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Abstract—Cooperative control of multiagent systems (MAS) on
communication networks has received a great deal of attention,
mostly for the case of homogeneous agents, which all have the
same dynamics. An advantage of cooperative synchronization
mechanisms is their local distributed nature, which makes them
scalable to large networks. However, most existing design mech-
anisms require some global information, such as the leader’s dy-
namics or global graph information, so that the control protocols
are technically not fully distributed. Moreover, the distributed na-
ture of the control protocols makes them susceptible to faults or
uncertainties. In this paper, we study heterogeneous MAS, where
all agents may have different dynamics. We provide adaptive re-
silience mechanisms for rejecting actuator faults, and guarantee
exponential convergence of synchronization errors, whereas most
existing results on actuator faults guarantee only boundedness
of errors. Finally, we provide algorithms that are fully distributed,
requiring no knowledge of either the leader’s dynamics or of graph
properties.

Index Terms—Actuator faults, adaptive exponential control,
fully distributed, heterogeneous multiagent systems (MAS), output
synchronization.

I. INTRODUCTION

The cooperative control of multiagent systems (MAS) has been
rapidly developed (see [1]–[4] for surveys), and now is undergoing
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a period of major change from homogeneous to heterogeneous MAS,
which allows the agents’ dynamics and even their state dimensions to
be nonidentical [5]–[9]. What remains unchanged is that networked
MAS have compelling advantages due to the distributed nature of con-
trol protocols, which only depend on neighbors in a communication
network. However, networked MAS are susceptible to faults that can in-
duce interruptions, and can even result in synchronization degradation
or instability.

To enhance the resilience, notable research has been triggered by
introducing detection and isolation mechanism into the control algo-
rithms [10]–[14]. As for the control of a system with actuator faults,
adaptive-control based resilient approaches are reported, i.e., [15]–[17].
Most recently, actuator faults are addressed with the combination of
event-triggered input control [18], and input quantization control [19].
In addition, resilience is provided for MAS to address unknown con-
trol directions, which can be considered as parts of actuator faults, (see
[20]–[23]). Despite many advances, these resilient protocols generally
only result in the ultimate boundedness, cannot guarantee the tran-
sient performance or convergence rate after faults are injected into the
synchronization control of MAS.

To achieve the synchronization of MAS, much research has been
conducted, e.g., [24]–[29]. However, most of these protocols require
the global knowledge of the graph topology, especially about the spec-
trum of the network. To remove such global information, a remedy
has been proposed by dynamically updating the coupling gain, e.g.,
[30]–[32]. However, these distributed protocols are applicable to only
homogeneous MAS, but not to heterogeneous MAS. In recent years,
many interesting works have been reported based on cooperative output
regulation, e.g., [6], [7], [21], [33]–[46]. Note that all of these proto-
cols require the global information to complete the control design,
including one or both of the graph topology and the leader dynam-
ics for solving the output regulator equations. This means that the
existing heterogeneous MAS protocols do not work in a distributed
manner.

Inspired by the above literature, this paper aims to provide algorithms
for the fully distributed resilience of heterogeneous MAS against actua-
tor faults. By using adaptive control techniques, we achieve exponential
output synchronization under a directed graph. The contributions of this
paper are stated as follows.
1) We give a complete solution to the fully distributed control design

problem for output synchronization of heterogeneous MAS. Our
solution has a feature that it is independent of any global infor-
mation of the communication graph or the leader states/dynamics,
and only relies on the local agent dynamics and the relative neigh-
borhood information.

2) We enhance the resilience of heterogeneous MAS exponen-
tial synchronization by allowing actuators under unknown
faults.
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II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we formulate the exponential synchronization control
problems of MAS under unknown actuator faults.

Notations: In ∈ Rn×n denotes an identity matrix. 1n ∈ Rn denotes
a vector with all the components being one. ⊗ denotes the Kronecker
product. [xij ] denotes a matrix with xij being an entry in the ith row
and the jth column. diag{xi} is a diagonal matrix with a vector xi on
the main diagonal. X > 0 (X ≥ 0) denotes that a matrix X is positive
definite (semipositive definite). Likewise, X < 0 (X ≤ 0) is nega-
tive definite (seminegative definite). For λi ∈ C and X ∈ Rn×n , let
λi denote an eigenvalue of X for i = 1, 2, . . . , n. σm in (X) and
σm ax (X) denote minimum and maximum singular values of X , re-
spectively. ‖ · ‖ is the Euclidean norm of a vector and ‖ · ‖F is the
Frobenius norm of a matrix.

A. Problem Formulation

Consider a group of N agents with system dynamics as follows:

ẋi = Aixi + Bi ūi , yi = Cixi (1)

where xi ∈ Rn i is the system state, ūi ∈ Rm i is the system input under
faults to be detailed later, yi ∈ Rp is the measured output with i =
1, 2, . . . , N , and Ai , Bi , and Ci are system dynamics with appropriate
dimensions. In addition, the dynamics of the leader agent, labeled 0, is
given by the following:

ζ̇0 = Sζ0 , y0 = Rζ0 (2)

where S ∈ Rq×q , R ∈ Rp×q are constant system dynamics, ζ0 ∈ Rq

is the system state, and y0 ∈ Rp is the reference output. The leader
agent (2) can be considered as an exosystem or a command generator,
which generates a desired trajectory to be followed by all N agents (1).
Note that the agents given in (1) and (2) are connected by a distributed
communication graph. This implies that both the leader state and its
dynamics (2) are observed only by a small group of N agents (1).

In this paper, the system input ūi , for i = 1, 2, . . . , N , are under
unknown faults, namely under actuator faults. We model actuator faults
as follows:

ūi = μi (t)ui + δa
i (t) (3)

where μi (t) denotes a nonzero bounded scaling coefficient caused
by actuator faults; δa

i (t) denotes a bounded fault disturbance vector
caused in actuator channels. Only the corrupted control ūi enters the
dynamics (1).

Remark 1: The fault model in (3) is from [15]–[18], [23]. •
Denote the global states as y = [yT

1 , yT
2 , . . . , yT

N ]T ∈ RpN and y
0

=
1N ⊗ y0 ∈ RpN . We define the global output synchronization error as
follows:

εy = y − y
0
∈ RpN (4)

with εy i = yi − y0 for local agent.
We define actuator fault problems for the output synchronization of

heterogeneous MAS.
Exponential Synchronization Problem: Under the actuator faults

(3), this synchronization problem is to design fully distributed re-
silient protocols ui for heterogeneous MAS (1) such that the out-
put synchronization error εy exponentially converges to the zero, i.e.,
||εy || ≤ Vε exp(−αε t), where Vε and αε are certain positive constants.

B. Preliminaries

In what follows, we give some preliminaries related to graph theory.
Consider a class of directed graphs described as G = (V, E ,A),

where V = {v1 , v2 , . . . , vN } denotes a set of nodes, E ⊂ V × V

denotes a set of edges, and A = [aij ] ∈ RN×N denotes an adjacency
matrix. The flow of information in the graph G is denoted by a weight
aij and an edge (vj , vi ) satisfying aij > 0 if (vj , vi ) ∈ E , otherwise
aij = 0. Here, we assume that no repeated edges or no self-loops are
allowed in G. We define Ni = {j|(vj , vi ) ∈ E} as a set of neighbors
of node i, and H = diag{hi} ∈ RN×N be an in-degree matrix with
hi =

∑
j∈Ni

aij . Hence, the Laplacian matrix is given as L = H −A.
A direct path from node i to node j is captured by a sequence of suc-
cessive edges satisfying {(vi , vk ), (vk , vl ), . . . , (vm , vj )}. A graph is
said to have a spanning tree, if there exists a directed path from a node
to every other nodes. If the leader node is a neighbor of node i, then an
edge (v0 , vi ) exists with a weighting gain gi being positive. Consid-
ering N nodes in the graph, we define the positive gain gi in a global
form as the pinning matrix G = diag{gi} ∈ RN×N . Throughout this
paper, the following assumption of the graph topology holds.

Assumption 1: The directed graph G contains a spanning tree with
the leader as its root.

Note that this is a standard assumption for the distributed control of
MAS and will be used in the main result.

To solve the above cooperative output regulation problem, the fol-
lowing assumptions are needed.

Assumption 2: The pairs (Ai , Bi ), i = 1, 2, . . . , N are stabilizable.
Assumption 3: For all λ ∈ Ω(S), where Ω(S) denotes the spectrum

of S, rank([ A i −λI , B i
C i , 0 ]) = ni + p.

Assumption 4: The matrix S has no eigenvalues with negative real
parts.

These assumptions are standard in the classic output regulation prob-
lem [47]. Assumption 4 is meant to rule out the trivial case where the
leader’s dynamics are stable [47]. It is important to allow also unstable
leader’s dynamics. Unstable leader dynamics can be found in flocking
networks [48], [49], in which flock centering, collision avoidance, and
velocity matching are required.

Lemma 1 ([50], Bellman–Gronwall Lemma): Supposing that there
are some constants � ≥ 0 and tb ≥ ta , a nonnegative piecewise continu-
ous function α : [ta , tb ] → R, and a continuous function w : [ta , tb ] →
R satisfying w(t) ≤ � +

∫ t

ta
α(τ )w(τ )dτ, t ∈ [ta , tb ], then we have

w(t) ≤ � exp(
∫ t

ta
α(τ )dτ ), t ∈ [ta , tb ]. �

III. FULLY DISTRIBUTED DESIGN FOR HETEROGENEOUS MAS
WITH ACTUATOR FAULTS

In this section, we give an algorithm to guarantee the exponential
output synchronization of heterogeneous MAS with actuator faults. To
accomplish this objective, each agent is endowed in this section with
a distributed leader state observer, termed as ζi ∈ Rq . We define the
distributed leader state error as follows:

ξi =
N∑

j=1

aij (ζi − ζj ) + gi (ζi − ζ0 ) (5)

and its global form is rewritten as ξ = [ξT
1 , . . . , ξT

N ]T , where gi ≥ 0 is
a pinning gain with gi > 0 only if agent i can get information directly
from the leader node. Then, one has the following:

ξ = (LG ⊗ Iq )ζ̃ (6)

where LG ≡ L + G is related to the graph topology and
ζ̃ ≡ [ζ̃T

1 , . . . , ζ̃T
N ] ≡ [ζT

1 − ζT
0 , . . . , ζT

N − ζT
0 ]T . From (6) and

Assumption 1, one has the following:

||ξi || ≤ σm ax (LG ⊗ Iq )
∥
∥ζ̃

∥
∥. (7)
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From Assumption 3, one obtains that the following output regulator
equations:

AiΠi + BiΓi = ΠiS (8a)

CiΠi = R (8b)

have solution matrices Πi ∈ Rn i×m and Γi ∈ Rm i×m for i =
1, 2, . . . , N [47].

In what follows, three results, including leader state/dynamics ob-
servers, output regulator equation solvers, and adaptive exponential
controls, are bought together in Section III-C to solve exponential syn-
chronization problem.

A. Fully Distributed Observers to Estimate Leader States and
Dynamics

In this section, we design distributed leader states and dynamics
observers that are independent of the global graph topology and the
global leader information.

To facilitate the analysis, let the leader dynamics in (2) be rewritten
as follows:

Υ =

[
S

R

]

∈ R(p+ q )×q (9)

and its estimations be splited in two parts as follows:

Υ̂0 i =

[
Ŝ0 i

R̂0 i

]

∈ R(p+ q )×q (10)

Υ̂i =

[
Ŝi

R̂i

]

∈ R(p+ q )×q (11)

where Υ̂0 i and Υ̂i will be updated by (14) and (15) and converge to Υ
at different rates.

Lemma 2 ([3], Theorem 4.25): Under Assumption 1, there exists a
positive-definite diagonal matrix Q such that QLG + LT

G Q is positive-
definite. �

Now, we give fully distributed state and dynamics observers for het-
erogeneous MAS, as summarized in the following theorem. Different
from the existing distributed controls where homogeneous MAS are
considered in [30] or the leader dynamics are globally known to each
follower [46], our leader observers have a feature that the leader in-
formation including leader states and dynamics are exchanged using
distributed communication networks. More importantly, our observers
have a unique structure that contains two splited communication net-
works as shown in (10) and (11), and this helps us inherit the property
in Assumption 4 that allows the leader dynamical state be unbounded.

Theorem 1: Suppose that Assumption 1 holds true. The distributed
leader state observer with the estimated leader dynamics is chosen as
follows:

ζ̇i = Ŝi ζi − (ci + ċi )ξi (12)

where Ŝi is the estimation of the leader dynamics S and the design
gain ci is chosen as follows:

ċi = ξT
i ξi (13)

with its initial value ci (0) ≥ 1. Let the dynamic estimates Υ̂0 i and Υ̂i

in (10) and (11) be updated as follows:

˙̂Υ0 i =
N∑

j=1

aij

(
Υ̂0j − Υ̂0 i

)
+ gi

(
Υ − Υ̂0 i

)
(14)

˙̂Υi = ||Υ̂0 i ||F
(
Υ̂0 i − Υ̂i

)
+

N∑

j=1

aij

(
Υ̂j − Υ̂i

)
+ gi

(
Υ − Υ̂i

)
.

(15)

Then, all the signals in the distributed leader state and dynamics ob-
servers (12)–(15) are globally bounded. Moreover, the estimated leader
states and dynamics, ζi , Υ̂0 i , and Υ̂, exponentially converge to the ac-
tual leader states and dynamics, ζ0 and Υi , for i = 1, . . . , N . �

Proof: The results can be obtained by extending [30] and [38]. We
omit the proof due to the limited space. �

In contrast to [38], the key idea is that we propose adaptive mecha-
nisms in (14) and (15) for estimating the leader dynamics so that the
convergence rate of the leader dynamics estimation error Υ̃i = Υ − Υ̂i

satisfies Lemma 3.
In what follows, we define partial parts of Υ̃i as R̃i ≡ R − R̂i , where

R is given by (9) and R̂i is given by (11). We detail more features of
the proposed distributed observer in Lemma 3.

Lemma 3: The adaptive distributed leader dynamics observers in
(15) ensure ||Υ̃i ||F ||ζ0 || exponentially converges to zero. �

Proof: The results can be derived from Theorem 1. We omit the
proof due to the limited space. �

Note that [38] does not guarantee the result in Lemma 3 by only
using the distributed information. The result in Lemma 3 reveals that,
given certain time t, there exist constants βΥ i ζ 0 and αΥ i ζ 0 so that one
has the following:

∥
∥
∥Υ̃i

∥
∥
∥

F
||ζ0 || ≤ βΥ i ζ 0 exp(−αΥ i ζ 0 t) (16)

where ζ0 is the leader state generated by (2). Thus, (16) implies that
the convergence rate of the estimation error Υ̃i is forced to be faster
than the change of the leader states due to the use of our updating laws
(14) and (15). This unique feature plays a key role in handling the
synchronization of heterogeneous MAS in Section III-C.

B. Fully Distributed Output Regulator Equation Solvers

Since the leader dynamics are only distributively available to the
followers, it requires output regulator equations in (8) to be solved
based on distributed leader dynamics. In this section, we propose fully
distributed solvers for output regulator equations. Note that the output
regulator equation solvers in [38] cannot be used here, because of the
following reasons.

1) That approach strongly depends on the global graph topology.
2) No system disturbance is allowed in the synchronization control

of [38], which means that no resilience is provided and, thus, actuator
faults cannot be handled adaptively.

With the estimated leader dynamics Υ̂i in (15), the output regulator
equations in (8) are rewritten as follows:

Ai Π̂0 i + Bi Γ̂0 i = Π̂0 i Ŝi (17a)

Ci Π̂0 i = R̂i (17b)

where Π̂0 i and Γ̂0 i denote the solutions matrices driven by the estimated
dynamics Ŝi and R̂i . Rewriting (17) yields the following:

A1 i Ŷ0 i Iq − A2 i Ŷ0 i Ŝi = R̂∗
i (18)

where A1 i = [ A i , B i
C i , 0 ], A2 i = [ In i

, 0
0 , 0 ], Ŷ0 i = [Π̂T

0 i Γ̂T
0 i ]

T , and

R̂∗
i = [0 R̂T

i ]T . Then, a standard form of linear equations in (18)
can be reformulated as follows:

Φ̂iΔ̂0 i = �̂i (19)
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where Φ̂i = (Iq ⊗ A1 i − ŜT
i ⊗ A2 i ), Δ̂0 i = vec(Ŷ0 i ), and �̂i =

vec(R̂∗
i ). Accordingly, we define the solutions of the output regu-

lator equations in (8) as Δi = vec(Yi ) = vec([ΠT
i ΓT

i ]T ), a vec-
tor �i = vec(R∗

i ) = vec([0 RT
i ]T ), and a matrix Φi = (Iq ⊗ A1 i −

ST ⊗ A2 i ). Given a unique solution Δi as [46] does, Φi is nonsin-
gular and ΦT

i Φi is positive-definite. Moreover, we define another two
estimated solutions to the output regulator equations in (8), and label
them as follows:

Δ̂1 i ≡ vec(Ŷ1 i ) and Δ̂i ≡ vec(Ŷi ) (20)

with Ŷ1 i = [Π̂T
1 i Γ̂T

1 i ]
T and Ŷi = [Π̂T

i Γ̂T
i ]T . We define errors of

the estimated solutions to output regulator equations in (8) as Δ̃j i ≡
vec(Yi ) − vec(Ŷj i ) ≡ Δ − Δ̂j i for j = 0, 1, and Δ̃i ≡ vec(Yi ) −
vec(Ŷi ) ≡ Δ − Δ̂i . The estimated solutions to the output regulator
equations satisfy the convergence property as shown in the following
theorem.

Theorem 2: Suppose that Assumptions 1, 3, and 4 hold true. If the
estimated solutions to the output regulator equations in (8), including
Δ̂j i for j = 0, 1, and Δ̂i , are adaptively solved as follows:

˙̂Δ0 i = −Φ̂T
i

(
Φ̂iΔ̂0 i − �̂i

)
(21)

˙̂Δ1 i = ||Υ̂i ||F
(
Δ̂0 i − Δ̂1 i

)
− Φ̂T

i

(
Φ̂iΔ̂1 i − �̂i

)
(22)

˙̂Δi = ||Υ̂i ||F
(
Δ̂1 i − Δ̂i

)
− Φ̂T

i

(
Φ̂iΔ̂i − �̂i

)
(23)

where Υ̂i is distributively solved in (14) and is used to calculate Φ̂i and
�̂i in (19), then, Δ̃j i for j = 0, 1, and Δ̃i (t) exponentially converge
to zero. �

Proof: The results can be obtained by extending [38]. We omit the
proof due to the limited space. �

The key idea is that we propose adaptive mechanisms in (21)–(23)
for estimating the solution to the output regulator equations so that
Lemma 4 holds true.

Lemma 4: The adaptive distributed leader dynamics observers in

(15) ensure ||Δ̃i ||||ζ0 || and ˙̂Πi ζ0 exponentially converge to zero. �
Proof: The results can be derived from Theorem 2. We omit the

proof due to the limited space. �
Note that Lemma 4 is a unique feature obtained by the use of the

updating law (23). From Lemma 3, an inequality that is similar to (16)
can be found. Control design in [38] does not guarantee Lemma 4 by
only using the distributed information.

C. Fully Distributed Resilience for Exponential Synchronization
of MAS With Actuator Faults

From Theorems 1 and 2, we can build a fully distributed control
scheme to achieve the synchronization of heterogeneous MAS based
on the distributed leader states/dynamics. Moreover, the leader dy-
namics Matrix S is allowed to have positive real eigenvalues, and thus
covers a case that the leader states are even unbounded. Note that such a
fully distributed property is realized under a situation that the proposed
observers and solvers (see Theorems 1 and 2) exponentially converge
to the desired trajectories, which establishes the foundation for the ex-
ponential synchronization of heterogeneous MAS. In what follows, we
show how our distributed observers and solvers combined with adap-
tive control to achieve the synchronization resilience of heterogeneous
MAS against unknown faults on actuators (3).

Before presenting the proposed control scheme, we define the esti-
mated state error as follows:

zi = xi − Π̂i ζi (24)

and we define its statelike error as follows:

z̄i = BT
i Pci zi (25)

where Pci is a positive-definite matrix to be discussed in detail later.
Let z̄ij be the jth element of vector z̄i , and let diag( z̄ i j√

z̄ 2
i j

+ η 2
) denote

a diagonal matrix with main diagonal being
z̄ i j√
z̄ 2

i j
+ η 2

, where η =

exp(−αη t) with αη being a positive constant. The notation d̂i denotes
the estimate of di = supt≥0 |δa

i (t)| and its error d̃i = di − d̂i . The
notation Ni (χi ) denotes a diagonal matrix with the main diagonal
being Nussbaum functions. Typically, many functions belong to the
definition of Nussbaum function, as shown in [20]–[23]. Throughout
this paper, we choose Ni (χi ) = exp (χ2

i ) sin(χi ). We design dm ax =
max{||di ||} for i = 1, . . . , N be a bounded constant, ϕi be a positive
constant, and dij be the jth element of vector di .

Now, we present the exponential synchronization result for hetero-
geneous MAS with unknown actuator faults.

Theorem 3: Consider heterogeneous MAS consisting of N follow-
ers (1) and one leader (2) with faults (3) on actuators. Under Assump-
tions 1–4, let the adaptive control scheme consist of the fully distributed
leader state/dynamics observers in (12)–(15), output regulator equation
solvers in (21)–(23), and local control protocols as follows:

ui = Ni (χi )τ̄i (26)

τ̄i = Γ̂i ζi + Kizi − diag

⎛

⎝ z̄ij
√

z̄2
ij + η2

⎞

⎠ d̂i (27)

where the design controller gain Ki is chosen as follows:

Ki = −R−1
i BT

i Pi (28)

where Pi is a solution of the following control algebraic Riccati
equation:

AT
i Pi + PiAi + Qi − PiBiR

−1
i BT

i Pi = 0. (29)

Let the adaptive laws for updating parameters d̂i and χi for i =
1, 2, . . . , N in (26) and (27) as follows:

˙̂
di = diag

⎛

⎝ z̄ij
√

z̄2
ij + η2

⎞

⎠ z̄i (30)

χ̇i = −ϕi τ̄
T
i z̄i . (31)

Then, exponential synchronization problem is solved. �
Proof: From (28) and (29), it is clear that Aci = Ai + BiKi is a

Hurwitz matrix. Thus, there exists a positive-definite matrix Qci such
that the following hold true:

AT
ciPci + PciAci = −Qci (32)
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where Pci is a positive-definite matrix. Taking the derivative of (24)
yields the following:

żi = Acizi + Πi S̃i ζi − Ai Π̃i ζi − Bi Γ̃i ζi + Γ̃i Ŝi ζi + Biδ
a
i (t)

− Bi diag

⎛

⎝ z̄ij
√

z̄2
ij + η2

⎞

⎠ d̂i + Bi (μi (t)Ni (χi ) − 1)τ̄i

− ˙̂Πi ζi + Π̂i (ci + ċi )ξi (33)

where (12), (26), and (32) are employed. Consider the following Lya-
punov function candidate:

Vi = zT
i Pci zi + d̃T

i d̃i (34)

and its time derivative is given as follows:

V̇i = 2zT
i Pci żi − 2d̃T

i
˙̂
di

≤ −zT
i σm in (Qci )zi + 2|z̄i |T di − 2z̄T

i diag

⎛

⎝ z̄ij
√

z̄2
ij + η2

⎞

⎠ di

+ 2z̄T
i (μi (t)Ni (χi ) − 1)τ̄i + 2zT

i Pci

(
Πi S̃i ζi − Ai Π̃i ζi

− Bi Γ̃i ζi + Γ̃i Ŝi ζi

)
− 2zT

i Pci
˙̂Πi ζ0

− 2zT
i Pci

˙̂Πi ζ̃i − 2zT
i Pci Π̂i (ci + ξT

i ξi )ξi

≤ −zT
i σm in (Qci )zi + 2z̄T

i (μi (t)Ni (χi ) − 1)τ̄i

+ 2ηdm ax + 2zT
i Pci

(
Πi S̃i − Ai Π̃i − Bi Γ̃i + Γ̃i Ŝi

)
ζ0

+ 2zT
i Pci

(
Πi S̃i − Ai Π̃i − Bi Γ̃i + Γ̃i Ŝi

)
ζ̃i

+ 2||zi ||||Pci ||F
∥
∥
∥

˙̂Πi ζ0

∥
∥
∥ + 2||zi ||||Pci ||F

∥
∥
∥

˙̂Πi

∥
∥
∥

F

∥
∥ζ̃i

∥
∥

+ 2
(
ci + ξT

i ξi

)
σm ax (LG ⊗ In )||ziPci Π̂i ||

∥
∥ζ̃

∥
∥ (35)

where (12), (13), (25), and (33) are used to obtain the first equation;
|z̄ij |dij − z̄ij

z̄ i j√
z̄ 2

i j
+ η 2

dij ≤ ηdij ≤ ηdm ax and (7) are used to obtain

the second inequality. Moreover, Lemma 4 guarantees that there exist
positive constants VΠ ζ and αV ζ such that the following holds true:

∥
∥
∥

˙̂Πi ζ0

∥
∥
∥ ≤ VΠ ζ exp(−αV ζ t). (36)

�
Let βV 1 be a constant satisfying 0 < βV 1 < 1

2 σm in (Qci ). Substi-

tuting (36) into 2||zi ||||Pci ||F || ˙̂Πi ζ0 || in (35) yields the following:

2||zi ||||Pci ||F
∥
∥
∥

˙̂Πi ζ0

∥
∥
∥ ≤

(
1
4
σm in (Qci ) − 1

2
βV 1

)

||zi ||2

+
||Pci ||2F V 2

Π ζ

1
4 σm in (Qci ) − 1

2 βV 1
× exp(−2αV ζ t)

≡
(

1
4
σm in (Qci ) − 1

2
βV 1

)

||zi ||2

+ βV 21 exp(−2αV ζ t) (37)

where Young’s inequality is used. It is clear that, from Lemma 4, there
exist positive constants VΠ and αΠ such that the following holds true:

∥
∥
∥

˙̂Πi

∥
∥
∥

F
≤ VΠ exp(−αΠ t). (38)

From Theorem 1, there exist positive constants Vξ and αξ such that the
following holds true:

∥
∥ζ̃i

∥
∥ ≤ √

Vξ exp (−αξ t) . (39)

With (38) and (39), 2||zi ||||Pci ||F ‖ ˙̂Πi‖F ‖ζ̃i‖ in (35) is rewritten as
follows:

2||zi ||||Pci ||F
∥
∥
∥

˙̂Πi

∥
∥
∥

F

∥
∥ζ̃i

∥
∥

≤ 2||zi ||||Pci ||F VΠ exp(−αΠ t)
√

Vξ exp (−αξ t)

≤
(

1
4
σm in (Qci ) − 1

2
βV 1

)

||zi ||2 + ||Pci ||2F V 2
Π

× Vξ exp (−2αξ t − 2αΠ t)
(

1
4 σm in (Qci ) − 1

2 βV 1
)

≡
(

1
4
σm in (Qci ) − 1

2
βV 1

)

||zi ||2 + βV 22 exp (−2αξ t − 2αΠ t) .

(40)

Substituting (31), (37), and (40) into (35) yields the following:

V̇i ≤ −
(

βV 1 +
σm in (Qci )

2

)

zT
i zi − 2

ϕi

(μi (t)Ni (χi ) − 1)χ̇i

+ 2ηdm ax + βV 2 exp(−αV t)

+ 2zT
i Pci

(
Πi S̃i − Ai Π̃i − Bi Γ̃i + Γ̃i Ŝi

)
ζ0

+ 2zT
i Pci

(
Πi S̃i − Ai Π̃i − Bi Γ̃i + Γ̃i Ŝi

)
ζ̃i

+ 2(ci + ξT
i ξi )σm ax (LG ⊗ In )||ziPci Π̂i ||

∥
∥ζ̃

∥
∥ (41)

where βV 2 ≡max{βV 21 , βV 22} and αV ≡min{2αξ + 2αΠ , 2αV ζ }.
By using Young’s inequality and following the results in Theorems 1
and 2 and Lemmas 3 and 4, the last three terms at the right-hand side
of (41) can be further changed into forms similar to (37) and (40).
Thus, there exist positive constants βV 3 , βV 4 , and αV 1 such that (41)
is changed into the following:

V̇i ≤ −βV 3z
T
i zi − 2

ϕi

(μi (t)Ni (χi ) − 1)χ̇i

+ 2ηdm ax + βV 4 exp(−αV 1 t). (42)

Solving (42) yields the following:

Vi (t) ≤ Vi (0) −
∫ t

0
βV 3z

T
i zidτ − 2

ϕi

NB
i (t) + NA

i (t) (43)

where NB
i (t) =

∫ t

0 (μi (t)Ni (χi ) − 1)χ̇i dτ and NA
i (t) =

∫ t

0 (2η
dm ax + βV 4 exp(−αV 1τ ))dτ . Note that NA

i (t) in (43) is bounded.
Moreover, the boundedness of NB

i (t) can also be obtained by seeking
a contradiction argument as shown in [23]. Thus, all of the signals in
(34) are bounded. Moreover, from (43), one concludes that

zT
i zi ≤ −

∫ t

0

βV 3

σm in (Pci )
zT

i zidτ + B̄i (44)

where B̄i = 1
σm in (Pc i ) (Vi (0) + supt≥0 (

2
ϕ i

|NB
i (t)| + |NA

i (t)|)) is
defined as a bounded constant. Recalling Bellman–Gronwall Lemma,
(44) is thus rewritten as follows:

||zi || ≤
√

B̄i exp
(

− βV 3

2σm in (Pci )
t

)

. (45)
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Fig. 1. Graph G used for output synchronization.

Hence, the output synchronization error for each local agent satisfies
the following:

||εy i || ≤
∥
∥Cixi − Ci Π̂i ζi

∥
∥ +

∥
∥Ci Π̂i ζ̃i

∥
∥ + ||Ci Π̂i ζ0 − Rζ0 ||

≤ ||Ci ||F
(
||zi || + ||Π̂i ||F

∥
∥ζ̃i

∥
∥ +

∥
∥Π̃i ζ0

∥
∥
)

(46)

where the exponential convergences of zi , ζ̃i , and Π̃i ζ0 are, respec-
tively, ensured in (45), Theorem 1, and Lemma 4. From (46), it is
revealed that the output synchronization error εy i , as well as εy in (4),
exponentially converges to zero. As a result, exponential synchroniza-
tion problem is solved. �

Remark 2: The exiting works on controlling a system with faults
such as [15]–[17] usually result in the ultimate bounded control or the
asymptotic control paradigms. Here, we extend them to an exponential
control. Moreover, benefited from the features provided by Nussbaum
function based adaptive approach, the proposed control frame in The-
orem 3 also covers a situation that the signs of coefficients μi (t) are
unknown and nonidentical. Note that most of the related literature
such as [20]–[23] are restricted to a category where unknown control
directions are required identical. •

IV. SIMULATION STUDY

In this section, we present numerical examples to demonstrate the
resilience of the proposed fully distributed protocols against faults
on actuators. Specifically, the simulated heterogeneous MAS has six
followers and one leader subject to a directed graph, G, given in Fig. 1.

The dynamics of ith follower are given as ẋi = [ 0 .8 −1 .5
2 0 .8 ]xi

+[ 1 .8 −1
1 1 .6 ]ūi , yi = [ 3 .5 −1 .8

0 .6 4 .5 ]xi for i = 1, 2; ẋi = [ 0 .6 −1
1 −2 ]xi +

[ 1 −2
1 .9 4 ]ūi , yi = [ −1 2

3 2 .8 ]xi for i = 3, 4;

ẋi =

⎡

⎢
⎢
⎣

0 1 0

0 0 1

0 0 −2

⎤

⎥
⎥
⎦ xi +

⎡

⎢
⎢
⎣

6 0

0 1

1 0

⎤

⎥
⎥
⎦ ūi , yi =

[−2.5 5 2.5

2.5 5 −2.5

]

xi ,

for i = 5, 6; and the leader dynamics are given as ζ̇0 = [ 0 3
0 0 ]ζ0 and

y0 = [ 1 0
0 1 ]ζ0 . We design the actuator faults as

ūi =

{
1.5ui , t < 15

3ui + 0.1 cos(0.1t) + 1, t ≥ 15
,

for i = 1, 2, . . . , 6.
Here, we follow Theorems 1–3 to implement the proposed protocols

for MAS with actuator faults. To achieve the synchronization,
we design the controller gain in (28) as K1 ,2 = [−1 .416 −0 .853

0 .660 −1 .136 ],
K3 ,4 = [−0 .624 −0 .287

1 .165 −0 .560 ], and K5 ,6 = [−1 .000 −0 .1924 −0 .084
0 .018 −0 .962 −0 .303 ].

Moreover, we design Qci as an identity matrix for i = 1, 2, . . . , 6 to
solve the Lyapunov (32).

In order to implement protocols in Theorems 1 and 3, we design
the initial value of (13) as ci (0) = 1 to satisfy the requirement in

Fig. 2. ‖ζ̃i‖, for i = 1, 2, . . . , 6.

Fig. 3. ||Υ̃i ||F ||ζ0 ||, for i = 1, 2, . . . , 6.

Fig. 4. ||Δ̃i ζ0 ||, for i = 1, 2, . . . , 6.

Theorem 1, randomly choose ζ0 in (2), and design all the other initial
values to be zero, including ζi in (12), Υ̂0 i in (14), and Υ̂i in (15). The
trajectories of leader state observer errors ζ̃i for i = 1, 2, . . . , 6 are
given in Fig. 2. Moreover, trajectories of ||Υ̃i ||F ||ζ0 || in Lemma 3 are
shown in Fig. 3. Since ζ0 is generated by unstable dynamics, the conver-
gence of ||Υ̃i ||F ||ζ0 || implies that ||Υ̃i ||F also converges. Therefore,
results in Theorem 1 and Lemma 3 are certified by Figs. 2 and 3.

To validate Theorem 2, we design the initial values of updating pa-
rameters in (21), (22), and (23) to be zero. Note that Υ̂i is solved by
(15), whose initial values and tuning gains are same as the previous

simulation. We plot trajectories of ||Δ̃i ζ0 || and || ˙̂Πi ζ0 || in Figs. 4 and
5, respectively. Since ζ0 is unstable, Fig. 4 reveals that the estimated
solutions to the output regulator equations converge to the actual solu-

tions, which certifies Theorem 2. Moreover, Fig. 5 denotes that ˙̂Πi ζ0

converges to zero so that the result in Lemma 4 is certified.
Now, we are in a position to prove the effectiveness of The-

orem 3. The initial values of follower agents are designed as
x1 (0) = [0, 0.5]T , x2 (0) = [1, 1.5]T , x3 (0) = [2, 2.5]T , x4 (0) =
[3, 3]T , x5 (0) = [2.5, 2, 1.5]T , and x6 (0) = [1, 0.5, 0]T . The initial
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Fig. 5. || ˙̂Πi ζ0 ||, for i = 1, 2, . . . , 6.

Fig. 6. Trajectories of leader states and follower states under the pro-
posed method.

Fig. 7. Trajectories of leader states and follower states.

values for updating Nussbaum function are χi (0) = 0 for i = 1, . . . , 6.
In addition, we set the initials of leader states and updating parame-
ters in (2), (12), (13)–(15), and (21)–(23) as the same ones in the
previous simulations. The trajectories of all agents are presented in
Fig. 6. This reveals that the resilient synchronization of heterogeneous
MAS with actuator faults is achieved after applying the proposed dis-
tributed protocol. Moreover, we use the design in [42] and preclude
adaptive resilience mechanisms for rejecting actuator faults given in
(26) and (27). For comparison purpose, trajectories of all agents under
the same actuator faults are shown in Fig. 7, where the followers’ states
are unbounded. This further testifies the effectiveness of the proposed
method.

V. CONCLUSION

This paper addresses the distributed synchronization resilience prob-
lem for MAS with actuator faults. The transient output synchroniza-
tion possesses the exponential convergence for heterogeneous MAS. A

complete solution is proposed to achieve the fully distributed control
design for the output synchronization. Moreover, the resilience is en-
hanced by extending exponential synchronization under actuator faults.
The effectiveness has been validated by simulation studies. As for the
future research, we will extend [51] to address insecure communica-
tions in heterogeneous MAS.
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