Hardware, os, and application-level sources of tail latency,” in
Symposium on Cloud Computing (SoCC), 2014.

[46] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast
multicore key-value storage,” in European Conference on Computer

Systems (EuroSys), 2012.
[47] “Specjbb,” http://www.spec.org/jbb2013/.
[48] L. A. Barroso and U. Hölzle, “The case for energy-proportional

computing,” IEEE Computer, 2007.
[49] J. Dean, “Challenges in building large-scale information retrieval

systems: Invited talk,” in International Conference on Web Search

and Data Mining (WSDM), 2009.
[50] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M. Chiang, Y. Yan, B. Sai,

and H. Yang, “A 3us wake-up time nonvolatile processor based on
ferroelectric flip-flops,” in Proceedings of the ESSCIRC, 2012.

[51] X. Pan and R. Teodorescu, “Nvsleep: Using non-volatile memory to
enable fast sleep/wakeup of idle cores,” in International Conference

on Computer Design (ICCD), 2014.
[52] Y. Hu, C. Li, L. Liu, and T. Li, “Hope: Enabling efficient service

orchestration in software-defined data centers,” in International Con-

ference on Supercomputing (ICS), 2016.
[53] C. Delimitrou, “The hardware & software implications of microser-

vices and how big data can help,” in Eighth Workshop on Architectures

and Systems For Big Data (ASBD), 2018.
[54] H. Yang, Q. Chen, M. Riaz, Z. Luan, L. Tang, and J. Mars, “Pow-

erchief: Intelligent power allocation for multi-stage applications to
improve responsiveness on power constrained CMP,” in International

Symposium on Computer Architecture (ISCA), 2017.
[55] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout, “Arachne: Core-

aware thread management,” in USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2018.
[56] A. Sriraman and T. F. Wenisch, “µtune: Auto-tuned threading for

OLDI microservices,” in USENIX Symposium on Operating Systems

Design and Implementation (OSDI), 2018.
[57] A. Mirhosseini, A. Sriraman and T. F. Wenisch, “Enhancing Server

Efficiency in the Face of Killer Microseconds,” in Intl. Symp. on High

Performance Computer Architecture (HPCA), 2019.

