
Goldilocks: Adaptive Resource Provisioning in Containerized Data Centers

Liang Zhou, Laxmi N. Bhuyan, K. K. Ramakrishnan

Computer Science and Engineering Department

University of California Riverside, USA

lzhou008@ucr.edu, {bhuyan, kk}@cs.ucr.edu

Abstract—Power management in data centers is challenging
because of fluctuating workloads and strict task completion time
requirements. Recent resource provisioning systems, such as Borg
and RC-Informed, pack tasks on servers to save power. However,
current power optimization frameworks based on packing leave
very little headroom for spikes, and the task completion times
are compromised. In this paper, we design Goldilocks, a novel
resource provisioning system for optimizing both power and task
completion time by allocating tasks to servers in groups. Tasks
hosted in containers are grouped together by running a graph
partitioning algorithm. Containers communicating frequently are
placed together, which improves the task completion times. We
also leverage new findings on power consumption of modern-
day servers to ensure that their utilizations are in a range
where they are power-proportional. Both testbed implementation
measurements and large-scale trace-driven simulations prove
that Goldilocks outperforms all the previous works on data
center power saving. Goldilocks saves power by 11.7%-26.2%
depending on the workload, whereas the best of the implemented
alternatives, Borg, saves 8.9%-22.8%. The energy per request
for the Twitter content caching workload in Goldilocks is only
33% of RC-Informed. Finally, the best alternative in terms of
task completion time, E-PVM, has 1.17-3.29 times higher task
completion times than Goldilocks across different workloads.

I. INTRODUCTION

Typically, data centers (DC) are over-provisioned so as

to satisfy application’s Service Level Agreements (SLA) at

peak loads. Servers in data center usually operate at 20-

30% utilization [1]–[3] and the network link utilizations are

around 10% [4], [5]. Running servers and the Data Center

Network (DCN) at such low utilizations wastes power [5].

This has prompted a large number of research efforts on power

management in data centers, considering both packing tasks

on servers and consolidating traffic in the DCN [5]–[8].

However, ‘right sizing’ the data center resources has proved

to be challenging due to workload variability [9] and having to

meet strict SLAs [10]. Also, to the best of our knowledge, no

solution exists that minimizes power as well as task completion

time. The difficulty arises in that a number of factors such as

multi-dimensional resource constraints [11], server energy effi-

ciency [12], fluctuating workloads [4], communication affinity

[13], etc., have to be considered. A holistic approach is

needed to strike a balance between power consumption and

application’s performance.

State-of-the-art task placement frameworks such as Borg

[14] and RC-Informed [15] pack tasks in containers or Virtual

Machines (VMs) into a few high utilized servers without

violating the resource constraints. To increase the packing

efficiency, Borg aims to reduce stranded resources [14] when

only some but not all resources on a machine are fully allo-

cated. RC-Informed, on the other hand, over-subscribes CPU

resources [15]. Instead of increasing the packing efficiency, the

mPP algorithm in pMapper [16] places VMs on servers having

the lowest power increase per unit of utilization. On the other

hand, E-PVM [17] places VMs on a server with the lowest

utilization to leave a large headroom for load spikes and has

good task completion time. These approaches improve either

power consumption [14]–[16] or task completion time [17],

but are unable to achieve improvements in both dimensions.

Considering affinity between VMs while packing [13], [18]

is a promising approach to improve power consumption as

well as task completion time. However, a VM potentially

communicates with a very large number of other VMs. For

example, in a representative trace from Microsoft for search,

the average number of distinct connections per VM is 45 [19].

The rich interactions between VMs makes it difficult to use

locality-aware placement policies designed earlier [19].

In this paper, we present a graph-based approach,

Goldilocks, to elegantly solve the complex resource ‘right siz-

ing’ problem in data centers to optimize both power and task

completion time. Goldilocks uses containers (as an example)

to host tasks instead of VMs as they are more light-weight and

flexible [20], [21], but can be easily applied to a VM-based

data center as well. Unlike placing stand-alone containers

[11], [14]–[18], Goldilocks partitions groups of containers

before assigning the container groups to the servers. A prior

work [22] maps the VM-clusters to server-clusters based on

a clustering algorithm with simplistic assumptions, such as

unlimited network bandwidth. Moreover, the data center power

is not optimized.

In Goldilocks, two kinds of graphs are considered in the

partitioning algorithm: a) a capacity graph, representing data

center’s total resources and b) a container graph with resource

demands as the vertex weights and inter-container communi-

cation as edge weights. By running the recursive graph bipar-

titioning algorithm in METIS [23] with the min-cut objective

function, containers with high communication frequency are

grouped together. The load for each container group is auto-

matically balanced in the algorithm. Goldilocks significantly

improves the task completion time as containers with frequent

communication are placed close together in the DCN topology.

The power saving is achieved by packing groups of containers

into a minimal number of servers, so that unused servers are

turned off. We first solve the container group packing problem

in symmetric Clos topology. We then extend our algorithm to

the asymmetric topology with heterogeneous servers.

666

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00072

In addition to the graph partitioning algorithm, we re-

examine the conventional wisdom regarding power manage-

ment [1], [2], [5]. A common sense strategy for energy

efficient data centers has been to run some servers close to

100% utilization (with a small safety margin [5]), and turn off

idle servers for maximal power savings [9], [24]. However,

SLA violations for latency-sensitive applications [8] can be

a major concern when servers become over-loaded due to

burstiness of the workload. In Goldilocks, we operate servers

at Peak Energy Efficiency (60-80% utilization) [12], which

is defined as the point to achieve the maximum number of

operations completed per watt. Such a strategy saves more

total server power and leaves a much larger headroom to deal

with instantaneous load fluctuations.

Packing traffic in the network [5], [6], [25] has been

proposed to save DCN power. However, the flow completion

time [26] and scalability [6] becomes a major concern. Also,

since the DCN contributes to only 15-20% of the total power

consumption in a data center [5], [6], [25], we turn off the idle

switches and links only after packing the containers, while

avoiding the complexities of traffic scheduling. A few extra

backup paths [6] are reserved for bursty traffic.

To demonstrate the feasibility of Goldilocks, we imple-

mented a seamless Docker container migration framework on a

16-server testbed. For the Twitter content caching application,

Goldilocks saves 11.7% power, with the variation seen in

Azure cloud trace [15] and 22.7% power on the variability seen

in Wikipedia trace [27]. Comparatively, the best of alternatives

(i.e., Borg) saves 8.9% and 21%, respectively. Although Borg

and Goldilocks have somewhat similar power saving results,

the energy consumption per request for Borg is 3.5 times that

of Goldilocks. Because of the locality-focused partitioning and

large headroom for load fluctuation, Goldilocks produces at

least 2.56 times of better task completion times, compared

with any of the implemented alternatives. Our large scale trace

driven simulation, based on Microsoft traces [19], reiterates the

significant power saving and reduced task completion time of

Goldilocks. Our major contributions include:

• We propose a holistic graph-based approach for resource

provisioning in containerized data centers. This approach

places containers closely to minimize power consumption

and task completion time.

• A number of resources and performance considerations

are taken into account, such as CPU, memory, network,

migration overheads and workload fluctuation.

• We propose to achieve Peak Energy Efficiency for servers

that maximizes performance for the energy consumed.

• We implement Goldilocks in a data center testbed, includ-

ing seamless Docker container migration between servers.

We show results both from the implementation and a large

scale simulation based on a Microsoft Azure trace.

The rest of this paper is organized as follows. Section II

analyzes the Peak Energy Efficiency of servers. Section III and

Section IV present the graph-based resource provisioning al-

gorithm on symmetric and asymmetric topology, respectively.

Fig. 1. The distribution of Peak Energy Efficiency utilization for the SPEC
power benchmark [28].

Section V gives the implementation details. Section VI shows

the implementation and evaluation results. Finally, Section VII

concludes the paper.

II. PEAK ENERGY EFFICIENCY

In energy efficient computing, the basic assumption is that

server power increases linearly as we increase the utilization

[37], [38]. This linear power curve assumption is the basis for

a number of efforts [3], [7], [8] to consolidate server load, turn

off idle servers and thus save static server power. Usually, the

servers are packed to 100% maximal utilization. However, the

latency of application might increase due to longer queuing

time. The SLA violation becomes a concern as there is little

room to accommodate workload variation [10].

We observed that the server power increases quickly beyond

a point on the load vs. power curve. Load means the quotient

of current request rate and maximum possible request rate on

the server. In this paper, we define Peak Energy Efficiency

as achieving the maximum number of operations per watt

[12]. When servers operate at higher utilization than the

Peak Energy Efficiency, power increases faster than the load

because of automatic frequency boosting [26] and increase in

temperature requiring higher fan speeds [8]. Fig. 1 (a) shows

the normalized power of 2 recent servers, as we vary the load.

The power is normalized to maximum power consumption

at 100% load, to avoid focusing on the differences among

systems from different vendors. The major take-away of this

result is that the power consumption vs. load was mostly linear

until 2010, but not any more. As also observed with the Dell-

2018 curve, power increases much faster beyond the Peak

Energy Efficiency point [12]. For comparison, the dotted line

shows what would be a linear increase if it was strictly power

proportional.

The cubic power curve after Peak Energy Efficiency utiliza-

tion in Fig. 1 (a) is due to Dynamic Voltage Frequency Scaling

(DVFS) [2], [3], [26], [37] on modern server. In DVFS, power

(a) Active Server

0

200

400

600

800

1000

0 20 40 60 80 100

Ac
tiv

e
Se

rv
er

Load (%)

95.75 84.656

93.968

0

50

100

150

200

250

0 20 40 60 80 100

Po
w

er
 (k

w
)

Load (%)
(b) Power

Fig. 2. Operating servers at the Peak Energy Efficiency utilization consumes
the least total server power.

667

TABLE I
THE CONFIGURATION OF 5 DIFFERENT DATA CENTERS.

of Server # of Switch # of Link Power Model

Google [29] 98304 (40G)
2048 ToR (32X40G up, 32X10/40G down)
3584 Fabric (32X40G up, 32X40G down)

147456
96W SoC server (Facebook 1S [30]), 630W
ToR/Fabric switch (2 HPE Altoline 6940 [31])

Facebook [32] 184320 (10G)
4608 ToR (4X40G up, 48X10G down)
576 Fabric (48X40G up, 48X40G down)

36864
96W SoC server (Facebook 1S), 282W ToR (Facebook
Wedge [33]), 1400W Fabric (Facebook 6 Pack [33])

VL2(96) [34] 46080 (10G)
2304 ToR (2X40G up, 20X10G down)
144 Fabric (96X40G)

9216
250W Microsoft blade server [30], 282W ToR
(Facebook Wedge), 1400W Fabric (Facebook 6 Pack)

Fat-tree(32) [35] 32768 (10G) 1280 (32X40G) 2048
250W Microsoft blade server
315W switch (HPE Altoline 6940)

Fat-tree(72) [35] 93312 (10G) 6480 (72X10G) 10368
250W Microsoft blade server
315W switch (HPE Altoline 6920 [36])

Fig. 3. The power breakdowns on 5 different data centers.

P equals C ∗ V 2 ∗ f , where C is capacitance, V is voltage

and f is frequency. At low loads, the voltage V does not scale

down further because it is already low. Only the frequency f
scales down. This explains the linear power curve below the

Peak Energy Efficiency. At high loads, both voltage V and

frequency f will scale up, which results in the increase in

power according to the cubic law. Fig. 1 (b) shows the Peak

Energy Efficiency utilization results of 419 servers subjected

to the SPEC request/response transaction workloads [28]. The

Peak Energy Efficiency utilization for each server is obtained

by analyzing the SPEC power benchmark results uploaded by

vendors. This benchmark exercises the CPU, Cache, Memory,

I/O as well as the operating system. 100% load is defined as

the maximum number of requests that can be supported by

the server. The Y-axis on Fig. 1 (b) is the share of each listed

Peak Energy Efficiency utilization (i.e., 100% to 60% load)

for a specific year. Each color represents one kind of Peak

Energy Efficiency utilization. We can observe that most of the

servers in 2010 have the Peak Energy Efficiency at 100% server

utilization. During recent years, the Peak Energy Efficiency

utilization of servers has already moved to the range of 60-

80% utilization.

Let us examine how running servers at Peak Energy Effi-

ciency can be beneficial in a data center context. There are two

benefits: better power saving and higher tolerance for workload

fluctuation. Consider placing a group of containers in a cluster

of 1000 servers. Fig. 2 (a) shows that fewer servers are needed

as we increase the load per server. The corresponding total

power consumption is depicted in Fig. 2 (b). Servers have

the same power model as Dell-2018 in Fig. 1 (a), which has

Peak Energy Efficiency at 70% utilization. We can observe an

obvious ‘U’ curve for total server power. The maximum power

is saved when servers are packed only up to 70% utilization.

Lowering the utilization allows us to tolerate burstiness

of data center workloads [4], [15], [39] and have shorter

latency. Workloads across applications in a cloud data center

might also be correlated [40]. We calculated the Pearson

correlation [41] of 1500 VMs in the Microsoft Azure trace

[15]. 99.8% of time the Pearson correlation is between 0.6

and 0.8, indicating (pair-wise) that VMs might ‘burst’ at the

same time. Packing servers to the Peak Energy Efficiency

leaves sufficient headroom to accommodate burstiness in the

workload. Using just bin packing with a target of 100% server

utilization [7], [8], tasks have to be migrated when the server

becomes overloaded to avoid violating the application’s SLA

requirement.

In the DCN, we turn off idle switches and links. Table

I gives the configuration of 5 different data centers such as

Google’s Jupiter [29] and Microsoft’s VL2 [34]. Because the

power models are not given [29], [32], [34], [35], we carefully

select power models from the Open Compute Project [30],

[33] to match the switch’s port density and server’s network

bandwidth. For example, the Facebook’s DCN topology has

10G servers, 16X40G Top of Rack (ToR) switch and 96X40G

Fabric switch. So, they are mapped to Facebook 1S System

on Chip (SoC) server [30], Facebook Wedge ToR switch and

Facebook 6 Pack Fabric switch [33] accordingly.

Power breakdowns for the 5 different data centers are

depicted in Fig. 3. At the baseline, all the servers are uniformly

loaded at 20% utilization [1] and link utilization between ToR

switch and next stage switch in the Clos topology [35] is

10% [4]. To ease the comparison, all the power results are

normalized to baseline. The first take-away in Fig. 3 is that

DCN only contributes around 20% of the total power for all the

5 data centers. The results are in line with prior works [5], [6].

Next, we focus on the power saving results of Traffic Packing

in the network and Task Packing on servers. By saying Traffic

Packing, we mean moving all traffic to the fewest number of

668

1

2 4

3

2 24

4

4

4

1 2 3 4

1

2 3

4

5

15

34

<89%, 12G, 26Mbps>

(c) Container Graph(a) DCN Topology (b) Capacity Graph

<24*(100%), 256G,
1000Mbps>

Fig. 4. Example for capacity graph and container graph.

links and switches as long as they are not overloaded. In Task

Packing on servers, all the loads are packed into the fewest

servers as long as the total utilization of the server is below

a threshold. The results are obtained through mathematical

analysis of bin packing [42]. The second take-away is that

Traffic Packing on average can only save 8% of the entire data

center’s power, while Task Packing saves as much as 53% of

total power. Thus, we should better do the Task Packing on

servers to save most of the power.

III. PROVISIONING ON SYMMETRIC TOPOLOGY

In prior works, such as E-PVM [17], RC-Informed [15]

and Borg [14], each container is allocated to a server indepen-

dently, ignoring the affinity or dependency between containers.

Goldilocks leverages a holistic graph-based approach to solve

the container placement problem, while minimizing power and

task completion time. The algorithm is centered around the

partitioning of two graphs: the capacity graph and container

graph. Goldilocks partitions the containers into different bal-

anced (in terms of aggregate resource demands) groups before

assigning each container group to a subtree in the topology.

The grouping is achieved by running the recursive biparti-

tioning algorithm on the container graph. With the min-cut

objective function, the containers having high communication

frequency are grouped together and then placed closer together

in the data center.

A. Graph Construction

Capacity Graph: We construct a capacity graph, repre-

senting the total resource capacity in the data center. The

vertex weight is a 3 dimensional vector <CPU utilization,

Memory usage, Network bandwidth>. The edge weight is the

length of the shortest path (i.e., number of links) between

server pairs in the topology. As an example in Fig. 4 (a),

we show a simple topology with 4 switches (circles) and 4

servers (rectangles). Its capacity graph is shown in Fig. 4

(b). The vector <24*(100%), 256G, 1000Mbps> means that

each server has 24 CPU cores (with 100% utilization), 256GB

memory and 1000Mbps network bandwidth (we choose to

not factor in the disk size for the moment, assuming it is

not likely to be a limiting factor). With the Clos topology

allowing line rate communication between any server pair

[35], we set the Network bandwidth in vertex weight as

the link capacity of server’s Network Interface Card (NIC).

We relax this assumption in Section IV. We set the edge

weight as path length, because each substructure in the Clos

topology will automatically be grouped together during the

TABLE II
VERTEX WEIGHT AND EDGE WEIGHT OF 4 DATA CENTER WORKLOADS.

CPU
(%)

Memory
(GB)

Network
(Mbps)

Flow
Count

Twitter Content Caching
(Memcached)

33 4 24 4944

Web Search (Apache Solr) 32 12 1 50

Naive Bayes Classifier
(Hadoop)

376 2 328 2

Media Streaming (Nginx) 54 57 320 25

(a) Container Graph (100)

1.2

Fig. 5. Vertex weight and edge weight distribution (part b) in the Microsoft
search trace [19] graph (part a, 100 vertices snapshot). Both vertex weight
and edge weight in part (b) are normalized to the smallest value.

graph partitioning for the max-cut, since inter-substructure

edges always have the largest edge weight.

Container Graph: Each vertex in the container graph corre-

sponds to a container in the workload. The vertex weight is the

resource demand, in terms of CPU utilization, memory usage

and network bandwidth. The edge weight is the number of

distinct flows between the pair of containers. We aim to place

together the containers with the most frequent communication.

An example of the container graph is given in Fig. 4 (c).

We present the characteristics of different containerized

applications, deployed in our testbed, in Table II. Each ap-

plication instance is hosted in a Docker container. Columns

2-4 are the vertex weights and the last column is the edge

weight. The method of obtaining these weights is described

in Section V. Next, we show a part of the container graph

for the Microsoft search trace [19] (which has 5488 vertices

and 128538 edges) in Fig. 5 (a) for 100 vertices (IP range:

10.0.0.1 to 10.0.0.100 in the trace). The vertex weight and edge

weight distribution are plotted in Fig. 5 (b). All the weights

are normalized to the smallest value in the distribution. For

example, the dot on the Vertex-CPU line with the value of 1.2

on the X-axis means its CPU utilization is 1.2 times larger than

the smallest CPU utilization in the trace. In the trace, all the

nodes performing the search indexing occupy 12GB memory

for in-memory index accessing. So, the vertex weight is 1 for

memory usage, after normalization for all vertices.

B. Container Partitioning and Assignment

At a high level, Goldilocks assigns a group of containers that

have inter-dependencies together, rather than assigning each

stand-alone container. The group is assigned to a substructure

(a machine, a rack, a pod or a subtree) in the DCN topology.

The substructure can be automatically found by recursively

bipartitioning the capacity graph, using the max-cut objec-

tive function. The resource capacities of every server in the

669

(a) Container Graph (b) Topology
1 2 3 4 5

G0

G11 G12

G21

G24

G23

G22

G31 G32

G0

G11 G12

G21

G24

G23

G22

G31 G32

ToR ToR

Fig. 6. Recursively bipartition the container graph until the resource demands
of leaf nodes (in part a) can be satisfied by the resource capacity of servers
(in part b).

substructure are factored as vertex weights in capacity graph.

The group of containers are assigned to a substructure only

if the containers’ resource demands can be satisfied by the

substructure.

Consider a container graph Gc = (V c, Ec), where V c are

the vertices and Ec are the edges. The number of vertices is

given by m = |V c|. Ac is the vector representing the resource

demands of container vertex V c. Similarly, Gt = (V t, Et)
is the capacity graph with N vertices . Bt is the vector

representing the resource capacity of server V t. The goal of

partitioning on the container graph is to find n partitions P1

to Pn such that:

minimize
∑

1≤i<j≤n

|Ec
ij | (1)

∀ Pi,
∑

∀j∈Pi

Ac
j ≤ Bt

i , where 1 ≤ i ≤ n (2)

UP1
≈ UP2

≈ ... ≈ UPn
(3)

n is determined at run-time of the partitioning algorithm

rather than as a pre-defined static parameter. UPi
refers the

utilization of server V t
i , where container group Pi is hosted. In

equation (2), the algorithm stops bipartitioning the container

graphs until the container group’s resource demands can be

satisfied by the server’s resource capacity. At the final step of

the partitioning algorithm, the container groups are assigned

to servers. Equation (3) guarantees that the containers are uni-

formly distributed among n partitions. Ec
ij is the set of edges

between partition Pi and Pj in container graph Gc. |Ec
ij | refers

the sum of edge weights for Ec
ij . Equation (1) guarantees that

the cut is minimized when partitioning the container graph.

Equation (2) guarantees the resource constraints are satisfied.

Fig. 6 shows the workflow for locality partitioning. G0 in

Fig. 6 (a) is the initial container graph and Fig. 6 (b) is the

DCN topology. G0 is partitioned into G11 and G12. In the next

iteration, G11 and G12 are bipartitioned because their resource

demands exceed the server’s resource capacity. Because the

graph partitioning algorithm in open-source software, such as

METIS [23], can tolerate some imbalances between container

partitions, the number of vertices or total resource demands

in G0 does not need to be the power of 2. For example,

the partition G23 can not be assigned to a server without

(a) Twitter Content Caching (b) Microsoft Search Trace
Fig. 7. Partition results for the Twitter Content Caching with 224 containers
(part a) and Microsoft search trace with 100 vertices (part b).

violating resource constraints. But, its counter-part G24 is a

little smaller than G23, as the parent partition G12 cannot be

ideally partitioned into two equally balanced partitions. Thus

G24 can be successfully allocated to a server. The partition

G23 has to be bipartitioned again to obtain G31 and G32.

Finally, the container groups to be assigned to the servers

in Fig. 6 (b) are G21, G22, G31, G32, G24. In addition to

maximizing the intra-group locality, the partitions G21 and

G22 that have the same parent partition are also assigned to

the same rack in Fig. 6 (b) to maximize inter-group locality

as well. By using the bipartitioning algorithm recursively, the

inter-container communication is localized to a server, a rack,

a pod or a subtree in the topology.

The partitioning algorithm in Goldilocks is implemented by

using METIS [23]. METIS produces the optimal balanced

min-cut partitioning. The computation time is reasonably

small. For example, it just takes 285s to partition a graph

with 1 million vertices. That means the epoch length in

Goldilocks from one execution of container placement to the

next can be short enough to quickly adapt to load changes in

data centers. It is practical to deploy the algorithm for a large

topology with millions of containers. In Fig. 7, we present two

real partitioning results from our testbed experiment and also

in the Microsoft trace graph. In Fig. 7 (a), there are a total

of 224 Memcached containers (to simulate the Twitter content

caching) which are represented by a cell. Each color in the

results means a unique partition. Similarly, for the Microsoft

trace graph [19] in Fig. 5 (a), there are 5 different container

partitions shown in Fig. 7 (b).

IV. PROVISIONING ON ASYMMETRIC TOPOLOGY

In Section III-B, we assumed a symmetric network topol-

ogy with full bisection bandwidth and homogeneous servers.

Although symmetric DCN topology is widely used [4], [5],

[25], [26], [29], [34], [35], [42], switch and link failures can

make the DCN topology asymmetric. Thus, servers are not

inter-changeable because of imbalanced network bandwidth

in various parts of the DCN [43]. The homogeneous server

assumption might not hold as well [14], [44] because of legacy

equipment even in a data center with custom-built servers [29].

In order to relax the symmetric topology and homogeneous

server assumptions, we have to overcome two problems. First,

only checking the network bandwidth usage at the server’s

NIC is not enough to ensure that resource demands are met,

670

as the full bisection bandwidth assumption doesn’t hold with

an asymmetric DCN topology. Second, Goldilocks partitions

the containers into a few balanced groups and maps them to

homogeneous servers in Section III-B. But now, each server

has different computing and networking capabilities.

We now solve the problem of allocating m containers to

an asymmetric tree topology without violating the resource

constraints for each server and network link. The servers have

various CPU cores, memory capacity and NIC bandwidth.

Containers are labeled with a particular Group id for the

sake of minimal power consumption and task completion time.

Containers with same Group id should be placed close to each

other in the topology. This is an NP-hard problem [3], [45].

So, we propose a heuristic algorithm in Goldilocks. In Section

IV-A, the algorithm is first analyzed under the assumption that

there is no inter-group communications between containers.

Subsequently, we consider the more realistic case that con-

tainer groups communicate with each other.

A. Assignment without Inter-Group Communication

The heuristic algorithm reuses the locality-focused partition-

ing in Section III-B. The bipartitioning algorithm stops when

the resource demands of every container group can be satisfied

by the average capacity of the heterogeneous servers. If m
containers are partitioned into n groups, the initial number

of active servers to place the m containers is n. Because the

average capacity is used, the final number of active servers n′

might be larger than the initial value n after allocating all the

m containers. The abstraction of a Virtual Cluster, introduced

in Oktopus [46] and Proteus [47] is leveraged by Goldilocks to

represent a container group.

In Fig. 8 (a), a total of m containers are partitioned into

n groups. Containers 1 to m/n are grouped together into a

Virtual Cluster, and these containers are connected by a virtual

switch. The virtual switch would represent a group of physical

switches and links of the DCN, and it is expected that it can

support the communication requirements among the containers

in the Virtual Cluster. Consider the bandwidth requirement

between the virtual switch and container i as being Bi.

Conservatively, Bi should be larger than the sum of the intra-

group container traffic and inter-group traffic for container i.
To successfully place a container group in the topology, we

have to meet the container group’s CPU and memory demands

on the servers as well as the bandwidth requirements on every

underlay links of the Virtual Cluster. Validating the server side

resource requirement is relatively straightforward. Therefore,

we focus on the network link bandwidth reservation.

If we ignore the inter-group communications in Fig. 8 (a),

the problem becomes placing n independent container groups

(i.e., Virtual Clusters) in the data center without violating

resource constraints. Considering a subtree structure Ti in

the DCN topology as shown in Fig. 8 (b), the bandwidth of

outbound link(s) between Ti and the remaining data center

is the bisection bandwidth (for multiple paths) between Ti

and the remaining data center. Under the general assumption,

some containers have already been placed on subtree Ti. The

(b) Placing Virtual Cluster on Subtree Ti

Virtual Cluster
Root Virtual

SwitchBG1
BGn

Group n

Container
m

Container
m-m/n+1

Virtual
Switch

Bm-m/n+1 Bm

Group n

Container
m

Container
m-m/n+1

Virtual
Switch

Bm-m/n+1 Bm

Group 1

Container
m/n

Container
1

Virtual
Switch

B1 Bm/n

Group 1

Container
m/n

Container
1

Virtual
Switch

B1 Bm/n

(a) 2-layer Virtual Cluster

Component b

Ti
Remaining Part of
the Data Center

Component a

Virtual Switch
Outbound

Link(s)

Fig. 8. In (a), each container group is abstracted as a Virtual Cluster [46].
All the running containers are represented by a 2-layer Virtual Cluster. When
placing a virtual cluster of containers on the DCN topology, any underlay
physical link divides the virtual cluster into 2 components (part b).

pending container group to be placed on subtree Ti is group

j (i.e., Virtual Cluster V Cj). Because of resource constraints

at subtree Ti, the maximum number of containers that can be

placed at subtree Ti is component a as shown in Fig. 8 (b).

The component b of V Cj has to be placed at the remaining

part of the data center. The maximum size of component a for

V Cj is bounded by the residual bandwidth at the outbound

link(s) [46]. If we know the residual bandwidth at the outbound

link(s) of subtree Ti, we can calculate the maximum size of

component a for V Cj .

With the knowledge of maximum component a for V Cj at

subtree Ti, the V Cj is placed at the smallest left-most subtree

that can support all m/n containers of group Gj . In such

a way, all the independent container groups are successfully

placed in the data center. The subgraph of the DCN with n
active servers might not be able to support the demands of n
Virtual Clusters, because the average server capacity is fully

used, or because we assumed full network bisection when

determining the number of groups n. Goldilocks increases the

value of n by the size of one pod when there are one or more

Virtual Clusters that have to be placed. Because containers

with same Group id are placed in the smallest subtree, locality

is assured.

B. Assignment with Inter-Group Communication

Subsequently, we place the n container groups as a whole.

The ignored inter-group bandwidth BG1 to BGn in Fig. 8 (a)

should be considered now. Suppose we try to place a 2-layer

Virtual Cluster with only 2 container groups (G1 and G2),

similar to Fig. 8 (a). Using the same example in Fig. 8 (b),

the Group 1 has already been placed in the data center with

component a (G1a) in the subtree Ti and component b in the

remaining data center. The next step is to place container group

G2 with component G2a in subtree Ti. The containers of G2

that can not be placed at Ti because of resource constraints are

called component G2b. The problem we try to solve is deciding

the maximum size of G2a based on the residual bandwidth at

outbound link(s) [46] of subtree Ti.

In the independent group placing, the size of G2a is only

limited by the intra communication between component G2a

and G2b. But now we need to consider the inter-group com-

munication between G2a and G1b. Because G1b of group 1 is

placed outside of subtree Ti. The bidirectional bandwidth to

671

be reserved on the outbound link(s) of subtree Ti, to satisfy

group G2, is given by RG2
:

RG2
= min (

∑

∀q∈G2a

Bq, (
∑

∀r∈G2b

Br +
∑

∀s∈G1b

Bs)) (4)

∑
∀q∈G2a

Bq is the sum of bandwidth for all the contain-

ers located in component G2a. The required bandwidth at

outbound link(s) to support G2 could never be larger than

the total bandwidth of component G2a.
∑

∀r∈G2b
Br is the

intra-group communication between G2a and G2b. The inter-

group communication between G2a and G1b is represented by∑
∀s∈G1b

Bs. If the sum of communication to the outside of

subtree Ti (i.e.,
∑

∀r∈G2b
Br +

∑
∀s∈G1b

Bs) is smaller than

the total bandwidth of component G2a, we should reserve∑
∀r∈G2b

Br+
∑

∀s∈G1b
Bs bandwidth at the outbound link(s).

Otherwise, we should reserve
∑

∀q∈G2a
Bq bandwidth.

Next, we consider the case with n container groups (G1 to

Gn). If our algorithm already placed G1 to Gk−1, the next one

to be placed is the container group Gk. The total bandwidth

of component Gka and the intra-group communication for Gk

are similar to the terms at equation (4). Now, we focus on the

inter-group communication to the outside of subtree Ti, given

by the following equation:

∑

1≤y≤k−1

∑

∀r∈Gyb

Br +
∑

k+1≤z≤n

∑

∀s∈Gz

Bs (5)

∑
1≤y≤k−1

∑
∀r∈Gyb

Br is the communication between

component Gka and all the component b of placed groups (G1

to Gk−1). For the pending container groups Gk+1 to Gn, to be

conservative, component b has all the containers in that group

and the size of component a is 0. So,
∑

k+1≤z≤n

∑
∀s∈Gz

Bs

is the communication to all the unplaced container groups.

By knowing the required bandwidth at the outbound link(s),

the 2-layer virtual cluster can be assigned to the data center.

Note that the bandwidth constraints on any links l inside Ti

has already been satisfied when placing container groups on

the subtree Tl inside tree Ti, as the container groups are first

placed on the smallest tree in the topology [46].

C. Discussion

Failure Resilience. In a data center, there are different fault

domains for the sake of service surveillance [48]. Individual

micro service of an application might be unavailable because

of server failure, ToR switch failure or power supply failure

[49], [50]. Large distributed systems such as Hadoop or

the Google File System places replicas across different fault

domains [13], [51]. In Goldilocks, we automatically place the

replicas of the same service on different fault domains by

giving negative edge weights for replica-replica or replica-

primary edges in the container graph. We assume that the

replica containers have already been labeled as such by the

service owner based on prior knowledge. Using the min-cut

graph partition algorithm, where the communication between

vertices are positive in the container graph, the containers

(replicas) with negative edge weights are thus partitioned into

different container groups. Different container groups with the

replicas are assigned to different fault domains in the DCN.

Migration Cost. The placement of containers from one

execution to the next should be stable because of concerns

on migration cost [16] such as application freeze time [52],

migration traffic and the task startup latency [14]. Goldilocks is

an epoch based scheduling system. The number of container

migrations is the ‘difference’ between prior container grouping

results and the current grouping results. In order to reduce

the migration cost, we can leverage the incremental graph

partitioning algorithm [53] to trade off the partitioning quality

and the number of vertice migrations needed from old partition

to the new partition. This topic is beyond the scope of this

paper and will be our future work.

V. IMPLEMENTATION

Our testbed consists of 16 compute nodes and a manage-

ment node. All the compute nodes have a 32 core AMD

Opteron 6272 CPU, 64G memory, 1G Ethernet NIC, 50G

SSD and 12TB shared RAID file system. All the servers

run CentOS 7.2. In order to support the Docker container

migration, we customized the Linux kernel version 4.14.24 and

CONFIG CHECKPOINT RESTORE is enabled in the kernel.

In the network, a leaf-spine topology is achieved by using 3

HPE 3800 series switches with 48 1G ports each. One physical

switch is divided into 8 virtual switches (distinct VLANs) to

simulate the leaf switches. Every pair of physical servers is

connected to a leaf switch. Leaf switches are connected by 2

spine switches in a full mesh.

All the applications are hosted in Docker containers (ver-

sion 17.09.1-CE). Docker container migration is an essential

function for the placement of containers from one execution

to the next. At the end of each epoch, the containers are

migrated to the new servers based on the algorithms in Section

III and IV. Goldilocks leverages the process checkpoint and

restore technique [54], [55] to migrate containers between

servers. The footprint of a process is typically stored as a disk

image and then restored in the destination server. This process

checkpoint & restore is a challenging task because a number

of different pieces of information: namespace, iptables, cgroup

and memory pages have to be obtained from the application’s

process tree. In our implementation, we use the Checkpoint

Restore In Userspace (CRIU) [56] to achieve the Docker

container checkpoint & restore.

The current CRIU has several limitations for container

checkpointing. CRIU only checkpoints the file descriptor and

inode information. We need to copy disk files and the Docker

volume separately, for which we use rsync. Also, CRIU freezes

the network connection by using iptable rules. It is essential

that the same application-specific IP address exists at the

destination server. In order to achieve seamless container

migration, we adopt a similar policy as in VL2 [34]. The

location-specific IP address is in subnet 192.168.0.0/16, but the

application-specific IP address is in range 10.0.0.0/16. Node

16 in the cluster functions as a Docker swarm manager to also

maintain the mapping between location-specific IP address and

672

(a) Active Servers (b) Power (c) Task Completion Time (d) Energy per Request

0

4

8

12

16

0 20 40 60

Ac
tiv

e
Se

rv
er

Time (min)

Borg and mPP are the same
1400

1600

1800

2000

0 20 40 60

Po
w

er
 (w

)

Time (min)

0

10

20

30

40

0 20 40 60Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Time (min)

0

0.04

0.08

0.12

0.16

0 20 40 60

En
er

gy
 p

er
 R

eq
ue

st

Time (min)

mPPmPP BorgBorgRC-InformedRC-Informed GoldilocksGoldilocksE-PVME-PVM mPP BorgRC-Informed GoldilocksE-PVM

Fig. 9. Twitter content caching on Wikipedia trace pattern. Compared with the best alternative for each performance metric, Goldilocks on average has 4.6%
less entire data center’s power consumption, 2.57 times shorter task completion time and 3 times less energy consumption per request. Note that the Y axis
for part (b) starts at 1400w.

(a) Active Servers (b) Power (c) Task Completion Time

0

4

8

12

16

0 20 40

Ac
tiv

e
Se

rv
er

Time (hour)

Borg and mPP are the same

1600

1800

2000

2200

2400

0 20 40

Po
we

r (
w)

Time (hour)

0

5

10

15

20

25

0 20 40Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Time (hour)

mPPmPP BorgBorgRC-InformedRC-Informed GoldilocksGoldilocksE-PVME-PVM mPP BorgRC-Informed GoldilocksE-PVM

Fig. 10. Rich mixture of applications on Azure trace pattern. In part (b) with high data center load, the power consumptions of the alternatives sometimes
are close to baseline E-PVM (only 1% power saving). Under same load, Goldilocks consumes 6.6% less power compared with E-PVM, because of operating
servers at Peak Energy Efficiency. In part (c), Goldilocks on average has 2.6 times shorter task completion time than RC-Informed (best one in alternatives).
Note that the Y axis for part (b) starts at 1600w.

application-specific IP address. All the Docker containers are

attached to the same overlay network, with tunnelling achieved

by using VxLAN.

Apart from the 16 compute nodes, we have a distinct

management node to implement Goldilocks. The management

node has an out-of-band connection to the switch and in-

band connection to all the compute nodes. Prior to mapping

containers to servers, the real-time server and network utiliza-

tion have to be measured. The server utilization is obtained

by polling the Docker metric pseudo-files. Because packet

encapsulation is used in the VxLAN overlay network, the

inter-container communication pattern is obtained by using

the IPTraf tool [57] on servers to monitor the virtual Ethernet

port for each container. We developed a migration controller

in python to enforce migration rules, defining messages to

orchestrate container checkpoint & restore. Servers can be

remotely turned ON/OFF using an additional IPMI port. We

estimate network power savings by determining which of the

switches are idle.

VI. EVALUATION

We evaluate Goldilocks on a testbed implementation and

compare it with a number of alternatives published in the

literature, viz., E-PVM [17], mPP [16], Borg [14] and RC-

Informed [15]. We also use large scale trace-driven simulation

to further evaluate Goldilocks. For E-PVM, containers are

placed on the least utilized machines. In mPP, containers are

placed on servers in a First Fit Decreasing manner, where

items are considered in decreasing order of resource demand

size. If the resource constraints are satisfied, the container is

allocated to the server with least power increase per utilization

unit. The difference between mPP and Goldilocks is that

Goldilocks stops packing containers to the server if we reach

the Peak Energy Efficiency (70% in the experiments), but mPP

stops at the maximum server utilization (95%).

Borg is a cluster scheduling system from Google, including

the capabilities of priority-based scheduling, task preemption,

and task packing etc. [14]. In this paper, we only implement

the task packing algorithm of Borg, meant to reduce stranded

resources. The last algorithm we compared is the bucket-based

RC-Informed policy. In RC-Informed, the CPU resource is

oversubscribed because the allocated resource for containers

are usually not full utilized. Currently, the CPU resource is

125% oversubscribed in RC-Informed [15]. To be fair, only the

placement algorithms in the alternatives are implemented on

our Docker container-based testbed, independent of whether it

is a virtualization-based system (e.g., mPP and RC-Informed)

or a Linux container-based system (e.g., Borg and E-PVM).

A. Testbed Results

1) Twitter Content Caching on Wikipedia Trace Pattern:

We start with an experiment using the Twitter content caching

workload. We set up a fixed, total number of 176 containers

in the testbed, based on the goal of ensuring that the average

server utilization for E-PVM is 32%, in line with prior

observations [1]–[3]. In this experiment, the front-end con-

tainer queries for a set of twitter terms from the Memcached

container. If there is a hit for the query in the memory of

Memcached, a success occurs for the get operation.

Fig. 9 shows the time-varying results across the alternatives

and Fig. 11 shows the average values. The query pattern

for the request per second (RPS) rate follows the Wikipedia

673

(a) Avg. Power Saving (b) Avg. Task Completion
Time

(c) Avg. Energy per
Request

0

5

10

15

20

25

Wiki Pattern Azure Pattern

Po
we

r S
av

in
g

(%
)

0

5

10

15

20

25

Wiki Pattern Azure Pattern
Ta

sk
 C

om
pl

et
io

n
Ti

m
e

(m
s)

0

0.02

0.04

0.06

0.08

0.1

0.12

Wiki Pattern

En
er

gy
 p

er
 R

eq
ue

st

mPPmPP BorgBorg GoldilocksGoldilocksRC-InformedRC-InformedE-PVME-PVM mPP Borg GoldilocksRC-InformedE-PVM

Fig. 11. On average for 2 trace patterns, Goldilocks achieves up to 31% better
power saving, 2.62 times shorter task completion time and 3 times less energy
consumption per request, compared with the best one among alternatives. Note
that all the power saving results are calculated based on E-PVM. So, there is
no power saving results to show for E-PVM in Part (a).

trace [27]. The RPS ranges from 44K to 440K across the

entire testbed. In Fig. 9 (a), all the servers are active in E-

PVM. Most of the time, Goldilocks and the bucket-based

RC-Informed need 9 active servers, compared with 7 active

servers in Borg and mPP, because servers in Goldilocks are

limited to a maximum of 70% utilization. All the placement

policies, except E-PVM, might need less active servers at

low RPS, as the resource demands per container decrease.

Goldilocks in Fig. 9 (b) consumes the least amount of power

over the 60-mins experiment, because it seeks to achieve the

Peak Energy Efficiency. The average power savings of mPP,

Borg, RC-Informed and Goldilocks, compared with E-PVM

on the Wiki pattern, are given in Fig. 11 (a). We can observe

that Goldilocks saves 22.7% of the entire data center’s power

and outperforms all the alternatives.

More importantly, task completion time of queries improves

significantly with Goldilocks in Fig. 9 (c). Goldilocks has the

smallest task completion time during the 60-mins experiment.

The average task completion time results are plotted in Fig.

11 (b), with Goldilocks giving the lowest result of 3.67ms.

Among the alternatives, RC-Informed has the smallest task

completion time of 9.44 ms. It is a bucket-based schedul-

ing policy and has the lowest server utilization, compared

with Borg and mPP. The average task completion time of

Goldilocks is only 33% of RC-Informed, as we place the query

generator and responder closely in the testbed.

The next important consideration is the energy consumed

per request. Because of Peak Energy Efficiency (i.e., less

power consumption) and locality-focused graph partitioning

(i.e., shorter task completion time) in Goldilocks, it has the

lowest energy per request results in Fig. 9 (d). We first take

a look at the alternatives. On average, RC-Informed has the

best energy per request result of 0.06, as shown in Fig. 11

(c). The energy per request result of Goldilocks is 3 times of

better than RC-Informed, because of least power consumption

and shortest task completion time in Fig 9 (b) and (c).

2) Rich Mixture of Applications on Azure Trace Pattern:

In the previous experiments, we had a single Twitter workload

and the number of containers was fixed at 176 and we vary the

RPS from 44K to 440K. We now consider a rich mixture of

applications, as is typical in a cloud data center and reflected

in workload trace from the Microsoft Azure cloud [15]. We

compare Goldilocks with the alternatives under this workload

mix in terms of total number of containers needed in the

Fig. 12. Part (a), measured CPU utilization for Apache Solr search engine.
Y axis is defined as the sum of all CPU core’s utilization. Part (b), CPU
utilization for varying traffic rates, with 5 servers in a 16-node Hadoop cluster
running Facebook trace [58]. Each color is the data from one server Si.

testbed. The RPS for the containers supporting Twitter content

caching is set at 2K for each connection. The total RPS for the

entire set of services depends on the number of containers in

the data center. In addition to the Twitter caching workload, we

add 6 other background applications: the Apache Solr Search

Engine, a movie recommendation system on Spark, Hadoop, a

page rank on Spark and Cassandra database. The total number

of containers ranges between 149 and 221, following the

pattern found in Microsoft Azure trace [15]. We achieved this

by stopping existing containers and launching new containers

in the testbed. For the baseline E-PVM, the average server

utilization gets to be as high as 54%.

Fig. 10 (a) plots the number of active servers for E-PVM,

mPP, Borg, RC-Informed and Goldilocks. Because of the mix

of applications, packing of containers does result in higher

fragmentation. Goldilocks needs 2 more active servers to serve

the same number of containers compared to Borg and mPP,

because of 70% server utilization in Goldilocks. In Fig. 10

(b), Goldilocks again consumes the lowest total data center

power. Compared with the baseline E-PVM, the power saving

of Goldilocks increases from 6.6% to 18.8% when the total

number of containers in the testbed decreases to 149. We

observe that mPP, Borg and RC-Informed consume similar

amount of power as the baseline E-PVM, at about 55% average

server utilization. The reason is that these scheduling policies

keep packing containers until reaching maximum server uti-

lization, where the server power increases non-linearly. At the

same average server utilization, Goldilocks consumes 6.7%

less power compared with the base line E-PVM. Similarly,

we plot the average power saving results compared with E-

PVM in Fig. 11 (a). On average, Goldilocks achieves 11.7%

power saving and the best one in alternatives (RC-Informed)

has power saving of 8.9%. Fig. 10 (c) compares the task

completion times. Goldilocks has the shortest task completion

time, by far, for Twitter queries. As shown in Fig. 11 (b), the

average task completion time for Goldilocks is 4.9 ms. The

best, among the others compared is E-PVM, but even that has

2.5 times higher average task completion time.

B. Simulation Results

In addition to the testbed implementation, we also per-

formed a flow-level, large scale simulation with a 28-ary fat

tree topology, with a total of 5488 servers and 980 switches.

The power model we used for servers is Dell Power Edge

R940 [28] and the power model for switch is HPE Altoline

674

(a) Active Servers (b) Power (c) Task Completion Time (d) Avg. Value Normalized to E-PVM

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80

Ac
tiv

e
Se

rv
er

Time (hour)

1200

1500

1800

2100

2400

0 20 40 60 80

Po
w

er
 (k

w
)

Time (hour)

0

20

40

60

80

0 20 40 60 80

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Time (hour)

0
0.2
0.4
0.6
0.8

1
1.2

Active Server Power Task Completion
Time

No
rm

al
iz

ed
 V

al
ue

mPPmPP BorgBorgRC-InformedRC-Informed GoldilocksGoldilocksE-PVME-PVM mPP BorgRC-Informed GoldilocksE-PVM

Fig. 13. Trace-driven simulation proves that the power saving (5% better) and task completion time (22% better) improvement of Goldilocks still holds at
the data center with 5488 servers and 49392 containers. Note that the Y axis for part (b) starts at 1200 kw.

6940 [33]. The flow level simulation uses the processing time

distribution for search queries based on a micro-benchmark

of measurements made in our testbed. There are a total of

49392 containers in the topology, targeting a 20-30% server

utilization [1]–[3] for the baseline E-PVM. We then simulated

Goldilocks, mPP, Borg and RC-Informed to get the power

savings and improvements in task completion time.

Since the trace [19] used for the simulation has only the

flow level information, we obtain the resource demands on

the servers through experiments in our testbed with a workload

matching the trace’s network traffic pattern and then measured

the server resource utilization. In the trace, there are two kinds

of traffic: search queries with flow sizes ranging from 1.6KB

to 2KB and background update traffic with 1MB to 50MB flow

sizes. We assume for the purposes of our simulation that the

background traffic is Hadoop traffic because the URL crawling

in search is based on the Map-Reduce framework.

In Fig. 12 (a), we deploy the Apache Solr search engine

in the testbed and vary the search request rate. Since the

maximum number of connections per Index Serving Node

(ISN) in the trace is 120, we increase the request rate up to 120

RPS. The memory usage stays at 12G throughout. Fig. 12 (b)

shows the background update traffic generated in our testbed

deployed as a 16-node Hadoop cluster running the Facebook

job trace [58]. The aggregate traffic and corresponding CPU

utilization are then measured. Each color in the figure rep-

resents the data from one of the slave nodes in the Hadoop

cluster. As shown in Fig. 12 (b), there are multiple dots with

the same network traffic rate (X-axis value). In the simulation,

a randomly chosen CPU utilization (Y-axis value) is chosen

for a selected network traffic rate. The resource demands on

the servers is the result of the sum of these 2 applications.

Fig. 13 (a) shows the number of active servers over a

period of 88 hours. Because E-PVM always chooses the least

utilized server, all of the 5488 servers in the topology are

active. Borg and mPP pack the containers to achieve 95%

server utilization and both of them have the least number

of active servers. RC-Informed is a bucket-based scheduling

policy, and the number of active servers is constrained by the

total reserved resources for each container rather than the real-

time resource utilization in the simulation. That is why RC-

Informed needs 2358 active servers most of the time. Although

Goldilocks needs more active servers compared with the other

container packing policies, it consumes the least amount of

power, as shown in Fig. 13 (b). Goldilocks stops packing

containers when the server reaches its Peak Energy Efficiency

(70% in this simulation). The baseline, E-PVM, consumes

the highest data center power because of no saving in static

server power. The power consumption of mPP, Borg and RC-

Informed are similar, within 150kw of each other.

Finally, we take a look at the task completion time of

search queries in Fig. 13 (c). Goldilocks has the shortest task

completion time because of large server headroom and good

locality. The average server load on E-PVM is around 26% to

40%. mPP, Borg and RC-Informed target at 95% [15] server

utilization. This high server load contributes to their increased

task completion time compared with E-PVM. In Fig. 13 (d),

we see the average values of active server, power consumption

and task completion time. All the values are normalized to

the values of baseline E-PVM. Goldilocks has the lowest

power consumption (27% power saving compared with E-

PVM) and shortest task completion time (0.85 of E-PVM).

Compared with the best alternative for each performance met-

ric, Goldilocks consumes 5.2% less power than RC-Informed

and achieves 15% shorter task completion time than E-PVM.

VII. CONCLUSION

Goldilocks is a holistic framework that solves the complex

‘right sizing’ provisioning problem in containerized data cen-

ters. As part of Goldilocks, a novel graph-based locality aware

container placement scheme is proposed, yielding minimal

power consumption and task completion time. Instead of

directly taking the existing linear power model assumption

in the literature, we found that current servers are more power

efficient when operating at the Peak Energy Efficiency point.

This Peak Energy Efficiency also leaves adequate headroom for

burstiness in the workload. Our testbed implementation on the

Twitter content caching workload proves that Goldilocks saves

up to 22.7% of the entire data center’s power. The energy

per request result in Goldilocks is 3 times better than RC-

Informed, which consumes the least energy per request among

the compared alternatives. Because of Goldilocks’ locality

aware placement and large headroom for load spikes, it has

at least 2.56 times better task completion time than any of

the compared alternatives. Simulations of a large scale data

center environment also shows that our power and performance

improvements are still achieved at scale.

ACKNOWLEDGMENT

This research was partly supported by NSF grants 1815643

and 1763929.

675

REFERENCES

[1] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: Eliminating
server idle power,” in Proc. ACM ASPLOS, 2009.

[2] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:
Fast analytical power management for latency-critical systems,” in Proc.

IEEE/ACM MICRO, 2015.

[3] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “To-
wards energy proportionality for large-scale latency-critical workloads,”
in Proc. IEEE ISCA, 2014.

[4] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM SIGCOMM, 2015.

[5] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “Elastictree: Saving energy in data center
networks,” in Proc. USENIX NSDI, 2010.

[6] N. Vasić, P. Bhurat, D. Novaković, M. Canini, S. Shekhar, and D. Kostić,
“Identifying and using energy-critical paths,” in Proc. ACM CoNEXT,
2011.

[7] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” in Proc. IEEE INFOCOM,
2011.

[8] G. Prekas, M. Primorac, A. Belay, C. Kozyrakis, and E. Bugnion,
“Energy proportionality and workload consolidation for latency-critical
applications,” in Proc. ACM SoCC, 2015.

[9] M. Shahrad, C. Klein, L. Zheng, M. Chiang, E. Elmroth, and D. Went-
zlaff, “Incentivizing self-capping to increase cloud utilization,” in Proc.

ACM SoCC, 2017.

[10] B. Vamanan, H. B. Sohail, J. Hasan, and T. N. Vijaykumar, “Timetrader:
Exploiting latency tail to save datacenter energy for online search,” in
Proc. IEEE/ACM MICRO, 2015.

[11] W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provisioning
for the cloud using online bin packing,” in IEEE Transactions on

Computers, vol. 63, pp. 2647–2660, 2014.

[12] D. Wong, “Peak efficiency aware scheduling for highly energy propor-
tional servers,” in Proc. IEEE ISCA, 2016.

[13] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proc. USENIX OSDI, 2004.

[14] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
Proc. EuroSys, 2015.

[15] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms,” in
Proc. ACM SOSP, 2017.

[16] A. Verma, P. Ahuja, and A. Neogi, “pmapper: Power and migration cost
aware application placement in virtualized systems,” in Proc. Springer

International Conference on Middleware, 2008.

[17] Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and A. Keren, “An
opportunity cost approach for job assignment in a scalable computing
cluster,” in IEEE Transactions on Parallel and Distributed Systems,
vol. 11, pp. 760–768, 2000.

[18] K. Zheng, X. Wang, L. Li, and X. Wang, “Joint power optimization
of data center network and servers with correlation analysis,” in Proc.

IEEE INFOCOM, 2014.

[19] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in Proc.

ACM SIGCOMM, 2010.

[20] L. Zhang, J. Litton, F. Cangialosi, T. Benson, D. Levin, and A. Mislove,
“Picocenter: Supporting long-lived, mostly-idle applications in cloud
environments,” in Proc. ACM EuroSys, 2016.

[21] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: High availability via asynchronous virtual machine
replication,” in Proc. USENIX NSDI, 2008.

[22] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.

IEEE INFOCOM, 2010.

[23] “Metis - serial graph partitioning and fill-reducing matrix ordering,” http:
//glaros.dtc.umn.edu/gkhome/metis/metis/overview.

[24] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, “Job-aware
scheduling in eagle: Divide and stick to your probes,” in Proc. ACM

SoCC, 2016.

[25] X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao, “Carpo: Correlation-
aware power optimization in data center networks,” in Proc. IEEE

INFOCOM, 2012.

[26] L. Zhou, C. Chou, L. N. Bhuyan, K. K. Ramakrishnan, and D. Wong,
“Joint server and network energy saving in data centers for latency-
sensitive applications,” in Proc. IEEE IPDPS, 2018.

[27] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” in Elsevier Comput. Netw., vol. 53, pp. 1830–
1845, 2009.

[28] “Specpower ssj 2008,” https://www.spec.org/power ssj2008/.

[29] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat,
“Jupiter rising: A decade of clos topologies and centralized control in
google’s datacenter network,” in Proc. ACM SIGCOMM, 2015.

[30] “Open compute project server design specification,” http://www.
opencompute.org/wiki/Server/SpecsAndDesigns.

[31] “Hpe altoline 6940 switch series,” https://support.hpe.com/hpsc/doc/
public/display?docId=emr na-c04741125.

[32] “Introducing data center fabric, the next-generation facebook data center
network,” https://code.facebook.com/posts/360346274145943/.

[33] “Open compute project switch design specification,” http://www.
opencompute.org/wiki/Networking/SpecsAndDesigns.

[34] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible
data center network,” in Proc. ACM SIGCOMM, 2009.

[35] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. ACM SIGCOMM, 2008.

[36] “Hpe altoline 6920 switch series,” https://h20195.www2.hpe.com/v2/
getpdf.aspx/c04680998.pdf.

[37] D. Wong and M. Annavaram, “Knightshift: Scaling the energy propor-
tionality wall through server-level heterogeneity,” in Proc. IEEE/ACM

MICRO, 2012.

[38] Y. Liu, S. C. Draper, and N. S. Kim, “Sleepscale: Runtime joint speed
scaling and sleep states management for power efficient data centers,”
in Proc. IEEE ISCA, 2014.

[39] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. ACM IMC, 2010.

[40] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “Hug: Multi-resource
fairness for correlated and elastic demands,” in Proc. USENIX NSDI,
2016.

[41] “Pearson correlation coefficient,” https://en.wikipedia.org/wiki/Pearson
correlation coefficient.

[42] Q. Yi and S. Singh, “Minimizing energy consumption of fattree data
center networks,” in ACM SIGMETRICS Perform. Eval. Rev., vol. 42,
pp. 67–72, 2014.

[43] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“Conga: Distributed congestion-aware load balancing for datacenters,”
in Proc. ACM SIGCOMM, 2014.

[44] A. R. Curtis, S. Keshav, and A. Lopez-Ortiz, “Legup: Using heterogene-
ity to reduce the cost of data center network upgrades,” in Proc. ACM

CoNEXT, 2010.

[45] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
and J. E. van der Merive, “A flexible model for resource management
in virtual private networks,” in Proc. ACM SIGCOMM, 1999.

[46] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. ACM SIGCOMM, 2011.

[47] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant
is change: Incorporating time-varying network reservations in data
centers,” in Proc. ACM SIGCOMM, 2012.

[48] P. Bodı́k, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and
I. Stoica, “Surviving failures in bandwidth-constrained datacenters,” in
Proc. ACM SIGCOMM, 2012.

[49] J. Dean, “Designs, lessons and advice from building large distributed
system,” in ACM LADIS keynote talk, 2009.

[50] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: Measurement, analysis, and implications,” in Proc. ACM

SIGCOMM, 2011.

[51] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proc. ACM SOSP, 2003.

[52] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proc. USENIX

NSDI, 2005.

[53] C.-W. Ou and S. Ranka, “Parallel incremental graph partitioning,” in

IEEE Trans. Parallel Distrib. Syst., vol. 8, pp. 884–896, 1997.

676

[54] J. Ansel, K. Arya, and G. Cooperman, “Dmtcp: Transparent checkpoint-
ing for cluster computations and the desktop,” in Proc. IEEE IPDPS,
2009.

[55] O. Laadan and J. Nieh, “Transparent checkpoint-restart of multiple
processes on commodity operating systems,” in Proc. USENIX ATC,
2007.

[56] “Checkpoint/restore in userspace,” https://www.criu.org/Main Page.
[57] “Iptraf,” http://iptraf.seul.org/.
[58] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing in

big data systems: A cross-industry study of mapreduce workloads,” in

Proc. VLDB Endow., vol. 5, pp. 1802–1813, 2012.

677

