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Operational Control of Mineral Grinding
Processes Using Adaptive Dynamic
Programming and Reference Governor
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Yi Jiang

Abstract—Operation performance of mineral grinding
processes is measured by the grinding product particle size
and the circulating load, as two of the most crucial opera-
tional indices that measure the product quality and oper-
ation efficiency, respectively. In this paper, a data-driven
method is proposed for the operational control design of
mineral grinding processes with input constraints. A refer-
ence governor is introduced to take into account the input
constraints and the infeasible setpoint issue. The reference
governor generates feasible setpoints that keep control in-
puts within allowed regions. The lookup table embedded in
the reference governor mapping steady-state outputs to in-
puts provides feasible setpoints for output regulation and
baseline for inputs. An ad hoc optimization guarantees that
the input constraints are not violated, with the priority of
regulating the grinding product particle size if regulation of
both indices is not feasible. Since the dynamic model of the
controlled plant is complicated because of the strongly non-
linear and intricately coupled nature of ball mills and hydro-
cyclones, a novel policy iteration algorithm is proposed for
optimal regulator design without system modeling. Simula-
tion results comparing performances of a mineral grinding
process with and without the reference governor show the
effectiveness of the proposed method.

Index Terms—Adaptive dynamic programming (ADP), in-
put constraints, mineral grinding processes, operational
control, reference governor.

|. INTRODUCTION

INERAL grinding is one of the most energy consuming
M and costly procedures in the mineral processing industry,
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and hence, improving product quality and operation efficiency
with limited consumption of energy has attracted significant in-
terest in industrial process control community [1]-[5]. Regula-
tion of the grinding product particle size (GPPS) and circulating
load (CL), as two crucial operational indices in mineral grinding
processes, is the key to achieve favorable mineral concentrate
grade, metal recovery rate, and operation efficiency, which is
known as operational control [6].

Because of the scale of equipment in mineral grinding pro-
cesses, multiple control actuations and control loops have been
used. Cascade control is widely used in mineral grinding pro-
cesses, which allocates different control tasks for two loops. In
the inner loop, the control objective is to design regulators for
fresh ore feed rate (FOFR) and sump water flow rate (SWFR),
respectively. In the outer loop, operational control design should
be performed to eliminate tracking errors of the operational in-
dices with respect to setpoints of FOFR and SWFR. The oper-
ational control loop performance has a strong influence on the
economic indices of mineral processing plants. Compared with
economic loss caused by deteriorated control performance in the
inner loop, operating at wrong setpoints of FOFR and SWFR
could lead to much more negative consequences [3], such as
poor product quality, low efficiency, and operational failures in
the worst-case scenario.

With the ever-fierce global competition, more stringent re-
quirements on concentrate grade, consumption of energy and
fresh ore, and operation efficiency have to be satisfied. Due to ac-
tuator saturation and operation safety in practice, constraints are
imposed on the inputs, namely setpoints of FOFR and SWFR,
and the outputs, namely GPPS and CL. Constraints on the out-
puts show the demands of satisfactory quality of product and
high operation efficiency. Actuator saturation is commonly seen
in industrial practical operations and the control inputs that vi-
olate those constraints are not implementable due to physical
limitations. More specifically, tracking errors can diverge or be-
come disproportionately large and persist for a long time which,
for example, happens in the integral windup situation.

Design approaches have been explored for input-constrained
operational control in mineral grinding processes, such as real-
time optimization (RTO) [7], model predictive control (MPC)
[8], [9], and expert system (ES) [10], [11]. In [7], a set-
point updating method with real-time linear programming is
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proposed based on a linearized dynamic model of mineral
grinding processes. The proposed optimization cannot be per-
formed until a steady state is achieved, which typically leads
to time-consuming convergence. MPC is a widely used con-
trol framework for mineral grinding processes, since it provides
optimization-wise solution and the constraints are well dealt
with. In [8], a nonlinear MPC design is reported to deal with
parameter perturbation and input constraints. A velocity-form
nonlinear MPC paradigm is proposed in [9] to solve the refer-
ence tracking problem of grinding mill circuits. However, estab-
lishing a sufficiently accurate nonlinear model and identifying
its parameters for mineral grinding processes are challenging
tasks when RTO and MPC are used. In [10], if—then rule state-
ments are developed to modify the setpoints of the inner loop.
In [11], fuzzy logic and online optimization techniques are in-
tegrated to form a supervisory control method. But it is difficult
to establish analytical properties and assess the optimality of the
ES-based designs.

The challenge with the model-based approaches is the lack of
explicit model to describe the input—output relationship. Com-
promises have to be made to perform model-based designs, e.g.,
using steady-state static model or linearized model. Therefore,
data-driven control approaches without system modeling have
received considerable attention. Recent works on data-driven
control and its industrial applications have been reviewed in
[12] and[13]. Adaptive dynamic programming (ADP), which
provides a systematic frame for model-free adaptive optimal
designs, is a promising candidate to solve input-constrained op-
erational control for complex industrial processes [14]-[19]. In
[14], a data-driven optimization method is proposed for hematite
grinding processes based on Q-learning and if—then rules to sat-
isfy input constraints. In [15], a data-driven control method
based on heuristic dynamic programming is developed to solve
the setpoint tracking problem of a class of industrial processes
that do not possess a static inner loop. Barrier functions are
used to prevent the input constraints from being violated. In
[16], a penalty function is included in the performance index of
the optimization problem of the flotation industrial process that
guarantees the boundedness of the control inputs. In [17], a data-
driven fault-tolerant control method is proposed for time-delay
Markov jump systems with Ito stochastic process and output
disturbance based on the sliding mode observer. A data-driven
control approach based on action-dependent heuristic dynamic
programming is proposed for the air-breathing hypersonic vehi-
cle tracking problem in [18]. And in [19], a stable iterative ADP
is developed to solve optimal temperature control problems for
water—gas shift reaction systems.

The aforementioned works only develop bounds for inputs
such that the input constraints are not violated. However, a given
setpoint may be unable to be followed by the controlled plant
through constrained inputs, in which case the setpoint is called
an infeasible setpoint. To the best knowledge of the authors,
there is no method that takes into consideration of the infeasible
setpoint issue in a model-free design. Therefore, a data-driven
model-free method is proposed in this paper to address the input
constraints considering infeasible setpoints.

In this paper, with an enormous amount of historical oper-
ation data, a lookup table is developed, mapping steady-state
outputs onto corresponding steady-state inputs. Based on the
lookup table, a reference governor is designed to solve for the
feasible setpoints that are as follows: 1) closest to prescribed
setpoints and 2) unable to violate the input constraints given
fixed control policy. Instead of following the prescribed set-
points that may lead to input constraint violation, the controlled
plant is regulated to follow the feasible setpoints. Introducing
the lookup table becomes advantageous since it avoids the need
of an explicit system model, which is typically used to calcu-
late the maximal output admissible set [20], [21] in standard
reference governor designs.

After the feasible setpoints are determined, the correspond-
ing steady-state inputs can be obtained through the lookup table.
Since the references for inputs and outputs are known, a prop-
erly defined optimal control problem can be formulated to solve
the setpoint following problem, of which solution automatically
satisfies the internal model principle [22]. To solve the optimal
control problem in a model-free manner without involving a sys-
tem identification neural network (NN) model as in [16],[23],
and[24], a new policy iteration called approximate policy iter-
ation is proposed to relax the requirement of system modeling.
Future state is predicted taking advantage of the fact that the
error dynamics are affine in control.

The contributions of this paper are as follows. First, a ref-
erence governor based on a lookup table mapping steady-state
outputs onto corresponding steady-state inputs is proposed to
modify the reference signal to satisfy the input constraints with-
out system modeling. Then, a data-driven strategy based on the
reference governor and ADP is proposed giving references of
the inputs and outputs. Last but not least, a novel approximate
policy iteration algorithm is proposed to relax the standard pol-
icy iteration algorithm from requiring a system model, thereby
achieving a model-free control design.

Il. PROBLEM FORMULATION

In this section, one-stage closed-circuit mineral grinding pro-
cesses are first introduced. Then, the input constrained opera-
tional control problem is formulated.

A. Description of Mineral Grinding Processes

The one-stage closed-circuit mineral grinding process con-
sidered in this paper is shown in Fig. 1. Fresh ore from ore bin
are fed into the ball mill through a conveyor. Size reduction of
the fresh ore is done by impact as fresh ore and grinding media
fall from near the top of the cylindrical shell. The slurry is dis-
charged into sump and pumped to the hydrocyclone. Coarse ore
with higher settling velocity are deposited on the bottom and
transported back to the ball mill for further grinding. Fine ore
with lower settling velocity are carried away by overflow for
follow-up mineral processing procedures.

Two key operational indices that are crucial to the operation
of the mineral grinding process include: 1) GPPS (denoted by
r1), which represents the particle size distribution of the fine ore
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Fig. 1. One-stage closed-circuit mineral grinding process.

in the overflow and 2) CL (denoted by r;), which represents the
discharge rate of the coarse ore. These two variables dictate the
product quality and the operation efficiency of mineral grind-
ing processes, respectively. These two operational indices are
mostly influenced by the fresh ore feed rate (denoted by y,) and
the sump water feed rate (denoted by ,). A vibrating feeder and
a control valve are used as actuators to regulate the FOFR and
SWEFR. The inner loop controllers for the actuators, typically PI
controllers, are used to regulate the FOFR and SWFR to track
their setpoints denoted by w; and w,, respectively. The objec-
tive in mineral grinding processes is to regulate the operational
indices to track prescribed setpoints (denoted by r and r3, re-
spectively).

B. Operational Control Problem Formulation for Mineral
Grinding Processes

Since the time scales of the inner and outer loops are sep-
arable and the inner loop dynamics are much faster than the
outer loop, PI controllers in the inner loop can guarantee that
the inner closed loop reaches its steady state quickly within a
single sample time of the outer loop, namely, y; = w;, y» = w;.
Therefore, in the outer loop control design, the dynamics of the
inner closed loop can be omitted, and w; and w, become the
new inputs. Then, the dynamic model in the outer loop is

rk+1)=fi(r(k),...,r(k—mn+1)

wk—d+1),...,w(k—n+1)) (1)

where n and d are the order and the delay of the model, respec-
tively, 7 (k) = (r1 (k)72 (k)" w (k) = (wr (k) , w2 ()",
f1(-) is an unknown nonlinear function that represents the
input—output dynamic relationship of the controlled plant, and
k is the discrete-time index of the outer loop.

The constraints are imposed on both inputs and outputs of the
controlled plant. The operational control problem of mineral
grinding processes can be formulated as follows: consider the

controlled plant (1) and design the control input w(k) to assure
that

i —r; (k)] < €,k — +00,i=1,2
while satisfying the constraints

min
i

max

min
i !

3

max
i

ri (k) € [rM™ e Jw; (k) € [w™, wi™],i=1,2

where €; and ¢, are tolerance errors in a steady state.

Ill. REFERENCE GOVERNOR DESIGN FOR MINERAL
GRINDING PROCESSES

In this section, a reference governor-based control strategy is
first described, followed by the reference governor design.

The proposed operational control strategy for mineral grind-
ing processes with input constraints is presented and shown
in Fig. 2. The control strategy is composed of two control
loops, i.e., the operational control for operational indices set-
point tracking, and the inner loop control for actuator regulation.
The actuators in the inner loop are controlled by PI controllers.
In the outer loop, a reference governor is used to determine fea-
sible setpoints r, (k) from the prescribed setpoints * (k) that
keep the control inputs within allowed regions. At the same
time, steady-state inputs w; (k) corresponding to the feasible
setpoints are provided by the lookup table embedded therein.
Then, the actor-critic structure consisting of two neural networks
is used to implement the optimal regulator wep (k) based on a
novel approximate policy iteration algorithm.

The control inputs are determined by
w (k) = ws (k) + wopt (k) 2)

where w; (k) and wp (k) will be designed specifically.

A. Reference Governor-Based Design of w; (k)

To deal with the input constraints, a lookup table is first devel-
oped to map the steady-state output r (k) onto the corresponding
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steady-state input w (k) as

w (k) = ¢ (r(k)).

The lookup table is shown in Fig. 3. Through the steady-state
output—input pairing, it is easy to divide the prescribed setpoints
r* (k) into two categories with respect to the input and out-
put constraints—feasible setpoints and infeasible ones. Feasible
setpoints are the setpoints of operational indices in a steady-
state operation of mineral grinding processes, that are within
allowed output constraints and reachable without violating the
input constraints. Otherwise, the setpoints are infeasible. The set
composed of feasible setpoints is a closed polygon whose edges
are determined by the input and output constraints. The reason
why the lookup table can be developed is that a massive amount
of historical operation data are stored. In the case that no ex-
plicit models exist for describing the input—output relationship,
historical data of steady-state operation become vitally impor-
tant. Pretreatments like low-pass filtering should be carried out
before the lookup table is developed to improve the usefulness
of the data.

3)

Remark 1: Since the lookup table provides the references for
inputs, the lookup table works as the internal model in sense of
solving an output regulation problem. Therefore, if the mineral
grinding process deviates from the operating point on which the
lookup table is developed, the lookup table should be recali-
brated accordingly.

The feasible setpoints are determined by

ry (k) = (B1 (k) 7} (k), B2 (k)15 (k)" W, = ¢ (R) (4

where r, (k) are the feasible setpoints, W, and R, are the output
and input subspaces that are composed of feasible setpoints and
the corresponding steady-state inputs, respectively, ¢ (-) is the
output-to-input mapping, 3 » are the scalar gains. Optimization
can be carried out to determine the feasible setpoints 7, (k) that
are closest to the original setpoints 7* (k). At the same time, the
corresponding inputs should be given through the lookup table
with w, (k) = ¢ (ry (k)).

Once the feasible setpoints are determined, the inputs can be
obtained immediately with fixed control policy wp (-). Opti-
mization of the scalar gains should not only be about searching
for the closest feasible setpoints, but also be carried out with
one-step prediction of the inputs such that the input constraints
will not be violated. On the other hand, grinding product quality
is more important than the operation efficiency when a com-
promise has to be made between these two operational indices.
Therefore, the ad hoc optimization to determine feasible set-
points is defined as

By (k) = max {en € 0,1] | (7] (k) , 0073 (k)" € R,
¢ ((arr (k) cars (k)" ) + wop (k)
€ We,az € [0,1]] ®)
B2 (k) = max { s € [0,1]] (81 (k)i (k) , ar (k)" € R,

& (81 (k) 71 (k) cars (k)" oo (K) €W, |
(6)
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The optimizations should be carried out strictly in the fol-
lowing order: first, (5), and then, (6). The optimization of scalar
gain 3; (k) is carried out prior to the one of scalar gain 3, (k)
such that r,; (k) is closest to the its setpoint ' (k) with priority.
Then, w; (k) is obtained as

ry (k) = (B1 (k) 1} (k), B (k) 15 (k)"

wy (k) = ¢ (ry (k). @)
B. New Formulation With Embedded Reference
Governor

The feasible setpoints r, (k) and their corresponding steady-
state inputs w; (k) are given by the reference governor. The
tracking errors of the outputs and inputs can be represented as

(k) =1rk)—ry(k),w (k) =w(k) —ws (k). (&)
Then, by defining

Fk) = [FT(k=1),...,FT(k—n+1)]"
k) = [@"(k—=1),...,0" (k—n+1)]"
w (k) = [7" (k)7 (k) @" (k)]

the error dynamics state-space representation is derived as

S (7 (k) , 7 (k) , Hw (k)

0252

x(k+1) = For (k)+ Gor (k) + | O2n—1yx2 | (K)
Fyw (k‘) Gy
& [ (e () + G (h) ©

where x (k) € R2?"~1 is the new state, 7 (k) is the vector of
the tracking errors of operational indices, f, (-) represent the
nonlinear functions f (-) with 7 (k),7 (k) , and w (k) as new
arguments, and

[ 022 0227
Do 02x2
Fy= 002 Do
| 022 O2x2 Taxa 0221y, 1ysa(ny
Go = [ L2 02><2(77,72)]§(n71)><2
G = [02.2n G(H;(z?lq)xz

H = [0sn_dr1)x2d-2) Don—ds1)x2(n—d=1) ]

Remark 2: Note that H isill-defined if d = 1. Consequently,
the state-space representation (9) is valid only when d > 2. If
d = 1, aunit time delay can be introduced between the controller
and the controlled plant during control design to put the system
in the representation (9). And this extra time delay is removed
when the controller is implemented that does not influence the
controlled plant.

IV. DATA-DRIVEN OPTIMAL REGULATOR DESIGN FOR
MINERAL GRINDING PROCESSES

In this section, a new policy iteration algorithm is proposed
to design a data-driven optimal regulator without system model-
ing of mineral grinding processes. Then, online implementation
with NNs is described.

A. Data-Driven Optimal Design of w,yy, (k)

To design the optimal regulator wepy (k), the following opti-
mal control problem can be formulated:

(10)
an

where @) and R are positive definite. The cost function (10) can
be rewritten in a backwards-in-time manner as
Vi(z(k)=pk)+V(z(k+1)) (12)

where p (k) = 2T (k) Qz (k) + @T (k) R (k) is the cost at dis-
crete time k£ and V' (0) = 0. From Bellman’s principle of opti-
mality, the optimal cost function V* (z (k)) satisfies the follow-
ing Bellman equation:

v (x (k) = min {p(R)+V (@ (k+ 1)}

st. x(k+1)=f(z(k))+Gw (k)

13)

The optimal control should satisfy the first-order necessary con-
dition of optimality and can be obtained as

oV* (z(k+1))
Oz (k+1)
Thus, wop (k) is designed as wop (k) = @* (x (k)). The follow-

ing policy iteration algorithm 1 [25], [26] can be used to find
V* (+) and wep () iteratively.

o (z (k) = —%R"GT (14)

Algorithm 1: Policy Iteration.

Initialization. Select any initial stabilizing policy wQy ().

Policy Evaluation. Determine the value function of the
current control policy using

VIt (2 (k) = p (k) + VI (2 (k + 1)).

Policy Improvement. Determine an improved policy using

1 VIt (2 (k+1))
2R ¢ or (k+1)

Stop. Stop when ||V *! (2 (k)) — V7 (2 (k))|| is less than
a prescribed tolerance.

5)

wh ( (k) =

opt

(16)

It has been proven in [26] that for discrete-time nonlinear
systems, the stability of the system can be guaranteed with pol-
icy iteration algorithm. However, the policy iteration algorithm
1 needs a system model for the state prediction from z (k) to
@ (k + 1). This is typically done by introducing a system iden-
tification NN [16], [23], [24]. Note that the error dynamics are
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affine in w (k) and G is assumed known. By examining the
following equations:

2% (k+1)

2T (k1)

= f (x (k) + Gugy (k)
= [ (@ (k) + Guly ' (k)

where 27 (k + 1) denotes the future state with wopl (k) imple-
mented, the following state prediction approach can be obtained
without requiring a system model:

(k+ 1)+ G (wd! (k) = why ().

To avoid the requirement of the system dynamics, the follow-
ing approximate policy iteration algorithm 2 is proposed.

PN E+1) =20

Algorithm 2: Approximate Policy Iteration.

Initialization
1) Select any initial stabilizing policy wopt (+) and apply
wy (2 (k)) to the controlled plant;
2) For each k, set j = 0,
DX+ =ak+1),w
Policy Evaluation
3) Determine the value function of control policy wopt ()

VI (@ (k) = 27 (k) Qu (k)
+ why (2 (k) Ruwly ( (k)

opl (33 (k)) = Wopt (k'),

+ VIt (27 (k+1)).

A7)

Policy Improvement
4) Determine an improved policy wégl )

; 1 OVIt (2d (k + 1))
J+1 _ _Llpar |
State Prediction
5) Update the state under control policy wopt ()
P k+1)=2"(k+1)
+G (i (@ (R) = why (@ (). (19)

Check Convergence
6) Check ||[V/*! (z (k) — V7 (z (k))|| < €, where €
is a small positive tolerance. If it is untrue, set
J = j + 1 and then go to step 3). If true, set
wf,;;l () — wé\{,f (+) and apply w(])\{)’;' (z (k+1)) to the
controlled plant. Set £ = k£ + 1 and then go back to
step 2).

Remark 3: In contrast to the standard policy iteration algo-
rithm, the iterations are run after the initial policy is imple-
mented in approximate policy iteration. In other words, the pol-
icy wi\;’{“ (+) that should be implemented at discrete-time & + 1

is approximated by wopt ().

B. Online Implementation With NNs

To implement Algorithm 2, actor—critic learning structure
[25], [27] composed of two NNs is used to solve functionals

(17) and (18). The critic and actor NNs are used to approx-
imate the optimal cost function V* (-) and the optimal con-
trol policy wep (-), respectively. Let the numbers of the hid-
den layer neurons, the input-to-hidden and hidden-to-output
weights, and the activation functions of critic and actor NNs
be denoted by n¢,n® V¢ Ve We W o¢(-), and o® (-), re-
spectively. Then, the output of the critic NN is given by

4n -2
ZWC c (Z }Lxh )

£ WeeS (Vex (k) £ Weo (k) (20)
j=1
and the output of the actor NN is given by
4n—2
Wopt(1) Z W <Z jh xp ( >
Z Wit (Voa (k) £ Weo® (k),1=1,2
(21)

where the subscript j of a vector denotes the jth element of the
vector, the subscript jh denotes the element in jth row and hth
column of the matrix, the subscript /- denotes the [ row of the
matrix.

The weights of the critic NN are updated to minimize the ap-
proximation error of the optimal cost function. The approxima-
tion error of the critic NN is defined with a temporal difference
error [27],

e =a" (k) Qx (k) +w'T (k) Ru’ (k)

+V (2 (k+1) =V (x (k). (22)

Therefore, weights of the critic NN are updated to minimize the
following squared temporal difference error:

(23)

Animproved policy should minimize the value function based
on the Bellman equation (13). Therefore, the weights of the actor
NN are tuned to minimize V7! (27 (k + 1)).

It has been shown in [28] and[29] that NNs still possess the
approximation ability when only the hidden-to-output weights
W€ and W are tuned during the training. Therefore, the input-
to-hidden weights VV“ and V* are assigned randomly and kept
constant. Then, the tuning laws for the weights of the critic
and actor NNs are given as follows with denominator layout
notation:

aE(Z

AW = — I s (24)
AW = =19 (2" (k) Qu (k) + w'" (k) Rw’ (k)
+ VI (2 (k+1))) JowsT (25)
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Algorithm 3: Operational Control of Mineral Grinding Pro-
cesses With Input Constraints.

Lookup Table Creation

1) Establish the lookup table with historical steady-state
operation data;

Initialization

2) Determine the order n and the delay d of the
controlled plant (1).

3) Calculate GG with (9). Determine whether a unit time
delay should be introduced with d. Choose ) and R
based on the grinding technology. Initialize the
structures of the critic and actor NNs.

4) Obtain a stabilizing control policy w, (-) with offline
training based on field experience.

Online Training

5) Choose any constant feasible setpoints r* and
determine w; = ¢ (r*).

6) Setj=0.

7) Determine wy, (k) using (21).

8) Determine w (k) with (2) and (4) and apply it to the
controlled plant to obtain 2° (k + 1).

9) Train the weights of the critic NN using (22)—(24) and
(26) until convergence.

10) Update the weights of the actor NN using (25)
and (27).

11) Setj = j + 1, update 7' (k + 1) with (19), and
return to step 9) until |V (z(k)) — VI (x(k))||

< €.

12) Set wg;{l (-) — w(],\;’{ (+) and apply wé\{,f (x(k+1))
to the controlled plant. Set k = k + 1, and then,
return to step 6) until tracking is achieved;

Online Implementation

13) Fix the weights of both NNis;

14) Determine [3; ; using (5) and (6) if 7* is changed or
the input constraints will be violated.

where [° and [ are the learning rates of the critic and actor NNs.
From the chain rule, it follows that

L OE°¢ Qe°
Oet OWe
= — 1% (o° (V2! (k+1)) — o (V' (k)))

e (V@) 0w () wi (k)
ow (k) ) ow] (x (k) OW}!

AW® = —1

(26)

AW =

_ a J T (:Taac (chj (k+l)) cT !
_ (sz (@ (0) + GV T W )

O (k)

. o (Ve (k).
ow; (z (k) (e

27)

Then, the proposed data-driven input-constrained operational
control method for mineral grinding processes is summarized
as shown in Algorithm 3.
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Fig. 4. Weights W¢ of the critic NN.

V. SIMULATION RESULTS

In this section, simulation results are shown to compare the
performances with and without the reference governor. To em-
ulate the dynamics of mineral grinding processes, a simulation
model that characterizes the physical mechanisms of the ball
mill and the hydrocyclone is used as testbed based on the mod-
eling work in [30]-[32]. The simulation model is discussed in
the Appendix and more detailed discussions can be found in
[30]-[32] and the references therein.

The input and output constraints are specified according to
the grinding technology as

P = 55,7 = 61, 3" = 0.1, 75 = 0.5

wi™ = 0.1, w™ = 0.4,wy"™ = 0.1,and wy™ = 1.

The lookup table is developed from historical operation data.
To simplify the lookup table and lower the work load, the space
of W is discretized. The GPPS is sampled every 0.1 and the
CL is sampled every 0.01. A total of 2400 discretized points are
contained in the lookup table.

In the simulations, sample time is 1 min. n =2,d = 1 are
determined with the time behavior of unit step response. Using
(9), G is obtained as

00001 0]
0000O0O0 1]

The parameters of the algorithm are chosen as
Q = Igxe, R = 12,1 = 1* = 0.05,n° = n* = 10,0° () -
o® (-) = tanh (). The weights of critic and actor NNs are
randomly set in the intervals (—0.5,0.5) and (—0.1,0.1),
respectively, and the input-to-hidden weights are kept constant.

The online training of the critic and actor NNs are shown in
Figs. 4-6. As can be seen, the hidden-to-output weights of both
the critic and actor NNs converge to constant values within 250
iterations and 7 sample times.
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Fig. 6.  Weights W' of the actor NN.

After obtaining the optimal policy wep () with NN, the
mineral grinding process starts working in a steady state at
r =r* = [58;0.2]. After 60 min, the setpoints of the GPPS and
CL are changed according to the demands of the mineral process
plant to r* = [59.5;0.3]. The corresponding steady-state inputs
are wy = [0.1204; 1.0987], which clearly violate the input con-
straints. Consequently, the setpoints 7* = [59.5;0.3] are infea-
sible. To further challenge the reference governor, at 220 min,
the setpoints are changed again to r* = [56;0.4], which are
unreachable through manipulating the inputs of the simulation
model. To simulate the limited acceleration of the actuators in
practice, the absolute changes of w within unit sample time are
bounded by 0.01 and 0.08, respectively.

Meanwhile, a comparative experiment without the reference
governor is carried out in which the same optimal control policy
is applied and steady-state inputs of the references are given.
The simulation results are shown in Figs. 7—11.

Figs. 7 and 8 present the trajectories of the operational indices,
and the feasible setpoints that are actually tracked. It is shown in
Fig. 7 and 8 that when the setpoints are infeasible, the proposed
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Fig. 7. Trajectories of GPPS, setpoint, and RG’s feasible setpoint.
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Fig. 8. Trajectories of CL, setpoint, and RG’s feasible setpoint.

method with the reference governor can guarantee that the GPPS
can track its prescribed setpoint with priority over CL. The CL
is compromised to track its feasible setpoint 74, instead of its
actual setpoint 7.

When there is no reference governor applied to the controller,
constraint satisfaction is no longer guaranteed, which can be
clearly seen in Fig. 10. Since the setpoints r* = [56;0.4] are
unreachable, the simulation fails to proceed without a reference
governor searching for feasible setpoints after 220 min, as shown
in Figs. 7 and 8.

The input constraints are not violated during the whole time
with the proposed method as can be seen in Figs. 9 and 10.
The reference governor is activated when w approaches near
the constraints at around 225 min. This is the reason why wj is
very close to its lower bound but the constraints are not violated
by the overshoot of w;.

The trajectories of wqp are shown in Fig. 11. wey, as a data-
driven optimal regulator, can stabilize and regulate the con-
trolled plant to its feasible setpoints. wqp; converge to 0 as the
tracking errors decrease to 0.
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VI. CONCLUSION

In this paper, a data-driven input-constrained operational con-
trol method for mineral grinding processes is proposed. The ref-
erence governor is designed and used to deal with the infeasible
setpoint problem and prevent the input constraints from being
violated. A new policy iteration algorithm is proposed to fulfill
the model-free design of the regulator with an ADP technique.
The outputs can be regulated to the steady-state feasible setpoint
without modeling the dynamic relationship between GPPS, CL,
and setpoints of the FOFR and SWFR. Simulation results have
shown the effectiveness of the proposed method.

APPENDIX

For a brief description of the simulation model used in this
study, we list the main equations to represent the ball mill and
hydrocyclone models in the Appendix. All the variables and
subscripts of the model for ball mill and hydrocyclone are sum-
marized in Table I.

A. Model for Ball Mill

The model for a ball mill is developed based on the principle
of the mass balance with the assumption that materials in the
mill are perfectly mixed. By the principle of mass balance, the
concentration of the slurry out of the ball mill is

. 1
Cyp = 73 (QxsCxp —QvpCyn). (28)
The volume of the slurry in the ball mill is given by
Vs =Qxp —Qyp. (29)

The dynamics of the particle size distribution can be described
as

(Mx i — My ;)

i—1
— S; My p; + Z b; jS;i My

J=1

(30)

where .S; is the selection function of ith grade particles, repre-
senting the percentage of ith grade particles that are crushed and
broken into other grades, and b; ; is a breakage function that de-
notes the percentage of the transformation from jth grade to ¢th
grade. Breakage function is defined using accumulative break-
age function B

bi,j = Bij — Bit1;- (31

Empirical models are used for identification of S; and B; ;.
The empirical model for accumulative breakage function[30],
[33] is given as

Ji a) (Zi as
Bi=a[Z l—a) (&
o (dj> T(1-a) <d]->

where d; = v/d;d; 1 is geometric mean of d; and d;, and
parameters «;_3 should be determined experimentally. The

(32)
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TABLE |
NOMENCLATURE FOR MODELING BALL MILL AND HYDROCYCLONE

Variables

Breakage function (%)
Cumulative breakage function (%)
Concentration of solid in the slurry (t / m3)
Particle size (um)

Actual classification efficiency (%)
Corrected classification efficiency (%)
Particle size distribution (%)
Number of ore grades
Flow rate of the slurry (t/h)
Volume (m?)

Selection function (%)
Density (t/m?)

Subscripts
Ball mill
Hydrocyclone

Tu<O&zzBmaawe

st

=
<.

i-th grade
from j-th to i-th grade
Overflow
Underflow
Input stream

<~ > O

Output stream

empirical model for the selection function [34], [35] is given
as

s 1
1+ (di/v3)™

where P (d;) is a correction factor for the abnormal breakage
of large particles [35], and y;_4 are parameters that need iden-
tification through experiments.

B. Model for Hydrocyclone

A dynamic model is unnecessary because the response of
the hydrocyclone is virtually instantaneous[32]. From the mass
balance principle and definition of classification efficiency, we
have

QycuCycuMycui = QxcCxc MxciEs
QycoCycoMycoi = QxcCxc Mxci (1 — E;)

where F; denotes the ratio of the ith grade ore classified into
underflow.
The empirical model for the hydrocyclone [32] is given as

(34)
(35)

Qvco (1 = Cyco) = F1Qxc (1 —Cxc)+ B (36)
E, =Ef(1-Ry)+ Ry (37
J' B33
Ef =1—exp | —0.693 (Z> (38)
dso
dso = exp (s + s InQxc + FsCx ) (39)
Qvco (1 — Cyco)
R, = 40
! ﬁ7+ﬂ8Qxc(1—Cxc) @0

where R is the ratio of the fine ore in the underflow, dso is
the particle size at which 50% of the particles are separated to
the underflow, and (3;_g are model parameters that should be
determined experimentally.

From (35) and (36), it follows that

N
QvcoCyco = QxcCxe [ 1= MxaiE; (41)
i=1
Therefore, the outputs of the model can be represented as
N
ri=Y_ Mycoi (42)
i=mn74
N

m=QxcCxc | 1- Z MxciE; (43)

i=1
where n74 is the grade corresponding to particle size of 74 pm.
In this case, N = 25 and ny4 = 14.

To sum up, there are (NN + 2) differential equations (28)—
(30) in the simulation model. Dynamics of the sump are omitted
because of the perfect mixing assumption. Parameters of the
model for the ball mill and hydrocyclone are chosen according
to the simulation model verification and validation in [31], and
the modeling work in [30] as follows:

3= [Ol, 0127 11}
~1-4=10.3994, 0.5, 10000, 2.513]
Bi_g=[1.363,—10.75,1.6,3.616,—0.15,2.3,0.818, —0.7932].

For simplicity of control evaluation, the parameters are kept
constant. Uniformly distributed random noises in the interval
(—0.1,0.1) and (—0.002,0.002) are added in the outputs 7
and r,, respectively.
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