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Abstract—Deep imitation learning enables robots to learn from
expert demonstrations to perform tasks such as lane following or
obstacle avoidance. However, in the traditional imitation learning
framework, one model only learns one task, and thus it lacks of
the capability to support a robot to perform various different
navigation tasks with one model in indoor environments. This
paper proposes a new framework, Shared Multi-headed Imitation
Learning(SMIL), that allows a robot to perform multiple tasks
with one model without switching among different models. We
model each task as a sub-policy and design a multi-headed
policy to learn the shared information among related tasks
by summing up activations from all sub-policies. Compared to
single or non-shared multi-headed policies, this framework is
able to leverage correlated information among tasks to increase
performance. We have implemented this framework using a robot
based on NVIDIA TX2 and performed extensive experiments in
indoor environments with different baseline solutions. The results
demonstrate that SMIL has doubled the performance over non-
shared multi-headed policy.

I. INTRODUCTION

One of the main challenges in robotics is to enable robots
to interact with a dynamically changing environment and
to perform different tasks with minimal prior knowledge. It
requires the robot to perceive the environment, understand
the context of the tasks, and make decisions accordingly.
Traditional methods rely on accurate manual modeling for
each task, such as visual SLAM systems for navigation [17].
In contrast, deep learning based methods simplify the need
of manual modeling. They directly learn a policy that maps a
sensor input to a corresponding control command. Because of
the advance of deep learning models, especially convolutional
neural networks (CNNs), learning control commands directly
from environmental images becomes feasible [[13].

However, literature imitation learning solutions can only
learn one task per model. This prevents robots from executing
complex actions. For example, if the robot is asked to fetch a
cup in the kitchen, it needs to decompose the task into a few
sub-tasks such as goro, traverse, and fetch. In this work, we
propose a framework that solves the two navigation problems
with only one model, gofo and traverse. The framework is
called Shared Multi-task Imitation Learning (SMIL), which
gives robots the ability to perform different navigation tasks
in indoor environments. The framework is based on the multi-
task learning (MTL) [3] and aims at solving task agnostic
problem of imitation learning. Although MTL has been re-

searched for a long time, multi-task imitation learning has
rarely been researched until recently [5], [8].

The proposed framework uses a shared CNN to learn
an environment model that extracts environmental features.
Different sub-task policies are represented by a multi-headed
fully connected network whose inputs are from the last layer
of the shared CNN. While current literature solutions such
as the work [4] do not consider the relevance between the
sub-tasks, our proposed framework rather makes use of the
relevant information among sub-tasks. In order to solve poor
generalization and distribution mismatch problems, we apply
off-policy imitation learning [12], data augmentation, and
dropout [21]] during training. During testing, the framework
switches between sub-policies based on human navigation
commands.

Our contributions are as below:

e We propose a new network architecture that leverages
task relationships by summing up activations from sub-
policies.

e Off-policy learning procedure is used to train our frame-
work.

o Dropout and image augmentation are used to improve
generalization.

In the rest of this paper, Section [lI] reviews the related
work of the imitation learning and multi-task learning. Our
solution SMIL framework is described in Section [[II| including
the network architecture and detailed training procedure. Next,
Section presents extensive performance evaluations of
SMIL in real indoor environments. The conclusion and future
work are presented in Section

II. RELATED WORK

Learning based algorithms have been applied to a variety
of robotics control problems. These algorithms can learn an
end-to-end controller directly from data. For example, in [24],
reinforcement learning is used to train a siamese neural net-
work to navigate to a target position. Similarly, the work [|16]]
uses auxiliary losses to train a reinforcement learning agent
to navigate through complex maze environments. In contrast
to reinforcement learning, imitation learning has been applied
to many real-world applications such as robotic grasping
[11], UAV flight control [7]], self-driving cars [2]], and rope
manipulation [[18].



The above mentioned algorithms only consider completing
one task at a time, but this is not enough for many robotic
tasks. Therefore, we target on the idea of multi-task learning
(MTL) [19]. Researchers have proposed a learning architecture
that uses one single model to jointly learn image classification,
speech recognition, and translation problems and yielded en-
couraging results [10]. Long et. al. place a matrix prior to fully
connected layers in a CNN to learn the relations of multiple
tasks [15]]. Multi-task imitation learning has drawn attentions
in recent years including learning multiple tasks together [4],
[8]] or one-shot learning [5], [6], [20]. Among these works, two
works [4]], [8]] are most similar to ours. Hausman et. al. propose
a multi-model imitation learning framework that separates
video segments into different skill trajectories and imitate the
demonstrated skills jointly [8]. In [4], the authors propose
a framework that learns sub-policies using a multi-headed
network in the autonomous driving setting. However, these
works have not considered the relevant information among
tasks. Our proposed framework learns the relationships across
tasks by combining learned features across sub-policies. By
learning these relationships, the model is able to yield a more
general representation of various navigation tasks.

III. SHARED MULTI-TASK IMITATION LEARNING

In this section, we first formally define the problem of
imitation learning and multi-task imitation learning. Next, we
present our deep learning network architecture. Finally, our
training procedure is described in detail.

A. Problem Formulation

To formally define the problem, let X and ) denote
recorded observations and corresponding expert control com-
mands respectively. A pair of (X%, Y*) is defined as the k-th
demonstration of a robot. To simplify the notation, we assume
the environment is Markovian; namely the current observation
includes all history information of the environment.

1) Traditional Imitation Learning: In the traditional im-
itation learning setting, the demonstrations are associated
with a single task. Thus, X = {X1 X2, .., X"} and ) =
{Y1, V2% ..., Y"} represent n demonstrations of the task. The
imitation learning aims to learn a policy that maps an ob-
servation to a probability distribution of control command
m : X — w(Y;0), where 6 denotes the parameters of a
weight vector, e.g. neural network. The parameters 6 can be
found by solving a maximum-likelihood estimation (MLE)
problem: 6* = argmax 22;1 m(Y™|X™; 0). If the policy 7

6

is Gaussian and it is parameterized by a weight vector 6,

the MLE objective can be transformed into a [2 regression

problem: 0* = argmins S0 |7 (X7 0) — Y™|[3. In our
]

system, we assume the policy is Gaussian thus we use the [2
objective to optimize the parameters 6.

2) Multi-Task Imitation Learning: In the multi-task imita-
tion learning setting, observations X and the corresponding
control commands ) are representing more than a single task
in demonstrations. Instead, they consist of multiple demon-
strated tasks and are denoted as X = {X;,X5,...X;} and

Y = {N,Ys,....Y;}, where X; = {X}! X2 ..,X"} and
Y; = {Y},Y?,...,Y"} represent the observations and control
commands of task 7. It should be noted that although here
we use the same number of demonstrations across tasks to
simplify the notations, it is not required to be the same. In
addition, we introduce the concept of task embedding denoted
as T = {T1,T5,..T;}. Similar to word embedding [14],
the task embedding is a feature vector for each task that
embeds the high-level representations into a low-dimensional
space.Therefore, the policy m maps observations X and task
embedding 7' to a distribution of control command ) and is
formulated as 7 : {X,T} — w(};0). Instead of minimizing
the objective for one task, multi-task imitation learning aims to
find a set of parameters that are to be optimized over multiple
tasks:
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where I is the number of tasks.

B. Network Architecture

With the multi-task imitation learning problem formulated
as above, we have designed a Shared Multi-task Imitation
Learning (SMIL) framework that learns to perform four tasks
based on human commands. This framework is shown in Fig.
which consists of two modules: image feature extractor and
shared multi-headed policy, which will be explained in details
in the following.

1) Image Feature Extractor: The image feature extractor
is a fine-tuned and pre-trained ResNet-18 by excluding the
classifier layer in the original ResNet-18, but preserving the
average pooling layer. It is used to project raw image inputs
to a low-dimensional feature space and is denoted as f =
I(z,05), where f € RY*1X512 jg the extracted feature vector,
x is the input image, and 6; is the parameter set of ResNet-
18. The idea of using pre-trained model has been extensively
researched by the literature and it is proven to have faster
convergence than training from scratch [9]]. The feature vector
f is then flattened and passed to the shared multi-headed
policy to generate control commands. In addition, to learn
a more general representation of indoor environments, image
feature extractor also predicts which indoor environment the
robot is currently in: p = E(f), where E represents a linear
classifier. In our case, it predicts two class labels: hallway
and classroom. Environment prediction is jointly trained with
control commands.

2) Shared Multi-headed Policy: The shared multi-headed
policy learns shared knowledge across tasks as well as task
specific knowledge. As shown in Figure , the shared multi-
headed policy consists of three parts: switch operation, addi-
tion operation, and sub-policies represented by fully connected
layers. In our case, we define four tasks to be learned: traverse
hallway, traverse classroom, to hallway, and to classroom. We
denote the shared multi-headed policy as a = = (f,T;0.),
where 0, = {W!', .., W*} is the parameter of the entire
policy and W? is the parameter set of the ith sub-policy. It
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Fig. 1: An illustration of SMIL framework. An image observation is first passed through a ResNet-18 to extract features. The
features are then passed through a linear classifier as well as a shared multi-headed policy to predict environment labels and

control commands.

takes two inputs, extracted features f from the image feature
extractor module and task embedding 7', and gives the output
of the control commands a corresponding to a specific task.
In our case, since we have four tasks, we denote the task
embedding 7" as a 4-dimensional one-hot vector [4]]. It is used
to determine the sub-policy to be activated. Note that T can
also be learned in an unsupervised way [8|]. The action space
is two-dimensional: acceleration and steering angle.

Each sub-policy is a three-layer fully connected neural
network. Because the tasks are highly correlated, it is useful
to learn the task relationship through which the activated sub-
policy can exploit useful information from other sub-policies.
For example, the hallway navigation sub-policy can leverage
obstacle avoidance knowledge learned by the classroom nav-
igation sub-policy because classroom is a more complicated
environment with different types of obstacles. Formally, denote
W} the set of parameters at layer [ in i-th sub-policy and

v = gl(WliTxf) the corresponding output, where function
gi(+) denotes a non-linear function and z} is the input of that
layer. Our network uses ReLU for the first two layers’ non-
linear functions and an identity function for the last layer.
The input to first layers of the sub-policy networks is the
extracted features f from the image feature extractor module.

The information across sub-policies is shared by using an
addition operation that combines all the outputs from the
second layers of each sub-policy network:

L
j=)_ hb, )
=1

where L is the total number of tasks. Although the literature
has shown that higher layers learn more task specific features
that are difficult to transfer [23]] , we choose to share the in-
formation from the second layers, because the tasks are highly
correlated and the learned features are easier to transfer over
sub-policies. After the addition operation, the task embedding
T selects a sub-policy to use via a switch operation. The switch
operation routes the output from the addition operation to the
final layer of the selected sub-policy. The final output will be:

a = hf = g§(Wij). 3)

This design enables each sub-policy to learn the task specific
controls in the final layer as well as to share knowledge
through the addition operation across different sub-policies.



C. Training Procedure

It is important to train the multi-task imitation learning
framework for high performance. We employ three different
training techniques to train a robust SMIL framework: dropout,
data augmentation, and noise injection. Because SMIL predicts
steering angle and acceleration, which are real-valued num-
bers, we use mean squared error (M SFE) as the loss function
during the training.

1) Dropout and Data Augmentation: As opposed to
that is designed for single task frameworks, our goal is to train
a robust SMIL framework that is able to perform in different
environments from real-world experience, instead of learning
from images generated by a hand-engineered simulator. It is
necessary to collect images from diverse indoor environments
to prevent a deep learning model from overfitting, but collect-
ing data is time consuming. Hence, we use data augmentation
and dropout to train a robust model. For data augmen-
tation, we randomly apply contrast change, Gaussian noise,
pixel dropout, random cropping, and horizontal flip (steering
angle is also flipped). Different augmentation strategies are
shown in Fig. 2] Dropout is used to prevent model overfitting
by randomly zeroing out an neuron’s activation. In addition,
dropout can also stabilize the performance of the robot.
Because of the addition operation, the norm of activation input
to the final layer is possible to be very large and yields the
outputs of very different control commands. Dropout is only
added to the first and second layers of sub-policies.

Fig. 2: An illustration of randomly chosen augmentation
strategies. From left to right are original, random cropping and
pixel dropout, additive Gaussian noise and contrast changing,
and more aggressive random cropping.

2) Noise Injection: Distribution mismatch between the
supervised training and the robot learning is an essential
problem in imitation learning: because the human operator is
proficient in demonstrating tasks, there are no demonstrations
of recovering from dangerous or erroneous states. As a result,
the robot does not know how to correct itself in experiencing
these abnormal states. We explore the off-policy training for
the SMIL framework to address this issue, where the robot

learns from another policy. We employ the noise injection
approach [12], which injects an optimized Gaussian noise
to an expert policy to maximize the probability of a human
demonstrator making the same mistakes as the robot.

Given a robot policy my, an expert policy 7*, DART
algorithm aims to find a covariance matrix of Gaussian
noise that maximizes the probability of expert taking the robot
policy:

T—1
Y =argmin Epgjr- ) — Z log[m * (mg|xe, X)) (4)

= t=0
where & means trajectories encountered by executing the
expert policy with noise injected and X is the covariance
matrix. A shrinkage estimation is then utilized to scale the

covariance matrix and derive a closed form solution:
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where « is the prior knowledge of the final error of the robot
policy on the training dataset. This algorithm is best used in
an iterative approach, so we collect expert demonstrations for
k iterations and update the covariance matrix at the start of
every iteration except for the first iteration with the covariance
matrix as 0. In our case, we found oo = 2 gives the best results,
which is reasonable because we normalize value of steering
angle and acceleration between -1 and 1, and the largest M SE
should not exceed 4.

IV. PERFORMANCE EVALUATION

We have implemented our framework and elevated in real
world environments. Our experiments have been designed to
answer the following questions:

1) Is the shared task representation (the addition operation)
necessary to the multi-task imitation learning when the
tasks are highly correlated?

2) What is the performance difference of the multi-headed
sub-policy framework compared to a single-headed pol-
icy?

3) Does the environment prediction task improve the per-
formance?

4) Are data augmentation and dropout important to the
model generalization and robustness?

A. Testbed, Experiment Environment

Our framework is implemented into an iRobot Create2
robot. The linear speed of this robot is in the range of -0.5 m/s
to 0.5 m/s and the angular velocity is in the range of -4.5 rad/s
to 4.5 rad/s, where a negative linear speed represents moving
backward and a negative angular speed represents going right.
The only sensory data we used are RGB images from a ZED
Stereo camera. The valid depth estimation is between 0.5m and
20m. We use a NVIDIA Jetson TX2 as the main computation
resource to do inference.



(a) Robert Bell first floor hall-
way.

(c) Robert Bell first floor class-
room.

(d) Robert Bell third floor class-

room.

Fig. 3: Training environments (b) and (d) have different
geometric and color appearances as testing environments (a)
and (c¢).

We have extensively evaluated our solution in a real environ-
ment: the Robert Bell Hall building at Ball State University.
To test the generalization, we have trained the robot in the
third floor but tested the robot on the first floor of Robert
Bell building. The geometric and color appearances are very
different in these two environments. The testing and training
scenes are presented in Fig. [3]

B. Task Description

We have evaluated our framework on four correlated tasks
that are described in Table [l Since classroom indoor envi-
ronments contain fewer free space and are far more complex
compared to hallway environments, we set less constraints on
classroom related task, i.e. traverse classroom and to hallway.
The goal of these four tasks is to simulate the robot in a multi-
task decision making environment, where it is required to go
to different indoor locations based on human command.

C. Experiment Configurations

A variety of baselines have been designed to evaluate the
performance. We compare the SMIL full architecture with
five baselines:

o Multi-headed network: this model uses the same archi-
tecture without the shared learning representation (with
the addition operation excluded).

o Plain network: this is the traditional imitation learning
approach, where there is one single network that maps
the input to output control commands. It is not aware of
the multi-task setting.

e SMIL wlo data augmentation: this baseline excludes
data augmentation in training.

e SMIL w/o dropout: this baseline removes dropout at
the first and second layers of sub-policies.

e SMIL w/o environment prediction: this model does
not predict environment class labels.

We use the same hyper-parameters to train each baseline
network across all the tasks. We use stochastic gradient descent
(SGD) optimizer with a learning rate of 0.01 and a decay
factor of 10 for every 5 epochs. We train each network for 30
epochs with a batch size of 256. For the SMIL framework
and multi-headed network, we split training examples of each
task evenly in each batch. We train the plain network on all
the training data. The plain network is task-agnostic, so we
do not inform it which task to perform explicitly. We set the
weight decay to 0.0005. For the networks that use dropout, we
set the dropout rate as 0.2 implying that with the probability
of 20%, a neuron’s activation will be set to 0.

We have conducted 10 experiments for each task and
recorded the success rate and the averaged time duration with
standard deviation for each experiment as shown in Table [[]
and Fig. []

D. Overall Comparisons

As we can observe from Table[[l|and Fig. 4} in terms of the
success rate, it is clear that our model, SMIL, achieves the
best performance across all the tasks. In terms of time duration,
our model is able to maintain the longest averaged travels
among all other models in traverse tasks. It needs slightly
more time to complete to classroom task. This is because some
baseline models complete all easy runs that take less time, e.g.
the classrooms that are in the robot’s field of view, but failed
difficult runs that take longer time.

E. Comparisons on Model Architectures

The comparisons address the first three questions at the
beginning of this section. We can draw three conclusions:
First, the first floor has more obstacles than the third floor,
which is used for training. Thus, it is necessary to reuse
the knowledge learned from traverse classroom task while
performing traverse hallway task. By comparing SMIL and
multi-headed network on traverse hallway task, we observe
that SMIL is able to reuse obstacle avoidance knowledge
from traverse classroom sub-policy. Second, from the result,
we observe that it is necessary to add the environment predic-
tion auxiliary task to provide additional training single to the
image feature extractor, which allows the image feature extrac-
tor to learn a more robust representation. Third, although the
plain network is trained on all the data that contains 80,000
images, it still fails tremendously especially on the tasks of
to classroom/hallway. This is because the mode averaging
and inaccurate labeling cause bias to the network. The tasks
of to classroom/hallway inherit a different mode from that
in the traverse classroom/hallway tasks and they are more
difficult because the robot needs to avoid obstacles and find
the targeted place. Since the plain network is trained on all
tasks, it is possible that the plain network ignores differences
across each task and thus yield a poor policy. In addition, it
is task-agnostic, so it can not respond to human command.



TABLE I: Task Description

Task Task Description | Time Limit | Failure Condition
The robot is initialized If the robot collides into obstacles,
Traverse Hallwz in hallway at a fixed position. | min we count it as a failure.
averse Hallway It is asked to traverse hallway If it goes into classroom,
without collision within the time limit. we count it as a failure.
Because classroom is highly complex,
we give the robot one more chance
e in this task. If the robot collides into
. The robot is 1mt1dllzed' . obstacles, we reroute it back to
in classroom at the door position. .
Traverse classroom . 30 sec free space. If the robot collides
It is asked to traverse classroom again. we count it as a failure
without collision within the time limit I%l a(idition if it go;tq out%ide.
of the classroom, we count it
as a failure.
. If the robot can not complete
. The robot is .1r.11t1ahzed. the task within time limit or
in hallway at a fixed position that is 15 meters collide into obstacles. we count
To classroom away from a classroom. 2min it as a failure in a d(ii’tion if the
C{;;;igg;t(t)og&:rgglx? robot passes two nearest classrooms
Y- from its initial position, it is a failure.
S, If the robot can not complete
in a cl;t:foro(;}l)ozitl'fh::mftliratlllées? corner the task within time limit or
> . collide into obstacles, we count it as
To hallway away from the door. 1 min a failure. Same as traverse
It needs to go through classroom, we give the robot a
the classroom to the hallway. second chance
TABLE II: Success Rate
| Traverse Hallway | Traverse Classroom | To Classroom | To Hallway
SMIL 80% 60% 70% 60%
Multi-headed 50% 30% 50% 40%
Plain 50% 30% 20% 0%
SMIL wlo augmentation 40% 30% 40% 30%
SMIL w/o dropout 30% 30% 50% 40%
SMIL w/o environment 70% 50% 50% 50%

F. Comparison on generalization and robustness

This comparison answers the fourth question: both dropout
and data augmentation are necessary to train a robust model.
By removing any of them, the robot has the similar perfor-
mance. In terms of the success rate, after adding both methods,
the robot’s performance is almost doubled. It shows that
these two methods are complementary to each other. Dropout
prevents the robot from aggressive turning caused by large
activations from the addition operation. By augmenting the
training dataset, the trained model learns to ignore geometric
difference and different lighting effects.

V. CONCLUSION

In this paper, we propose a deep multi-task shared im-
itation learning framework, SMIL, that can learn to work
on multiple tasks with multiple sub-policies by learning the
relations shared among these policies/tasks. Compared to the
plain neural network, this framework allows the robot to
follow human instructions. In addition, by leveraging the task
relations, this framework is highly robust to new environments
and produces the best results over all baselines. We have
evaluated our framework in a real environment that is different

from the training environment. The results show its robustness
and great generalization to new environments.
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