¢ IEEE_
L css

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 7, JULY 2019

2869

Dynamic Multiobjective Control for Continuous-Time Systems
Using Reinforcement Learning

Victor G. Lopez

Abstract—This paper presents an extension of the reinforcement
learning algorithms to design suboptimal control sequences for
multiple performance functions in continuous-time systems. The
first part of the paper provides the theoretical development and
studies the required conditions to obtain a state-feedback control
policy that achieves Pareto optimal results for the multiobjective
performance vector. Then, a policy iteration algorithm is proposed
that takes into account practical considerations to allow its im-
plementation in real-time applications for systems with partially
unknown models. Finally, the multiobjective linear quadratic reg-
ulator problem is solved using the proposed control scheme and
employing a multiobjective optimization software to solve the static
optimization problem at each iteration.

Index Terms—NMultiobjective optimization, nonlinear systems,
Pareto optimality, reinforcement learning.

|. INTRODUCTION

Reinforcement learning is a set of artificial intelligence methods
that has had an increasing success in the last decade for providing a
system with the ability to improve its performance as it gains experience
while attempting to achieve its goals [1]-[4]. In the last few years,
reinforcement learning approaches have been adopted in control theory
where the performance of a dynamical system is measured by means
of a scalar function that represents the cost spent by the system along
time. Reinforcement learning techniques, properly defined for control
of dynamical systems, are described in [5].

Many engineering problems require describing the goals of a system
by means of two or more performance indices, rather than the single
cost function employed in classical optimal control. Using several per-
formance indices provides more flexibility to represent the expected
behavior of the system in ways that are difficult to express otherwise.
Examples of these applications can be found in [6]. The study of
multiobjective optimization control is therefore a natural extension of
the usual analysis in the current literature [7].

Manuscript received October 17, 2017; revised June 22, 2018; ac-
cepted August 24, 2018. Date of publication September 10, 2018; date
of current version June 26, 2019. This work was supported in part by the
U.S. National Science Foundation under Grant ECCS-1405173, in part
by the ONR Grant N0O0014-17-1-2239, and in part by the National Natural
Science Foundation of China under Grant 61633007. The work of V. G.
Lopez was supported by the Mexican Council of Science and Technology
(Conacyt). Recommended by Associate Editor Y. Song. (Corresponding
author: Victor Gabriel Lopez Mejia.)

V. G. Lopez is with the UTA Research Institute, University of Texas
at Arlington, Fort Worth, TX 76118 USA (e-mail: victor.lopezmejia@
mavs.uta.edu).

F. L. Lewis is with the UTA Research Institute, University of Texas at
Arlington, Fort Worth, TX 76118 USA, and he is a Qian Ren Consult-
ing Professor at the State Key Laboratory of Synthetical Automation for
Process Industries, Northeastern University, Shenyang 110819, China
(e-mail: lewis@uta.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2018.2869462

, Student Member, IEEE, and Frank L. Lewis

, Fellow, IEEE

Multiobjective optimal control has been studied in [7]-[9] where
the concept of Pareto domination is employed to compare the desir-
ability of two vector functions. Using this notion, the control input is
designed such that improving an objective function unilaterally implies
making another worse [10], [11]. Most of the papers in the literature
deal with static multiobjective optimization. To the best of our knowl-
edge, no other paper presents a practical method of policy iteration to
solve the multiobjective optimization problem for nonlinear dynamical
continuous-time systems.

Several methods exist to compute a Pareto optimum. These include
numerical methods embedded in software packages, as well as analytic
procedures such as the weighted sum, or scalarization, technique [11].
The weighted sum method consists of combining the different cost
indices into a single scalar function by computing their convex sum.
This is a practical method in many applications, but it presents many
technical drawbacks. These include the presence of unreachable Pareto
optimal results, a strong, nonintuitive dependence on the selected sum
weights, and a large computational burden as the number of desired
solutions increases [11]. For these reasons, our paper presents a general
approach for multiobjective control that can be applied with any of the
existing multiobjective optimization methods.

The main motivation of our work is to design a control strategy that
allows to solve optimization problems that cannot be expressed by a
single cost function. When the objectives of the system are conflicting
with each other, a tradeoff must be achieved. The controller is based on
reinforcement learning methods to avoid the difficult task of solving
the Hamilton—Jacobi—Bellman equation [2] and to relax the need of
full knowledge of the dynamic model of the system.

As main contribution of the paper, a reinforcement learning al-
gorithm, based on policy iteration, is proposed to achieve an online
solution of the multiobjective optimization problem. It is rigorously
proven that, under the provided conditions, this algorithm yields a sin-
gle Pareto optimal solution, in a nontrivial extension from the single-
objective optimization problem. Furthermore, only partial knowledge
of the system dynamics is required to achieve optimal control. This
algorithm is finally formulated and analyzed for the specific case of
linear systems.

The paper is organized as follows. Basic definitions for multiobjec-
tive optimization and for the multiobjective optimal control problem
are described in Section II. Section III shows the basic transforma-
tions employed to obtain an iterative suboptimal control sequence.
In Section IV, a policy iteration algorithm to solve the multiobjec-
tive optimization problem is designed, with considerations to allow its
implementation in practical applications. Section V studies the linear
systems case. Finally, Section VI concludes with a numerical example.

Il. BASIC DEFINITIONS

In this section, various definitions to develop multiobjective opti-
mization algorithms for dynamical systems are reviewed.

0018-9286 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3989-4091
https://orcid.org/0000-0003-4074-1615
mailto:victor.lopezmejia@mavs.uta.edu
mailto:victor.lopezmejia@mavs.uta.edu
mailto:lewis@uta.edu

2870

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 7, JULY 2019

A. Pareto Optimality

Multiobjective optimization deals with the problem of minimizing
two or more objective functions simultaneously [10]. In mathematical
terms, this problem is expressed as follows:

i : 1
min V(x) (H

where z € R” is selected inside a feasible set X and V : R" — RM
is a vector function with M elements, V (x) = [V; (z),..., Var (2)]7,
with V; (m), 1 =1,..., M,thefunctions to be minimized. In the general

case, there does not exist a solution x that achieves the minimization
of all functions V; (z) simultaneously, and the concepts of Pareto dom-
ination and Pareto optimality must be introduced.

Definition 1: A vector W € RM is said to Pareto dominate vector
VeRMifW; <V, forall j=1,...,M,and W; < V; for at least
one j, where V; and W; are the jth entries of vectors V' and W,
respectively.

The following definition states a specific notation that we use
throughout this paper.

Definition 2: Notation W <V for vectors W € RM and V ¢
R, indicate that W is not Pareto dominated by V, i.e., either V = W
or there is at least one entry j such that V; > W;. Notation W < V'
means that W; <V, forallj =1,..., M.

Employing these definitions, the concept of Pareto optimality can be
stated as follows.

Definition 3: A solution z* of problem (1) is said to be Pareto
optimal if V(z*) < V(z) forall z € X.

The outcome V' (z*) of a Pareto optimal solution z* is also said to
be Pareto optimal. In general, a multiobjective optimization problem
has multiple Pareto optimal outcomes, and the set of all Pareto optimal
outcomes for a given problem is regarded as the Pareto front. Here, we
represent the Pareto front as V™, such that V' (z*) € V™.

B. Multiobjective Performance of a Dynamical System

Consider a general nonlinear system with dynamics
&= f(z,u) 2

where x € R" and u € R™ are the state vector and the control input of
the system, respectively, and f is a continuously differentiable function.

In the multiobjective optimization problem, the performance of sys-
tem (2) is evaluated with respect to M different performance indices
as follows:

T (2(0),u) = /OOO L; ((0), u)dt 3)

where each L; is a continuously differentiable function and j =
1,..., M. The feedback control function u(z) is said to be admissible
if it is continuous, stabilizes the dynamics (2), and makes J; (z, u(x))
finiteforall j = 1, ..., M. The class of functions satistying these prop-
erties is denoted as U". Define the vector J as J = [J;,..., Jy 7. It
is our interest to find a function u(z) € U° such that vector J is mini-
mized in the Pareto sense.
For a fixed control policy u(x), define the value functions

M. @)

LetV = [Vi,...,Vy]". A differential equivalent to the value func-
tion (4) is given by the Bellman equation

0=L;(z,u) + VV] f(z,u) = H;(2,VV;,u) (5)

where V'V is the gradient of V;, and H; (x, VV;, u) is the jth Hamil-
tonian function of the system. Note that the orbital derivative of V; (z)
is given by

Vi(z) = VVji = —L;(x,u). (6)
Define also
Ve (x(0)) 2 inf J(x(0),u) %)

where, in general, V* is not unique, and V* € V7 with V7 the Pareto
front of vector .J.
Define the Pareto optimal vector H* as follows:

H*(z,VV) = 1161[1715 H(z,VV, u) €))
where H = [Hy,...,Hy|T and VV = [VVi,...,VVy]T. H* is
Pareto optimal in the sense that, for each state vector x and vector
V, H*(x,VV) < H(x, VV,u) for every control policy u € U°.

In general, it is possible to select different control inputs, u*' and u*2,
such that H (z, VV,u*') and H (x, VV,u*?) are both Pareto optimal.
For this reason, we make the following assumption, useful for the
analysis of Section III.

Assumption 1: If there exists u* such that H*(z, VV') = 0 for all
z and a given function V' (z), then select u = u*.

Assumption 1 is a restriction on the procedure employed to find a
Pareto optimal vector in (8), and states that if the vector of zeros is
one of the possible Pareto optimal results for H*, then control policy u
must be selected accordingly. The consequences of Assumption 1 are
studied in Lemmas 4 and 5 in Section III.

I1l. MULTIOBJECTIVE SUBOPTIMAL CONTROL SEQUENCES

This section defines and analyzes transformations to design subop-
timal control policies in an iterative manner. This is an extension for
multiobjective optimization of the results in [3].

Considering the multiobjective optimal control problem described in
Section II, define) as the set of all continuously differentiable functions
V :R" — RM guch that V(0) = 0. Define also V° as the subset of V
such that u(x, VV) € U, i.e., the feedback control policies based on
the vector function V' are admissible. Define the transformations 77,
Ts, and T as follows.

Definition 4:

1) Define the function 77 : V° — U° as T} (V) = T3 (V4,.
=uwhere V= [Vi,...,Vir|T and u = u(z, VV).

2) Define the function Ty : U? — Vas Ty (u) = V, where V € RM
and V;(z) = J;(z,u),j=1,..., M.

3) Define the composite mapping 7 : V' — VasT(Vy,..., Vi) =
T (Ty(Vi,..., Vi) = J(z,u), where u = u(z, VV).

Our objective now is to use these transformations to design a control
sequence that converges to an optimal policy u*(z) € U’. We begin
our analysis by studying some of the properties of the vector functions
defined in Section II, as well as those of transformations 77, 75, and T'.

Lemma 1 allows to compare two vector functions, V' and W, with
entries V; and W; as in (4), when the respective Hamiltonian functions
are known.

Lemma 1: If H(z,VV,u) < H(xz, VIV, u) for given vector func-
tions V', W, and control u, then W < V.

Proof: By Definition 2, we have that either H(xz,VV,u)=
H(xz,VW,u) or there exists an entry j such that H;(z, VV,u) <
H;(x, VW, u). Assume the latter case and consider this same entry
j- By definition of Hj in (5), we have L;(x,u) + VV] f(x,u) <
Lj(x,u) + VW] f(x,u), which implies VV/ f(x,u) < VW] f

Vi)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 7, JULY 2019

2871

(z,u); that is, V; < W;. Integrating the inequality along the same
motions yields W; < V; and, therefore, W < V. O

Lemma 2 and Theorem 1 relate the Pareto optimality of vector V'
with the Pareto optimality of vector H in (8).

Lemma 2: Consider a control policy u*
V}*(:c), j=1,..., M, solves the Bellman equation (5) for u*,
V*(x) is Pareto optimal.

Proof: Consider a control policy @ such that H(z,VV, u) #
H(z,VV,u"). By Pareto optimality of H;(z, VV;,u"), there exists
an entry j such that

such that (8) holds. If
then

Hi(x,VV;,a) > H;(x,VV;,u"). ©)
For this entry j, let V;* solve the Bellman equation for u* and
solve the Bellman equatlon for w. Then, H;(x, VV},u) > H;
,VViut) = Hj (2, VV;,) = 0. Now, by Lemmal H (z, VV,
> H i (z,VV; u) implies V; > V. D
Theorem 1: Let the control pohcy u* be such that (8) holds, and
V™ such that V" solves the jth Bellman equation (5) for u”, for every
entry j = 1,..., M. Then, V* € V7 with V7 the Pareto front of J as
defined in (7).
Proof: As u* makes H* Pareto optimal, then, by Lemma 2, V* is
also Pareto optimal. Now, for all entries of vector J, we have

S"Q-S‘

Jj /0 L](m,u)dt

| TVt Vet + V; (a(0),

Asu* € U’ then V(z(o0)) = 0. Therefore, .J; = V;*(2(0)) for all
entries j, and Pareto optimality of V* implies Pareto optimality of J.
Thisis V* € V7 asin (7). 0

The proof of Theorem 1 shows that V* = J when V' solves the
Bellman equation for v*. Lemma 3 and Theorem 2 show that solving
the Bellman equation, regardless of the control function v, is a sufficient
and necessary condition for a vector V' to satisfy the equality V =

Lemma 3: 'V =T, (u) ifand only if V; satisfies H; (z, VV,u) = 0,
forj=1,...,M.

Proof: If H (x,VV,u) =0, then V; = VVT f(x,u) = H,(x,
VV,u) — L;(z, u) = —L;(x,u) = J;, and integrating both sides of
the equality along the same motions for all entries of the vector yields
V = J = Ty(u). Conversely, if V = J, then V; = J; = —L; (, u),
which implies H; = 0.]

Theorem 2: Let V eVandW € V.Now, W = T(V) if and only
if H(x, VW, u(z,VV)) =

Proof: The proof follows directly from Lemma 3 and Definition 4.

O

Clearly, if V' is such that H(z, VV,u) = 0, then H*(z, VV') <0,
which means that the vector of zeros does not Pareto dominates H*.
However, this does not necessarily imply that all the elements of H*
are nonpositive. Lemma 4 solves this inconvenience.

Lemma 4: Let Assumption 1 hold. Then, H;-‘(x, VV) <0 for all
entries of H*.

Proof: By Assumption 1, if the vector of zeros is Pareto optimal,
then H; = O for all entries of j. If H = 0 is not Pareto optimal, then by
deﬁmtlon of Pareto optimality we have H (2, VV') < 0 for all entries
of 7 with at least one strict inequality. (]

As studied below, Lemma 4 allows guaranteeing that all the entries
of a vector are at least as small as the entries of another (V' < W) when
an iterative algorithm is employed.

The following theorem shows the recursion required later in this
section to design a suboptimal control sequence.

Theorem 3: Let V €V’ and V = T(V), and let Assumption 1
hold. Then, H*(x,VV) < 0 implies V* <V <V, with V* Pareto
optimal.

Proof: Take u = u*(x, VV'). By Assumption 1 and Lemma 4,
Hi(x, VV) <O0forevery j =1,..., M. Then, we can express VJ =

H]’-*(QL'7 VV)—Lj(z,u) < —L;(z,u) = JJ
AsV; =T(V) = J; implies v, = jj, then V, < V. Integrating
the inequality we get V; < V; for all entries j.]

In the single objective optimization problem, it is clear that an itera-
tive repetition of the operation in Theorem 3 leads the function vector
V to the unique optimal value function V*. In the multiobjective op-
timization case, Assumption 1 is required to prevent leaping among
different Pareto optima at each iteration, as proven in Lemma 5 and
Theorem 4.

Lemma 5: Let V* be Pareto optimal and let Assumption 1 hold.
If W* is any other Pareto optimal value function such that V* # W*,
then W* # T' (V™).

Proof: Assume W = T'(V*). If Assumption 1 holds, by Lemma 4
we have Hj(xz, VV') <0 for all entries j. By Theorem 3, we have
W; <V for all j. As W > V" for some j, for any other Pareto
optimal vector W*, then W* cannot be reached. d

Theorem 4: 1f a Pareto optimal solution V* € V° exists, then V* =
T (V™). Conversely, V =T (V) implies V = V*.

Proof: Consider two Pareto optimal vectors V* and W*.
Theorem 3, if V = T(V*), then W* <V < V*; by Lemma 5 and
definition of Pareto optimality, V < V implies V = V'*. Conversely,
if V.= T(V), by Theorem 2 we have H*(xz, VV') = 0 and V solves
the Bellman equation (5); by Lemma 2, V = V™.

We finally formalize the idea of using the result in Theorem 3 to
build a sequence of successive approximations that converge to a Pareto
optimal solution V'*.

Theorem 5: Take V* €V’ and V*T' =T(V*). Then V* <
VE+L < ... < VO for a Pareto optimal solution V*.

Proof: The proof follows inductively from Theorem 3, noting
that the current estimate of the optimal value function at step k is
V* = T, (u") and taking the control policy at step k + 1 based on V¥,
ie, uf Tt =u(x, VV*) = Ty (VF*). Convergence to a single Pareto
optimal result is provided by Theorem 4.]

IV. INTEGRAL REINFORCEMENT LEARNING ALGORITHM FOR
IMPLEMENTATION OF MULTIOBJECTIVE SUBOPTIMAL CONTROL

In this section, we use the analysis of Section III to design an integral
reinforcement learning (IRL) algorithm using the structure of policy
iteration [1], [5], [12], that is shown to converge to a Pareto optimal so-
lution of vector V/, then used to generate the optimal policy u(z, VV™*).
Here, it is assumed that the state values of system (2) are known, even
if part of its mathematical model is uncertain.

In the work presented in [12], an IRL algorithm that converges to the
solution V'* of the Bellman equation for a single performance index was
developed. This section presents the IRL in multiobjective optimization
form.

Notice that the jth value function (4) can be expressed as follows:

wuu»:/H.uuv»mm+wwu+T» 10)

where for any time interval 7' > 0. Given the functions V;(z) and
L;(z,u), (10) does not require knowledge about the system dynamics
(2). Lemma 6 shows that the solution V; () of (10) is the value function
(4) that solves (5).

2872

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 7, JULY 2019

Algorithm 1: Integral Multiobjective Policy Iteration.

1. Select an admissible control policy u°.
2. Solve for V* from the set of equations

t+T
ij(az(t)) = /t Lj(x(T),u)dT-i-ij(z(t—i-T)). (11)

3. Update the control policy as
uf T = argmin H(z, VV*, u), (12)
Go to step 2. On convergence, stop. O

Lemma 6: Assume the control policy u(x) stabilizes the system
dynamics (2). Then, the solution V;(x) of (10) is equivalent to the
solution of the Bellman equation (5).

Proof: Tf (5) holds for V}, then V; = VVI flz,u) = —Lj(x,u).
Integrating both sides of the equation, we get

[wwwar= - [vatar

= = V(z(t+T)) + Vi(x(t)

which is the same equation as (10). O

The following algorithm presents the multiobjective optimal con-
troller by reinforcement learning. The policy evaluation step consists
of solving (10). This corresponds to the transformation 7% in Defini-
tion 4. The policy improvement step is based on (8), and corresponds
to the transformation 7). Convergence of Algorithm 1 is proven in
Theorem 6.

Theorem 6: Assume there exists an admissible control input v for
system (2). Perform Algorithm 1 such that Assumption 1 holds in
step 3. Then, Algorithm 1 converges to a Pareto optimal solution V'*.
Moreover, the control policy u(z, VV*) optimizes the performance
index vector J.

Proof: From (12) and Assumption 1, we have that H; (z, V‘/}k ,
uft1)y <0 for j =1,...,M. As function ij:+1 solves (11), then
by Lemma 6 H; (x,VV'j]““,uk“) = 0. From both results we get
Hj(z, VVF,ub 1) < H (2, YV "1 uf*1). Lemma 1 implies that
ij“ <V} and vector V**! is not Pareto dominated by V*. By
Theorem 5, these properties hold for every iteration until a Pareto
optimal vector V* is obtained.

By Theorem 1, if (11) holds for V*, then V* = J*. Thus, V* guar-
antees a Pareto optimal performance of the system. g

Remark 1: Step 3 in Algorithm 1 can be solved by any multiob-
jective optimization method. In this paper, we avoid the use of the
weighted-sum method because it reduces the problem to a single-
objective formulation that is often restrictive and is not suitable for
general applications [11]. The technical drawbacks of the weighted
sum method include its inability to reach results in nonconvex sections
of the Pareto optimal set, a strong, nonintuitive dependence on the sum
weights, and a large computational burden as the optimization problem
grows in complexity.

Remark 2: Equation (11) avoids the use of the system dynamics (2)
in the policy evaluation step of the algorithm, and (12) requires only
partial knowledge of the mathematical model of the system [12].

In the following section it is shown how to use partial knowl-
edge of a linear system with a particular Pareto optimization solver in
Algorithm 1.

V. MULTIOBJECTIVE LINEAR QUADRATIC REGULATOR

Consider a system with linear dynamics
i = Az + Bu. (13)

The performance of the system is measured using M different per-
formance indices with quadratic terms, given by

J; = / (2" Qjz +u" Rju)dt (14)
0
j=1,...,M, where Q; >0 and R; > 0 are symmetric matrices.
Express each of the M value functions in quadratic form as follows:
V, = 2" Py, (15)

where j = 1,..., M, with P; = P]-T > 0.
In order to apply the multiobjective IRL algorithm, express the func-
tions (15) in the form (10); that is,

. , T -
x (t)Pjx(t) = / (2" Qjz + u" Rju) dr

+ 2t (t+T)Pjz(t +T). (16)

Solving this equation becomes an easier task if we employ the Kro-
necker product to express the term 27 Pjz as 27 Pjx = vec(P;)T (z ®
x), where vec(P;) is the column vector obtained by stacking the
columns of P;. Moreover, as matrix P; is symmetric and the expres-
sion x ® « includes all possible products of the entries of z, each
of the vectors vec(P;) and z ® = include repeated terms. Represent
these vectors after removing all the redundant terms as p; and T, re-
spectively, which consist of n(n + 1)/2 components. Now, we can
write

' Pz =pl I)

Using the expression (17), we rewrite (16) as follows:

t+T
pf(z(t)—a-:(tJrT)):/ (2" Qjz +u" Rju)dr (18)

and the goal is to find the values of p; that satisfy (18) given the
measurements z(t) and z(t 4+ 7T'), and the employed control input
u. This objective can be achieved using recursive least squares after
collecting several samples of (18) [5].

The Hamiltonian functions for this system are as follows:

H; = 2" Q;z +u" Rju+ 22" P; (Az + Bu). (19)

The optimal control policy u* for system (13) is the inputu = —Kx
that makes the vector H = [H, ..., H)/]" Pareto optimal.

Several methods can be used to determine u*. Here, we propose a
general procedure that allows this problem to be solved by any multi-
objective optimization software package.

Substitute the policy v = — K z in each of the Hamiltonian functions
(19), to obtain

H;=2"Qjv+ 2" K"R; Kz

+ 2" Py (A= BK)z 42" (A - BK) Pjz. (20)

Itis well known that the minimization of each individual H; with re-
spect to K is achieved using the optimal gain matrix K* = R;l BT P;.
However, this optimization problem can be characterized differently to
be programed in a multiobjective optimization solver. Theorem 7 shows
that minimizing (20) by means of matrix K is equivalent to minimize

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 7, JULY 2019

2873

Algorithm 2.

1. Select an admissible control policy u® = K%z.

2. Solve the set of (11) for V*.

3. Solve the multiobjective optimization problem (23) and update
the control policies as u**! = KF+1x,

Go to step 2. On convergence, stop. d

the sum of the eigenvalues of the matrix KT R;K — P;BK —
KT BT P;. To simplify the notation, define the variables

S;=Q; +K"R;K + P, (A—BK)+ (A—BK)" P, ()

and

S;=K"R;K — P;BK — K" B" P;. (22)
The ith eigenvalue of a matrix S is denoted as A; (S).
Theorem 7: Let H; = 7 Sz, where S; is the symmetric matrix
(21). Then, solving the minimization problem

K" = argmin H;
K
is equivalent to solving the eigenvalue minimization problem
n
. /
K" = arg;nm Z 2i(S})
i=1

with S} as in (22).

Proof: Take the optimal matrix K™ such that H; = z7 Sz, with
S;=Q; + KTR;K*+ P;(A— BK*)+ (A — BK*)T P;, is min-
imal; this means z” Sjr < xTij for .S; in (21) using any matrix
K. Now we can write 27 (S; — S]*)x > 0 and, therefore, S; — S is a
positive semidefinite matrix. Note that for the matrices (21) and (22),
we have S; — 57 = S} — 57", As all the eigenvalues of S} — S'" are
nonnegative, and the trace of a matrix is equal to the sum of its eigen-
values, then tr(S} — S}) > 0, which implies ¢r(S%) > tr(S7"). We
conclude that matrix K* generates the matrix S}* with minimal sum of
its eigenvalues.]

By Lemma 7, minimization of the Hamiltonian vector H can be
achieved by finding the gain matrix K" such that, for given matrices

P”] =1,..., M, we have
Yl ki (KTRiK - PLBK — K" BT Py)
K* = argmin
K

i (KTRy K — Py BK — KT BT Py)
(23)

Remark 3: Problem (23) is expressed without knowledge of matrix
A of the system dynamics (13).

Algorithm 2 expresses the policy iteration procedure presented in
Algorithm 1, modified for the linear systems case.

VI. SIMULATION RESULTS

Algorithm 2 is now employed to achieve stabilization of the lin-
earized double inverted pendulum in a cart [19], [20], represented by

0.4r
P osition
Angle 1
Angle 2
0
2
S
o
ko -
S por—
P
S
(2]
1 1 1 J
3 4 5 6
Time
Fig. 1. State trajectories of a linear system with multiobjective
optimization.

the dynamic (13), where

ro 0 0 1 0 07 r 0 7
0 0 0 010 0
0 0 0 0 0 1 0
A= B =
0 0 0 0 0 0 1
0 86.69 —-21.61 0 0 O 6.64
L0 —40.31 3945 0 0 0] L0.08

state x; is the position of the cart, zo» and x5 are the angles of both
pendulums, and the remaining states are the velocities. Performance
objectives are as follows: 1) regulation of all states is required and 2)
the values of x5 and x3 must be as close to each other as possible. The
performance indices (14) can now be defined as follows:

F200 0 0 0 0 07 10 0 00 07
0 200 0 00 0 01 -1000
0 0 200 0 0 0 0 -1 1 000
©=1y 0 0 10090 0100
0 0 0 010 0 0 010
Lo 0 0 00 1 000 0 00 1

and R; = R, = 1. The sample time per iteration is 7" = 0.05.

The MATLAB function for multiobjective optimization fgoalattain
is employed to determine the feedback control matrix K at each itera-
tion. fgoalattain allows to generate different points in the Pareto front
of the problem. The state trajectories for x1, 22, and x5 after imple-
mentation of Algorithm 2 are shown in Fig. 1. All states are shown to
be stabilized by the controller. The final gain matrix K is

K =1[1190 110.67 —165.9 13.30 4.20 —26.32].

VII. CONCLUSION

A sequence for suboptimal control with multiple objective functions
for general nonlinear systems was designed, guaranteeing its conver-
gence to an optimal vector in the Pareto sense. The proposed policy

2874

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 7, JULY 2019

iteration algorithm allows solving the M Bellman equations indepen-
dently, using only the measurements of the system trajectories during a
time interval. This control scheme can be applied in real-time without
having full knowledge of the mathematical model of the system. As a
case of study, the multiobjective LQR was solved.

[6]
(71

(8]

(91

[10]

[11]

REFERENCES

R. S. Sutton and A. G. Barto, Reinforcement Learning: An introduction,
Cambridge, MA, USA: MIT Press, 1998.

F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control, 2nd ed.
Hoboken, NJ, USA: Wiley, 2012.

R.J.Leake and R. W. Liu, “Construction of suboptimal control sequences,”
J. SIAM Control, vol. 5, no. 1, pp. 54-63, 1967.

D. P. Bertsekas, “Dynamic programming and suboptimal control: A survey
from ADP to MPC,” Eur. J. Control, vol. 11, pp. 310-334, 2005.

K. G. Vamvoudakis, H. Modares, B. Kiumarsi, and F. L. Lewis, “Game
theory-based control system algorithms with real-time reinforcement
learning,” IEEE Control Syst. Mag., vol. 37, no. 1, pp. 33-52, Feb. 2017.
G. P. Liu, J. B. Yang, and J. F. Whidborne, Multiobjective Optimisation
and Control. Hertfordshire, U.K.: Research Studies Press, 2003.

A. Gambier and E. Badreddin, “Multi-objective optimal control: An
overview,” in Proc. IEEE Int. Conf. Control Appl., Oct. 1-3,2007, pp. 170-
175.

F. Logist, S. Sager, C. Kirches, and J. F. Van Impe, “Efficient multiple
objective optimal control of dynamic systems using integer controls,” J.
Process Control, vol. 20, pp. 810-822, 2010.

A. Kumar and A. Vladimirsky, “An efficient method for multiobjective
optimal control and optimal control subject to integral constraints,” J.
Comput. Math., vol. 28, no. 4, pp. 517-551, 2010.

S.Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA:
Cambridge Univ. press, 2004.

M. Caramia and P. Dell’Olmo, “Multi-objective optimization,” in Multi-
Objective Management in Freight Logistics. Increasing Capacity, Service
Level and Safety With Optimization Algorithms. London, U.K.: Springer,
2008.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. L. Lewis, “Adaptive opti-
mal control for continuous-time linear systems based on policy iteration,”
Automatica, vol. 45, pp. 477-484, 2009.

D. Vrabie, K. G. Vamvoudakis, and F. L. Lewis, Optimal Adaptive Control
and Differential Games by Reinforcement Learning Principles. London,
U.K.: Institution Eng. Technol., 2013.

D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, Adaptive Dynamic Pro-
gramming With Applications in Optimal Control, New York, NY, USA:
Springer, 2017.

F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An
introduction,” IEEE Comput. Intell. Mag., vol. 4, no. 2, pp. 39-47, May
2009.

R. Kamalapurkar, L. Andrews, P. Walters, and W. E. Dixon, “Model-based
reinforcement learning for infinite-horizon approximate optimal tracking,”
1IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 753-758, Mar.
2017.

T. Bian, Y. Jiang, and Z.-P. Jiang, “Adaptive dynamic programming and
optimal control of nonlinear nonaffine systems,” Automatica, vol. 50,
pp. 2624-2632,2014.

Q. Yang and S. Jagannathan, “Reinforcement learning controller design
for affine nonlinear discrete-time systems using online approximators,”
IEEE Trans. Syst., Man Cybern.-Part B, Cybern., vol. 42, no. 2, pp. 377—
390, Apr. 2012.

Q.-R. Li, W.-H. Tao, N. Sun, C.-Y. Zhang, and L.-H. Yao, “Stabilization
control of double inverted pendulum system,” in Proc. 3rd Int. Conf.
Innovative Comput. Inf. Control, Jun. 18-20, 2008.

J.-L. Zhang and W. Zhang, “LQR self-adjusting based control for the
planar double inverted pendulum,” Physics Procedia, vol. 24, Part C,
pp. 1669-1676, 2012.

Y. Song, Y. Wang, and C. Wen, “Adaptive fault-tolerant PI
tracking control with guaranteed transient and steady-state perfor-
mance,” [EEE Trans. Autom. Control, vol. 62, no. 1, pp. 481-487,
Jan. 2017.

Y. Song, X. Huang, and C. Wen, “Tracking control for a class of unknown
nonsquare MIMO nonaffine systems: A deep-rooted information based
robust adaptive approach,” IEEE Trans. Autom. Control, vol. 61, no. 10,
pp. 3227-3233, Oct. 2016.

