uDPM: Dynamic Power Management for the Microsecond Era

Chih-Hsun Chou'*

TDepartment of Electrical & Computer Engineering

University of California, Riverside
Email: cchou0l1@cs.ucr.edu, dwong@ece.ucr.edu

Abstract—The complex, distributed nature of data centers
have spawned the adoption of distributed, multi-tiered software
architectures, consisting of many inter-connected microservices.
These microservices exhibit extremely short request service
times, often less than 250us. We show that these ‘Kkiller
microsecond” service times can cause state-of-the-art dynamic
power management techniques to break down, due to short
idle period length and low power state transition overheads. In
this paper, we propose uDPM, a dynamic power management
scheme for the microsecond era that coordinates request
delaying, per-core sleep states, and voltage frequency scaling.
The idea is to postpone the wake up of a CPU as long as
possible and then adjust the frequency so that the tail latency
constraint of requests are satisfied just-in-time. yDPM reduces
processor energy consumption by up to 32% and consistently
outperforms state-of-the-art techniques by 2x.

Keywords-Dynamic power management, DVFS, Sleep states

I. INTRODUCTION

With the growth of large-scale distributed systems and
platform-as-a-service cloud systems, a new design pattern
of software architecture has emerged. These distributed,
multi-tiered software consists of numerous interconnected
smaller services, popularly called microservices [1]. The
simplified functionality of microservices has ushered in the
era of microsecond service times. In addition to software
applications entering the microsecond era, new breeds of
low-latency I/O devices with microsecond access latencies
are also emerging [2, 3]. Most recently, Google dubbed this
the “era of the killer microsecond” and made a call for
computer scientists to design “microsecond-aware” systems
stacks as many existing systems are not well-designed for
the challenges of microsecond latencies. This paper explores
the implications of application’s microsecond service times
on state-of-the-art dynamic power management techniques.

These applications are typically latency sensitive with
quality-of-service largely determined by tail latency, not
average latency [4]. Servers running latency-critical work-
loads are usually kept lightly loaded to meet strict tail
latency targets, with utilization between 10% and 50% [5—
10]. However, this low utilization results in poor server
energy efficiency as servers are not energy-proportional and
consume significant power at low server utilization [11-16].

*Work performed during Ph.D. studies at UCR. Currently at Xilinx, Inc.

Laxmi N. Bhuyan®

Daniel Wong"

§Department of Computer Science & Engineering
University of California, Riverside
Email: bhuyan@cs.ucr.edu

To reduce power consumption, modern processors are
commonly equipped with two classes of dynamic power
management (DPM) mechanisms: performance scaling and
sleep states. Performance scaling, such as dynamic voltage
and frequency scaling (DVFS), provides power savings by
providing superlinear power savings for linear slowdown in
frequency. Unfortunately, the effectiveness of DVFS is di-
minishing with improved technology scaling as the operating
voltage approaches the transistor threshold voltage [17, 18].
While frequency scaling only reduces dynamic power, static
power is equally important[19-21]. To reduce static power,
sleep states (also called C-states) are designed to save power
during idle periods. These sleep states trade sleep/wake-up
latency for power savings by powering down different parts
of the core (such as core clock, PLL, and caches). As a
result, idle power consumption is determined by the C-state
that the core enters.

Although servers are usually kept lightly loaded, peak
load is considered when setting the proper target tail latency.
Due to this, the observed tail latency of servers running
under low load will be far lower than the targer tail la-
tency. This “latency slack™ that exists between the observed
and target tail latency has been exploited by many recent
state-of-the-art dynamic power management. For example,
DVES-based techniques [11, 13, 22, 23] and sleep-based
techniques [6, 18, 24, 25], have been proposed to slow down
processing, or delay processing, so that requests finish just-
in-time before the target tail latency. While proven effective,
it is unclear how these management techniques will hold up
in the microsecond era.

In this paper, we make the following contributions:

e In section II, we present the first exploratory study
on the implications of microsecond request service time on
existing DPM mechanisms and their limitations. We find that
existing DPM schemes break down— specifically, DVFS-
based schemes cannot find enough opportunities to slow
down, and sleep-based schemes cannot enter a deep enough
sleep state to be effective.

¢ In section III, we propose uDPM, a power management
scheme for the micro-second era. The key insight driving
uDPM is that by carefully coordinating DVFS, sleep and
request delaying, we can achieve energy savings where

all others fail. In addition, we additionally introduce a
criticality-aware scheduler to coordinate scheduling across
multi-core in order to keep cores in its current power state
to minimize state transition overheads.

e In section IV, we evaluate uDPM under a variety
of latency-critical workloads. We show that uDPM reduces
CPU energy consumption by up to 32%, and consistently
outperforms state-of-the-art techniques, even with micro-
second-level request service time constraints.

II. IMPLICATIONS OF MICROSECOND REQUEST
SERVICE TIME ON DPM

Effect on Request Service Times: To identify the effect
of microservice applications on request service time, we first
explore 4 workloads representing common latency-sensitive
microservices. We run these real workloads on a server
with Intel Xeon E5 2697-V2 12-core processor to obtain
the service time distribution. Workload details are discussed
in Section IV. Figure 1 shows the result of our study.

Observation 1: The majority of request service times are

less than ~250us, even with millisecond tail latencies'
We define the tail latency similar to [11] as the 95 per-
centile latency when the application is running at a synthetic
medium load without applying any power management.
The target tail latency of these workloads is 150us for
Memcached, 800us for SPECjbb, 1100us for Masstree, and
2100us for Xapian. Despite the length of the target tail
latency, the actual typical request service time is significantly
shorter and often an order-of-magnitude shorter.

Figure la shows the observed request service time distri-
bution. In our experiments, we observe that 95% of request
service time complete within 33us for Memcached, 78us
for SPECjbb, 250us for Masstree, and 1200us for Xapian.
Despite Xapian’s long service time tail, a significant 45% of
Xapian’s request still completes under 250us. These short
service time requests dominate, and lead to high short-term
load variability making DPM especially challenging [11].

ICarefully note we make a distinction between service time and latency.
Latency includes queueing time and service time.

Effect on Dynamic Power Management: We explore
various state-of-the-art dynamic power management
schemes, such as a DVFS-only technique (Rubik[11]), a
coordinated DVFEFS and Sleep technique (SleepScale[22]),
and a Deep Sleep-only technique (DynSleep[24]). All of
these prior techniques exploit existing latency slack and are
quality-of-service aware to meet tail latency constraints.

Power savings can be achieved by slowing down request
processing through DVFES [11, 13, 22, 23, 26] or delaying
request processing through Sleep [18, 24]. Due to it’s better
responsiveness in handling short-term variation, we will
evaluate Rubik as representative of other DVFS techniques,
such as Pegasus [13], Adrenaline [27], and TimeTrader [23].

While other Deep Sleep-only techniques exist, such as
PowerNap [6] and DreamWeaver [18], we observe limited
power savings due to the requirement for full-system idle-
ness where the entire processor socket is idle. CARB [25]
also leverages sleep states in latency-critical applications by
selecting the optimal number of cores to keep on, placing
inactive cores into deep sleep. However, an active cores
still consume significant idle power due to shallow sleep
state selection. Therefore, we evaluate DynSleep [28] as the
target Deep Sleep-only mechanism. Unlike PowerNap and
DreamWeaver, DynSleep leverage fine-grain per-core sleep
states. In addition, these Deep Sleep techniques also utilize
request delaying, and is therefore representative of request
delaying-only techniques [29].

Due to lack of support for measuring fine-grain power
statistics (transition overheads, etc.) in real systems, and
lack of hardware control to faithfully implement these DPM
techniques in real-hardware (i.e., no per-core DVES), we
perform the remainder of this motivational study through
our in-house simulator based on BigHouse stochastic queu-
ing simulation, a validated methodology for simulating the
power-performance behavior of data center workloads [30].
Based on our prototype evaluation, we expect the following
observed trends are similar in real servers. Section IV
provides more details about our evaluation methodology.

C-states overview: Table I shows the empirically mea-
sured idle state power and transition overhead from our

~——Baseline Rubik Rubik(200us) Rubik(500us)
Xapian ——Memcached ——SleepScale DynSleep uDPM(200us) uDPM(500us) mBusy ®ldle = C-state tran. = VFS tran.
SPECjbb Masstree uDPM N Dynsleep (200us) Dynsleep(500us) ’
, 0 100% A Baseline
08 38 80% Rubik
< 36 o Sleepscale
60%
06 % 5 5
B4 g O 40% DynSleep
: a 32 :
DPM
02 30 B 20% -
‘ I Optimal
0 bt 28 ! 0%
10 100 1000 10 100 1000 0 200 400 600 800 1,000 0.6 0.7 08 09 1

Service time (us) Avg service time(us)

(a) Service time dist. (b) Power consumption

(c) Idle period length

Idle period length (us) Normalized Energy

(d) Energy breakdown

Figure 1: (a) Service times are commonly <250us. (b) In this short service time region, state-of-the-art power management
schemes have diminishing effectiveness. Counter-intuitively, deep sleep states provide the most benefits in this region. (c)
Short request service time causes fragmented idle periods. (d) Significant energy wasted from idle and transition overheads.

Table I: Measured CPU core C-states.

State State tran. time Residency time = Power per core

CO N/A N/A ~4W
C1 lus lus 1.43W
C3 S9us 156us 0.43W
C6 89us 300us ~0W

evaluation server, along with the target residency time.
CPU cores consume significantly lower power in deeper C-
states, along with increasing transition overheads since it
takes more time to disable/enable the corresponding on-chip
components. During state transitions, the core consumes full
power. Thus, the CPU core should only enter a particular
C-state only if the idle duration is greater than a threshold,
called the target residency time [31], in order to achieve net
energy savings. Therefore, C1 is optimal with idle period
length of 1-156 us, C3 with period length 156-300 us, and
C6 with period length 300 us. The Linux menu idle governor
estimates the idle period length and selects the best state
for that idle period, while the ladder governor enters the
shallowest state and move to a deeper state if the processor
remains in a long enough sleep state. If idle periods are
short, as is common with short request service times, then
governors will consistently select shallow sleep states.

In the Baseline scheme, the processor operates at maxi-
mum frequency and uses the Linux menu governor [32] to
select C-states. We similarly use the Linux menu governor
to manage sleep states for Rubik (VFS-only), with fre-
quency states updated at every incoming request. SleepScale
(VES+Sleep) selects the optimal C-state and optimal fre-
quency based on historical profiling of idle lengths. Rather
than predicting idle period length at every idle event, and
frequency at every request arrival, SleepScale sets this at
a coarse-grain epoch level (every 60 seconds) to reduce
transition overheads, but at the cost of fine-grain opportuni-
ties. DynSleep (Deep Sleep) directly enters C6 and runs at
maximum frequency when active.

Observation 2: Dynamic power management breaks
down at microsecond request service times
Figure 1b shows the average power consumption of vari-
ous state-of-the-art dynamic power management techniques
across different request service times. For this experiment,
we simulated an exponential service distribution with vary-
ing average service time, shown on the x-axis, at a medium
(40%) load. We observed similar trends across other loads.
Based on our empirical experiments, we observed a typical
target tail latency to service time ratio of 5x, and therefore
set the target tail latency at 5x the average service time.

In general, as the request service time decreases, power
increases due to fewer opportunities for low power states.
In the 250-1000us range, we observe that dynamic power
management schemes that utilize DVFS provide the lowest
power due to having ample opportunity to slow down request
processing to save power. However, once the average service

request times drop below 250us, both DVFS-based and
Sleep-based techniques begin to break down. This is because
DVES techniques cannot handle the short-term variability
of short request service times and cannot find enough
opportunities to slow down request processing. Meanwhile,
Sleep techniques cannot enter a deep enough sleep state due
to short idle cycles. Surprisingly, techniques utilizing Sleep
begin to outperform techniques utilizing DVFS! This can be
explained by the trend in idle period lengths.

Observation 3: Short service times fragment idle periods
It is well known that utilization has a significant impact
on sleep opportunities [6, 18]. We additionally find that
request service time also have a significant impact on sleep
opportunities. Specifically, short request service time can
fragment idle periods into short idle periods that sleep states
cannot take advantage of. Figure lc shows the idle period
length (in us) under 200us service time (dotted line) and
500us service time (solid line). Similarly, we conservatively
set the target tail latency to 5x the service time.

Clearly, as service time decreases, idle period lengths
similarly decreases eventually leading to the ineffectiveness
of low power states. For example, the baseline curve in
Figure 1b can no longer save any power at ~80us service
time due to the inability to enter a deep sleep state. The
pervasiveness of shallow sleep states has already been ob-
served in Google’s production data center [13, 14].

In Figure 1c, we also observe that DPM schemes can
have a great effect on idle period length. Specifically, Sleep-
based techniques are able to significantly extend idle period
lengths, even under very short service times, by consolidat-
ing idle periods through delayed request processing. This
can be seen with the lack of short idle periods (<200us)
which is dominant in Rubik. In addition, the idle periods
for DynSleep with 200us service time is at least double that
of Rubik at 500us service time, enabling ample opportunities
for sleep states in latency-critical scenarios. Therefore, the
key to sustaining power savings under short service time is
by coalescing idle periods into longer idle periods that are
better utilized by sleep states.

Observation 4: State-of-the-art dynamic power manage-
ment suffers from significant transition andfor idle power
Existing state-of-the-art power management technique has
focused primarily on exploiting latency slack to save
power.In our experiments, we found that the energy over-
heads of idleness and state transition can accumulate and
account for a non-trivial fraction of energy consumption.
Figure 1d shows the energy consumption breakdown of
state-of-the-art power management techniques. For this ex-
periment, we ran a synthetic workload with average service
time 80 us, at the point where Baseline no longer saves
power. In this figure, total energy consumption is broken
down into 4 parts: (1) energy to process requests (busy),
(2) energy consumed when a core is idle—can also be in
a shallow C-state—and waiting for requests(idle), (3) the

Tail Latency Target = 800us

Solution:

o
Aggressive Deep Sleep v

Tail Service Time = 78us

©
-2
\ ©Z DVFS limitedi
imi in
VIR — oo aens G ¢

(o] \IIEVasled
ner
c3 \—\w l Eregy
C6 e . "

Residency Time = 3004
(a) Existing DPM limitations include inefficient sleep state manage-
ment, limited range of frequency states, and significant low-power
state transition overhead.

Solution:
Request Delaying

Tail Latency Target = 800us
Solution: ¢

N v
Aggressive Deep Sleep Tail Service Time = 78E5

y | RN
Cco
C3 \

—_—
C6

3

g Arrival

Solution:
Request Delaying ey

Residency Time = 300us
(b) uDPM: Careful coordination of aggressive deep sleep (elim-
inates idle power), request delaying (meets residency time), and
DVES (just-in-time target tail latency) can achieve energy savings
in microsecond workloads.

Tail Latency Target = 150us

o

v
Tail Service Time = 33ps

g

| R0 |
Cco
C3 \
C6 R — OO0 -

Residency Time = 300us

g Arrival
<

H

-

(c) Under extremely short tail latency targets and service times,
uDPM will sacrifice energy savings to meet quality-of-service.
Figure 2: Existing DPM limitations and uDPM overview.
Request arrival indicated with v. Target tail latency indicated
with . (a) and (b) labeled with SPECjbb timing. (c) labeled
with Memcached timing. Even with microsecond service
times, deep sleep can be utilized when properly coordinated
with request delaying and DVFS.

energy spent on C-state transitions (C-state tran.) and (4) the
energy spent on DVFS transitions (DVFS tran.). The energy
consumption is normalized to the total energy consumption
of Baseline. For comparison, we also include an “Optimal”
scenario which runs at the lowest frequency that satisfies
tail latency and assumes no idle power or C-state/DVFS
transition overheads.

Sleep overheads: Baseline, Rubik and SleepScale all
have significant idle energy due to sub-optimal sleep state
selection, which reflects our previous observations. This is
illustrated in Figure 2(a). When all requests are finished, the
Menu governor predicts a C-state to enter (in the figure, C3).
Since a shallow sleep state was selected, idle power is still
consumed. The processor’s power control unit (PCU) can
then independently decide to perform a C-state promotion
(C3 to Co) if it decides to sleep more aggressively [14]. This
behavior can also occur through OS control with the Ladder
idle governor. The processor then wakes up when a request
arrives. If the processor wakeup occurs before the C-state’s

target residency time, then overall, that sleep period would
have resulted in an increase in energy, rather than a decrease
in energy consumption. Dreamweaver partially addressed
this issue by batching requests, using a timeout mechanism,
to line up system-level idleness and increase sleep period
lengths. However, timeouts are not determined per-request
and do not fully exploit the latency slack available.

Idle energy accounts for 5% of total energy consump-
tion in Rubik and 15% in SleepScale. SleepScale tends to
conservatively predict a shallow C-state every epoch due
to coarse-grain updates every 60 seconds. However, this
also limits transition overheads to only 5% of total energy
consumption. DynSleep is able to directly enter C6 state and
delays request processing as long as tail latency constraints
are met. Due to this, idle energy consumption is virtually
non-existent. However, DynSleep suffers from significant C-
state transition overhead as some sleep events may not meet
the target residency time (18% of total energy consumption).

Frequency scaling overheads: Due to Rubik’s aggressive
DVFEFS reconfiguration at every request arrival, DVFS transi-
tion overhead accounts for 10% of total energy consumption.
In this paper, we conservatively assume the presence of fast
integrated on-chip voltage regulators and use a 10us DVFS
transition time. Many prior works have empirically observed
DVES transition times between 6-70us [33-37], with our
ACPI and cpupower tools reporting 10us transitions. Even
though fast on-chip voltage regulators may switch in 0.5us,
the internal microcontroller of the Power Control Unit [33]
spends significant time managing these voltage regulators,
resulting in longer transition latency. Because of this non-
insignificant transition latency, care must be taken while
designing power management scheme with DVFS.

In addition to DVFS transition overheads, DVFS also
have limited effectiveness during low utilization periods. As
illustrated in Figure 2(a), the processor would be the most
energy efficient if the frequency can be scaled so that Rl
can run slowly and finish just-in-time to meet the target
tail latency. If the frequency cannot scale this low, then
significant power savings opportunity can be lost.

This is also demonstrated in Figure 1b. At service times
above 250us, Rubik outperforms DynSleep due to the ben-
efits of DVES in slowing down requests. However, with
shorter request service time, DVFS cannot extend request
processing time, but Deep Sleep can delay request process-
ing time, in order to exploit latency slack for power savings.

Summary: From Observations 3 and 4, the key obstacles
to DPM under microsecond request service times are (1)
inefficient sleep state management, and (2) DVFS’ transition
overhead and limited ability in closing the latency gap at
low utilization. To solve these issues, this paper presents
uDPM, which aggressively deep sleeps to minimize idle
periods, delay wakeup to met C-state target residency time,
and coordinate frequency scaling to complete the request
just-in-time to meet the target tail latency constraint.

Can latency-critical workloads utilize deep sleep states?

It has been widely assumed that sleep states are not appli-
cable under strict tail latency constraints [13]. Surprisingly,
we found that deep sleep modes can be beneficial as long
as it is tail latency aware.

As shown before, short service times in latency-critical
workloads cause shorter idle period lengths, which often
times hampers sleep states and lead to performance penal-
ties. However, the order-of-magnitude difference between
the service time and the target tail latency provides
significant opportunity for dynamic power management.

Figure 2(b) illustrates this key insight, utilizing latency
and service time measurements from SPECjbb with tail
service time of 78us and tail latency target of 800us. A
request can arrive at any time when the core is in C6 and
can be safely delayed and processed without missing the
deadline (even in the worst-case scenario of R1 arriving just
as the core transitions to C6). As long as the difference
between the target tail latency and the tail service time is
somewhat greater than the C6 residency time, deep sleep
states can be effectively utilized. Compared to Figure 2(a),
uDPM also enables the processor to stay in deep sleep longer
and to make full use of the latency gap while coordinating
with DVFS.

Figure 2(c) illustrates a scenario with even tighter latency
constraints (150us), and extremely short request service time
(33us). In this scenario, the tail latency target is shorter than
the C6 residency time. Therefore, many requests that enter
during C6 will likely result in QoS violation (except for the
requests entering towards the end of the residency time). In
this scenario, QoS gets the priority and we will wake the
core up earlier with the goal of processing the request just-
in-time. Note that compared to Figure 2(a), the amount of
wasted energy is less. Note that naturally existing idle pe-
riods do exist, and uDPM can opportunistically consolidate
these idle periods with latency slack from request delaying to
meet residency time or minimize sleep overheads. No other
DPM technique is able to achieve this.

MI. uDPM

In this section, we detail uDPM, a dynamic power
management scheme for the microsecond era. We demon-
strate that through careful coordination of DVFS, sleep,
and request delaying, we can overcome the challenges
of microsecond-era applications. In addition, to minimize
state transition overheads, we introduce a criticality-aware
scheduler to coordinate scheduling across multi-core in order
to keep cores in its current power state.

A. Overview

The key insight driving uDPM is that by carefully
coordinating DVFS, sleep, and request delaying we can
delay and slow down request processing to finish just-in-time
to meet the target tail latency, even under the constraints of
microsecond request service time.

RO Arrival

R0

————————

Co
C3
Cé6

(a) Aggressive deep sleep and request delaying

R1 Arrival —Critical!

Q

RO r ® ocs
v ! Violation!
—
Cco R1 critical if
C3 tr1—tro< S

C6

(b) Critical request arrival

R1
RO Jig

v
QoS
| g
V. {
Increase frequency on wakeuyj
Co
Can sleep longer
c3 due to higher freq.
C6

(c) Re-configuration on critical request arrival

R1 R2 Arrival —Not Critical
RO **
QoS

Co
C3 \ ’
C6
(d) Non-critical request arrival
Figure 3: uDPM run-time illustrative example. (a) Aggres-

sively deep sleep when idle, and delay wakeup until the
request can finish just-in-time at lowest frequency setting.
(b) Arriving R1 is a critical request and will miss latency
target. (c) Increase frequency on wakeup to meet R1 latency
target. Due to the higher frequency, we can sleep longer as
R1 will complete faster. (d) A normative case with non-
critical request arrival. Request arrival indicator v. Target
tail latency indicator #.

d

We illustrate uDPM in Figure 3. In Figure 3(a), the mo-
ment a core is idle (e.g., when all prior requests complete),
uDPM immediately goes into the deepest sleep state (C6) in
order to save idle power. uDPM needs to maintain (1) when
to wake up, and (2) what frequency to run upon wake up.
We refer to these two parameters as a configuration. Upon
entering sleep, the configuration is reset with a null wake-
up time (representing stay asleep indefinitely), and with the
lowest frequency setting.

When RO arrives, the tail service time of RO is predicted
while running at the current frequency configuration, and
a wake-up time is set such that RO finishes just-in-time.
Instead of waking up the core at the latest moment and
processing at full speed to meet tail latency targets, we
wake up the core earlier and process the request at a slower
frequency to achieve a better trade-off between latency and
power savings. This is in contrast to Baseline, Rubik, and
SleepScale which wakes up upon request arrival; DynSleep

which runs at highest frequency; and DreamWeaver which
uses static timeout-based request delaying.

Figure 3(b) illustrates a scenario where a second request,
R1, arrives during an idle period and is determined to
violate QoS constraints given the current wake-up time and
frequency configuration. We define requests that will violate
QoS constraints as a critical request. Since we know that the
previous request satisfies QoS constraints, we can simply
detect a critical request by comparing if the inter-arrival
time between these two most recent requests is less than
the predicted tail service time of the incoming request.

Whenever a critical request arrives, we reconfigure the
wake-up time and frequency configuration. We first increase
the frequency until R1 meets QoS. Unlike Rubik, we only
increase frequency, and not decrease, to limit DVFS transi-
tion overhead. Since frequency increased, R1 will complete
faster enabling uDPM to sleep longer, increasing the idle
period length and still satisfy QoS.

Figure 3(c) shows a normative case where another arriving
request, R2, is not critical. In this scenario, R2 is satisfied
with the given wake-up time and frequency, and will there-
fore simply queue. Also, if a critical request arrives during
an active period, this simply triggers a frequency increase
as the wake-up time is void.

UDPM needs to determine: (1) When to wake up after
sleeping? and (2) What frequency to run at? The key is
to estimate the incoming request’s service time. This is
especially challenging in data centers due to short request
service time, which causes significant short-term variability
that often dominates tail latency [11, 38]. To account for this,
uDPM utilizes a statistical-based performance model [11]
and criticality-aware scheduling to recalculate wake-up time
and frequency at every critical request arrival. In addition,
uDPM will also consider transition overheads while deter-
mining the optimal wake-up time and runtime frequency.

B. Performance Modeling

Estimating Request Tail Service Time: To estimate
the tail service time of processing and queued requests,
we utilize a statistical performance model based on [11].
This model has been previously shown to be able to highly
accurate and can account for the high-variability in latency-
critical applications, as well as in capturing uncertainties
from co-location and memory interference through online
periodic resampling (ever 100ms) of service cycles distribu-
tion. With the addition of precomputed target tail tables, this
model can also compute the required frequency constraints
for each incoming request.

At a high-level, this model breaks down request pro-
cessing into two probability distributions: cycles spent in
compute, P[C = c], and time spent memory-bound, P[M =
t]. These probability distributions can be sampled online
through performance counters, for P[C = c], and through
CPI stacks[11, 39, 40] for P[M = t]. Because of the non-

deterministic request demands, the service time of a request
is often considered as a random variable. Previous work
similarly assumes that the service time for each request
is drawn independently from a single distribution [5, 11].
While it has been shown previously that different request
types can also have different distributions [27], we choose
to utilize a single distribution for simplicity, trading off a
small amount of power savings opportunity.

When multiple requests are in the queue, it is not suffi-
cient to just estimate request tail service time. We require
estimating the completion time of the requests upon wake up.
Therefore, the estimated completion cycle of a request Ri is a
random variable S;, with probability distribution P[S; = c].
The completion cycle distributions all draw from a single
distribution P[S = c], where S gives how many cycles it
takes to process one request. S is essentially a combination
of the compute cycle distribution, C, and memory time
distribution, M; § = C + Mf. To obtain the tail service
request time, we draw the 95th percentile of the distributions.

The cycle at which Ri completes, P[S; = c], can then
be computed as the n-fold convolution (*) of S, where n
is the number of queued request and processing request.
Unlike [11], we simplify our model by not conditioning the
currently processing request on elapsed cycles completed.
For example, in Figure 3(d), the estimated completion cycle
of R2 (the random variable §S,) is the sum of the random
variables S, S, and S, and is estimated as the following
convolution: P[S; =¢] = P[Sg =c¢] * P[S| =] = P[S =c].
Completion cycle can be simply converted to completion
time by dividing the core’s frequency.

Estimating Request Tail Latency: In order to determine
whether a request is critical or not, we first need to estimate
that latency of a given request. The estimated tail latency of
the request, L;, is given as follows:

Li=W+T,g + Tdvfs + % (D
, where W is the time until the core is scheduled to wake
up, Tyake is wake up transition time, Ty rs is the DVFS
transition time, and S; is the estimated tail completion
cycle to service request Ri as discussed prior, and f is the
operating frequency. Based on this latency model, we can
relate target tail latency, core frequency, and wake up time
to determine uDPMconfigurations.

Determining Critical Requests After estimating the la-
tency of arriving requests, we need to check whether or
not the arriving request is critical to determine whether a
configuration update is needed. By observing Figure 3 and
equation (1), a request is critical if

S tail
f

, where fz is the arrival time of a request R, and §
is the completion cycle distribution for a single request

IR — IRy <

2

(service only, no queueing). This is because the arrival time
between the current and previous request is too short for
processing one request. Intuitively, for a given wake-up/VFS
configuration, when the processor wakes up, it can process
a request every 37 seconds and meet the target tail latency
just in time. If requests arrive too close together, since the
previous request is scheduled to finish just in time to meet
the target tail latency, the current request will experience
longer latency than the previous one, exceeding the tail
latency target (as illustrated in Figure 3(b)). We will now
leverage this insight to simplify the calculation for new
wake-up time and frequency configurations.

Determining New Wake-Up Time and Frequency Con-
figuration. A critical request occurs when the incoming
request cannot meet QoS requirements. Therefore, we take
a 2-step approach. First, we need to determine the new
frequency. Conceptually, this can be illustrated in Figure 3(b)
as, What is the frequency requires to squeeze R1 to fit
between RO and the red line? This can be achieved as

Stail
TRiTargeICompletion - TRHCompletiun = T (3)
, where Tg TargeiComplerion 18 the target tail latency completion
time of Ri, and Tk,_, compierion 15 the completion time of Ri-7,
S is the completion cycle distribution for a single request,
and f” is the new frequency. Since all of these variables are
available by the time a request is determined to be critical,
the new frequency can be computed directly. To minimize
DVFEFS transition overheads, we limit frequency changes to
only increase, and not decrease. The frequency would then
reset to a lower level upon the next idle period.

Next, we determine the wake-up time. If a critical re-
quest arrives during an active period, then this step is not
necessary. As illustrated in Figure 3(b), this can be achieved
by essentially shifting all requests to the right, or as late
as possible, while still satisfying latency constraints. This
requires re-estimation of completion cycles for all queued
requests. [11] observed that queue size are typically under
10, and can be quickly re-sampled using target tail tables.
To determine the new wake-up time, we only need to get
the new completion time for the first queued request, Sy,
and then utilize Equation 1 to compute the new wake-up
time. If the wake-up time is determined to be shorter than
the residency time, then uDPM will wake up at the cost of
some energy overhead, as illustrated in Figure 2(c).

Impact of Mispredictions: A misprediction on request
service time is equivalent to misidentifying a critical request
and potentially violating SLA. Since our target tail latency
is based on 95th percentile tail latency, 5% of requests are
allowed to finish slower without violating SLA. Similarly,
we estimate 95th percentile fail service time, where there is
a 5% chance of misprediction for the first delayed request.
The chance of SLA violation decreases significantly for
subsequent queued requests due to summing the random

variables §;. For example, S|’s estimate is that the two
queued requests (RO and R1) will both finish at the tail,
which is extremely rare (0.25% chance). Therefore, our
estimates are already very conservative.

C. Minimizing State Transition Overheads

As shown in Figure 1d, transition overheads can account
for significant portions of power consumption. In uDPM, we
incur low power state transition overhead whenever a critical
request triggers configuration updates. While effective at
meeting the tail latency target, these configuration updates
result in wasted power. It is because the core will sleep less
and do no useful work during the state transition. In this
section, we propose a criticality-aware configuration scheme
to redirect requests and avoid unnecessary configuration
updates. In addition, this also helps absorb bursty request
spikes. Algorithm 1 shows the pseudo-code for this scheme.

When a request arrives at a core, there are 4 possible states
that the request could face based on its criticality and core’s
status: (1) the request is critical and the core is sleeping
(critical-sleeping); (2) the request is critical and the core is
active (critical-active); (3) the request is not critical and the
core is sleeping (noncritical-sleeping) and (4) the request is
not critical and the core is active (noncritical-active).

When a request is either noncritical-sleeping or
noncritical-active, no configuration update is needed, thus no
additional state transition will occur. A noncritical-sleeping
core is a core that is sleeping and already scheduled to
wake up so that the request will meet tail latency target.
When a request is critical-sleeping, the wake-up time and/or
frequency need to be updated. No additional C-state or
DVES transition is introduced because the core is sleeping
and only the frequency after wakeup and/or the scheduled
time of wakeup are changed.

The only case where a new transition is introduced is
when the core is sleeping with no scheduled wakeup (the
core is sleeping and have no arrived requests), and when a
request is critical-active where an additional DVFS transition
is needed. The goal of the criticality-aware scheduler is
to redirect the request to the core which makes it non-
critical. By doing so, we decrease the chances of triggering
configuration updates and DVFS state changes.

Based on equation (2), we define the criticality score of
a request for a core as:

Smil/f
IR, — IRy

criticality = 4)
, hence non-critical request will have criticality score less
than 1. Our algorithm first computes the criticality score of
that request for each core, and if there exists only one core
which makes the request non-critical, that core is selected
for processing. However, it is more than likely that multiple
cores can make the incoming request non-critical. In this
case, the non-critical sleeping cores are chosen for the

request to avoid the possibilities for future DVFS transition.
If multiple cores are still candidates, we select the core
which will process a request with the lowest extra energy.

The energy consumption for a given configuration (wake-
up time W and frequency f) is:

EW, f) = (W - Tsleep) Pigie + (Tsleep + Twake)

S; &)
Pmax + TdvfsPdvfs + 7 Pf

The first term in equation (5) is the idle period energy
with the idle power Pjj. and sleep transition time Tgecp.
The second term is the transition energy overhead of going
into and out of sleep mode. The third term is the DVFS
transition energy, and the last term is the active period energy
consumption with the estimated completion time of the last
queued request, S;/f, multiplied by the active power Py.
Note that we assume the idle period started at + = 0. If a
core candidate is already active, then the transition terms will
be 0. On the other hand, there are some cases that no core
can make the request non-critical, then we favor mapping
the request to the core where it initially arrived.

Another benefit brought from our criticality-aware sched-
uler is to mitigate bursty requests. When a burst of requests
arrives, especially during prolonged sleep periods, most of
the requests will be identified as critical. Our scheduler will
attempt to schedule them to cores that make them “non-
critical”, resolving burstiness. From algorithm 1, we can see
that the overhead of the criticality-aware scheduler is linear
to the number of cores in the processor. In our experiment,
this overhead is less than 2 us and is considered as part of
the request service time.

#DPM Implementation: uDPM simply requires the
performance models detailed previously. In order to derive
and calculate service time distributions, we make use of

Algorithm 1: Criticality-aware scheduling

1: non__critical _cores = ¢,non__critical _sleep cores = ¢
2: for each core do
3: compute core;’s criticality

4 if criticality < 1 then
5: non__critical _cores « non__critical _cores U core;
6: if core; is sleeping then
7 non__critical _sleep cores «
non__critical _sleep _cores U core;
8: end if
9: endif
10: end for

11: if non__critical _cores # ¢ then
12: ifnon_critical _sleep cores # ¢ then

13: return min (extra energy) in non_critical _sleep _cores
14: else

15: return min (extra energy) in non__critical _cores

16: endif

17: else

18: return min (extra energy) in all cores

19: end if

precomputed target tail tables [11]. Prior work has shown
that these tables can be periodically updated every 100ms
with only 0.2% overhead. Since we assume per-core DVFS
and per-core sleep state, we require a uDPM implementation
within every core. Due to the frequency of resampling
service time distribution, target tail tables are load sensative
and are able to capture high-variability unknowns such as in-
terference effects from co-location or multi-core interference
on shared resources. In addition, these target tail tables can
be incorporated into processor’s PCU to calculate wake-up
time and frequency state directly.

To detect critical request, we showed previously that we
only need to keep track of the previous incoming request’s
timestamp and the service time of the new request. In
addition, to calculate wake-up time in Equation (1) and
frequency in Equation (3) only requires simple arithmetic
computations once the service time has been determined
by the precomputed target tail tables. To support request
redirection for criticality-aware scheduling, we require either
software-level support through the request handling stack
(network, or asynchronous event libraries such as libevent),
or through hardware support with SmartNICs, where the
scheduling is offloaded to the NIC interface.

IV. EVALUATION

We evaluate uDPM using an in-house simulator with
various latency-critical data center workloads representative
of common microservices. Our simulator is a framework for
stochastic discrete-time simulation of a generalized system
driven by empirical profiles of a target workload (based on
BigHouse [30]). Empirical inter-arrival and service distri-
butions are collected from measurements of real systems
at fine time-granularity. Using these distributions, synthetic
arrival/service traces are generated and fed to a discrete-
event simulation that models the server’s active and idle low-
power modes. Latency measures (e.g., tail response latency)
are obtained by logging the start and finish time of each
request. Similarly, energy measures are obtained through the
weighted sum of the duration of idle, busy and transition pe-
riods with their corresponding power consumption. Similar
to previous works [11, 13, 14, 24, 41], we focus on CPU
power which is the single largest contributor to server power.

The power consumption at each processor C-state and fre-
quency step is collected from measurements of real systems
and is shown in Table I. Also, the uncore power (LLC and
some peripheral circuit) is measured as 10W. We model a 12-
core server, similar to our experimental server. Our processor
can support frequency from 1.2GHz to 2.7GHz. At peak, our
processor consumes 45W overall and 18W at active idle.
Unless otherwise stated, we use 10 us as DVFS transition
time, respectively. As mentioned previously, we use a 10us
DVES transition time as many prior works have empirically
observed DVEFS transition times between 6-70us [33-37],
even with fast on-chip integrated voltage regulators.

——Baseline Prototype ——Baseline Prototype
300 Q100
3 3 80
3200 5 60
3 o
R 40
§100 =t
= % 20
0 o 0
0 20 40 60 80 100 0 20 40 60 80 100

Load (%) Load (%)
Figure 4: Prototype uDPM is able to close the latency gap
and achieve lower power compared to Baseline.

Deep sleep states (C6) flushes and power gates local
L1 and L2 caches, and can incur longer transitions into
sleep and performance overheads due cold misses on wake
up [42]. We use 89 us as sleep state transition time, and
conservatively double this value when entering sleep to
account for cache flushing. To model cold miss penalty, we
add an additional 25us to the service time of the first request
that arrives during idle [42]. We also conservatively estimate
maximum power usage during sleep transition events.

A. Proof-of-concept Validation

We constructed a proof-of-concept, implemented with a
combination of user-space and kernel-space modifications,
to demonstrate the feasibility uDPM. The server has dual
Intel Xeon-E5 12-core processors, with 136GB memory.
In our experiments, Hyperthreading and Turbo Boost are
disabled. The details of each sleep state and frequency were
provided previously. The Baseline configuration uses the
default Linux Menu idle governor and DVFS handled by
intel _pstate driver.

uDPM consists of aggressive deep sleep, request delaying,
and coordinated DVFS. To implement aggressive deep sleep
we modified the Linux idle driver to go straight into C6.
Due to a lack of per-core DVFS in our processor, we set the
frequency at maximum. Therefore, the results presented in
our prototype is conservative. Request delaying is handled
through libevent, an asynchronous event handling library.

For our prototype, we implement uDPM with Memcached
[43, 44], which we observed to have the shortest service time
and shortest tail latency target (Table 2). We use two mul-
ticore servers, one client and one request processing server.
The client server establishes multiple TCP connections with
the server, emulating multiple clients. The inter-request time
distribution for each client is exponential and is scaled to see
the impact of different traffic loads.

We run Memcached [43] across 12 threads, with a fixed
one-to-one thread-to-core mapping to avoid run-to-run vari-
ance caused by the Linux thread scheduler [45]. We separate
the original worker thread into two threads: a scheduler
thread and request processing thread. The scheduler thread
consists of the libevent wrapper and the criticality-aware
scheduler, to also help queue and direct requests. In the
request processing thread, we run the uDPM performance
models to monitor the queues and determine wake up time
and frequency configurations. The request processing thread

u Prototype ® Simulation u Prototype ® Simulation
& 600 =5
g g
2 400 5 49
3 g 35
£ 200 | 3
: 1 ST |
= <
5 , muhhl s

10 20 30 40 500 60 70 80 90 10 20 30 40 50 60 70 80 90

Load(%)
Figure 5: Prototype vs simulation Vahdatlon.

has the ability to directly handle DVFS by directly writing
to MSRs. All scheduler threads are running on one core
mapped to the second processor.

Figure 4 presents the result of our proof-of-concept.
uDPMis highly effective at closing the latency slack, even
with the target tail latency as short as 150 us and without
the use of DVFS. Furthermore, at low loads where idleness
exists, uDPM is able to save a significant amount of power
using only sleep states without violating sub-millisecond tail
latency constraints. At low utilization, uDPM can reduce
power consumption by 18% of the peak power, with an
almost linear energy proportionality profile.

Simulator Validation: In addition, we validated our
simulation infrastructure against our prototype as shown in
Figure 5. In this figure, we ran Memcached with our pro-
totype server with Hyperthreading and Turboboost disabled.
We ran Memcached across a range of loads in order to verify
that our simulator’s power and performance model agrees
with a real system. The latency figure, which plots the tail
latency of the Baseline machine configuration, and the power
figure clearly demonstrates that our simulation model agrees
well with the actual behavior of the prototype system.

B. Workloads

Typical web application may consist of front-end web
server (e.g. Apache, NGINX), business logic (e.g. accounts,
catalog, inventory, ordering), databases or data stores (e.g.
Memcached, MongoDB, Redis), or specialized functionali-
ties, such as search engines and recommendation systems.
We select four different latency-critical workloads that are
representative of typical backend microservices.

Table II gives the workload characteristics of four appli-
cations we use in our evaluation. Throughout this paper, we
define the tail latency at the 95" percentile and the target tail
latency (SLA) as the tail latency of the applications running
at medium load without applying any power management
(similar to [11]). The service time was discussed in depth
in section II. We later show the result of varying target tail
latency and the effect on power savings in section IV-C.

Table II: Workload characteristics.

Avg. Tail Service Target Tail
Name Service -
. Time Latency
Time
Memcached [43, 44] 30us 33us 150us
SPECjbb [8, 11] 65us 78us 800us
Masstree [8, 11, 46] 246us 250us 1100us
Xapian [8, 11] 431us 1200us 2100us

Rubik Dynsleep

K35

230

2% 225
> 25 >

8o &20

815 315

e 910
§10 &

5 5

0 0

10% 20% 30% 40% 50%
Load

(a) Memcached

10% 20% 30% 40“/ 50% 60% 70%

(b) SPECjbb

Sleepscale

M“MMJII

Energy Saving (%)

=DPM

iy

30% 40% 50% 60%
Load

® Optimum
20

N

o
o

o

Energy Saving (%)

5

bl 1 |

10% 20% 30°/ 40"/ 50% 60%

o N A O ®

10% 20%

(c) Masstree (d) Xapian

Figure 6: Energy saving comparisons among different power management schemes.

Memcached and Masstree: We evaluate a common in-
memory key-value store used in many production data
centers, such as Google, Facebook and Twitter. Due to the
simple computational requirements, key-value stores involve
significantly less processing time per request (tens of mi-
croseconds). Because of this, key-value store has even tighter
tail latency constraints, typically on the order of hundreds
of microseconds. Key-value store adds to our analysis an
example of an ultra-low latency workload. We captured
traces (request arrivals and service time) from a real server
running Memcached. In addition, we use a different service
time distribution from Masstree [46] provided in [8, 11].

SPECjbb: Business logic makes up a large component
of many large-scale web applications such as e-commerce.
These business logic can include various functionality such
as sales, inventory, and customer management. We evaluate
SPEC;jbb [47], a Java middleware benchmark that simulates
supermarket company with various microservices covering
the services of supermarkets, suppliers, and headquarters.

Search: We evaluate the query serving portion of a
production web search service. Search requires thousands
of leaf nodes all running in parallel in order to meet the
stringent tail latency constraints. In search, most of the
processing is in the leaf nodes and account for the vast
majority of nodes in a search cluster, and are responsible for
an overwhelming fraction of power consumed[5, 48, 49]. We
use the service distributions of Xapian, provided in [8, 11]
as a representative search algorithm.

C. Results

We compare our results with three state-of-the-art power
management schemes: Rubik [11] (VFS-only scheme),
DynSleep [24] (sleep-only schemes), and SleepScale [22]
(sleep+VFS scheme). The results of Rubik are represen-
tative of other DVFS-only schemes, such as Pegasus and
TimeTrader [13, 23]. We model an optimistic Rubik design
that sets the maximum frequency as the nominal frequency.
SleepScale combines both Sleep state and DVFS selec-
tion. SleepScale requires long computation time for its
simulation-based prediction scheme, and therefore calculates
Sleep and DVES selection after every 1 second epoch [22].
For DynSleep we set the frequency at maximum and always
enters C6 deep sleep state upon encountering an idle period.
DynSleep is representative of other Deep Sleep techniques,

such as PowerNap [6] and DreamWeaver [18], but outper-
forms both due to its ability to harness per-core level idleness
instead of socket-level (full-system) idleness. In addition, we
also show the results for the “Optimum” scheme which has
no transition overheads and operates as follows: the core will
enter the deepest sleep state when idle and wake up instantly
as soon as the request arrives, similar to DynSleep. During
request processing, DVFES configuration is adjusted at each
request arrival instance, similar to Rubik. The idealized
optimum scheme serves as an upper bound of energy saving.

We consider processor level energy consumption, which
includes both core and uncore power. For energy saving
results, all schemes are compared with the default baseline
scheme, where all CPU cores are operated under maximum
frequency, and uses the Linux menu governor [32] to choose
the C-state during the idle periods. We also use the Linux
menu governor for C-state selection for Rubik.

Energy Savings: In figure 1d, we gave the energy con-
sumption breakdowns and show that uDPM can effectively
reduce busy and idle power, and the state transition power.
UDPM only incurs a 3% energy overhead for transition.
Here, we give the sensitivity studies of the energy saving on
different traffic loads and applications. Figure 6 reports the
energy saving results for four different applications across
different CPU loads. The CPU loads are adjusted by scaling
the inter-arrival time of requests.

Across all workloads, uDPM provides significantly more
energy savings. Typically, uDPM is within 2-3% of the
Optimum scheme, except for Memcached, which exhibits
the shortest service times. Here, transition time overheads
begin to dominate and uDPM starts to fall behind Optimum.
Nevertheless, uDPM still provides ~2x energy savings com-
pared to all other schemes.

Another noteworthy trend is that at high utilization, most
schemes are not able to provide any power savings at
all because the utilization exceeds the utilization that the
target tail latency was set. However, in some cases, like
in SPECjbb, Masstree and Xapian, uDPM is still able to
squeeze out modest energy savings where all other DPM
fails. These results demonstrate that request delaying and
sleep states are the key to saving power at high utilization
with sub-millisecond latency constraints.

For extremely low latency workloads, such as Memcached

and SPECjbb, the major energy inefficiency is the idle period
energy consumption as demonstrated earlier in this paper.
Therefore, sleep-based techniques provide better energy sav-
ings than DVFS-based techniques. SleepScale achieves good
energy saving by selecting the best C-state and DVFS pair
through design space exploration. However, because of the
short natural idle periods, cores can only enter shallow sleep
states during the short idle periods. Therefore, significant en-
ergy saving can be achieved by delaying request processing
to create longer idle periods, as in the case of DynSleep.
With uDPM, we can achieve up to 26% energy saving for
Memcached and 32% for SPECjbb, compared with the next
best technique, DynSleep, at 12% and 18%, respectively.

For applications with relatively higher request processing
time (Masstree and Xapian), the achieved energy savings
are relatively lower as the baseline scheme is also able
to take advantage of longer natural idle periods and enter
deep sleep states. All existing schemes perform similar in
terms of energy saving. DynSleep provides only moderate
energy saving. Longer processing time means longer nature
idleness, and further prolonging these idle periods will only
give marginal return in energy saving. SleepScale typically
outperforms all other schemes, except for uDPM, because
it chooses the C-state and DVFS configuration with lowest
power by exploring the entire C-state and DVFS’s design
space. Longer idle periods here allows SleepScale to nat-
urally enter deeper sleep states. uDPM achieve up to 17%
energy saving for Masstree and 8% for Xapian, compared
with the next best technique, at 8% and 5%, respectively.

Contrary to existing assumptions that sleep states cannot
be used in latency-critical workloads [11, 13, 23], these
results demonstrate the need to coordinate delay request
processing, sleep and DVFS power management with mi-
crosecond latency constraints.

Reducing State uslocp #VFS
Transition Overhead: £* A Temcached
. o : Xapian
Figure 7 shows the 16%

normalized state transition ;
count with our criticality-

C : Masstree
D : SPECjbb

12%

8%
awareness algorithm. The 4% I I I
results are normalized to o e b
the sum of C-state and Fjgure 7: State transition reduc-

DVEFS transition counts in tjon with criticality-awareness.
uDPM without criticality-

awareness scheduling. We can see that criticality-awareness
effectively reduces the C-state and DVFS transition overhead
to less than 20% of the baseline uDPM. For all applications,
at low load, the majority overhead reduction is for DVFS,
and at high load, for C-state. At low load, it is easier to find
the sleeping core which makes requests non-critical. As a
result, more DVFS transition is avoided. On the other hand,
it is harder to find cores that can make requests non-critical
at high load, hence criticality-awareness will try to avoid
C-state transition since it has higher power overheads.

of State transition (norm.

Tail latency (WUDPM)
==-Target tail latency

—— Tail latency (SleepScale)
— Traffic load
100%

80%
60%
40%
20%

2

Traffic load (% of peak)

Tail latency (%

0%
0 350 700 1050 1400 0 350 700
Time (minute)

1050 1400
Time (minute)

Figure 8: Tail latency under varying traffic load.

Rubik DynSleep SleepScale ==—=uDPM =——pDPM w/ criticality-awareness

:\330 :\528
£ 2 / _§21 /
3 § 14
510 5 7
N 2o

80 130 180 230 280
Latency contraint (us)

(a) Memcached
12

400 700 1000 1300 1600
Latency contraint (us)

(b) SPEC;jbb

Energy saving (%)

o w o ©

Energy saving (%)
w o

600 1100 1600 2100
Latency contraint (ps)

1200 2200 3200 4200
Latency contraint (us)

(c) Masstree (d) Xapian
Figure 9: Sensitivity to target tail latency.

Responsiveness to Load Changes: uDPM’s design also
allows it to respond instantaneously to sudden changes in
input load. Since wake-up time and frequency are updated
at every critical request arrival, uDPM reacts to the changes
in the inter-request arrival time immediately (Rubik and
DynSleep have similar behavior). Figure 8 shows how
UDPM responds to sudden load change with Masstree. We
compare with SleepScale using a 60s epoch as in [22]. The
input load trace is shown on the right, which we gather from
our institution’s data center. The target tail latency is defined
as the tail latency under maximum load (80%) from the
trace. The 95™ percentile latency for SleepScale and uDPM,
sampled every 1 second, is shown in the left. First, we can
see that SleepScale cannot close the latency gap under low
load and cannot always satisfy the target tail latency; due to
its history-based prediction, it can not react to sudden load
changes, resulting in multiple target tail latency violations.
uDPM is able to achieve stable tail latencies under all loads.
At low load, uDPM delay requests and wake up the core
later, processing requests at a lower rate, and achieve tail
latency close to the latency bound while saving additional
power. Also, it adapts quickly to sudden load changes and
burst, through criticality-aware scheduling which can absorb
bursts through scheduling to cores with least criticality.

Sensitivity to Tail Latency Constraint: In data centers,
the target tail latency is usually defined at the peak load.
Previously, we assumed that the SLA is set at 50% load.
However, there might be some cases that the peak load is

uDPM === Rubik
—— UDPM w/ criticality- HDPM
30 H wi eriticality-awareness === IDPM W/ criticality-awareness
30
25

|

N
<]

=)

Energyr Saving (%]

o

&
Energy Saving (%)

0\

0 100 200 300 0 20 40 60 80 100
sleep transition time(usec) VFS transition time (usec)

o

Figure 10: Sensitivity to transition time.

different. Figure 9 shows the energy savings with different
tail latency constraints. The x-axis is the latency constraint
for each application, and the y-axis is the energy savings
achieved for that target tail latency constraint. As expected,
energy savings generally decreases as the SLA gets tighter
in all four applications and all schemes. The rate of this
decrease is highly related to the application characteristics.
For Memcached, the energy saving quickly drops to O as la-
tency constraint decreases under all schemes, except uDPM
with criticality-awareness because the latency slacks become
smaller than the resident time of deep sleep state and the
DVES transition latency. We achieve better energy saving as
latency constraint decreases due to the coordination request
delaying and request rescheduling among cores. For other
workloads, the energy savings are more resistant to the
latency constraint because of the relatively larger latency
slack. uDPM consistently outperforms all other schemes in
four applications and all latency constraint levels. uDPM
consistently outperforms all other schemes by saving power
over 3x in Masstree, and 2x in SPECjbb and Xapian.

V. DISCUSSION AND CONCLUSION

Need for faster DVFS and sleep transition. The chal-
lenges presented by microsecond service times also moti-
vates the need for faster low power state transitions to take
advantage of shorter idle periods and shorter service times.
For example, faster DVFS transitions would require im-
provements to integrated voltage/frequency regulators [33],
and faster sleep states can be achieved through integration
of non-volatile memory components [50, 51].

Even with the introduction of faster low power state
transition, careful coordination of DPM is still required. In
Figure 10, we characterize how improved DVFS and sleep
transition impacts the effectiveness of uDPM. We present
results for Memcached at 10% load. For comparison, we
present the results for Rubik, in Figure 10 (right). Even with
idealized Ous transition time, uDPM outperforms Rubik due
to the added benefits of coordinating deep sleep and request
delaying. Since uDPM determines the configuration con-
sidering both sleep and DVFS transition overheads, it will
dynamically balance the use of each scheme. With higher
state transition overheads, criticality-awareness sees clear
benefits by reducing state changes. This enables uDPM to
be more resistant to state transition overhead changes.

Opportunities from microservice chains. For microservice
applications, end-to-end latency typically involves a chain

of individual microservices [52]. There holds significant
promise in coordinating latency slack for power savings
across microservice chains [52-54]. We hope uDPM can
form the foundation for future work that borrow latency
slack from other microservices.

Attack of the Killer Microseconds. With the emergence
of microservice software architectures and low-latency I/O
devices (e.g. NVM storage, faster data center networking),
the “killer microsecond” presents challenges across the
entire data center stack. Recent works have tackled the
challenges of thread scheduling for microsecond applications
[55, 56] and hiding microsecond device access latency [3].
Concurrent to our work, Duplexity [57] seeks to improve
server utilization and efficiency in the face microsecond-
scale stalls. Our work hopes to contribute to the foundation
of this emerging problem space by highlighting the chal-
lenges and opportunity for dynamic power management in
the “killer microsecond” era.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their invaluable comments and suggestions. This work
is partly supported by NSF grant CCF-1815643, California
Energy Commission grant EPC-16-030, and the University
of California, Riverside.

REFERENCES

[1] D. Namiot and M. Sneps-Sneppe, “On micro-services architecture,”
International Journal of Open Information Technologies, vol. 2, no. 9,
2014.

[2] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack of
the killer microseconds,” Commun. ACM, vol. 60, no. 4, pp. 48-54,
Mar. 2017.

[3] S. Cho, A. Suresh, T. Palit, M. Ferdman, and N. Honarmand, “Taming
the killer microsecond,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018.

[4] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,”
in International Symposium on Computer Architecture (ISCA), 2015.

[5] L. A. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The
google cluster architecture,” IEEE micro, vol. 23, no. 2, pp. 22-28,
2003.

[6] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: Eliminating
server idle power,” in Intl. Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2009.

[7] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” in International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS), 2014.

[8] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with strict
qos for latency-critical workloads,” in International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2014.

[9] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sen-
sible co-locations,” in International Symposium on Microarchitecture
(MICRO), 2011.

[10] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise
online qos management for increased utilization in warehouse scale
computers,” in International Symposium on Computer Architecture
(ISCA), 2013.

[11] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:
Fast analytical power management for latency-critical systems,” in
International Symposium on Microarchitecture (MICRO), 2015.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]
[32]

[33]

[34]

D. Wong and M. Annavaram, “Knightshift: Scaling the energy pro-
portionality wall through server-level heterogeneity,” in International
Symposium on Microarchitecture (MICRO), 2012.

D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
“Towards energy proportionality for large-scale latency-critical work-
loads,” in Intl. Symposium on Computer Architecuture (ISCA), 2014.
S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks, “Tradeoffs
between power management and tail latency in warehouse-scale appli-
cations,” in International Symposium on Workload Characterization
(1IISWC), 2014.

D. Wong and M. Annavaram, “Implications of high energy propor-
tional servers on cluster-wide energy proportionality,” in Intl. Symp.
on High Performance Computer Architecture (HPCA), 2014.

D. Wong, “Peak efficiency aware scheduling for highly energy propor-
tional servers,” in International Symposium on Computer Architecture
(ISCA), 2016.

E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling:
The laws of diminishing returns,” in HotPower, 2010.

D. Meisner and T. F. Wenisch, “Dreamweaver: Architectural support
for deep sleep,” in International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2012.
N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J.
Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s
law meets static power,” IEEE computer, vol. 36, no. 12, 2003.

Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson,
and P. Bose, “Microarchitectural techniques for power gating of exe-
cution units,” in International Symposium on Low Power Electronics
and Design (ISLPED), 2004.

A. Lungu, P. Bose, A. Buyuktosunoglu, and D. J. Sorin, “Dynamic
power gating with quality guarantees,” in International Symposium on
Low Power Electronics and Design (ISLPED), 2009.

Y. Liu, S. C. Draper, and N. S. Kim, “Sleepscale: Runtime joint speed
scaling and sleep states management for power efficient data centers,”
in International Symposium on Computer Architecuture (ISCA), 2014.
B. Vamanan, H. B. Sohail, J. Hasan, and T. N. Vijaykumar, “Time-
trader: Exploiting latency tail to save datacenter energy for online
search,” in Intl. Symposium on Microarchitecture (MICRO), 2015.
C.-H. Chou, D. Wong, and L. N. Bhuyan, “Dynsleep: Fine-grained
power management for a latency-critical data center application,” in
Intl. Symp. on Low Power Electronics and Design (ISLPED), 2016.
X. Zhan, R. Azimi, S. Kanev, D. Brooks, and S. Reda, “Carb: A c-
state power management arbiter for latency-critical workloads,” IEEE
Computer Architecture Letters, vol. PP, no. 99, pp. 1-1, 2016.

D. H. K. Kim, C. Imes, and H. Hoffmann, “Racing and pacing to idle:
Theoretical and empirical analysis of energy optimization heuristics,”
in International Conference on Cyber-Physical Systems, Networks,
and Applications (ICCPS), 2015.

C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch,
L. Tang, J. Mars, and R. G. Dreslinski, “Adrenaline: Pinpointing and
reining in tail queries with quick voltage boosting,” in Intl. Symp. on
High Performance Computer Architecture (HPCA), 2015.

C. H. Chou and L. N. Bhuyan, “A multicore vacation scheme for
thermal-aware packet processing,” in International Conference on
Computer Design (ICCD), 2015.

M. Elnozahy, M. Kistler, and R. Rajamony, “Energy conservation poli-
cies for web servers,” in USENIX Symposium on Internet Technologies
and Systems (USITS), 2003.

D. Meisner, J. Wu, and T. FE. Wenisch, “Bighouse: A simulation
infrastructure for data center systems,” in International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2012.
“Intel idle driver for linux,” http://Ixr.free-electrons.com/source/
drivers/idle/intel _idle.c.

V. Pallipadi, S. Li, and A. Belay, “cpuidle: Do nothing, efficiently,”
in Proceedings of the Linux Symposium, 2007.

E. A. Burton, G. Schrom, F. Paillet, J. Douglas, W. J. Lambert,
K. Radhakrishnan, and M. J. Hill, “Fivrfully integrated voltage
regulators on 4th generation intel® core socs,” in Applied Power
Electronics Conference and Exposition (APEC), 2014.

J.-T. Wamhoft, S. Diestelhorst, C. Fetzer, P. Marlier, P. Felber, and
D. Dice, “The TURBO diaries: Application-controlled frequency
scaling explained,” in USENIX Annual Technical Conference, 2014.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

D. Hackenberg, R. Schne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An energy efficiency feature survey of the intel haswell
processor,” in International Parallel and Distributed Processing Sym-
posium Workshop, 2015.

A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby, “Evaluation of
cpu frequency transition latency,” Computer Science - Research and
Development, vol. 29, no. 3, pp. 187-195, Aug 2014.

Y. Bai, V. W. Lee, and E. Ipek, “Voltage regulator efficiency
aware power management,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2017.

M. Jeon, Y. He, S. Elnikety, A. L. Cox, and S. Rixner, “Adaptive
parallelism for web search,” in European Conference on Computer
Systems (EuroSys), 2013.

R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt, “Predicting perfor-
mance impact of dvfs for realistic memory systems,” in International
Symposium on Microarchitecture (MICRO), 2012.

S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A perfor-
mance counter architecture for computing accurate cpi components,”
in International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2006.

X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in International Symposium on Computer
Architecture (ISCA), 2007.

M. Arora, S. Manne, 1. Paul, N. Jayasena, and D. M. Tullsen,
“Understanding idle behavior and power gating mechanisms in the
context of modern benchmarks on cpu-gpu integrated systems,” in Intl.
Symp. on High Performance Computer Architecture (HPCA), 2015.
“Memcached,” http://memcached.org/.

M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: A study of emerging scale-out workloads on
modern hardware,” in Intl. Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2012.
J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of the
tail: Hardware, os, and application-level sources of tail latency,” in
Symposium on Cloud Computing (SoCC), 2014.

Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast
multicore key-value storage,” in European Conference on Computer
Systems (EuroSys), 2012.

“Specjbb,” http://www.spec.org/jbb2013/.

L. A. Barroso and U. Holzle, “The case for energy-proportional
computing,” I[EEE Computer, 2007.

J. Dean, “Challenges in building large-scale information retrieval
systems: Invited talk,” in International Conference on Web Search
and Data Mining (WSDM), 2009.

Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M. Chiang, Y. Yan, B. Sai,
and H. Yang, “A 3us wake-up time nonvolatile processor based on
ferroelectric flip-flops,” in Proceedings of the ESSCIRC, 2012.

X. Pan and R. Teodorescu, “Nvsleep: Using non-volatile memory to
enable fast sleep/wakeup of idle cores,” in International Conference
on Computer Design (ICCD), 2014.

Y. Hu, C. Li, L. Liu, and T. Li, “Hope: Enabling efficient service
orchestration in software-defined data centers,” in International Con-
ference on Supercomputing (ICS), 2016.

C. Delimitrou, “The hardware & software implications of microser-
vices and how big data can help,” in Eighth Workshop on Architectures
and Systems For Big Data (ASBD), 2018.

H. Yang, Q. Chen, M. Riaz, Z. Luan, L. Tang, and J. Mars, “Pow-
erchief: Intelligent power allocation for multi-stage applications to
improve responsiveness on power constrained CMP,” in International
Symposium on Computer Architecture (ISCA), 2017.

H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout, “Arachne: Core-
aware thread management,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018.

A. Sriraman and T. F. Wenisch, “ptune: Auto-tuned threading for
OLDI microservices,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

A. Mirhosseini, A. Sriraman and T. F. Wenisch, “Enhancing Server
Efficiency in the Face of Killer Microseconds,” in Intl. Symp. on High
Performance Computer Architecture (HPCA), 2019.

