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Abstract—Autonomous robotic navigation in indoor environ-
ments is fairly challenging and important to industrial environ-
ments. Traditional map-based or mapless navigation methods
often fail because of the unstructured characteristics of the
environments. Recently, imitation learning using DAgger algo-
rithm has been successfully applied to many real-world robotic
tasks. However, it needs human operators to give correct control
commands without feedback to overcome data distribution mis-
match problem, which is always prone to error and expensive.
In this paper, we propose a novel solution to eliminate the need
of human manual labeling after the initial data collection in
the task of imitating to navigate in indoor environments. This
solution introduces an imperfect policy based on multi-sensor
fusion and a recording policy that only records the data giving the
most knowledge to the navigation policy. The recording policy
mitigates the affect of learning too much from an imperfect
policy. With extensive experiments in indoor environments, we
demonstrate that after several iterations of learning, the robot
is able to navigate through real-world hallways in both seen
and unseen situations safely. In addition, we show that our
system achieves near human performance in most of the tasks
and even surpasses human performance in one out of three
tasks. To the best of our knowledge, this is the first work
that utilizes imperfect sensor measurements to perform self-
supervised imitation learning in robotic navigation tasks. 1

I. INTRODUCTION

Indoor autonomous robotic navigation is highly challenging,
but crucial to industrial environments. Such a navigation
system can be used in many applications such as delivering
and transporting items in warehouses where moving obstacles
are presented. It requires robots to perceive and understand
environments and predict next possible actions to avoid ex-
ceptions such as collision.

Traditional indoor robotic navigation methods are widely
based on SLAM [25] that is a two-stage approach including
perception and action stages. In the perception stage, a global
map is built using on-board sensors. In the action stage, the
map is given to a motion planner to predict possible actions
[19] [24]. While this method allows a robot to navigate to a
target location in cluttered environments based on a perfect
global map, it is difficult to maintain the map because of in-
accurate measurements of sensors, dynamic obstacle changes,
and feature representation errors.

Another approach to autonomous robotic navigation is the
end-to-end imitation learning. It has been applied to many

1Video can be found at https://youtu.be/jnmtr0B9hcg

robotic tasks such as learning to manipulate objects [18],
driving to a target position [16], and self-driving car [3].
Imitation learning simplifies robotic tasks in such a way that
the agent only needs to know current observations. It pre-
dicts corresponding control commands based on observations.
However, one major drawback of imitation learning is that
it breaks the i.i.d. assumption because future observations
depend on previous actions [20]. To address this problem,
DAgger algorithm or its variants [28] [11] is used to ask
an expert policy to label all observations encountered in
each training iteration without iterative feedbacks [20]. This
performs well in simulated settings [18], [28] where the expert
policy is easy to access. However, real-world environments
often consist of noisy and inaccurate sensor measurements,
which often result in defective or inaccurate expert policy.

Recent autonomous robotic navigation solutions employed
deep reinforcement learning(DRL) to learn from trail and error
[15]. Applying DRL to real-world robots directly is however
not practical because DRL robots have to explore dangerous
states that may damage them. Therefore, many works only
apply DRL to navigation in simulated settings [7] and then
transfer the learned knowledge to the real world [22], [23].

In this work, we aim at the challenge of autonomous robotic
navigation in real world, specifically in indoor environments.
We propose an imitation learning framework called Multi-
Sensory Self-Supervised Learning (MS2L). A key innovation
in this work is to employ both imaging sensors and non-
imaging sensors in the deep learning framework. Instead of
manual labeling, MS2L uses an imperfect sensor policy to
label the obser encountered by a mobile agent after the initial
iteration. In addition, based on a safety policy [28], we design
a recording policy in our framework that determines whether
the current observation is worth learning from. We show in
our experiments that this recording policy is crucial to our
framework because the sensor policy can not be perfect in real-
world and learning too much from this imperfect policy yields
performance degradation. Compared to literature solutions,
this work has the following novelties:

• it does not require a single human correction after the
initial iteration;

• it trains and tests in real-world environments without the
need of transferring knowledge from simulation to real-
world;



• it does not require multiple-camera configurations to
record observations from different viewpoints.

In the rest of this paper, Section II reviews the related work,
particularly imitation learning and reinforcement learning.
Then, Section III discusses the design of our proposed frame-
work. Next, Section IV presents the extensive evaluations of
the MS2L in real indoor environment. The paper is concluded
by Section V.

II. RELATED WORK

This work combines DAgger algorithm with self-supervised
learning, which covers broad fields of machine learning and
robotics. We describe the most relevant works to ours and their
connections to our framework.

A. Imitation Learning

Ross et al. [20] proposed an iterative training procedure
called DAgger algorithm. This algorithm is widely used in
robotics such as control [21], indoor navigation [6], and
grasping [10]. One common idea these methods sharing is
that this algorithm requires some expert policies to be queried
from. However, these expert policies (usually human experts)
are expensive to be queried from in real-world because of
the unknown dynamics. In [21], pilots (human operators) are
provided with partial feedback labeled on the collected images
to reduce the burden of correcting actions without feedback.
This offline labeling method still requires a supervisor. In [10],
the authors explore the idea of using a hierarchy of different
supervisors to reduce the burden of human expert in the task of
learning to grasp objects in clutter. They use a motion planner,
crowd-sourced supervisor, and expert supervisor. In contrast to
their works, our work only requires a supervisor to give action
commands in the initial training of DAgger algorithm.

The second approach using imitation learning in navigation
is setting up multiple cameras to capture different scenes at
the same time. In [5] and [3], they setup several cameras
on the vehicle or drone aiming at different directions. They
label each observation according to different camera positions,
e.g. the observation recorded by the left camera is labeled as
right. Although this method breaks the data mismatch problem
in imitation learning, it still has two drawbacks. First, this
labeling strategy only works on the problem on lane following.
Second, Equipping multiple cameras may not be feasible to
small robots.

There are some works that do not use DAgger algorithm
in robotic navigation. In [4], the authors uses a drone to
collide into objects and collect these collision data. Then they
train a neural network on these data to learn a policy that
avoids dangerous states. This approach is not application to
fragile hardware as it needs robots to run into dangerous states
thousands of times. Similarly, in [8], they do not use DAgger
algorithm to learn drone control commands. They only use a
naive method that learns from human demonstrators, which
causes many failure cases.

[28] and [11] try to reduce times of querying from an expert
policy in DAgger algorithm. In [28], they use an additional

neural network to restrict the number of times to query from
an expert supervisor. Similar to their approach, we adapt the
safety policy network. However, the policy our robot imitates
from is not perfect and we need additional constrains in safety
network.

Compared to our previous work [27], this work analyzes ac-
tion distribution after each iteration of self-supervised learning.
It shows that our self-supervised learning framework is able to
balance the dataset distribution without any supervision after
the first iteration.

B. Reinforcement Learning

There are a large amount of works using reinforcement
learning to address navigation problem. In [7], they train a
DQN(deep q learning) agent [15] to cross an intersection in
simulation. Zhu et al. [29] proposed a simulated environment
for a deep reinforcement learning agent to navigate in rooms
and find target objects. Similarly, in [14] the authors use
DDPG method to avoid obstacles in a continuous action space.
While these methods do not need an expert policy to imitate
from, their agents are only trained in simulated settings. These
methods require agents to learn from trail and error which
is not applicable to real-world robotic tasks. Transferring
policies learned in simulation to real world is critical. There
are some works that address transferring learned policy from
simulation to real world [26] [22]. In [26], the authors use
randomized environments to train their policy in a grasping
task. They address that their agent see the real world as another
randomized environment. In addition, Rusu et al. proposed
a network architecture that reduces catastrophic forgetting
in transfer learning. However, this requires an extra training
step in the real world which may also result in encountering
dangerous states [17]. An overview of reinforcement learning
can be found in [13].

III. INDOOR MULTI-SENSORY SELF-SUPERVISED
AUTONOMOUS MOBILE ROBOTIC NAVIGATION

MS2L framework allows the mobile robot to label and learn
from data collected by itself after the initial iteration. This
section describes the problem it is solving, robotic platform,
and MS2L framework in detail.

A. Problem formulation

In this section, we introduce the task, basic concepts, and
notations.

Our goal is to train a mobile robot navigating through
dynamically changing indoor environments quickly and safely
without collisions.

1) Learn to navigate using DAgger: The action space in
our work consists of two continuous variables representing
linear and angular velocity respectively. The navigation task
is defined as follows: given a current observation x, the robot
outputs an action a that indicates linear and angular velocity
based on a learned navigation policy

a = πθp(x), (1)



where θp is the parameters of navigation policy. πθp is learned
by imitating some reference policy πref .

We define training samples encountered by executing πref

as Dref = {(x1, l1), ..., (xt, lt), ..., (xT , lT )}, where xt and lt
represents the observation and corresponding action taken by
πref at timestep t. The imitation objective is defined as

Cimitation(Dref , πθp) = 1/N ×
i=N∑
i=1

||πθp(xi)− li||22, (2)

where N is the mini-batch size.Robot minimizes the squared
l2 norm of the difference between predicted action values
and the ones taken by the reference policy. DAgger algorithm
trains the policy that minimizes imitation objective through
multiple iterations. At the initial iteration, πθ0

p
is trained on

the data executed by πref . Then, at iteration n, observations
are collected by the current navigation policy πθn−1

p
. Reference

policy πref is used to generate actions given these collected
observations l = πref (x). Generated data are aggregated to
the previous dataset. Finally, πθn

p
is trained on the aggregated

dataset. Detailed explanations of data collection and training
procedure are described in Section III-C3

2) Self-supervised learning: To alleviate the need for hu-
man supervision required by DAgger algorithm, we want the
robot to learn from training samples not labeled by human
supervisors, but from its own. To this end, we introduce
an imperfect policy derived from its range sensors. There
are two reference policies in our work: πhuman and πsensor

which denote human policy and sensor policy respectively.
Let Di

πsensor
represents the dataset collected by πsensor at

the ith iteration. Similar to DAgger, the robot learns from
πhuman to initialize navigation policy. After this pre-training
stage, the robot learns from both Di

πsensor
and Dπref

. Instead
of requiring humans to label observations encountered by
executing the current navigation policy, an imperfect sensor
policy is used. Because the limited performance of sensor
policy, we need to constrain the number of data recorded. This
constraint should select the most effective data to be learned.
A recording policy πθr decides which observations are most
needed to be learned by the current navigation policy, where
θr represents the parameters of recording policy.

B. Robotic platform

Before describing MS2L framework in detail, we introduce
our robot configurations and hardware specifications.

We use an iRobot Create22 as the base of our robotic
platform. The linear velocity is in the range of −0.5m/s to
0.5m/s and the angular velocity is in the range of −4.5rad/s
to 4.5rad/s. Two HCSR04 ultrasonic sensor are mounted on
two sides of the platform. They can detect objects within
a distance of 5 to 400cm (or 2 to 156in). In addition, a
ZEDTM Stereo Camera3, which captures RGB images and
estimates a depth image using stereo images, is equipped in
the front of the robotic platform. The valid depth estimation

2http://www.irobot.com/About-iRobot/STEM/Create-2.aspx
3https://www.stereolabs.com/

Fig. 1: ZED Stereo camera, two ultrasonic sensors and a
NVIDIA R⃝ Jetson TX1 are mounted on iRobot Create2 with a
Jetson TX1 computation board.

is between 0.5m and 20m. These two types of depth sensors
complement with each other to derive the sensor policy.
We use a NVIDIA R⃝ Jetson TX14 as the main computation
resource to make inference. It has 256 CUDA cores with 2GB
memory which allows it to make fast inference. Fig. 1 shows
a front view of our robot.

C. Methodology

In this section, we describe how our learning framework
combines sensor policy, recording policy, and DAgger algo-
rithm to enable the robot to learn in a self-supervised manner.
Unlike DAgger algorithm used in [10] or [21], our learning
framework does not require human supervision after the initial
iteration. Since it learns from its own experiences, it alleviates
the burden of human supervisor.

1) Sensor policy: While in simulated or controlled environ-
ments where the dynamic of environment is always known, it
is not possible to obtain an accurate model of an unstructured
real-world indoor environment. For example, in a simulated
environment, requiring the distance between robot and wall
is easy, but inaccurate and noisy measurements are often
obtained from off-the-shelf range sensors like stereo cameras
or ultrasonic sensors. In our work, we build our self-supervised
learning system upon these unreliable sensor measurements.
Our goal is not using an expensive and accurate range sensor
like a laser range finder used in [16] to create an accurate
depth control policy. We show that by using our proposed
framework, the robot is able to successfully navigate through
hallways in different conditions by imitating from an imperfect
policy. Our sensor policy is derived from inaccurate depth
estimation from off-the-shelf range sensors.

The key part of depth estimation from stereo cameras is
finding correspondences of each pixel between left and right
images. In practice, we find this estimation often fails when
the correspondences can not be found while facing to plain

4http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html



Fig. 2: Two examples that stereo camera fails to estimate depth
image. The left image shows a plain wall. The trash can in
the right image only appears in the left camera.

surfaces or objects only appear in one camera. Two examples
of failure cases are shown in Fig. 2. Based on this observation,
we mounted two ultrasonic sensors on two sides of the robot
to complement with failure cases.

The sensor policy is fully based on depth image and
distance measurements from the two ultrasonic sensors. It is
a deterministic algorithm that has zero variance but high bias.
Algorithm 1 illustrates the policy in detail. The basic idea of
it is using the valid points in a depth image received by the
stereo camera and calculating the action correspondingly. If
the number of valid points is smaller than the stereo threshold
R, it uses ultrasonic sensor measurements to determine the
action. It first splits a depth image M into three parts equally.
It then counts the number of valid points inside each part
using count method. In this method, we filter out large values
(> 20) because of sensor noise. In addition, values that are
larger than some distance threshold D is considered a valid
point. This calculates object occupancy in each part. The stereo
camera confidence ratio r is calculated using the ratio between
total number of valid points in each part and total number of
pixels in the entire depth image M . Intuitively, r represents
how much confidence the robot should trust the stereo camera.
Rest of the algorithm is straight forward. If r is above R, the
policy uses object occupancy to determine actions. Otherwise,
ultrasonic sensor measurements are used.

This policy has a basic idea of when to turn, go backward,
or go forward and fails in many cases. Because of high bias
in this algorithm, it has a low performance. We show in
our experiments, with an initial training combined recording
policy, the robot is able to learn useful knowledge from this
policy.

2) Recording policy: Recording policy πθr is crucial to our
learning framework. It takes the current observation xt as input
and outputs the probability indicating how much confidence
of the current observation is needed for the navigation policy
πθp to learn. Unlike [28] where an expert policy exists and
accessible, we use an imperfect sensor policy πsensor to
self labeling data after the pre-training stage. We use πθr to
constrain how much information the robot learns from πsensor.

We use an additional neural network to model πθr . Record-
ing policy learns the deviation of labels output by navigation
policy from the ones executed by reference policy. We define

Algorithm 1 Sensor policy

Input: Depth image M , right and left ultrasonic sensor
measurements d1, d2, distance threshold D, stereo threshold
R, and occupancy threshold T .
Output: Action that the robot needs to take to avoid
collisions.
procedure SENSORPOLICY

Ml,Mm,Mr = split(M)
Ol, Om, Or = count(M,D)

r =
len(Ml) + len(Mm) + len(Mr)

H ×W
if r > R then

if Om >= T then
if Ol < Or then

Turn right
else

Turn left
else if Ol ≥ T and Om ≥ T and Or ≥ T then

Decelerate and go backward
else

Go forward
else

if d1 < D and d2 < D then
Decelerate and go backward

else if d1 < D then
Turn right

else if d2 < D then
Turn left

else
Go forward

the error produces by the navigation policy πθp with respect
to reference policies (πhuman and πsensor) as

e(xt, πθp , πhuman, πsensor) = γ||πθp(xt)− πhuman(xt)||22
+(1− γ)||πθp(xt)− πsensor(xt)||22,

(3)

(a) β = 0.99

(b) β = 0.5

Fig. 3: Images are uniformly sampled from two datasets that
have different thresholds.



(a) Iteration 0

(b) Iteration 1

(c) Iteration 2

(d) Iteration 3

(e) Iteration 4

Fig. 4: An illustration of data collected in five iterations.

where γ is a constant between 0 and 1 that weights the relative
importance of two reference policies. If γ is close to 1,the
sensor policy is not accounted for the deviation. This error
metric uses squared L2 distance of the difference between
predicted values and reference values. In our experiment, we
set it to a large value 0.8. With this error metric, a binary
valued function indicating whether to record is defined as

ϵ(x, πθp) =

{
1, if e(xt, πθp , πhuman, πsensor) > τ

0, otherwise
, (4)

where τ is a scalar indicating the degree of error tolerates by
the recording policy.

πθr is trained on a recording dataset Dπθr
= {x1, ..., xN}.

The objective function to be minimized by πθr is a binary
cross-entropy loss function defined as

Crecord(Drecord, ϵ, πθrπθp , πref ) = − 1

N
×

N∑
n=1

ϵ(x, πθp)log(πθr (xn)) + (1− ϵ(x, πθp))log(1− πθr (xn)),

where πref is consisted of πhuman and πsensor. With πθr

and good choices of γ, β, and τ , the robot can balance the
knowledge learning from πhuman or πsensor. This allows the
robot to learn from imperfect real-world sensor policy in an
unsupervised manner.

In inference mode, observations are recorded only if
πθr (x) > β, where β is a threshold controls how much the
robot trusts πθr . We call observations recorded by πθr as
valid. Some recorded observations with different thresholds
are shown in Fig. 3. In Fig. 3a, most images are recorded
in dangerous states such as turning or too close to walls. In
contrast, Fig. 3b shows most of the images are going forward.

3) Data collection and training: Our data collection and
training process consist of two stages with 5 iterations in total.
Fig. 4 shows some samples collected from 5 iterations. The
data collection and training algorithm is shown in Algorithm
2. The first iteration is a pre-training stage, where a human
operator controls the robot using a PlayStation controller to
navigate through the hallway to collect navigation and record-
ing policy dataset Dπθr

and D0
πθp

. These two datasets are used
for initializing navigation policy and recording policy. The
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Fig. 5: Our model consists of two networks: policy network πθp and recording network πθr

Algorithm 2 Multi-Sensory Self-Supervised Learning

procedure DATA COLLECTION AND TRAINING
Random initialize πθr and πθp .
Pre-training
Collect Dπθr

and D0
πθp

using πhuman

πθ0
p
= argminθpCimitaion(D

0
πθp

, πθp)

πθ0
r
= argminθrCrecord(Dπθr

∪
D0

πθp
, ϵ, πθr , πθ0

p
, πref )

Self-supervised learning
for i = 1 to 4 do

Collect and label observations using πθi
p

and
πsensor into dataset D.

Only keep (x, l) pair from D where πθi
r
(x) > β

Di
πθp

= D ∪Di−1
πθp

πθi
p
= argminθpCimitaion(D

i−1
πθp

, πθi−1
p

)
πθi

r
= argminθr
Crecord(Dπθr

∪Di
πθp

, ϵ, πθi−1
r

, πθi−1
p

, πref )

return πθ4
p

and πθ4
r

second stage is a self-supervised learning stage including four
iterations. At this stage, Instead of querying πhuman, πsensor

is used to generate labels for collected data. In addition,
πθr is used to constrain the data collection. Specifically, an
observation x and its corresponding label πsensor(x) is only
recorded when πθr (x) > β.

In pre-training stage, the robot collects navigation policy
dataset D0

πθp
and recording policy dataset Dπθr

in clockwise
and counter-clockwise directions in RB 4th floor hallway. It
ensures the recording policy correctly classifies valid observa-
tions by traveling in different directions. Although pre-training
stage provides a relative good policy e.g. following a straight
line, it still collides with walls that may cause hardware
damage. To address this problem, we multiply linear velocity

by the output of recording policy v
′
= (1−πθr (x))×πθp(x)0,

where the subscript 0 is the index for linear velocity in action
space. If a recording is needed, i.e. πθr (x) is close to 1, also
means the observation may be dangerous to the robot, so the
robot should slow down to avoid collision with a fast speed.

As we show in our experiments, with this training and
data collection methodology, we obtain a policy that surpasses
human performance policy in one task and near-human per-
formance in two tasks.

4) Network architecture: Fig. 5 shows an overview of
our network model. Given an observation x, the navigation
policy network predicts an action a = πθp(x), where θp is
the parameters of a five layer convolutional network. The
recording policy is parameterized by two-layer fully connected
neural network. It takes the feature vector f from the last layer
(before final output layer) of navigation policy network fc5
and predicts the recording probability pr = πθr (f), where
θr is the parameters of the recording network. The design
choice of the recording policy is two folds. First, because
of the GPU memory constraint on Jetson TX1, we are not
able to build two CNNs, where one for navigation policy and
another for recording policy. Second, the feature extracted by
CNN at layer fc5 contains discriminant representations of the
environment as discussed in [12]. These representations boost
learning of the recording policy.

IV. PERFORMANCE EVALUATION

In this section, we describe our experiments and evaluations.
Our experiments are performed to show:

• The performance of navigation policy improves as
the number of iterations increases.

• Recording policy is crucial to our framework. It gives
more accurate predictions on which observations to
be recorded as the number of iterations increases.



• The navigation policy trained on all iterations sur-
passes πsensor on all the tasks and achieves near
human performance.

A. Experiment Settings

The experiments have been performed in the Robert Bell
Hall building at Ball State University. Figure 6 and 7 are
indoor environments where our robot has been trained.

Fig. 6: Robert Bell 4th floor hallway

Fig. 7: Robert Bell 4th floor classroom

In all experiments, we use tensorflow [1] to implement
our neural networks. Adam optimizer [9] with learning rate
0.0001 and 0.001 is used for πθp and πθr respectively and a
L2 weight decay of 0.0001 to all networks. We set γ = 0.8
and τ = 0.00025 while training πθr . We set β = 0.99 while
collecting data using recording policy. Observations are RGB
images received from stereo camera and resized to dimension
of 128 × 128. For each iteration, we collect data for 250s at
30fps. We use traveled distance and duration before colliding
as evaluation metrics for test runs. We set the maximum travel
duration to 250s. In addition, the metric terminates test runs
when they repeat the same trajectory.

We trained our robot in 2 indoor environments: Robert Bell
4th floor hallway and a classroom during break time. The
classroom is an extremely difficult environment, where human
operator also collides into obstacles quickly in some test runs.

B. Comparing Navigation Policies

In this experiment, we show navigation policy improves
over iterations. Fig. 8 and Fig. 9 presents two performance
evaluations in terms of distance traveled and time duration. We
notice that there is no gain between the pre-training stage and

the first iteration in self-supervised learning stage. However, a
performance gain is linearly increasing after the first iteration
of the self-supervised learning stage. We hypothesis this is
because the recording policy only records a small number
of observations, which gives a relative small dataset to be
aggregated (also shown in Table I).

The failures of the first two iterations happen at the first
turning corner. The second and third iterations fail when the
lightening is too bright or too dark. In the last iteration, the
robot navigates through the hallway successfully and reach
time limit. The result indicates MS2L framework learns to
navigate without human supervision.
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C. Datasets and Recording Policy

The performance of recording policy is evaluated by number
of observations recorded as well as distributions over recorded
actions. An optimal recording policy records small amount of
observations with actions that have equal distributions. For
example, a bad recording policy collects more forwarding
actions, e.g. a = (0.5, 0.0). This may cause the robot to only
learn going forward.

Table I illustrates the amount of data collected during
each iteration. Fig. 10 shows the distributions over linear and
angular velocities in 5 iterations. We collect training data for
250s at 30fps, so there are 7500 observations in each iteration.
The ratio column is the ratio of collected observations and total
observations. In the pre-training stage (first iteration), human
operator collects all observations in 250 seconds. The number
of observations collected in the rest four iterations dramatically
reduce because of the recording policy. We notice that at



TABLE I: Results on training data collected during 5 itera-
tions

Iteration # of observations Ratio
0 7500 1
1 351 0.005
2 853 0.114
3 790 0.105
4 335 0.045

TABLE II: Performance of navigation policies on different β

β value Distance(m) Time(s)
0.99 35.19 100.28
0.5 27.53 97.49
0.1 15.33 43.92

iteration 1, less observations are recorded than iteration 2 and
3. However, by looking at Fig. 10, most of the probability
masses of linear and angular velocities at iteration 1 are on
0.5 and 0, which is going forward. In contrast, the probability
masses of angular velocity in iteration 2 and 3 are mainly
on left (4.5rad/s) and right (−4.5rad/s) turn. This indicates
that the recording policy learns to distinguish between valid
and invalid observations as the number of iteration increases
(invalid observations are usually the ones with straight road).
Note that linear velocity with less than 0.5m/s is caused by
decelerating in Algorithm 1. Our goal is to train the robot
navigating as quickly and safely as possible. Therefore, most
forwarding velocity is at the maximum value (0.5m/s). Only
a small part is in the dangerous observations where sensor
policy needs to decelerate and go backward.

As shown in Fig. 10, most angular velocity is 0rad/s
at iteration 0. This is because the hallway mainly consists
of straight road with only several turning corners. Because
of the distribution mismatch and training data unbalancing
problems (only forwarding action in dataset), the robot is not
able navigate without collision. The self-supervised learning
stage breaks distribution mismatch and balances the dataset by
recording valid observations.

While the previous results show that the recording policy’s
ability to identify valid observations, the importance of the
recording policy still needs to be verified. As discussed in Sec-
tion III-C2, β controls the strength of how many observations
to be recorded. For example, if β = 0, all observations will be
recorded. Table II shows the performance of navigation policy
given different β values. Because of time limits, navigation
policies are evaluated after the third iteration. As β decreases,
the robot records more observations from sensor policy which
causes the navigation policy learns more from wrong actions.
The performance decreases as β decreases.

D. Comparing with Baselines

We compare our method with two baselines over three tasks.
The first baseline is sensor policy and the second one is a
human operator. The observation for human operator is a third
person view which is the same as navigation policy. We show
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Fig. 10: Distributions of forwarding and angular velocities
over 5 iterations. Each row represents one iteration.

that our framework is able to surpass sensor policy by a large
margin in two out of three tasks. It is also able to achieve
near human performance in two tasks and surpasses human
performance in one task. The three tasks are described as
follows:

• The first task is navigating through Robert Bell 4th

floor hallway during business time. The environment

TABLE III: Comparisons with baselines in three tasks

Hallway Classroom Hallway with noise
Dist(m) Time(s) Dist(m) Time(s) Dist(m) Time(s)

πsensor 23.44 58.61 1.46 3.18 9.77 20.35
πhuman 114.58 250 3.43 14.63 12.09 54.64

πθp 89.96 224.97 3.04 12.26 61.23 196.37



Fig. 11: Visualizations of navigation policy. Blue masks indicate the visual cues navigation policy focus on.

is different from the the training data which is during
break time.

• The second task is navigating through a classroom
where chairs and tables are main obstacles. This
environment is difficult even for human operator.

• The third task is navigating through Robert Bell 4th

floor with Gaussian noise added to the controller
which simulates hardware malfunctioning. We would
like to use this test to show the robustness of our
method to hardware noise.

Table III shows the results of comparisons. The performance
of the proposed framework exceeds sensor policy in every
environment we tested on. This is noticeable because only
one iteration of human examples are learned by the policy.
This means that our framework is able to filter out defect
training examples from sensor policy. Human policy baseline
has a higher performance in two out of three tasks. However,
human operator is not able to deal with sudden noise added
to the controller. This allows our method surpasses human
operator.

One thing we noticed is that the navigation policy has a
lower performance in this experiment than in the previous
ones. This is because the robot is testing during the business
hour when the traffic is much heavier than during break time
while previous ones are evaluated in the training environments.

E. Visualizing Navigation Policy

We use the method introduced in [2] to visualize our
navigation policy. This is a fast and accurate method to
visualize which sets of pixels make the most contributions for
making CNN decisions. It is useful for us to interpret what our
navigation policy has learned. Fig. 11 illustrates observations
with overlaid blue masks indicating pixels that activate the
navigation policy.

We notice that lights are the most important feature while
going forward. Wall edges and light reflections are useful for
navigation policy to determine when and where to take a turn
action. This is reasonable since lights are aligned in a row and
installed in the center of hallway and wall edges usually mean
close to corners or walls. This demonstrates that navigation
policy learns to navigate by looking at these visual cues to
output correct actions.

V. CONCLUSIONS

In this work, we propose a MS2L framework to alleviate
human supervision by combining imperfect sensor policy
and recording policy. To best of our acknowledge, This is
the first time using imperfect sensor measurements to do
self-supervised learning in the task of navigating in indoor
environments. We perform extensive experiments qualitatively
and quantitatively to show our framework learns to navigate
without human intervene. It achieves near human performance
and surpasses the sensor policy by a large margin. Since this
framework do not require a perfect policy to learn from, it
is applicable to many other robotic tasks that require expert
supervision.
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