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In recent years, high-resolution (“eddying”) global three-dimensional ocean general circulation models
have begun to include astronomical tidal forcing alongside atmospheric forcing. Such models can carry an
internal tide field with a realistic amount of nonstationarity, and an internal gravity wave continuum
spectrum that compares more closely with observations as model resolution increases. Global internal tide
and gravity wave models are important for understanding the three-dimensional geography of ocean mixing,
for operational oceanography, and for simulating and interpreting satellite altimeter observations. Here we
describe the most important technical details behind such models, including atmospheric forcing,
bathymetry, astronomical tidal forcing, self-attraction and loading, quadratic bottom boundary layer drag,
parameterized topographic internal wave drag, shallow-water tidal equations, and a brief summary of the
theory of linear internal gravity waves. We focus on simulations run with two models, the HYbrid Coordinate
Ocean Model (HYCOM) and the Massachusetts Institute of Technology general circulation model
(MITgcm). We compare the modeled internal tides and internal gravity wave continuum to satellite altimeter
observations, moored observational records, and the predictions of the Garrett-Munk (1975) internal gravity
wave continuum spectrum. We briefly examine specific topics of interest, such as tidal energetics, internal
tide nonstationarity, and the role of nonlinearities in generating the modeled internal gravity wave
continuum. We also describe our first attempts at using a Kalman filter to improve the accuracy of tides
embedded within a general circulation model. We discuss the challenges and opportunities of modeling
stationary internal tides, non-stationary internal tides, and the internal gravity wave continuum spectrum
for satellite altimetry and other applications.

Arbic, B.K., et al., 2018: A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and
MITgem. In "New Frontiers in Operational Oceanography", E. Chassignet, A. Pascual, J. Tintoré, and J. Verron, Eds.,
GODAE OceanView, 307-392, doi:10.17125/gov2018.ch13.
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Introduction

his book chapter is about global modeling of oceanic internal tides and the oceanic internal

gravity wave continuum. The chapter focuses on hydrodynamical modeling, rather than

empirical modeling, of such motions. Due to the operational oceanography theme of the
book in which this chapter resides, we focus on high-spatial-resolution numerical models run over
relatively short time scales—i.e., simulations that could form the dynamical backbone of
operational models—rather than on lower-resolution models run over decades or centuries for
climate forecasting purposes. In this introductory section, after defining internal gravity waves and
internal tides, we discuss the motivation for, requirements for, and history of global modeling of
internal tides and the internal gravity wave continuum. A subsequent section focuses on the
technical details underlying such models, such as atmospheric forcing, bathymetry, astronomical
tidal forcing, self-attraction and loading, quadratic bottom boundary layer drag, parameterized
topographic internal wave drag, shallow-water tidal equations, and a brief synopsis of internal wave
theory. We then show results from the first solutions, obtained with the HYbrid Coordinate Ocean
Model (HYCOM; Bleck, 2002; Chassignet et al., 2009), of a high-resolution three-dimensional
global ocean model with simultaneous atmospheric and tidal forcing fields. Following that, we
compare results from newer simulations of HY COM, and similar simulations of the Massachusetts
Institute of Technology general circulation model (MITgem; Marshall et al., 1997), with satellite
altimeter observations, observations from moored records, and linear wave theory. We then
investigate some science questions, including the impact of wave drag on the energetics and
accuracy of tidal models, internal tide nonstationarity, and the role of nonlinearities in the
development of the modeled internal gravity wave continuum. We describe applications of the
HYCOM and MITgem simulations to swath satellite altimetry, and ongoing attempts to improve
the accuracy of tides embedded in the HYCOM simulations. After summarizing our completed
work, ongoing work, and challenges for the future, we provide a dedication for the first author’s
contributions to the work presented here. We then describe author contributions, acknowledge our
financial support and intellectual debts, and provide an appendix on the linear internal gravity wave

dispersion relation.

Definition of internal gravity waves

Internal gravity waves (often abbreviated hereafter as IGWs) are “internal” to the ocean. That is,
their largest vertical perturbation signals, such as the perturbations of temperature and density
isolines, occur well below the ocean surface. This behavior contrasts with, for instance, the behavior
of surface wind waves, for which the largest vertical perturbation signals are at the surface of the
ocean!. Let us idealize the ocean as having n layers, where the density pn of each layer increases

with depth (Fig. 13.1). In this layered system, IGWs are waves that exist on the interfaces between

1We shall see later that the perturbation surface elevation signals of internal tides and IGWs, though small, are
not zero. This is important for satellite altimetry.



A PRIMER ON GLOBAL INTERNAL TIDE AND INTERNAL GRAVITY WAVE CONTINUUM
MODELING IN HYCOM AND MITGCM e 309

layers, and for which the restoring force is gravity2. Because IGWs cause undulations of layer
interfaces, they bring deeper (usually colder) water upwards, and shallower (usually warmer) water
downwards. Therefore, IGWs bring about high-frequency fluctuations in time series of temperature
taken at a fixed depth.
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Figure 13.1. Schematic for a layered model of the ocean. There are n layers of density p1, p2,...0n, with layer
thicknesses hi, ho,...hn. The sum of all layer thicknesses equals H + 1, where H is the resting depth and 7 is
the perturbation sea surface height. Internal gravity waves represent undulations of the layer interfaces from
their resting positions, for which gravity is the restoring force. Reproduced from Figure 1 of Simmons et al.
(2004b).

As demonstrated in the appendix, application of classical linear internal gravity wave theory
shows that the frequency @ of a plane IGW obeys the inequality | f] < @ <N, where fis the Coriolis
frequency, also sometimes called the inertial frequency, and Nis the buoyancy frequency3. Because
IGWs are super-inertial (i.e., have frequencies exceeding the Coriolis frequency), they are not in
geostrophic balance. IGWs with frequencies near the Coriolis frequency are called near-inertial
waves. Near-inertial waves are primarily forced by fluctuations in surface winds (Pollard and
Millard, 1970; D’ Asaro, 1984; Silverthorne and Toole, 2009; Simmons and Alford, 2012). Because
near-inertial waves are driven by fluctuating winds, they tend to be stronger in winter than in
summer (D’Asaro, 1985). IGWs with tidal frequencies are known as internal tides, and they are
generated by large-scale barotropic tidal flow over topographic features (Bell, 1975; Baines, 1982;
among others). Topography will also be referred to as bathymetry throughout this chapter. The
barotropic tidal flow over topographic features, including rough small-scale topography and
topographic slopes along shelves, generates vertical motion, which, in a stratified fluid, implies that
the interfaces between layers will oscillate vertically—i.e. that internal tides will be generated.
Internal tides, also known as baroclinic tides, have smaller sea surface height signals and smaller
horizontal scales than barotropic tides, large undulations at depth, and large baroclinic (vertically
sheared) velocity fields. The vertical and horizontal structure of internal tides is intimately linked

to the characteristics of the topographic features at which they are generated (St. Laurent and

Z Note that there are other oceanic internal waves, for instance internal Rossby waves, for which the restoring
force is not gravity.

3 In the main text of this book chapter, we use w to denote frequency, consistent with the notation used in our
papers. In the appendix, we use o for frequency, consistent with usage in the notes from Carl Wunsch that
our appendix is based upon.
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Garrett, 2002). High-vertical-mode internal tides, which have smaller horizontal scales, are
generated by small-horizontal-scale topography characteristic of mid-ocean ridges, while low-
vertical-mode internal tides, which have larger horizontal scales, are generated by larger horizontal-
scale topographic features such as the Hawaiian Islands. High-mode IGWs are more likely to
dissipate near their generation sites, while low-mode IGWs are more likely to propagate long
distances, up to thousands of kilometers from their generation regions. The appendix outlines the
Sturm-Liouville problem underlying the computation of vertical normal modes. At frequencies
greater than tidal frequencies—hereafter often referred to as supertidal frequencies—there is a
continuum of IGW energy, separate from the near-inertial and tidal peaks. This IGW continuum is
described by the classical Garrett-Munk spectrum (Garrett and Munk, 1975). The Garrett-Munk
spectrum is thought to arise from nonlinear interactions transferring energy out of the near-inertial
and tidal frequencies and into the broadband continuum (e.g., Miiller et al., 1986; Polzin, 2004).

Fig. 13.2 depicts internal wave generation mechanisms, including wind-generation of near-
inertial flows, low-vertical-mode internal tide generation over larger-horizontal-scale topographic
features, high-vertical-mode internal tide generation over smaller-scale rough topography, and
generation of internal lee waves by low-frequency mesoscale eddy and current flows over
topographic features. Fig. 13.2 also illustrates several important internal wave dissipation
mechanisms, including scattering off of topographic features such as small-scale topography and
continental shelf slopes, local dissipation of high-modes near their generation sites, and interactions
amongst the waves themselves (wave-wave interactions) and between internal waves and mesoscale
eddies and fronts. Understanding how internal tides and IGWs lose their energy is an important
ongoing topic in physical oceanography. Global internal wave modeling both benefits from this
conversation (in the form of improved parameterizations of internal wave damping) and contributes
to it (by quantifying the long-range propagation of low-mode internal tides and hence providing
some constraints on where they dissipate). As will be shown later, comparisons of global internal
tide models with observations provide some clues about the locations and mechanisms of internal
tide damping.

Several of the concepts described above manifest themselves in Fig. 13.3, which displays
example frequency spectra of temperature variance. Spectra from in-situ mooring data and three
different global simulations of the MITgcm, with horizontal grid spacings of 1/12°, 1/24°, and
1/48°, are given. Diurnal and semidiurnal tidal peaks near one and two cycles per day, respectively,
can be seen in the mooring and model spectra. The internal gravity wave continuum (Garrett-Munk
spectrum) seen at supertidal frequencies is better resolved as the model horizontal resolution
increases, a theme we will return to later in this chapter. At frequencies below tidal frequencies
(subtidal frequencies), the spectra also display a broadband continuum, with no visible peaks. The
low-frequency broadband spectrum is dominated by mesoscale eddies and currents. Near-inertial
peaks are not prominent in temperature variance spectra, but will be seen later in spectra of kinetic

energy.

4 Technically, what is shown in this figure, and in many other figures in this chapter, is spectral density. Like
many authors, we will use the shorthand terms “spectra” or “spectrum” in place of “spectral density”.
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Figure 13.2. Schematic of open-ocean internal wave generation and dissipation processes that were considered
as part of a Climate Process Team led by Jennifer MacKinnon of the University of California San Diego.
Batroropic tidal flow interacts with topographic features to generate high-mode internal waves (e.g., at mid-
ocean ridges) and low-mode internal waves (e.g., at tall steep ridges such as the Hawaiian Ridge). Deep low-
frequency flows, including mesoscale eddies and currents, over topographic features can generate lee waves
(e.g., in the Southern Ocean). Storms cause near-inertial oscillations in the mixed layer, which can generate
both low- and high-mode internal waves (e.g., beneath storm tracks). In the open ocean these internal waves
can scatter off of topographic features and potentially interact with mesoscale fronts and eddies, until they
ultimately dissipate through wave-wave interactions that generate a nonlinear cascade to small-scale turbu-
lence. Internal waves that reach the shelf and slope can scatter, dissipate via bottom boundary layer drag, or
amplify as they propagate towards shallower water. Reproduced from Figure 1 of MacKinnon et al. (2017),
©American Meteorological Society, used with permission.
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Figure 13.3. Frequency spectra of temperature variance at depth and geographical location given in plot title.
Spectra are computed from observations in a historical archive (Scott et al. 2010), and from three different
global simulations, with horizontal grid spacings of 1/12°, 1/24°, and 1/48°, of the MITgcm. “CPD” denotes
“cycles per day.” Extra vertical lines are drawn at the frequencies of M, the largest semidiurnal tidal line, and

K1, the largest diurnal tide.
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Motivation

Why should the oceanographic community run global models of internal tides and the internal
gravity wave continuum? The authors posit four important reasons.

First, global internal tide and IGW models provide important information on ocean mixing. In
the ocean interior—e.g., in the open ocean, away from upper and lower boundaries—most of the
diapycnal mixing® is due to breaking IGWs. A variety of theoretical and observational studies,
including reports on observations of directly breaking IGWs (Moum et al., 2003, Klymak et al.,
2008), provide support for this statement. However, the strongest evidence for the primacy of
breaking IGWs in ocean interior diapycnal mixing comes from the remarkable agreement between
observed dissipation rates and predictions based on IGW energy levels that assume a cascade to
smaller (breaking) scales (Gregg, 1989; Polzin et al., 1995; Whalen et al., 2015; Kunze, 2017a).
The breaking of IGWs is shown schematically in Fig. 13.2. It has been argued that mixing exerts
an important control on the oceanic meridional overturning circulation (e.g., Munk and Wunsch,
1998; St. Laurent and Simmons, 2006; Kunze, 2017b). Indeed, the large-scale flow in ocean general
circulation models is sensitive to parameterizations of tidal mixing (Simmons et al., 2004a). Global
internal tide and IGW models cannot, of course, resolve IGW breaking. Nonetheless, by modeling
the transport of energy by internal waves over long distances (Simmons et al., 2004b; Simmons and
Alford, 2012), global internal tide and IGW models contribute importantly to the ongoing
discussion of the space-time geography of internal wave breaking, a topic of great current interest
in the oceanographic community, and one that is not fully settled; the fate of internal tide and IGW
energy is not entirely known at present.

Second, internal tides and gravity waves are important components of any operational ocean
model. IGW signals can be seen in oceanic measurements of temperature, density, and velocity.
Because IGWs bring about vertical motions of water masses, they affect the speed of sound, which
is a sensitive function of temperature and salinity. Modeling IGWs is therefore important for ocean
acoustics. This is one reason for the enduring interest of the United States Navy in IGWs.

Third, internal tide and gravity wave modeling is of particular importance for the upcoming
Surface Water Ocean Topography (SWOT) swath altimetry mission (Fu et al., 2012). Satellite
altimetry has revolutionized operational oceanography, and other branches of physical
oceanography, by providing accurate measurements of sea surface height (SSH) on a global scale,
over decades, on repeated tracks (Fu and Cazenave, 2001). Current-generation nadir altimeters,
such as the TOPEX/JASON series, provide SSH measurements along one-dimensional tracks.
Examination of non-tidal phenomena—for instance El Niflo, western boundary currents, and
mesoscale eddies, among others—with altimeter data can only take place after the barotropic tides,
which have large (of order 1000 km) horizontal scales in the open ocean, have been accurately
removed. For this reason, it was recognized early on that highly accurate models of the large-scale

barotropic tides were needed for successful altimeter missions.

5 Diapyncal mixing is mixing across iospycnals, or density surfaces.
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Barotropic tide models have improved greatly over the years. Cartwright and Ray (1990) proved
that accurate barotropic tide models could be derived empirically from altimeter data—in their case,
from GEOSAT data. The accuracy of the elevations due to the principal lunar semidiurnal tide M,
in the Cartwright and Ray (1990) model was slightly better than the accuracy of M, elevations in
the Schwiderski (1980) hydrodynamical one-layer (barotropic) shallow-water® tide model, which
assimilated tide-gauge data and which served as the “go-to” tide model for more than a decade.”
Shortly after the launch of TOPEX/POSEIDON, a number of accurate tide models were developed,
including hydrodynamical barotropic shallow-water models that assimilated either altimeter or tide
gauge data [e.g., the TPXO (Topex Poseidon Cross-Overs) model of Egbert et al. (1994) and Egbert
and Erofeeva (2002), and the FES (Finite Element Solution) models of Le Provost et al. (1994) and
Lyard et al. (2006)], and empirical models that estimated tides directly from altimeter data (e.g.,
Schrama and Ray, 1994; Ray, 1999). The accuracy of both empirical barotropic tide models based
upon altimetry, and hydrodynamical barotropic tide models that assimilate altimeter data, was
proven via comparison with independent tide-gauge data as well as other observations (Shum et al.,
1997). Because many of these tide gauges were located at small islands, they were assumed to
represent conditions in the open ocean, where altimetry-based tide models are more accurate.
Barotropic tide models continue to improve. Stammer et al. (2014) provides a comprehensive recent
overview of several state-of-the-art empirical and hydrodynamical barotropic tide models, including
the new Taguchi et al. (2014) hydrodynamical model, and updated versions of the TPXO and FES
models. Stammer et al. (2014) describes ongoing challenges for, and improvements in, barotropic
tide models, including the need for more accurate tides in coastal and high-latitude regions, and the
usage of new datasets, including tide data extracted from networks of bottom pressure sensors
deployed after the 2004 Indian Ocean tsunami (Ray, 2013), to test tide models.

SWOT, which is due to launch in 2021, will measure SSH along high-resolution two-
dimensional swaths, with pixel sizes of about 1 km?. The instrument noise in SWOT is expected to
be relatively low at smaller scales (wavelengths less than about 50 km). SWOT is therefore expected
to allow examination of smaller-scale features than can be seen in present-generation nadir altimeter
data. Because of SWOT’s emphasis on smaller-scale features, internal tides and IGWs will be an
important signal in SWOT, and will need to be accurately removed before smaller-scale features in
low-frequency motions, such as mesoscale and submesoscale eddies, can be effectively examined.
Stationary internal tides—that is, internal tides that can be described by amplitude and phase maps,
as in equation (12)-have a high degree of predictability in theory, but in practice can be difficult to
extract from altimeter data because of temporal sampling problems and “noise” from mesoscale
eddy motions (e.g., Ray and Byrne, 2010; Shriver et al., 2012). Thus the stationary internal tides
represent a significant challenge for SWOT. Some of the internal tide signal is non-stationary—that
is, if one examines internal waves in the tidal band, a non-negligible fraction of the variance still

remains after the stationary part has been predicted and removed. Non-stationary internal tides are

6 The shallow-water equations will be introduced in a subsequent section.

7 Parke and Hendershott (1980) also demonstrated that a hydrodynamical tide model could successfully
assimilate tide-gauge data, but their model assimilated less data than Schwiderski’s model did.
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caused by internal tide interactions with the chaotic mesoscale eddy field, which has similar length
and time scales as internal tides, and by temporal changes in stratification (e.g., Buijsman et al.,
2017; among others). The non-stationary internal tides, and the IGW continuum, are inherently less
predictable than stationary internal tides, and will therefore represent an even greater challenge for
the SWOT mission. Global models of internal tides and IGWs are being used to predict the internal
tide and IGW continuum SSH signals, and the impacts of internal tide and gravity wave motions on
the SSH wavenumber spectrum, a critical characteristic of SWOT measurements. In some of our
papers, and in other papers in the literature, the terms coherent/incoherent are used interchangeably
with stationary/non-stationary. In this chapter, we will use the terms stationary/non-stationary,
which many would argue are more precise, except when duplicating figures from past papers which
used the coherent/incoherent terminology.

The fourth motivation for global internal tide and IGW modeling is that it is an interesting topic
in and of itself. It is a new frontier in ocean modeling. Global IGW models have only existed since
2004, and evidence that global models can partially resolve the supertidal IGW continuum was only
recently presented in 2015. Just as models with vigorous mesoscale eddy fields (e.g., Maltrud and
McClean, 2005) have provided a new tool for understanding mesoscale eddies, global internal tide
and IGW models provide a new tool for understanding higher-frequency motions. Global eddying
models have developed to the point that they are used in operational forecast systems (e.g.,
Chassignet et al., 2009)8. Global internal tide and IGW models have not yet evolved to the point
where they are used in forecasting systems, but that time is coming soon. It is worth noting that,
just as the community has described models having resolutions of about 1/4° or better as “eddy-
permitting” rather than “eddying” or “eddy-resolving”, a similar distinction could be made for
global internal tide and gravity wave modeling. Because the horizontal length scales of low-mode
internal tides and mesoscale eddies are comparable, at least in midlatitudes, one might call, for
instance, a 1/4° model with internal tides an “internal tide-permitting” model. It has been our
experience that, as with mesoscale eddies, a horizontal resolution of at least 1/10° is needed for a
fully vigorous low-mode internal tide field. A horizontal resolution of about 1/24° or finer is

necessary for simulating a vigorous IGW continuum.

Requirements for global modeling of the internal gravity wave continuum

The classical paradigm for the generation of the IGW continuum spectrum is that winds produce
near-inertial waves, barotropic tidal flow over topographic features creates internal tides, and
nonlinear interactions fill out the IGW continuum. (The role of internal lee waves, generated by
low-frequency flows over topography, in the IGW continuum is an interesting question). Based
upon the classical paradigm, we might expect that the requirements for a resolved IGW spectrum
in a model would be simultaneous atmospheric forcing and astronomical tidal forcing, together with
horizontal and vertical resolution sufficiently high to allow nonlinear interactions to take place. The

atmospheric forcing should contain both the low-frequency components that set up the background

8 Following Hecht and Hasumi (2008), we will refer to models with horizontal resolutions of 1/10° or finer as
“eddying,” meaning that a vigorous mesoscale eddy field develops in such models.
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large-scale circulation and stratification (Pedlosky, 1996), and the high-frequency components that
drive near-inertial waves. Once a stratified flow is set up, the addition of astronomical tidal forcing
will produce internal tides via barotropic tidal flow over topography. Because internal tide
characteristics are linked to topographic scales, the resolution of small-scale bathymetric features

in available global bathymetric datasets is an important topic, that we return to later.

History of global modeling of internal tides and the internal gravity
wave continuum

This section is about the history of global internal tide and IGW continuum models. Some history
of observations that have motivated such models is also presented. Prior to the work outlined in this
chapter, global modeling of atmospherically-forced three-dimensional oceanic motions and global
modeling of tides constituted separate fields of research. As computer power has increased, the
frontiers of global operational modeling of the atmospherically-forced oceanic general circulation
have moved toward ever higher horizontal and vertical resolution, meaning that the mesoscale eddy
field has become better resolved in global and basin-scale models. Basin-scale models started to
become eddying at the turn of the century (e.g., Paiva et al., 1999; Smith et al., 2000). Basin-scale
models have now been run at resolutions of 1/50°-1/60° (e.g., Chassignet and Xu, 2017; Ducousso
et al., 2017). Regional models are now run with grid spacings of order hundreds of meters, and have
begun to resolve submesoscale eddies (e.g., Capet et al., 2008). The horizontal resolution of global
tide models has also increased as a result of increasing computer power. One of the earliest global
tide models, Hendershott (1972), employed a horizontal resolution of order 6° (Myrl Hendershott,
personal communication, 2004). By the time of the TOPEX/POSEIDON launch, barotropic tide
models were run on horizontal resolution grids of about 1° or less. As this book chapter was being
written, global barotropic (one-layer) tide models are being run at horizontal resolutions of order
1/75° (Buijsman et al., paper in preparation); unstructured grids such as those used in finite-element
models (Lyard et al., 2006) can go to much higher resolutions in selected areas, usually along
shelves and coastlines. Along the way, larger computers were also used to run baroclinic tide
models. The first baroclinic tide models run in realistic domains—e.g., not in idealized domains set
up for process studies—were done on regional scales. Early regional internal tide models include
Holloway (1996), who examined the Northwest Australian Shelf; Cummins and Oey (1997), who
simulated the tides off of northern British Columbia; and several studies of the internal tides
generated by the Hawaiian islands, for instance Kang et al. (2000) and Merrifield et al. (2001). See
Carter et al. (2012) for a review of regional internal tide models, which continue to refine their
resolutions with increasing computer power, and Nugroho et al. (2017), for an example of a recent
regional internal tide modeling study. Nugroho et al. (2017) showed that inclusion of tides in a
regional three-dimensional model of the Indonesian Seas yielded realistic levels of tidal dissipation,
which in turn exerted important controls on water mass properties.

Both regional and global internal tide models have been motivated by evidence for stationary
low-mode internal tides radiating over long distances in acoustic tomography data (Dushaw et al.,
1995) and in altimeter data (Ray and Mitchum, 1996, 1997). Fig. 13.4, taken from Ray and Mitchum
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(1996), displays M2 tidal amplitudes estimated along a TOPEX/POSEIDON track (ragged curve),
on top of M2 amplitudes estimated from a barotropic tidal model along the same track (solid curve).
As shown in the figure, the SSH signature of barotropic tides has much larger horizontal scales than
the SSH signature of internal tides. Associated with the different length scales, the phase speeds

! while the open-

also differ. The phase speed of barotropic tides in the open ocean is about 200 m s~
ocean phase speed of vertical mode-1 internal tides is typically about 2 m s™!. The higher-
wavenumber “wiggles” in the ragged curve represent the M, internal tide signal. This altimeter
evidence of stationary internal tides propagating over long distances, along with the tomography
evidence, implies that tidal energy can be transported over long distances before dissipating, with

profound implications for the three-dimensional geography of oceanic mixing.
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Figure 13.4. Ragged curve: Mz tidal amplitudes along Topex/Poseidon track number 125. Smooth curve: M2
tidal amplitudes estimated from a barotropic tide model. Bathymetry is shown in black. Reproduced from
Figure 1 of Ray and Mitchum (1996), ©American Geophysical Union, Wiley Online Library, used with
permission.

Further motivation for internal tide models arises from evidence that internal tide production
over open-ocean topographic features accounts for about 25-30% of the energy lost in the global
barotropic tidal energy budget. Egbert and Ray (2000, 2001, 2003) showed that about 1 TW of the
total 3.5 TW barotropic tidal dissipation takes place in the open ocean, through generation of
internal tides by barotropic flow over topography. Egbert and Ray’s results implicate internal tide
dissipation as an important contributor to the mixing that underpins the large-scale circulation
(Munk and Wunsch, 1998; St. Laurent and Simmons, 2006; Kunze, 2017b). Fig. 13.5a displays
energy lost from the barotropic tide, as inferred from an updated version of the TPXO model. The
TPXO results display substantial energy dissipation over topographic features, such as the mid-
Atlantic Ridge and the Hawaiian islands. The increased internal wave activity over open-ocean
topographic features can also be seen in Fig. 13.5b, which displays the conversion of energy from
barotropic tides to internal tides in simulations of the HYbrid Coordinate Ocean Model (HY COM)
computed by Buijsman et al. (2016). Further, enhanced dissipation of oceanic flows over
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topographic features has been seen in field campaigns, such as the Brazil Basin Tracer Release
Experiment (BBTRE; e.g., Polzin et al., 1997; Fig. 13.6), the Diapycnal and Isopycnal Mixing
Experiment in the Southern Ocean (DIMES; e.g., Gille et al., 2007; St. Laurent et al., 2012), and
others, that include microstructure dissipation measurements. See MacKinnon et al. (2017),
Waterhouse et al. (2014), and Whalen et al. (2012, 2015) for comprehensive discussions of
observations indicating enhanced oceanic energy dissipation over rough topographic features.
Along the shelves, considerable barotropic tidal dissipation takes place in regions with large coastal
tides, such as the Hudson Strait, the Northwest European Shelf, the Bay of Fundy, and others.
Collectively, the shelves dissipate about 70-75% of the tidal energy. For much of the 20th century,
the shelves were thought to account for almost all of the tidal dissipation. The Egbert and Ray (2000,
2001, 2003) sequence of papers, and related work done by others, have brought about a paradigm
shift in this important topic.
(a)

80— ————
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40
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Figure 13.5. (a) Rate of energy lost from the M barotropic tide (mW/m?), estimated from TPXO8 global
assimilation solution. (b) Baroclinic conversion rate (mW/m?) for all semidiurnal constituents, computed from
the HYCOM 18.5 solution (nominal resolution 1/12.5°; Buijsman et al., 2016). The conversion rate shown in
(b) has been smoothed, and the plotting range has been reduced relative to that in panel [a], in order to enhance
visibility of global scale patterns. Shallow and deep ocean areas used for localized dissipation and conversion
calculations are defined by solid lines for shallow areas (numbered 1-27) and dashed lines for deep ocean areas
(labeled A-I). The green dashed line is the more formally defined boundary between deep and shallow areas,
as discussed in Ray and Egbert (2001). Reproduced from Figure 13.8 of Ray and Egbert (2017), which can be
consulted for further details. Republished with permission of Taylor and Francis Group, conveyed through the
Copyright Clearance Center.
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The first basin-scale simulation of internal tides was performed by Niwa and Hibiya (2001). The
first global internal tide simulations were performed in the companion papers Arbic et al. (2004)
and Simmons et al. (2004b). These early global internal tide simulations were idealized in several
respects. Atmospheric forcing was not included—the only forcing present was the astronomical
tidal potential. Because the atmospheric forcing, which sets up the oceanic stratification, was
lacking, the stratification profile was set to be horizontally uniform. The stratification profile was
taken from observations in the subtropics, and was therefore not representative of equatorial or polar
conditions. Figs. 13.7-13.9 display the interfacial height perturbations at three different times during
the spin-up phase of the main two-layer simulation analyzed in Simmons et al. (2004b). The
simplicity of this simulation allows for a nice illustration of the spin-up, but the exact values of the
interfacial heights should not be taken too literally due to the unrealistic horizontally constant
stratification. Internal wave generation at mid-ocean topographic features such as the Hawaiian and
French Polynesian Islands is readily apparent. Tidal forcing is not required for global modeling of
near-inertial waves, which are forced by rapid fluctuations in the wind fields. Examination of near-
inertial waves in global models has been done by Furiuchi et al. (2008) and Simmons and Alford

(2012). As with low-mode internal tides, low-mode near-inertial waves can carry energy over

thousands of kilometers as they propagate (Alford, 2003).
Brazil Basin
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Figure 13.6. Depth-longitude section of cross-isopycnal (diapycnal) diffusivity in the Brazil Basin inferred
from velocity micostructure observations. Note the nonuniform color scale. Microstructure data from two
quasi-zonal transects have been combined without regard to latitude. Underway bathymetric data to 32°W is
from an eastward track, and the balance comes from a westward track. The white line marks the depth of the
0.8°C interface. Reproduced from Figure 2 of Polzin et al. (1997). Reprinted with permission from AAAS.
Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified,
adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from
the publisher.
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In coastal modeling, and in global barotropic modeling, it has long been common to
simultaneously resolve tides and atmospherically-driven motions. The earliest attempts to
simultaneously include atmospheric and tidal forcing in three-dimensional global models (Thomas
etal.,2001; Schiller and Fiedler, 2007; Miiller et al., 2010) were done in simulations with horizontal
resolutions of order 1°, in which neither mesoscale eddies nor internal tides are resolved;
nonetheless, some interesting impacts of barotropic tides on the oceanic general circulation were
found. The first global, three-dimensional, high-resolution simulation done with simultaneous
atmospheric and tidal forcing was done using HYCOM and is described in Arbic et al. (2010). For
a shorter and less technical overview of these HYCOM simulations, see Arbic et al. (2012a).
Because of the high resolution, these HYCOM simulations resolved mesoscale eddies, western
boundary currents, and internal tides, as well as the larger-scale barotropic tides. We will report on
this HYCOM simulation as well as updated HYCOM simulations later. For now, we note that a
small but growing number of “wind plus tides” simulations have been done in global three-
dimensional high-resolution (1/10° or finer) models, for instance the German STORMTIDE model
(e.g., Miiller et al., 2012), the GFDL Generalized Ocean Layered Model (GOLD; e.g., Waterhouse
et al., 2014), and the Massachusetts Institute of Technology general circulation model (MITgcm;
e.g., Rocha et al., 2016a, 2016b). The lead author is collaborating with two modeling groups in
France that are preparing to perform basin-scale and global high-resolution (“eddying”) simulations
with simultaneous atmospheric and tidal forcing. It is clear that concurrent atmospheric and tidal

forcing will become increasingly common in global eddying ocean model runs of the future.
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Figure 13.7. Interface displacement normalized according to Eq. (15) of Simmons et al. (2004b), on day 2 of
spin-up of a two-layer M2 simulation with simplified, horizontally uniform stratification. The resting depth of
the interface is at 1100 m. The zonal mean of the normalization factor is shown on the right side of the plot.
Reproduced from Figure 6 of Simmons et al. (2004b).
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Figure 13.8. As in Fig. 13.7 but for day 6 of spin-up. Reproduced from Figure 7 of Simmons et al. (2004b).
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Figure 13.9. As in Fig. 13.7 but for day 20 of spin-up. Reproduced from Figure 8 of Simmons et al. (2004b).

It took some time to recognize the existence of a quasi-realistic IGW continuum spectrum in
high-resolution models with concurrent tidal and atmospheric forcing. The first demonstration of a
partial IGW continuum in global models, using HYCOM, was done in Miiller et al. (2015). The
realism of the HYCOM IGW kinetic energy spectra analyzed in Miiller et al. (2015) increased as
the horizontal grid spacing decreased from 1/12.5° to 1/25°. Rocha et al. (2016a, 2016b)
subsequently showed that MITgem simulations also carry a partial IGW continuum. Savage et al.
(2017a, 2017b) examined the IGW SSH fields and spectra in 1/12.5° and 1/25° simulations of
HYCOM and in 1/12°, 1/24°, and 1/48° simulations of the MITgcm. The HYCOM and MITgcm
simulations are being used extensively in preparation for the SWOT mission.
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This book chapter focuses on global internal tide and wave modeling done with HY COM and
the MITgem. HY COM and MITgcem are full ocean general circulation models, with multiple layers,
that include parameterizations for mixed-layer physics and other processes. They have been used
as ocean general circulation models in many applications. Here we focus on high-resolution, three-
dimensional simulations of these two models with simultaneous atmospheric and tidal forcing. The
HYCOM “wind plus tides” simulations have existed longer than the MITgem “wind plus tides”
simulations, are associated with a longer publication list, have been compared with observations
more frequently, and include a parameterized topographic internal wave drag, which is not included
in the MITgem simulations, or in the “wind plus tides” simulations performed thus far by other
modeling groups. The parameterized wave drag (e.g., Garner, 2005) is meant to account for the
breaking of internal waves throughout the water column, and for low-level turbulence, that are left
unresolved in today’s global models, even models run at the highest resolutions possible on current-
generation supercomputers.

Because of the long history of the HYCOM simulations, they have gone through several
iterations. The first HYCOM “wind plus tides” simulations used in Arbic et al. (2010) had some
numerical problems (see the large spurious signals in bottom kinetic energy in the Gulf of Mexico,
for example, in Figure 2b of that paper). These numerical problems were greatly reduced in the runs
used in subsequent papers. Up until Ansong et al. (2015), the HYCOM simulations discussed in
this chapter had 32 hybrid layers in the vertical direction; since Ansong et al. (2015) they have had
41. Ngodock et al. (2016) introduced a Kalman filter method to improve the accuracy of the
modeled barotropic tides. All of the HYCOM simulations since then have employed the Kalman
filter, which will be discussed in a subsequent section. The topographic drag scheme, and the
scheme for self-attraction and loading, have also changed over time. Finally, we note that none of
the HY COM “wind plus tides” simulations used in our publications to date employ data assimilation
acting on the mesoscale eddy field, although such runs are already being performed and will become
more prevalent in the near future. The MITgem “wind plus tides” simulations have not been around
as long as the HYCOM “wind plus tides” simulations, and have not been vetted as extensively. One
very significant advantage of the MITgcm simulations, however, is that they have been run with
higher horizontal resolution, up to 1/48°, and with higher vertical resolution (90 z-levels, as opposed
to 41 hybrid layers in HYCOM)®. The HYCOM simulations are run with horizontal grid spacings
of 1/12.5° and 1/25° and are often referred to as HYCOM12 and HYCOM25 throughout this
chapter. The MITgem simulations are run with horizontal grid spacings of 1/12°, 1/24°, and 1/48°
and are often referred to as MITgem12, MITgem24, and MITgem48, respectively, throughout this

chapter. The fact that a qualitatively similar IGW spectrum emerges in two different models, which

9 Different modeling systems make use of different vertical coordinates. Some of the most common choices
are z-level coordinates, which are employed in MITgcm, terrain-following coordinates, isopycnal (density-
based) coordinates, and hybrid vertical coordinates. Hybrid coordinates, which can smoothly transition
between the choices above, are used in HYCOM. Griffies et al. (2000) and Griffies (2005) can be consulted
for detailed discussions of vertical coordinate choices in ocean models. Bleck (2002) describes the hybrid
vertical coordinate approach used in HY COM.
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differ from each other in various respects including in their vertical coordinate systems, gives us

more confidence in the results presented here.

Technical Details

This section describes some of the technical details involved in global internal gravity wave
modeling, including atmospheric forcing, bathymetry, astronomical tidal forcing, self-attraction and
loading, quadratic bottom boundary layer drag and parameterized topographic internal wave drag,
and the shallow-water tidal equations. The section concludes with a brief synopsis of the Garrett
and Munk (1975) description of the IGW continuum spectrum, and of linear dispersion relations

for IGWs, both of which will be used to interpret our model results.

Atmospheric forcing

Atmospheric forcing of the ocean includes wind stress, evaporation minus precipitation (which
impacts salinity at the ocean surface), and air-sea heat fluxes (which impact, and feed off of, sea
surface temperature)}—see Csanady (2001), Josey et al. (2013), and references therein for an
overview. To obtain a realistically energetic near-inertial wave field, a model should be forced by
winds that update frequently (e.g., about three hours or less). A component of atmospheric forcing
that is often neglected in oceanic general circulation models is atmospheric pressure loading. There
is a rich literature on oceanic motions forced by pressure loading (e.g., Ponte, 1994; Tierney et al.,
2000a; Stammer et al., 2000; Carrére and Lyard, 2003). Because atmospheric pressure is broadband,
it elicits a broadband response in the ocean. A special case, worth a brief mention here, is the
atmospheric tide, which is thermally driven (Chapman and Lindzen, 1970). The predominant
periods of the atmospheric thermal tide are 24 and 12 hours. The pressure loading of the 24-hour S,
atmospheric tide is the predominant driver of the small S; tide in the ocean (Ray and Egbert, 2004).
The pressure loading of the 12-hour S, atmospheric tide is an order 15% correction (e.g., Arbic,
2005) to the oceanic S, tide, which is primarily forced by the Sun’s gravity and is the second largest
tide in the ocean.

The atmospheric forcing for the HYCOM simulations presented here has evolved over time.
The most recent HYCOM simulations include pressure loading as well as atmospheric buoyancy
and wind forcing. The most recent HYCOM simulations are forced by the United States Navy
atmospheric model, NAVGEM (Hogan et al., 2014), which recently replaced the NOGAPS model
(Rosmond et al., 2002). The frequency of NAVGEM output has varied over time. Some of our
recent HY COM simulations have been forced by atmospheric fields updated every three hours, and
some by atmospheric fields updated every hour. As noted, high-frequency atmospheric forcing is
needed to represent the S, atmospheric tide (e.g., Ray and Ponte, 2003), to simulate the associated
oceanic response (e.g., Arbic, 2005), and to simulate oceanic near-inertial waves. Our papers on the
HYCOM tidal simulations, for instance Arbic et al. (2010), Shriver et al. (2012), and Savage et al.
(2017b), can be consulted for more details on the atmospheric forcing fields, and their evolution

over time.
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The MITgcem simulations described here were forced by six-hourly atmospheric fields from the
0.14° European Center for Medium Range Weather Forecasts (ECMWF) operational atmospheric
reanalysis. The ECMWF fields are converted to surface fluxes using the Large and Yeager (2004)
versions of the bulk formulae. The MITgcm simulations are also forced by pressure loading in
addition to atmospheric wind and buoyancy forcing.

Bathymetry

Bathymetry is a crucial consideration in global internal tide and IGW continuum models, because
internal tides are generated by barotropic tidal flow over topographic features. Most global models
use a version of the Smith and Sandwell (1997) bathymetry, which has been continually updated
over time. The bathymetric database uses high-quality acoustic soundings where they are available.
However, because of the military significance of acoustic sounding data in coastal waters, local
governments often do not release them. In the open ocean, sounding data is rare; perhaps 10% of
the ocean floor has been mapped acoustically (Wessel and Chandler, 2011), and most of the regions
so mapped are in coastal shelf regions (Charette and Smith, 2010). Thus, in the open-ocean, Smith
and Sandwell (1997) employ satellite altimetry data. The sea surface height signal is sensitive to
local mass anomalies. The technique can resolve features down to about 7T times the ocean depth,
in other words, about 10-20 km in the open-ocean. The altimeter inversion technique works poorly
in shelf areas. In order to prevent numerical problems in ocean models, bathymetry must be
smoothed to remove features with length scales less than the grid spacings employed in the models.

Bathymetry is, of course, a crucial control for other oceanic motions as well as for internal tides
and IGWs. For example, deep-water masses often enter the ocean through bathymetric sills (Price
and Baringer, 1994), and the paths of mesoscale eddies are steered by topography (LaCasce, 2000;
Scott et al., 2008; Stewart et al., 2015). Bathymetry is also of primary importance for accurate

barotropic tide modeling (Florent Lyard, personal communications over many years).

Astronomical tidal forcing

Tidal research has a long history, and it includes some of the greatest names in physics and
geophysics, such as Isaac Newton, Pierre-Simon Laplace, George Biddell Airy, Lord Kelvin, and
George Darwin. Cartwright (1999) and Pugh (1987) can be consulted for some of this fascinating
history. Here we outline some of the fundamentals underlying astronomical tidal forcing, for those
readers who might not have encountered them before.

The astronomical tidal potential is due to the differential gravitational forcing of a distant object
across a body of finite size. Thus, for instance, the gravitational pull of the Moon is greater at points
on the Earth facing the Moon than it is at the center of the Earth, and greater at the Earth’s center
than at points facing away from the Moon (Fig. 13.10). Due to the mutual gravitational attraction
between the Earth and Moon, all points on Earth trace circles with a radius equal to the distance
between the Earth’s center and the center of mass of the Earth-Moon system. Therefore, all points

on Earth experience a centripetal force equal to
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G Mmoon (1)

Fcentripetal - Ta
where G is Newton’s gravitational constant, M., is the mass of the Moon, and r is the distance
between the center of the Moon and the center of the Earth. On the side of the Earth closest to the

Moon, the gravitational pull of the Moon is given by

F o GMmoon (2)
tational = ———2
gravitationa (7" _ Cl>2 )
where a is the radius of the Earth. The tidal force is given by the difference of these forces,
1 1
Ftidal = Fgr(witational - Fcentripetal - GMmoon [(T'——G)Q - ﬁ] ~
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where we have used the fact that a « 7. On the side of the Earth farthest from the Moon, we have
1 1
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Thus to first order the tidal forces on the side of the Earth facing the Moon and the side farthest
from the Moon are equal but opposite, yielding tidal bulges pointing outwards from the Earth in
both cases. Note that the tidal force is proportional to Earth’s radius a; hence, as anticipated, the
finite size of Earth is a critical factor in tidal forcing. Because the gravitational force is proportional
to riZ’ the tidal force, being a difference and hence involving a derivative, is proportional to %3
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Figure 13.10. Tide-producing forces.
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The same reasoning applies to the Sun’s gravity. The Sun is 27,000,000 times more massive
than the Moon, but it is 390 times farther away. This equates to the solar tidal force being 46% of
the lunar tidal force; an important but smaller contribution.

Because the tidal forcing consists of two bulges, under which the Earth rotates, the period of the
principal lunar semidiurnal tide is equal to half of a lunar day—the latter representing the time it
takes for an observer on Earth to see the same point on the Moon two consecutive times as the Earth
orbits. A lunar day is 24.84 hours, and the period of the principal lunar semidiurnal tide (M) is
therefore 12.42 hours. Because a solar day—a day measured against the Sun—is 24 hours, the
period of the principal solar semidiurnal tide (S>) is 12 hours. The close but unequal frequencies of
M; and S, yield a classic “beat” pattern in the tides. The tidal range, or difference between high and
low tide, is especially large during spring tide, when the Earth, Moon, and Sun are aligned, and is
especially small during neap tide, when the line between the Earth and Moon is at right angles to
the line between the Earth and Sun. The tidal forcing is often referred to as the “equilibrium tide”,
a concept that is credited to Newton (Newton, 1687; Cartwright, 1999). Another commonly used
term for tidal forcing is “astronomical tidal potential”.

Tidal forcing is not just at semidiurnal frequencies. Because the Moon’s orbit around the Earth
is not in the Earth’s equatorial plane, an observer on Earth sees two high tidal forcing peaks that are
unequal during the course of a day (Fig. 13.11). As shown in the figure, a northern hemisphere
observer sees a higher high tidal forcing at time B and a lower high tidal forcing at time A. At the
same longitude, a southern hemisphere observer sees a lower high tide when the northern
hemisphere observer sees a higher high tide and vice versa. This diurnal inequality yields an
effective tidal forcing at periods close to once per day; in other words, diurnal tides. There are also
diurnal tides that are caused by the Sl:n’s gravity field.

Figure 13.11. Declination and diurnal tides.
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While the discussion of the astronomical tidal forcing given above is intuitive, a more complete
treatment of the tidal forcing is done in terms of spherical harmonic expansions of the gravitational
potential, where the potential is computed from a highly accurate trigonometric series expansion
for the orbital positions of the Sun and Moon (Doodson, 1921; Cartwright and Tayler, 1971). This
fuller treatment yields a multitude of terms having varying frequencies and amplitudes. The
frequencies represent multiples, sums, and differences of the fundamental frequencies in the Earth-
Moon-Sun system. The frequencies cluster around semidiurnal, diurnal, and longer periods, and the
three types of tides correspond to the degree-two spherical harmonics.1? These clusters are often
referred to as “tidal species”, a concept credited to Laplace (Cartwright, 1999). Cartwright and
Tayler (1971)’s analysis netted approximately 400 terms. More recent treatments, e.g., Roosbeek
(1996), have many thousands of terms. Most ocean tide studies include only some of these terms.
See Williams and Boggs (2017) for a comprehensive treatment of the relationship between the
dissipations of tidal constituents!! and the secular changes in Earth’s rotation, the semimajor axis
of the Earth-Moon orbit, and other characteristics of the Earth-Moon system.

For a semidiurnal tidal constituent, the equilibrium tide, denoted by 1ro below, is given by

neq = Af (treg)(1 + k2 — h2) cos?(¢) cos[w(t — tref) + X(tres) + V(trer) +2A, (9

where 4 and @ are constituent-dependent forcing amplitudes and frequencies, @ is latitude, A is
longitude, ¢ is time, t.s is a reference time (which could represent, for instance, the starting time of
a particular model run), and X (#..r) is the constituent-dependent astronomical argument referenced
to t.r (e.g., Schwiderski, 1980; Pugh, 1987). The Love numbers %, and k>, which are frequency-
dependent especially in the diurnal band (Wahr and Sasao, 1981), respectively account for the
deformation of the solid earth resulting from the astronomical forcing, and the resulting alteration
in the gravitational potential due to the redistributed mass within the solid Earth. The solid-earth
deformations arising in response to the astronomical forcing are known as the “body tide”. Solid-
earth body-tide oscillations can reach several cm in amplitude, but they are not noticeable in
common experience because of their long (planetary-scale) wavelengths. The nodal factors f{z.r)
and U(t.s ) respectively account for the slow modulation of amplitude and phase of a tidal
constituent due to low-frequency changes in the Earth-Moon-Sun system (especially the 18.6 year
nodal cycle—see Pugh, 1987). The inclusion of nodal factors depends on the application. Many
tidal studies do not need to use them. On the other hand, accurate tidal prediction, and accurate
analysis of ocean observations, requires either the use of nodal factors or the use of a large number
of tidal lines over a record duration long enough (~ 19 years) to resolve the multitude of lines

present in the actual tidal potential. For a diurnal tidal constituent, the equilibrium tide is given by

Neq = Af(trer)(1 4 k2 — hg) sin(2¢) cos[w(t — trer) + X(trep) + V(trey) + A, (6)

10 The astronomical tidal potential also includes degree-three and higher spherical harmonics. The higher-
order harmonics are small and are neglected in many ocean tide models. See Cartwright (1975) for a
demonstration that degree-three tides can be detected in observational records.

11 As is explained in Egbert and Ray (2017), a “constituent” is a cluster of spectral lines, not a single isolated
line. This point is often discussed loosely in the literature, including in some of our previous papers.
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and for a long-period constituent, the equilibrium tide is given by
1 3.
NeQ = Af(trep) (1 + ko — hy) [5 ~ 5 SIHQ(@} cos[w(t — tres) + X(tres) + V(trer)]- (7)

The diurnal tidal forcing is antisymmetric around the equator, consistent with the intuition
developed from Fig. 13.11. The long-period constituents have relatively small amplitudes and will
not be much discussed in this book chapter. To model many constituents, one must simply add the
appropriate extra term to 7Jgo each time a constituent is included.

Constituent o (107*s™) A (cm) l+hkh—h Period (solar days)
M., 0.026392 2.2191 0.693 27.5546
My 0.053234 4.2041 0.693 13.6608
Qi 0.6495854 1.9273 0.695 1.1195
O, 0.6759774 10.0661 |  0.695 1.0758
P, 0.7252295 4.6848 0.706 1.0027
K, 0.7292117 14.1565| 0.736 0.9973
N, 1.378797 4.6397 0.693 0.5274
M, 1.405189 24.2334|  0.693 0.5175
Sz 1.454441 11.2743| 0.693 0.5000
K> 1.458423 3.0684 0.693 0.4986

Table 13.1. Constituent-dependent frequencies @, astronomical forcing amplitudes 4, and Love number
combinations 1 + k2 — 42 used to compute equilibrium tide 7£o. The periods 27t/ @ are also given. Reproduced
from Table 1 of Arbic et al. (2004).

Table 13.1 provides the frequencies, periods, amplitudes, and Love number combination 1 + Kk
— hy for the four largest semidiurnal constituents, four largest diurnal constituents, and two largest
long-period constituents. Note that the Love number combination is about 0.7, meaning that the
body tide acts to reduce the amplitude of the equilibrium ocean tide forcing by 30%—a significant
impact for an effect that sounds quite exotic when one first learns of it! Pugh (1987) and other
sources can be consulted for computation of the astronomical arguments X and nodal factors. As an
alternative to modeling multiple tidal constituents using sums of the appropriate 7o terms, one

could instead employ the full luni-solar tidal potential, as in Weis et al. (2008). In this approach,
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one would not include nodal factors, because one would instead be effectively modeling all tidal
forcing frequencies. Employing the full luni-solar potential in its purest form would not allow for
the frequency dependence of the body-tide Love numbers. To create such an accounting would
require a harmonic analysis of the full potential, which would effectively mean writing the potential
as a sum of many 7Jgo terms, as in the more traditional approach outlined above.

Early HYCOM tides simulations (Arbic et al., 2010, 2012a; Shriver et al., 2012) included the
four largest diurnal tidal constituents (K;, Oy, P, and Q) and the four largest semidiurnal tidal
constituents (Ma, Sz, N», and K»). However, later simulations of HYCOM have included only the
five largest tidal constituents— My, S, N», K;, and O1—due to the difficulties in separating the
nearby S; — K» and K; — Py frequency pairs in relatively short model outputs. Savage et al. (2017b)
can be consulted for a detailed description of the MITgem simulations. Due to a misunderstanding
amongst several co-authors, Savage et al. (2017b) incorrectly stated that the MITgcem tidal forcing
included sixteen tidal constituents—eight long period tides, the four largest diurnal constituents, and
the four largest semidiurnal constituents. In fact, the MITgem simulations employed the full luni-

solar tidal potential.

Self-attraction and loading

This section describes self-attraction and loading, an effect that those who are new to tidal research
often find even more surprising than solid-earth body tides. In addition to its direct body-tide
response to the astronomical tidal potential, the solid earth also compresses and expands due to the
load of the ocean tide. Furthermore, the self-gravitation of both the ocean tide itself, and the load-
deformed solid earth, alters the gravitational potential. Collectively, these effects are known as the
self-attraction and loading (SAL) term (Hendershott, 1972; Ray, 1998). The 7)sar term is often
computed in terms of a spherical harmonic expansion,

3 _ Bk
o pearth<2n + 1)

where g ~ 1035 kg m™ is the average density of seawater, Pearth 5518 kg m™ is the average

NsAL = (L+ Ky, = hy )y (8)

density of the solid earth, 7 is an index of the spherical harmonics, and the 77,’s are the rnth
spherical harmonics of the tidal elevation 7). The load numbers h', and k',,, introduced in Munk and
MacDonald (1960), respectively account for solid-earth yielding and the resulting perturbation
potential. We see from equation (8) that the SAL term 7)sar depends on the tidal elevations 7
themselves. The 7sar term is more spatially complex than the 7go term because, as we will see
shortly in Fig. 13.12, the ocean tide has a richer spatial structure than the degree-two spherical
harmonic equilibrium tide. The ocean tide contains many spherical harmonic degrees, and the
loading and self-gravitation responses are functions of these degrees via (8). The SAL term must
therefore be evaluated either by decomposing the tides into spherical harmonics, or by using
Green’s functions, both of which are computationally expensive. Hendershott (1972) and Gordeev
et al. (1977) demonstrated that the SAL effects are of first-order importance to tide modeling. It is
not possible to model the global barotropic tides accurately without properly accounting for the
SAL term.
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Because spherical harmonics are computationally expensive, Msar is usually not computed
inline in ocean models, with some notable exceptions such as Stepanov and Hughes (2004),
Kuhlmann et al. (2011), and Vinogradova et al. (2015). To save computational expense, the SAL
term is sometimes calculated with a “scalar approximation” (Accad and Pekeris, 1978; Ray, 1998)
for which

Nsar ~ B, )

where [ is a constant, usually taken to be about 0.09. As Ray (1998) and others have shown, the
scalar approximation is not accurate enough for the most exacting tidal applications. A more
accurate iterative method can be employed where resources allow. In the iterative method, one first
estimates 7sar with (9), runs the model out, and then uses the full spherical harmonic treatment
given by (8) in a less expensive offline calculation. Finally, one takes advantage of the periodicity
of tides to construct amplitude and phase maps, which are then used in the next iteration, and so on,
until the results converge. Numerical devices are often employed to achieve convergence with a
smaller number of iterations—see Arbic et al. (2004) and Egbert et al. (2004) for more discussion.
The early HYCOM “wind plus tides” simulations use a scalar approximation for the SAL term.
More recent HYCOM simulations, beginning with the simulations described in Ngodock et al.
(2016), have used the SAL maps from the Egbert et al. (1994) TPXO model.12 The latter approach
is generally the most accurate, but the iterative method is more self-consistent. The scalar
approximation is the least accurate of the three approaches to SAL described above.

Quadratic bottom boundary layer drag and parameterized topographic internal
wave drag

This section is about quadratic bottom boundary layer drag and parameterized topographic internal
wave drag, the two main damping mechanisms that have been used thus far in global barotropic
tide models and global internal tide and IGW continuum models. Taylor (1919), through
examination of tidal dissipation in the Irish Sea, argued that bottom boundary layer drag should be
modeled as quadratic in the velocity, with a drag coefficient of about 0.002. His formulation for
quadratic bottom drag is commonly used today in ocean models, of both tidal and non-tidal motions.
Because the energy budget equation for a model is derived through multiplication of the momentum
equation by velocity, the quadratic bottom boundary layer drag yields a dissipation that is cubic in

the velocity. Tidal velocities on shelves can be as large as 1 m s

, much larger than open-ocean

tidal velocities, which are typically about 1-2 cm s™!. Therefore, in global tidal models, dissipation

by the quadratic bottom boundary layer drag term takes place primarily in coastal areas.
Motivated by Egbert and Ray’s demonstration of barotropic tidal energy loss over topographic

features, many recent barotropic tide models, beginning with the work of Jayne and St. Laurent

12Ngodock et al. (2016) displayed some prior solutions for which the SAL term was computed either
iteratively, or using a scalar approximation. The ASEnKF solutions in Ngodock et al. (2016) employed SAL
fields taken from the TPXO model, but the text did not make that clear. This omission led to Savage et al.
(2017b) mistakenly stating that the HYCOM solutions they analyzed, taken from Ngodock’s work,
employed an iterative SAL.
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(2001), have included a parameterized topographic internal wave drag term in the momentum
equation. In the Jayne and St. Laurent (2001) formulation, the wave drag varies in space, as a
function of the stratification at the bottom of the ocean, the RMS heights of small-scale topographic
features, and the flow velocity. The horizontal length scales of topographic features also enter into
the formulation, as a spatially constant tuning parameter. More complex formulations of wave drag,
often based upon spatially varying tensors, are used in Arbic et al. (2004), Egbert et al. (2004),
Nycander (2005), Lyard et al. (2006), and other studies. Arbic et al. (2004) employed a version of
the atmospheric wave drag scheme of Garner (2005). See Nycander (2005) for development of a
similar tensor formulation. These drag tensors depend on the local spectrum of topographic heights
and horizontal length scales, and on stratification.

Employing wave drag, or other IGW damping parameterizations, in baroclinic tide models is
more complex. First of all, the question arises as to whether one should parameterize IGW damping
in a model that resolves some of the internal wave spectrum. Arbic et al. (2004), Arbic et al. (2010),
Ansong et al. (2015), and Buijsman et al. (2016) have argued that wave drag (or, at least, some
parameterized sink of internal wave momentum) is necessary in global baroclinic tide models,
because such models do not resolve the actual breaking of internal tides and therefore require a
parameterized momentum sink—which they take to be topographic wave drag—to make up for this
deficiency. Some internal tide and wave modelers have not employed wave drag, either because
they disagree with the point of view described above, or because they do not want to add another
term into their models. If one does assume that a topographic wave drag or other IGW damping is
needed, this introduces some numerical complexities. For instance, the question arises as to whether
the wave drag should be applied to the bottom flow, barotropic flow, or some other flow.
Parameterizations of upper-ocean wave-wave interactions, which have not been implemented in
global internal wave models to date, would have to act on flows throughout the water column. In
Arbic et al. (2004) and in the HYCOM simulations described here, a parameterized topographic
wave drag is applied to the bottom flow, based upon the consideration that the bottom flow is the
flow that actually interacts with topographic features. This follows the practice of atmospheric
modelers, but raises another point of frequent discussion and argument.

Finally, there is the question of what to do about wave drag or other IGW damping in
simulations, such as the ones described in this book chapter, that resolve both tidal and non-tidal
motions. Non-tidal motions, such as low-frequency mesoscale eddies and currents, also likely
generate an internal wave field that acts as an important momentum and energy sink (e.g.,
Nikurashin and Ferrari, 2011; Scott et al., 2011; Trossman et al., 2013, 2016). Wave drag acts on
both tidal and non-tidal motions, but is quantitatively different in the two limits (Bell, 1975). The
Trossman et al. (2013, 2016) papers employed the first inline insertion of wave drag into high-
resolution models of the eddying general circulation. Trossman et al. (2013, 2016) found that the
wave drag was a significant energy sink for the general circulation, and that the statistics of
mesoscale eddies are significantly impacted by wave drag. The Trossman et al. (2013, 2016)
simulations were done with HYCOM, but in order to avoid the problem discussed above—that

wave drag acts differently on tidal and non-tidal flows—the Trossman et al. HY COM simulations
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did not include tides. In the HY COM simulations that include both tidal and non-tidal motions, such
as the simulations that we focus on in this book chapter, the flow averaged over the bottom 500
meters is saved over a period of time of order 1-2 days (the exact number of hourly snapshots saved
has been changed as the HY COM tide simulations have evolved). Then a filter in time is employed
to separate the tidal and non-tidal motions, and the wave drag is employed only on the tidal flow.
The filter separates tidal and non-tidal motions imperfectly. See Arbic et al. (2010) for a description
of the procedure, which produced some numerical artifacts in that first paper (see for instance the
artificially large kinetic energy in the Gulf of Mexico and other regions in Figure 2b of that paper).
In the subsequent HYCOM tides papers, beginning with Shriver et al. (2012), the artifacts have
been greatly reduced. However, the question of how to emply wave drag in models containing both
tidal and non-tidal motions is still a matter of active research.

As noted in Ansong et al. (2015) and MacKinnon et al. (2017), among others, in the actual
ocean, internal tides likely lose their energy by a variety of mechanisms, including upper-ocean
wave-wave interactions (e.g., McComas and Bretherton, 1977), interaction with mean flows and
eddies (e.g., Dunphy and Lamb, 2014), and scattering into higher vertical modes and dissipation by
bottom friction on continental shelves (e.g., Kelly et al., 2013). No parameterizations of these other
internal tide damping processes have been incorporated into the HY COM tides simulations, which
for simplicity employ only a parameterized topographic wave drag meant to parameterize damping
via breaking of high-mode motions. No parameterizations of wave drag or of any other internal
wave damping mechanisms have been employed in the MITgem tides simulations discussed here,
or, to the best of our knowledge, in any of the other “wind plus tides” simulations performed thus
far by modeling groups outside of the HY COM modeling group. The wave drag scheme employed
in earlier HY COM papers was based on the Garner (2005) scheme. Buijsman et al. (2015) provides
a detailed discussion of the performance of HY COM barotropic tide simulations using various wave
drag schemes. Buijsman et al. (2015) found that the simpler scheme of Jayne and St. Laurent (2001)
produced errors with respect to TPXO that were comparable to the errors produced with more
complex wave drag schemes. As a result, a decision was made to use the Jayne and St. Laurent

(2001) scheme in our most recent HY COM three-dimensional “wind plus tides” simulations.

Shallow-water tidal equations

We now describe the shallow-water tidal equations. Barotropic tides obey the shallow-water
equations (Gill, 1982), which apply to motions having wavelengths that greatly exceed ocean
depths. Shallow-water motions are hydrostatic, meaning that accelerations do not enter into the
primary balance of forces in the vertical direction.

The barotropic tidal elevations do not equal the equilibrium tidal potential for a variety of
reasons. First, for an ocean with an average depth of 4000 m, shallow-water waves travel about 200
1

m s~!, which is not fast enough for the waves to stay under the Moon as it orbits the Earth.13

13 Because waves in the solid earth travel rapidly, through both continental and oceanic crust, the solid-earth
body tides do follow the equilibrium tidal forcing more closely. This is why the effects of solid-earth body
tides represent a simple alteration of the astronomical tidal potential—multiplication by 1 + k2 — A2.
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Continents obstruct oceanic flows, another reason that the shallow-water waves cannot follow the
equilibrium tidal forcing. Further complexities in the ocean tide response to equilibrium tidal
forcing include the Coriolis force, frictional forces, and solid-earth body and load tides. The tides
in the ocean represent a dynamical response, including all of the factors described above, to the
equilibrium tidal forcing. Many authors have argued that the tidal response to astronomical forcing
is in resonance (Wunsch, 1972; Garrett and Greenberg, 1977; Heath, 1981; Arbic et al., 2009),
because the spatial structure and frequency of astronomical forcing is not dissimilar to the normal
modes one obtains from the unforced shallow-water equations (Platzman et al., 1981; Platzman,
1991; Zahel and Miiller, 2005; Miiller, 2007). Numerous studies have argued that the large tides
seen in some coastal regions around the globe (e.g., the Bay of Fundy, the Hudson Strait, the
Northwest European Shelf, and other areas) are due to resonances in these regions (Garrett, 1972;
Clarke, 1991; Arbic et al., 2007; Cummins et al., 2010; among others).

In the case of a one-layer (barotropic) shallow-water model, if we assume a tensor form of the

wave drag, the governing momentum equation is

ow L .
EJrroqufk X U =—gV(n—npg —NsaL)
V- [Ku(H Vi cfai | Ti (19)
H +n H+n  po(H+n)
and the governing mass conservation equation is
0
S+ Ve l(H +n)i =0, (i

where 7 is the two-dimensional horizontal velocity vector, fis the Coriolis parameter, k is a unit
vector in the vertical direction, g is gravitational acceleration, Ky is the horizontal eddy viscosity,
H is the resting water depth, 7 is the perturbation tidal elevation, ¢, is the quadratic drag coefficient
(usually set to a value close to 0.0025), and T is the topographic internal wave drag tensor. The
form of the one-layer shallow-water equations given in Arbic et al. (2004) is equivalent to the above,
though written in a slightly different (flux-divergent) form. The form of the governing equations
for two- and multi-layer shallow water models with only tidal forcing present are given in, for
instance, Arbic et al. (2004) and Simmons et al. (2004b), respectively. A simplified form of the
modern shallow-water equations lacking, for instance, the nonlinear advective terms and the
damping terms, was written down by Laplace (Laplace, 1775, 1776). Laplace’s equations are known
as the “Laplace tidal equations.” The study of tides has indeed contributed much to the development
of ocean models.

The greater complexity of the ocean tide response, relative to the simple structure of the
astronomical forcing, is illustrated in Fig. 13.12, which is a global map of the amplitudes and phases
of the M, surface tidal elevations from Egbert et al. (1994). Tidal results are often displayed in
amplitude and phase maps. A tidal harmonic analysis, which employs a least-squares fitting
procedure, is generally used to extract tidal amplitudes and phases from observations or from model
outputs (Foreman, 1977, 2004; Pawlowicz et al., 2002; Foreman et al., 2009). Amplitude and phase
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maps take advantage of the periodicity of the tides and assume that a scalar tidal variable V' can be

written as
Vg, ) = Amplitude(p, A) f (trep)coslw(t — tres) + X (tres) + V(trer) — phase(p, M) (12)

The amplitudes and phases of tidal elevations can be used to compute the time-averaged
discrepancy between two different estimates of the tides. The squared discrepancy D? between, for
instance, modeled tidal elevations nmopeL and observed elevations 7oss at a point location is
defined as

D?* =< (nmopeL — noss)” > (13)

where < > denotes a time average, over an integer number of tidal periods. It is easily shown that

D’ can be written in terms of tidal amplitudes and phases, viz.

1
D? = §<A?\4ODEL + A2035> — AyoperAopscos(Pmoper — Pops), (14)

where Auyopr. and Aops are amplitudes of the model and observations, respectively, and @yoprr

and @opsare phases. Alternatively, one can write, as in Shriver et al. (2012),

1
D? = E(AMODEL - AOBS)2 + ApoprrAoss(l — cos(dpoprr — ¢ops)), (15)
where the first term on the right-hand side is an amplitude error and the second is an amplitude-
weighted phase error. Often an area-weighted D? is calculated in the tide literature. In such cases an

area-weighted RMS error is taken as the square root of the area-weighted D?, viz.

D — \/ff < (77MODEL - 77035)2 > dA. (16)

[ [dA

Brief synopsis of internal wave theory

We briefly summarize two theoretical results that we will use later to interpret some of our modeled
IGW results. First, as is shown in the appendix, the linear dispersion relation for plane IGWs can
be written as

w? = 2+ K3 a7)
where w and K are the frequency and horizontal wavenumber, and c. is the eigenspeed, of a
particular vertical mode of interest.1* Equation (17) implies that | /| < @. As can be seen from
equation (59) in the appendix, the inequality f'< @ < N holds in the special case of a constant N
throughout the water column. Second, we note that the Garrett and Munk (1975) model for the IGW
spectrum predicts that IGW spectra will fall off as &/ 2 and as m 2, where m is vertical wavenumber.

14 Again, we remind the reader that frequency is denoted by 0 in the appendix.
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Figure 13.12. Global amplitude and phase maps of Mz surface elevations, from TPXO model. Contour
intervals are 10 cm for amplitude and 30° for Greenwich phase. Reproduced from Plate 3 of Egbert et al.
(1994), © American Geophysical Union, Wiley Online Library, used with permission.

Results from First HYCOM “Wind Plus Tides” Simulations

This section displays some results from the first HYCOM simulations forced concurrently by
atmospheric fields and the astronomical tidal potential (Arbic et al., 2010); one result shown in this
section is taken from the second round of HYCOM “wind plus tides” simulations (Arbic et al.,
2012a; Shriver et al., 2012). Fig. 13.13a displays a global map of the amplitudes of the M, internal
tide SSH signature (computed from steric SSH) in an experiment with two layers, a horizontally
uniform stratification, and only M, tidal forcing present—in other words, in an experiment like
those in Arbic et al. (2004) and Simmons et al. (2004b). Fig. 13.13b displays the M, internal tide
SSH amplitude map in a simulation forced by both atmospheric fields and tides. There are some
qualitative similarities between the two maps. For instance, internal tide generation regions such as
Hawai’i, the French Polynesian Islands, and others, are clearly visible in both plots. There are
quantitative differences throughout the globe, demonstrating (not surprisingly) that the internal tides
are very different in a simulation that includes a realistic horizontally varying stratification. The
differences are greatest in polar regions, where the oceanic stratification is weaker than the
subtropical stratification employed globally in the simulation shown in Fig. 13.13a. Under the more

realistic conditions in Fig. 13.13b, the internal tide signatures in polar regions are much weaker.
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0 D
Figure 13.13. Amplitude (cm) of M2 internal tide signature, computed from steric SSH, in (a) HYCOM
simulation with two-layer, horizontally uniform stratification, and M tidal forcing only, as in Arbic et al.
(2004) and Simmons et al. (2004b), and (b) early HYCOM “wind plus tides” simulation, with a 32-layer,
horizontally non-uniform stratification, forced by atmospheric ficlds as well as the M astronomical tidal
potential. Reproduced from Figure 4 of Arbic et al. (2010).



336 « BRIAN K. ARBIC ET AL.

Figure 13.14. Snapshot of (a) non-steric and (b) steric sea surface heights (m) in the Southwest Pacific on June
30, 2006 at 00Z, from an early HYCOM simulation forced by both atmospheric fields and tides. Reproduced
from Figure 8 of Arbic et al. (2010).
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Figure 13.15. (a) Amplitude (cm) of Mz surface tidal elevation in TPXO (Egbert et al., 1994), a highly accurate
barotropic tide model constrained by satellite altimetry. (b) Amplitude (cm) of Mz surface tidal elevation in
early “wind plus tides” 32-layer HYCOM simulation with concurrent atmospheric and tidal forcing, which
yields barotropic tides, internal tides, and mesoscale eddies. White curves in (a) and (b) are contours of constant
phase. Insets to the right of (a) and (b) display amplitude and phase in the western Pacific region delineated by
boxes in (a) and (b). Reproduced from Figure 1 of Arbic et al. (2012a).

The separation of HYCOM SSH fields into steric and non-steric components (see appendix of
Savage et al., 2017a) has proven to be useful in visualizing different classes of motions simulated
by the HYCOM “wind plus tides” simulations. Fig. 13.14 shows snapshots of non-steric and steric
SSH in the South Pacific from the early simulations discussed in Arbic et al. (2010). The non-steric
fields are dominated by the large-scale barotropic tides. The steric fields display both the internal
tides—manifesting themselves in a small-scale “honeycomb” texture—and mesoscale eddies
(which are more vortical). Animations of these fields reveal that the honeycomb patterns are high-
frequency (because they are tidal) while the mesoscale eddies evolve more slowly.

Fig. 13.15 shows global maps of the amplitude and phase of M, surface elevations, in both
HYCOM and in TPXO. The inset plots focus in on a region of the western Pacific where strong
internal tides are present. The contrast between the inset of TPXO, which does not include internal
tides, and the inset of HYCOM, illustrates the impact of internal tides upon the total (barotropic
plus internal) surface tidal elevation. The internal tides, though of smaller amplitude, impart small-
scale perturbations to both amplitude and phase contours, as in the altimeter data shown in Fig.
13.4. The amplitude perturbations have a “honeycomb” appearance, as in Fig. 13.14b.

Fig. 13.16 shows zonal velocities and isopycnal positions, in a section through Hawai’i, from
the same HYCOM “wind plus tides” simulation. A snapshot is shown in (a), while a 25-hour mean
is shown in (b). The snapshot reveals more structure in both the velocity and isopycnal position
fields; this high-frequency structure is averaged out in the 25-hour mean.
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Model Comparison with Observations and Theory

In this section, we compare the modeled internal tides and internal gravity wave continuum with
observations. The observations used for comparison include satellite altimetry data, and
observations from in-situ platforms such as moorings. For the purposes of this section, an altimeter-
constrained model such as TPXO is considered to represent “observations”. Because there have
been many more model-observational comparisons with HYCOM than with MITgem, we focus
more on HYCOM than on MITgem in this section. We compare the IGW spectra in both HY COM
and MITgcm with linear internal gravity wave theory.

a) u- velocny merld sec. 156 00w Jun 30 2006 122 [14 1H]

Figure 13.16. Zonal velocity (cm s7!) in 156°W section through Hawai’i on June 30, 2006 from an early
HYCOM simulation forced by both atmospheric fields and tides; (a) snapshot and (b) 25-hour mean. Isopycnal
positions (black curves) shown versus depth in meters (right axes). Reproduced from Figure 10 of Arbic et al.
(2010).
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Figure 13.17. Amplitude (cm) of M2 surface tidal elevation in (A) TPXO7.2 (an update to the model described
by Egbert et al., 1994), a barotropic tide model constrained by satellite altimetry, and (B) 32-layer HYCOM
simulations forced concurrently by atmospheric fields and the tidal gravitational potential. Lines of constant
phase plotted every 45° are overlaid in white. Reproduced from Figure 2 of Shriver et al. (2012), © American
Geophysical Union, Wiley Online Library, used with permission.

Comparison with altimetry

Fig. 13.17 compares the M, surface tidal elevation amplitudes and phases in the altimeter-
constrained model TPXO (A) and in HYCOM (B). Once again, small-scale structure, due to the

presence of internal tides, is visible in HYCOM. The gross similarities between the TPXO and
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HYCOM fields are clear, but there are also many differences in detail. For instance, the patterns in
the eastern equatorial Pacific Ocean and equatorial Indian Ocean clearly differ. Later we will
discuss methods that improve the accuracy of the HYCOM barotropic tides over what is seen in
Fig. 13.17. Note that in Fig. 13.17 and in succeeding figures taken from Shriver et al. (2012),
locations with water depths less than 1500 meters are whited out because the spatial high-pass
filtering technique we used to separate barotropic and internal tides does not work well in shallow
waters, where the horizontal length scales of barotropic tides are much smaller than in the open

ocean.
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Figure 13.18. As in Fig. 13.17 but for the K tidal constituent. Reproduced from Figure 3 of Shriver et al.
(2012), ©American Geophysical Union, Wiley Online Library, used with permission.
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Figure 13.18 compares the K; surface tidal elevation amplitudes and phases in TPXO (A) and
HYCOM (B). We again note the small-scale structures in HYCOM, and the gross similarities and
many quantitative differences between the HY COM and TPXO fields.

Fig. 13.19 compares the stationary M, internal tide SSH elevation amplitudes in along-track
altimeter data (A; from Ray and Byrne, 2010) and HYCOM (B). As noted in the discussion around
Fig. 13.4, in the open ocean, the horizontal scales of internal tides are much less than the horizontal
scales of barotropic tides. Therefore, we apply a spatial high-pass filter to the full sea surface height
results shown in Fig. 13.17 to obtain the internal tides shown in Fig. 13.19. As with the barotropic
tide comparisons above, the internal tide SSH comparison features gross similarities but also many
differences in detail; differences are especially clear in the Atlantic Ocean. Both along-track
altimetry and HY COM reveal a small number of significant generation regions, or “hotspots”, for
instance, Hawai’i, the French Polynesian Islands, Northwest Australia, and others. Both subplots
show a “dead zone” for stationary internal tides in the eastern equatorial Pacific. We will return to
this “dead zone” in a subsequent section. Spatial averages of amplitudes computed from HYCOM
over the hotspot regions outlined by black boxes in (B) agree with averages computed from along-
track altimetry to within 15% for the four largest semidiurnal constituents (see Table 2 in Shriver
et al., 2012). In later papers (e.g. Ansong et al., 2015), we realized that the duration of the model
output impacts the average amplitude one attains, meaning that the Shriver et al. (2012) model
values were slight overestimates.

Fig. 13.20 compares the stationary K, internal tide SSH elevation amplitudes in along-track
altimeter data (A; from Ray and Byrne, 2010) and HYCOM (B). As with the M, internal tides,
hotspot regions for the K, internal tides display gross agreement between HY COM and along-track
altimetry. Spatially-averaged amplitudes computed over the diurnal hotspot regions outlined by
black boxes in (B) agree with averages computed from along-track altimetry to within 23% for the
four largest diurnal constituents (see Table 3 in Shriver et al., 2012). The most obvious differences
in the altimetric vs. HYCOM K internal tides are seen in regions of strong mesoscale eddies and
currents, such as the Gulf Stream, Kuroshio, Malvinas, Agulhas, and Antarctic Circumpolar Current
regions (denoted by red ellipses in A). All of these regions are poleward of 30°, the latitude for
which the K, frequency equals the Coriolis parameter f. By equation (17), we expect therefore that
there should not be propagating diurnal IGWs poleward of 30°. The model results are consistent
with this expectation, but the altimeter results are not. As discussed in Shriver et al. (2012) and in
earlier references, the 10-day repeat times for the TOPEX/JASON series result in aliasing of tides
into longer periods, that lie within the low-frequency broadband mesoscale eddy continuum. Thus,
in regions of strong mesoscale eddies, it can be difficult to separate the eddies from internal tides,
especially because the two types of motions have similar horizontal length scales. This leads to
artificially high estimates of stationary internal tide amplitudes in altimeter data over regions of
strong currents.

The global views displayed in the previous two figures do not allow for detailed comparison of
individual features. Individual features can be seen in Fig. 13.21, which compares stationary M>
internal tide amplitudes, in along-track altimetry vs. HY COM, along ascending tracks in the North
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Pacific. While the features in the model output and altimeter data are qualitatively similar, the
individual peaks and troughs often do not line up closely. We are continuing to investigate the
quality of internal tides in the HYCOM simulations, to see whether recent improvements to the
HYCOM barotropic tides, to be discussed in a subsequent section, yield improvements in the model-

observational comparison of internal tides.
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Figure 13.19. The stationary Mz internal tide amplitude from the (A) along-track altimeter data as in Ray and
Byrne (2010) and (B) analysis of HYCOM tidal model output. The five subregions denoted by black boxes in
(B) are used to compute the area-averaged amplitudes in Table 2 of Shriver et al. (2012). Reproduced from
Figure 7 of Shriver et al. (2012), © American Geophysical Union, Wiley Online Library, used with permission.
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Figure 13.20. As in Fig. 13.19 but for the stationary Ki internal tide. Reproduced from Figure 8 of Shriver et
al. (2012), ©American Geophysical Union, Wiley Online Library, used with permission.

Comparison with moored observational records

We now display comparisons of results from global internal tide and IGW continuum models with
results from an archive of historical moored instruments. Observations in the archive are in some
ways the antithesis of altimeter records. Individual moored instruments in the archive provide high
temporal resolution observations, often putting out measurement information at intervals of one
hour or even less. This makes mooring data suitable for computing frequency spectra that
encompass a range of oceanic motions, from low-frequency mesoscale eddies to high-frequency
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internal tides and the IGW continuum, as in Fig. 13.3. Variables commonly captured in mooring
time series include velocity, temperature, and, in newer instruments for which the drift problems in
older instruments have been reduced, salinity. We have used a database of archived temperature
and velocity records (Scott et al., 2010; Wright et al., 2014), in several model-data comparison
studies. Scott et al. (2010) compared the kinetic energy of low-frequency motions, such as
mesoscale eddies and currents, in four different “eddying” models, none of which contained tides,
vs. the archived current meter data. See Penduff et al. (2006), and Thoppil et al. (2011), for related
efforts. Luecke et al. (2017) used the Scott et al. (2010) database to compare low-frequency
temperature variance in non-tidal HY COM simulations vs. moored observations, and Luecke et al.
(paper in preparation; Fig. 13.3) compares both low- and high-frequency temperature variance and
kinetic energy in HYCOM and MITgem “wind plus tide” simulations with the archived historical

mooring observations.
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Figure 13.21. M: internal tide amplitude along ascending tracks from the HYCOM (red) and altimeter-based
analysis (black). For each track, the line showing the coordinates of the track represents a zero amplitude for
the tides on that track. The short-scale smoothness is due in part to the application of the band-pass filter and
is not due to the response method used in the altimetric-based analysis. Reproduced from Figure 6 of Shriver
et al. (2012), ©American Geophysical Union, Wiley Online Library, used with permission.
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Timko et al. (2012, 2013) compared tidal currents in HY COM with tidal currents inferred from
the historical observations. Fig. 13.22 compares vertical profiles of the M, tidal current semi-major
axis and phase at a particular location in the North Pacific, just south of the Aleutians. There is good
general agreement throughout the water column, with the model tracking many of the changes seen

with depth. However, not all locations show an agreement that is this close.
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Figure 13.22. Comparison of M2z semi-major axis and Greenwich phase in HYCOM and in a particular
Acoustic Doppler Current Profiler (ADCP) record as a function of depth, at a location given in the plot title.
The circles represent the value estimated from the observations and the line through the circle represents the
95% confidence intervals using harmonic tidal analysis. The black curve shows HY COM values for the model
grid point nearest the observation and the red curve shows the model values for the best-fit neighbor from a 9
point block of grid cells surrounding the observation. Reproduced from Figure 2 of Timko et al. (2013),
©American Geophysical Union, Wiley Online Library, used with permission.

Fig. 13.23 compares vertical profiles of Ma, S,, K, and O, tidal kinetic energies, averaged over
5468 instrument records at 1618 geographical locations around the globe. As seen in the previous
figure, Fig. 13.23 demonstrates that tidal currents vary significantly with depth, i.e. are quite
baroclinic. Note that this vertical profile is not representative of a global average—rather it is the
average profile over the particular geographical locations employed in the analysis. The model
tracks the changes in kinetic energy with depth fairly well for M», but less well for S, Ky, and O.
There are some plausible reasons for this. The simulation analyzed for Fig. 13.23 contained the four
largest semidiurnal constituents and the four largest diurnal constituents. Storage limitations at the
time this simulation was conducted prevented us from saving more than one month of three-
dimensional model output. However, one month of output is not enough to separate S, from Ko, or
to separate K; from P;. In order to avoid this problem in more recent HY COM simulations, we have
employed two strategies. We save longer time series at locations where mooring data is available

for comparison. We have also reduced the number of constituents employed, from 8 to 5. The five
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constituents employed— M, S,, Ny, Kj, and O—can, according to the traditional Rayleigh
criterion, be separated with just one month of model output.

Aside from the problem of separating nearby frequencies, another problem with the model
output in Fig. 13.23 is that the topographic wave drag was tuned for M», not for the diurnal tides.
However, theory (e.g., Bell, 1975) informs us that the drag on tidal flows will be frequency-
dependent. Skiba et al. (2013) implemented a topographic wave drag tuned specifically for diurnal
tides. In the Skiba et al. (2013) simulations, only the K, diurnal tide was present. In the HYCOM
“wind plus tides” simulations, because both semidiurnal and diurnal tides are present, it is not a
simple matter to tune a wave drag separately for semidiurnal and diurnal tides, and at present we
continue to tune for the largest constituent M,.

The variations throughout the water column seen in Figs. 13.22 and 13.23 make clear the
limitations of predicting tidal currents with barotropic tide models, as is commonly done. On the
other hand, multi-layer “wind plus tides” models will need more vetting before they are commonly

used for predicting tidal currents.
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Figure 13.23. Vertical profiles of the HYCOM and observed tidal kinetic energy averaged over 5468
instrument records at 1618 geographic locations throughout the global ocean. The 5468 records, all in deep
water (water column depth greater than 1000 m) are sorted into seven depth bins. Reproduced from Figure 5
of Timko et al. (2013), ©American Geophysical Union, Wiley Online Library, used with permission.
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Internal tide energy fluxes can also be derived from moorings. Fig. 13.24 compares vertical
mode-1 semidiurnal band energy fluxes in HYCOM vs. moorings from the Internal Waves Across
the Pacific (IWAP) field campaign (Alford et al., 2007; Zhao et al., 2010; fluxes were taken from
the latter paper). The agreement is visusally close at 5 out of the 6 moorings. The 6 moorings shown
in Fig. 13.24 are McLane profilers (Doherty et al., 1999), which provide very-high-resolution
vertical coverage, in contrast to the sparse vertical coverage of traditional moorings. As is shown in
Ansong et al. (2017), the model-observational agreement is not as close as in Fig. 13.24 when we
use historical moorings, because sparse vertical coverage does not allow full vertical resolution of

baroclinic signals.
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Figure 13.24. Map of depth-integrated vertical mode-1 semidiurnal energy fluxes computed for 1/25°
HYCOM (red arrows) and observations (green arrows) from the IWAP experiment (Zhao et al., 2010). Arrow
lengths are logarithmic and reference arrows are shown at the top left corner of the plot. Reproduced from
Figure 11 of Ansong et al. (2017), ©American Geophysical Union, Wiley Online Library, used with
permission.

Moorings provide information on the IGW continuum as well as on internal tides. Fig. 13.25
compares frequency spectra of surface kinetic energy in HYCOM vs. near-surface kinetic energy
in historical North Pacific moorings (Schmitz, 1988). The low-frequency continuum, dominated by
mesoscale flows, is seen alongside near-inertial peaks, semidiurnal tidal peaks, and the supertidal
IGW continuum. The model IGW continuum approaches the observed continuum, and the Garrett
and Munk (1975)/Cairns and Williams (1976) spectrum, more closely when horizontal resolution
is increased from 1/12.5° to 1/25°.



348 « BRIAN K. ARBIC ET AL.

41.03° N /175.02° W 41.94°N/151.92° W
2 f+M,
Il
[} "~ ~
i ~
[}
"tt 10° 107 10 10°
171:1.92" w 38.96° N /152.03° W
21‘ ‘f+M2 102 (f) Zf‘ ‘h-MZ
w10’
|
] 3 &
::: ~ 1 0_2 ] [}
:‘ — HYCOM 12.5}—u . 5
10 —— HYCOM 25 10 10
35.03° N /174.97° W Mooring 35.01° N /152.01" W
---GM76

2f f+M2 102 (g) 2f ‘f+M2

o (rad/day)

Figure 13.25. (a)-(g) Frequency spectra E( &) of surface kinetic energy [(m/s)? / (rad/day)] from moored
current meter observations (red), 1/12.5° HYCOM (HYCOM12; blue), and 1/25° HYCOM (HYCOM25;
green) and the model spectrum of GM76 (dashed black; Cairns and Williams, 1976; built upon Garrett and
Munk, 1975). Solid black and cyan vertical lines are drawn at the frequencies f, 2f, and f* + M2, while dashed
vertical lines are drawn at the frequencies of the four semidiurnal (Ma, Sz, N2, and K2) and four diurnal (K1,
O1, Py, and Q1) tidal frequencies forced in the model. (h) The analysis region, showing the locations of the
seven moorings in (a)-(g), in the northeast Pacific. The blue stars denote the locations of moored observations
used in (a)-(g). Reproduced from Figure 1 of Miiller et al. (2015),. © American Geophysical Union, Wiley
Online Library, used with permission.
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Fig. 13.26 compares frequency spectra of dynamic height variance in global 1/25° HY COM and
1/48° MITgcem vs. 9 McLane profilers. The broadband low-frequency continuum, semidiurnal
peaks, and the IGW supertidal continuum are visible in all 9 subplots of Fig. 13.26. Diurnal peaks
are visible in some of the subplots. The HYCOM and MITgcm spectra are similar in the subtidal
and tidal bands. In the 0.2-1 cpd band, both HYCOM and MITgcm are generally deficient relative
to observations, for reasons we do not understand. The supertidal IGW continuum is generally

captured better by the MITgem simulations, due to their higher horizontal and vertical resolution.

(a) 194.8" E 25.5 N (b) 196.5 E 28.9° N ()197.1 E30.1°N

11
10° l

| |
I I
I I
10! I I
| I

_ = [
o o o
| |

v w -

103

=
(=)
—

(d) 200.8" E37.1°N

(e)121.0°E19.3°N

|
1
11
1

[
o O ©
| | |

v w -

—
o
w

Dynamic height variance spectral density (cm2/cpd)

—
o
-

[P — [y
o o o
| |

v w -

1072 107t 10° 10! 102 107! 10° 10!
Frequency (cpd)

HYCOM25 —— MITgcm48|

102 107! 10° 10!

Figure 13.26. Dynamic height variance frequency spectra from McLane profilers and nearest neighbor
gridpoints extracted from global simulations of 1/25° HY COM (HY COM25) and 1/48° MITgem (MITgecm48).
The dashed vertical lines denote Ki diurnal and Mz semidiurnal tidal frequencies. The shaded regions are the
95% confidence intervals that account only for random error in spectral density calculations. Reproduced from
Figure 3 of Savage et al. (2017b), ©American Geophysical Union, Wiley Online Library, used with
permission.

McLane Profiler

Comparison with linear internal gravity wave theory

In this section, we compute and display K — « (horizontal wavenumber-frequency) spectra of
surface kinetic energy and SSH variance, and examine whether the spectra follow the predicted
linear IGW dispersion curves. Fig. 13.27 displays K — @ spectra of HY COM surface kinetic energy
computed over the North Pacific box shown in Fig. 13.25h. Dispersion relations for the first 3
vertical modes, computed from the Sturm-Liouville problem (see appendix) applied to model

output, are drawn on the figure. Because both fand N change over the model gridpoints contained
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in the box, we computed the eigenspeeds at all model gridpoints along the southern and northern
boundaries of the box, and we used the extreme values along each boundary to draw the dispersion
curves—thus explaining why each of the 3 vertical modes is associated with two curves rather than
just one. Near-inertial and semidiurnal peaks are clearly visible in spectra computed from both the
1/12.5° and 1/25° solutions. The kinetic energy increases with increasing resolution, especially
along the vertical mode-1 and mode-2 dispersion curves. The bottom inset plots in Fig. 13.27
display the frequency spectra computed over all wavenumbers. The inset frequency spectra reveal
sharp semidiurnal tidal peaks and a near-inertial peak that is broadened due to the range of latitudes
represented in the box. The right-hand-side inset plots display the wavenumber spectra integrated
over frequencies larger than the inertial frequency faon at 29°N. The wavenumber spectra show a
peak associated with the first mode semidiurnal tide.

(@) HYCOM12 E 0 () HYCOM25 E (K

Figure 13.27. The K — @ spectra of kinetic energy E(K, &), with units (m/s)? / [(rad/day) (rad/km)] on a logio
scale, for (a) HYCOM12 and (b) HYCOM25. The white curves represent bounding linear dispersion relations
of the first three internal wave vertical modes (solid = mode 1; dashed = mode 2; and dash dotted = mode 3).
The spectra E( @) integrated over all horizontal wave numbers K, and E;rw (K) integrated over frequencies
larger than the inertial frequency at 29°N (& > fon), are shown as bottom and right-hand-side insets,
respectively. In the E(w) spectra, cyan lines indicate the inertial frequencies at the bounding latitudes 29°N
and 43°N, while M2 and M4 frequencies are also indicated. Reproduced from Figure 2 of Miiller et al. (2015),
©American Geophysical Union, Wiley Online Library, used with permission.

The K — @ spectra of SSH variance in the North Pacific, in both HYCOM and MITgcm
simulations, is displayed in Fig. 13.28. As with the IGW kinetic energy spectra, the SSH variance
tends to lie along linear dispersion curves, and tends to increase with increasing horizontal
resolution. Figure 5 in Savage et al. (2017b), and the supplementary figures in that paper, show that
similar behaviors are seen over many different geographical regions; thus, the North Pacific region
is not “special”. In the higher-resolution simulations, the spectra fold back after reaching the
Nyquist frequency of 12 cpd (associated with a 2 hour period). This folding in the spectra of the
highest-resolution models is due to aliasing of energy in motions having sub-hourly periods. It is
interesting that some global models now have so much high-frequency energy that aliasing

problems arise with hourly snapshots.
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Figure 13.28. Sea surface height variance frequency-horizontal wave number spectra, in (cm?/[(cpd cpkm)],
computed in North Pacific region from HYCOM12, HYCOM25, MITgem12, MITgem24, and MITgecm48.
Wave number axes are the same in each plot, and are set to the maximum wave number for the HY COM25
calculation. White curves show theoretical IGW linear dispersion relations for first (solid), second (dashed),
and third (dashed-dotted) vertical modes. Bounding curves for each vertical mode are computed from the
maximal and minimal eigenspeeds along the northern and southern boundaries, as in Miiller et al. (2015).
Reproduced from Figure 6 of Savage et al. (2017b), ©American Geophysical Union, Wiley Online Library,
used with permission.
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Impact of Wave Drag on Tide Model Energetics and Accuracy

This section addresses the impact of parameterized topographic wave drag on tide model energetics
and accuracy. Many studies have shown that inclusion of a parameterized topographic wave drag
improves the accuracy of forward (unconstrained) barotropic tide models. Arbic et al. (2004)
explored the reasons for this. Fig. 13.29A displays the globally integrated, temporally averaged M»
barotropic kinetic and available potential energy, in a global barotropic tide model, as a function of
wave drag strength, which is controlled with a multiplicative factor (see Arbic et al., 2004 for more
explanation). Fig. 13.29B displays the globally averaged discrepancy D, defined in equation (13),
of the model against the highly accurate altimeter-based barotropic tide model GOT99 (Schrama et
al., 1994; Ray, 1999). When the available potential energy is either too large or too small relative
to the value obtained from accurate altimeter-based values (extra horizontal line in Fig. 13.29a), the
elevation error is relatively large. The minimum in the elevation error occurs when the modeled
available potential energy is close to the observed value. Thus, because the wave drag strength
controls tidal energy levels in models, it controls how close they lie to observations.
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Figure 13.29. (A) Globally integrated, temporally averaged available potential energy (APE) and kinetic
energy (KE) in 1/2° one-layer Mz-only simulations with a scalar approximation for the SAL term, run with a
topographic wave drag scheme augmented by a variable multiplicative factor. The extra horizontal line
represents the observed value of APE, taken from Tierney et al. (2000b). (B) Time- and area-averaged sea-
level discrepancy D against GOT99.2, in waters deeper than 1000 m and equatorward of 66°. Reproduced from
Figure 4 of Arbic et al. (2004).
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The HYCOM tidal energy budget was thoroughly examined in Buijsman et al. (2016). Fig. 13.30
displays the energy dissipation of barotropic and baroclinic semidiurnal tidal flows by topographic
wave drag and bottom drag. As expected, wave drag dissipates considerable energy over
topographic features such as the mid-Atlantic ridge, while bottom drag dissipates considerable
energy in coastal areas where tidal velocities are large. Buijsman et al. (2016) reported on a
numerical instability in HYCOM, occurring in a region of the North Pacific. This instability is
visible in high-frequency animations of HYCOM output, and can be seen in Fig. 13.30d (see
anomalous patch just south of the Aleutians) as well as in other figures in Buijsman et al. (2016).
Buijsman et al. (2016) noted that the instability is probably a thermobaric instability (Sun et al.,
1999; Hallberg, 2005; Adcroft et al., 2008), a class of instability that manifests itself in weakly
stratified regions of isopycnal models. Buijsman et al. (2016) found that the instability is confined
to the North Pacific, and accounts for less than 2% of the globally integrated low-mode conversion.
In the summary section we will briefly discuss ongoing efforts to eliminate this instability in
HYCOM.
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Figure 13.30. Semidiurnal barotropic dissipation due to (a) linear topographic wave drag and (b) bottom drag.
Baroclinic dissipation due to (c) linear topographic wave drag and (d) bottom drag. Reproduced from Figure

2 of Buijsman et al. (2016), ©American Meteorological Society, used with permission.

The impact of the topographic wave drag on the HY COM-altimetry internal tide comparison
was comprehensively explored in Ansong et al. (2015). Fig. 13.31 displays maps of the M, internal
tide in along-track altimetry (a), and in HYCOM simulations with varying strengths of wave drag
(b-f). The HYCOM amplitudes are too large in simulations with wave drag applied only to the

barotropic flow (d) and in simulations with no wave drag at all (e,f). In (f), we increased the
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quadratic bottom drag coefficient by a factor of about 100 along the continental shelves, as a test of
the hypothesis that internal tides are dissipated primarily along shelves. However, the differences
between open-ocean internal tide amplitudes in (f) and those in (¢) are small. The internal tide
amplitudes in simulations with wave drag acting on bottom flows (hence, on both barotropic and
baroclinic motions)—the default setup in our HY COM “wind plus tides” simulations—Tlie closer to
altimeter observations, especially when the wave drag is strong; compare (c; stronger drag) and (b;
weaker drag) to (a; observations). It should be noted that because the model contains mesoscale
eddies, the internal tides in the model are scattered and become non-stationary just as internal tides
are in the ocean. Thus, the model-observational discrepancies in Fig. 13.31 are not due to the lack
of scattering into nonstationarity by mesoscale eddy-tide interactions in the model. Ansong et al.
(2015) thus provides indirect evidence for substantial damping of low-mode internal tides in the
open ocean; the damping is needed to obtain agreement with altimetry. For our current HY COM
simulations, we assume that low-mode damping is primarily due to production of high-mode
internal tides over topography. The high modes break and dissipate energy in the ocean, but are not
resolved in our global models. We parameterize the production and breaking of high vertical modes
with topographic wave drag acting on the bottom flow. In the actual ocean, as discussed in Ansong
etal. (2015) and shown schematically in Fig. 13.2, there are likely to be other damping mechanisms,
which need to be better parameterized in future models in order to see continued improvements in

modeled internal tides.
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Figure 13.31. Amplitude (cm) of stationary M2 internal tide in (a) along-track altimeter-based analyses, and
in HYCOM simulations (b) E051; with wave drag (scale factor = 0.5) applied to the bottom flow, (c) E058;
with wave drag (scale factor = 1.0) applied to the bottom flow, (d) E059; with wave drag (scale factor = 1.0)
applied to only the barotropic flow, (e) E053; without wave drag, (f) E055; without wave drag but with the
quadratic bottom drag coefficient increased by a factor of about 100 along the continental shelves. The
amplitudes of the HYCOM simulations are computed from 3 months of SSH output. Reproduced from Figure
5 of Ansong et al. (2015), which can be consulted for more details of the E051-E059 simulations, © American
Geophysical Union, Wiley Online Library, used with permission.
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Fig. 13.32 displays the globally averaged stationary M, internal tide amplitude in the HYCOM
simulations with varying topographic wave drag, vs. altimetry. Again it is clear that model-altimetry
agreement is better with some wave drag in the model. We point out again that HY COM is currently
the only “wave plus tides” model that employs a wave drag. Fig. 13.32 also makes clear that the
record duration matters for the model-altimeter comparison. The amplitude of the modeled
stationary internal tide decreases as the model record duration increases. (The altimeter analysis is
based on a long—multi-year—record). The importance of record duration in the estimation of tidal
quantities is seen in other studies. Nash et al. (2012), for example, finds that the amplitude of
stationary tidal currents estimated from a current meter reduces as the analysis period is increased.
This discussion of stationarity leads naturally into the next section, which is on non-stationary
internal tides.

Internal Tide Nonstationarity

In this section, the focus turns to internal tide nonstationarity. Non-stationary internal tides are of
particular interest for the SWOT mission, because it will be necessary to remove non-stationary
internal tides from SWOT data in order to study other oceanic motions of interest such as mesoscale
and submesoscale eddies. The HYCOM simulations discussed in this chapter have been used in a
number of studies of internal tide nonstationarity. Shriver et al. (2014) computed the standard
deviation of internal tide SSH signals obtained from 18 different 183-day windows, and from 60
different 30-day windows. A general finding of Shriver et al. (2014) is that the normalized internal
tide variability—the standard deviation divided by the mean internal tide signal—is relatively small
near internal tide generation sites and grows larger as the distance from the generation sites
increases. Similar conclusions were drawn in Ansong et al. (2017)’s examination of the
nonstationarity of semidiurnal internal tide energy fluxes in HYCOM vs. mooring observations. A
basin-scale map, centered on the equatorial Pacific, of total and non-stationary!S semidiurnal
internal tide energy fluxes in HY COM is shown in Fig. 13.33. While the stationary fluxes emanating
from the French Polynesian Islands do not pass through the equator, the total fluxes do. Buijsman
et al. (2017) shows that the internal tide nonstationarity in the equatorial Pacific is due to the
scattering effects of the system of strong jets on the equator. This is consistent with the picture
painted by Ponte and Klein (2015), who explored the scattering of a stationary internal tide by a
strong jet in an idealized model of mid-latitude eddy-internal tide interactions. Buijsman’s results
suggest that the “dead zone” seen in altimeter estimates of the stationary internal tide in the
equatorial Pacific may be due to internal tide nonstationarity rather than to dissipation.

The non-stationary internal tide SSH field in HYCOM has also been quantified through
frequency spectra. Savage et al. (2017a) computed frequency spectra, from both steric and non-
steric SSH fields, at subsampled grid points (taken every 1/4°) from one year of hourly 1/25°

HYCOM output, and then computed band-integrated variance over subtidal, semidiurnal, diurnal,

15 Note that Buijsman et al. (2017) primarily used the terms “incoherent” and “coherent” rather than “non-
stationary” and “stationary”.
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and supertidal bands (Table 13.2). In the semidiurnal and diurnal bands, the steric SSH variance—
dominated in these bands by internal tides—is computed both before and after removal of the
stationary internal tides. The variance remaining after removal of the stationary internal tides is
taken to be the non-stationary internal tide signal. Fig. 13.34 displays the global map of non-
stationary semidiurnal internal tide SSH variance in HYCOM simulations, determined by Savage
et al. (2017a) from the method described above. The largest non-stationary internal tide signals are
seen at the equator, consistent with the results in Buijsman et al. (2017). The equator is also a
“hotspot” in global maps of non-stationary internal tides made from altimeter observations in Zaron
(2017). Zaron’s maps of non-stationary internal tides are made from a method somewhat similar to
the Savage et al. (2017a) method described above, except that Zaron employed wavenumber rather
than frequency spectra. It is encouraging that different analysis methods applied to different outputs
(altimetry vs. model output) yield qualitatively similar findings. A comprehensive comparison of
non-stationarity in HYCOM vs. altimetry is currently underway (Nelson et al., paper in
preparation).

0.8

0.7

B
i)
<
(%]
=
[a' s
03 —
02 - - g5 ooocoaonaoa05as & —— E0531 drag scale factor=0 H
—8— EO051, bottom wave drag, scale factor = 0.5
—+— E056, bottom wave drag, scale factor = 0.7
01 ©— E058, bottom wave drag, scale factor = 1.0 M
—b— Expt-18.5
= = = Altimeter
0 | | I I I
1 2 4 8 16 32 64

Length of Time Series (Months)

Figure 13.32. Globally averaged root-mean-square amplitude (RMSA) of stationary HY COM baroclinic M2
tidal elevations and along-track altimeter value. The HYCOM results are dependent on drag strength (see
legend) as well as on the length of the time series used. The x-axis is a base 2 log scale. Expt-18.5 is an older
HYCOM experiment about which several papers have been written (e.g., Shriver et al., 2012) and from which
5 year-long SSH output was stored. The 60-month amplitudes shown for the newer simulations are rough
estimates based on the changes seen over 60 months in Expt-18.5 with record length. Reproduced from Figure
8 of Ansong et al. (2015), which can be consulted for more details of the E051-E059 simulations, © American
Geophysical Union, Wiley Online Library, used with permission.
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Figure 13.33. (a) The magnitude of the annual-mean semidiurnal band-passed energy fluxes [Fp2| in the
equatorial Pacific from HYCOM. Bathymetry is contoured at 0 and -2000 m. Hawai’i is abbreviated with H,
the French Polynesian Islands with FPI, Tonga with T, the Kermadec Islands with K, the Izu Ogasawara Ridge
with I, and the Mariana Islands with M. Spectral properties are computed in Buijsman et al. (2017) along the
internal tide beam marked by a-b. (b) The percentage of the sum of the annual-mean incoherent (non-
stationary) and cross-term fluxes to the band-passed fluxes. Values coinciding with |F p2| < 100 W m™! are not
shown. The black contours mark 1000 W m™! values in the band-passed fluxes. Bathymetry is contoured at 0
m. In both subplots, the equator is marked by the dashed black line. Reproduced from Figure 2 of Buijsman et
al. (2017), ©American Geophysical Union, Wiley Online Library, used with permission.

Band Frequencies (cpd)
Subtidal (1/366)-0.86
Diurnal 0.87-1.05
Semidiurnal 1.86-2.05
Supertidal 2.06-12

Table 13.2. Definitions of frequency bands employed in Savage et al. (2017a).
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Nonlinearities and the Internal Gravity Wave Continuum

In this section, we provide a first look at the role of nonlinearities in developing the IGW continuum.
We employ a spectral kinetic energy transfer diagnostic in K— @ space, motivated by wavenumber-
domain spectral transfers which have long been used to diagnose energy exchanges between length
scales. For example, Scott and Wang (2005), Scott and Arbic (2007), Arbic et al. (2013), and
references therein, can be consulted for discussions on using wavenumber-domain spectral transfers
and fluxes (the latter being integrals of the transfers) to diagnose inverse and forward cascades of
geostrophic flows in the wavenumber domain. Arbic et al. (2012b) and Arbic et al. (2014) describe
extending the spectral kinetic energy transfer diagnostic to the frequency and frequency-
wavenumber domains, respectively. All of the references mentioned above focus on geostrophic
flows and on flows in the ocean. Shang and Hayashi (1990a,b) can be consulted for an earlier
description of spectral kinetic energy transfers in frequency space, with application to flows in
atmospheric models. Miiller et al. (2015) applied a spectral transfer diagnostic in the wavenumber-
frequency domain to total (geostrophic plus non-geostrophic) flows in the “wind plus tides”
HYCOM simulations. The diagnostic is developed by multiplying Fourier transformed terms in the
momentum equation by the Fourier transform of the velocity. If one writes the shallow-water

momentum equation as

ou L oo
— = —ueVi+ OT, (18)
ot
where OT denotes “other terms”, then multiplication by % results in a kinetic energy equation of
the form
Oslaf*
5 =—ue[ueVu|+ueOT. (19)

If we instead Fourier transform the terms in equation (18) and then multiply by the Fourier

transform of u, we obtain
OKE S TS S
—— =—ue[ueVi|+ueOT, (20)
ot
where KE denotes kinetic energy, A denotes the Fourier transform of 4, and the spectral kinetic

energy transfer Txz due to nonlinear advection is given by

Typ = —ie[ieVil. 1)

The Fourier transform can be in the wavenumber, frequency, or wavenumber-frequency do-
mains. Fig. 13.35 displays the results of this diagnostic applied in the wavenumber-frequency
domain to the 1/12.5° and 1/25° HY COM “wind plus tides” simulations in Miiller et al. (2015). Fig.
13.36 displays the spectral kinetic energy transfers in 1/25° HYCOM as replotted in Savage et al.
(2017a) with a nonlinear color bar, which makes some key features easier to see. The transfers
shown in Figs. 13.35 and 13.36 reveal extraction of kinetic energy (blue colors; negative values of
transfer) from near-inertial flows and semidiurnal tides, and deposition of energy (red colors;

positive values of transfer) along the vertical mode-1 IGW continuum, all consistent with the
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classical paradigm of the formation of the IGW continuum spectrum. The spectral kinetic energy
transfers become more vigorous when the model resolution increases from 1/12.5° to 1/25°,
meaning that, as is also seen in the spectrum, the model has not yet achieved numerical convergence
with respect to the IGW continuum. The “patchy” structure of spectra and spectral transfers was

examined in Miiller et al. (2015); see Figure 4 and related discussions in that paper.
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Figure 13.34. Global steric SSH variance (cm?) from HYCOM25 in the semidiurnal band (frequencies 1.86—
2.05 cpd) after stationary internal tides have been removed via harmonic analysis. Reproduced from Figure 15
of Savage et al. (2017a), © American Geophysical Union, Wiley Online Library, used with permission.
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Figure 13.35. As in Fig. 13.27 but for nonlinear spectral kinetic energy transfer Txz(K, @), with units (10
W/kg)/[(rad/day)(rad/km)]. The colorbar is linear, and the dispersion curves and mode band numbers are
shown in black. Energy is taken out of the blue regions (for instance, low-mode near-inertial and semidiurnal
internal tidal motions) and added to the red regions (for instance, higher-frequency and higher-wave number
internal waves). Reproduced from Figure 3 of Miiller et al. (2015), © American Geophysical Union, Wiley
Online Library, used with permission.
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Kinetic Energy Transfers in K-o Space
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Figure 13.36. Nonlinear spectral kinetic energy transfer Txz(K, @), with units (10 W/kg)/[(rad/day)(rad/km)],
computed in Miiller et al. (2015) and replotted with a nonlinear color bar to emphasize some of the key features
described in Fig. 13.35. Reproduced from Figure 1 of Savage et al. (2017a), © American Geophysical Union,
Wiley Online Library, used with permission.

Applications to Swath Satellite Altimetry

Next we explore more applications of global internal tide and IGW continuum models for swath
satellite altimetry missions such as the SWOT mission. The SWOT swath altimeter will measure
SSH in two dimensions. SWOT will measure the SSH signature of internal tides and the IGW
continuum spectrum, albeit in a temporally aliased manner, and is expected to improve the mapping
of these high-frequency motions. At the same time, such motions will have to be accurately
subtracted out from SWOT data in order for other oceanic motions, such as mesoscale and
submesoscale eddies, to be examined. Stationary internal tides, non-stationary internal tides, and
the IGW continuum spectrum all contribute to SSH variance, and the latter two classes of motions
will be especially challenging to predict. Savage et al. (2017a) developed global maps of the steric
and non-steric SSH variance integrated over subtidal, diurnal, semidiurnal, and supertidal bands.
The division of motions into steric and non-steric components, and into different frequency bands,
helps to separate different dynamical regimes. For instance, the subtidal steric SSH variance is
dominated by mesoscale currents and eddies. Fig. 13.37 shows the relative sizes of non-steric and
steric components, and of total SSH variance, in the different frequency bands employed in Savage
et al. (2017a). A few general tendencies are easily seen. The largest signals in the total and non-
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steric SSH are the semidiurnal and diurnal tides, followed by subtidal motions. The largest signals
in the steric SSH are subtidal signals, followed by semidiurnal and diurnal tides. The fraction of
semidiurnal and diurnal SSH variance that is non-stationary is significantly larger for steric signals
than for non-steric signals. The supertidal steric SSH variance, dominated by the IGW continuum
spectrum, is greatly enhanced with increased resolution, meaning that numerical convergence for
this class of motions has not yet been achieved. This in turn implies that the steric supertidal SSH
variance seen in Fig. 13.37 is likely be a lower bound on the actual value.

Fig. 13.38 displays the global map of supertidal steric SSH variance in 1/25° HYCOM, as
computed in Savage et al. (2017a). To our knowledge, this is the first global map made of the IGW
SSH signal. The IGW SSH signal is generally larger in the tropics than in higher latitudes, with the
mid-to-high latitude North Pacific being a notable exception, and is generally larger in the Pacific
and Indian Oceans than in the Atlantic. Although the models are not yet accurate enough to
operationally remove such signals, we believe that simply mapping the signals as we have done
here represents an important first step in understanding the challenges and opportunities that internal
tides and the IGW continuum present for the SWOT mission.
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Figure 13.37. Bar graph of spatially averaged HY COM12 and HY COM25 variance in cm? in subtidal, diurnal,
non-stationary diurnal, semidiurnal, non-stationary semidiurnal, and supertidal bands in (a) full, (b) steric, and
(c) non-steric SSH. Variance was averaged over deep ocean grid points (seafloor depths greater than 1000 m).
Axis limits differ between subplots. Reproduced from Figure 10 of Savage et al. (2017a), ©American
Geophysical Union, Wiley Online Library, used with permission.
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Of central interest for the SWOT mission is the SSH wavenumber spectrum. Indeed, the NASA
mission requirements for SWOT are written in terms of the wavenumber spectrum (Fu et al., 2012).
As discussed in Richman et al. (2012; see also references therein), the slopes of the SSH
wavenumber spectrum differ according to the dominant underlying dynamics. The IGW continuum
is expected to have a spectrum that falls off as K 2, while “interior quasi-geostrophy” and “surface
quasi-geostrophy” are expected to have spectra that are proportional to K> and K '3, respectively.
The slope of the SSH wavenumber spectrum therefore represents a test of whether the underlying
dynamics are dominated by IGWs, “interior quasi-geostrophic” motions, or “surface quasi-
geostrophic” motions. Fig. 13.39 displays the slope of the SSH wavenumber spectrum, over the 70-
250 km wavelength mesoscale band defined by Xu and Fu (2012), from total and low-passed
HYCOM SSH model output. The map made from total SSH, which includes high-frequency
motions such as internal tides and the IGW continuum, shows flatter slopes in regions where strong

IGWs can overwhelm the signals from lower-frequency motions such as mesoscale eddies.
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Figure 13.38. Global steric SSH variance (cm?) from HY COM2S5 in the supertidal band (frequencies 2.06—12
cpd). Reproduced from Figure 16 of Savage et al. (2017a), ©American Geophysical Union, Wiley Online
Library, used with permission.

The story laid out by Richman et al. (2012) has been further corroborated by others, for instance,
Callies and Ferrari (2013), who focused on kinetic energy more than on SSH, and on along-track
Acoustic Doppler Current Profiler (ADCP) data rather than model output. Rocha et al. (2016a)
compared along-track wavenumber spectra in the MITgem to spectra from ADCP data, in one
Southern Ocean location. Qiu et al. (2017) also analyzed along-track ADCP data, and defined a
transition length scale delineating length scales over which the wavenumber spectrum is dominated
by geostrophic motions from length scales over which the wavenumber spectrum is dominated by
IGWs. Rocha et al. (2016b) demonstrated that the relative strengths of low- and high-frequency
motions in the MITgem output have a seasonal cycle. Qiu et al. (2018) explored seasonal changes
in the transition scale using the MITgem simulations. Wang et al. (2018) used the MITgcem output
to simulate a field campaign for in-situ calibration and validation of the SWOT SSH wavenumber
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spectrum. Savage et al. (2017b) displayed SSH variance wavenumber spectra integrated over
different frequency bands—subtidal, tidal, and supertidal. Fig. 13.40 shows the results from the
MITgcm over several regions. The figure demonstrates that internal tides and the IGW continuum
can dominate the spectra at high wavenumbers—the wavenumbers of interest for SWOT—at least
in some regions. Because Richman et al. (2012) separated low- and high-frequency motions with a
2-day low-pass filter, rather than a frequency-wavenumber spectrum, and because we did not realize
when writing Richman et al. (2012) that our models carried a partial IGW continuum spectrum, we
attributed the high-frequency motions to internal tides only in that paper. The results in Fig. 13.40,
and in Rocha et al. (2016a), make clear that the IGW continuum, as well as internal tides, contribute

significantly to the wavenumber spectrum at higher wavenumbers.
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Figure 13.39. Least-squares estimate of the slope of the SSH wavenumber spectrum in the North Pacific,
computed over the 70-250 km band, in HY COM. Slopes are computed from spectra of (a) total SSH and (b)
low-frequency SSH. All slopes are multiplied by -1 to make them positive. Reproduced from Figure 7 of
Richman et al. (2012), ©American Geophysical Union, Wiley Online Library, used with permission.
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Figure 13.40. Horizontal wave number spectral density of SSH variance in seven regions in MITgecm48 [see
Savage et al. (2017b) for precise locations] integrated over subtidal, tidal, and supertidal frequency bands [see
Savage et al. (2017b) for definition of bands]. Right-hand axis shows ratio of supertidal to total SSH variance
as a function of isotropic wave number. Reproduced from Figure 7 of Savage et al. (2017b), ©American
Geophysical Union, Wiley Online Library, used with permission.

Improving Barotropic Tidal Accuracy

We continue to improve the accuracy of the barotropic tides in HYCOM. The discrepancies D of
barotropic tidal elevations in the earlier HY COM “wind plus tides” simulations are comparable to
those in many other tuned forward models (e.g., Arbic et al., 2004; Egbert et al., 2004; Stammer et
al., 2014; among others), but are still significantly larger than those in data-constrained tide models
(e.g., Egbert et al., 1994; Ray, 1999; Lyard et al., 2006; Taguchi et al., 2014; Stammer et al., 2014;
among others). Motivated by this, Ngodock et al. (2016) employed the Augmented State Ensemble
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Kalman Filter (ASEnKF) technique to reduce the barotropic tidal elevation errors in HYCOM. An
ensemble of perturbations to the tidal forcing was generated, with each ensemble member having
horizontal length scales comparable to those in the open-ocean barotropic tides. HYCOM
simulations are performed with each perturbation, and the ASEnKF machinery then selects a linear
combination of the ensemble members that minimizes the barotropic tidal elevation misfits between
HYCOM and TPXO. Fig. 13.41 shows the M, elevation errors in early HY COM simulations, vs.
HYCOM simulations with some improvements in Southern Ocean bathymetry and in iterating the
SAL term, vs. HY COM simulations that in addition employ the Ngodock et al. (2016) ASEnKF.

The ASEnKF reduces the errors throughout the globe, but large errors remain in some regions,
especially in the North Atlantic. The HY COM group is pursuing two paths for further improvements
in the HYCOM barotropic tides, both based upon the fact that the North Atlantic houses three
locations (the Hudson Strait, the Northwest European Shelf, and the Bay of Fundy) with large
coastal tides, and the fact that such regions have been shown to have a significant back-effect upon
open-ocean tides (Arbic et al., 2007, 2009; Arbic and Garrett, 2010). Because of the large back-
effect, it is likely that improvement of coastal tides in key regions such as this will yield
improvements in the modeled open-ocean tides. In one research path, we have developed two-way
nesting in HYCOM, so that the coastal tides can be run with higher resolution, hence improving
them at relatively low cost (Jeon et al., in review). In another path, we will use adjoint machinery
applied to the dynamical core of TPXO to generate perturbations, for the ASEnKF machinery, that
have maximum impact on the global tidal solutions. We expect that regions of large coastal tides
will play a prominent role in such perturbations.

Summary of Completed Work, Ongoing Work,
and Future Challenges

Completed work

To briefly summarize a large body of work, tides have been inserted into a small number of high-
resolution (“eddying”) global three-dimensional circulation models run by the international
oceanography community, including the HYCOM simulations that are run operationally by the
United States Navy, and some very-high-resolution MITgecm simulations run on NASA
supercomputers. The tides in the HYCOM simulations have been compared to a number of in-situ
and altimetric datasets, and a number of papers have been published. These papers have been
summarized here, and the reader is referred to the original papers for more details. The HY COM
tidal simulations carry a realistic amount of internal tide nonstationarity, an important consideration
for the SWOT swath altimeter mission, which will need to accurately remove both stationary and
non-stationary internal tides before examination of non-tidal phenomena such as mesocale and
submesoscale eddies can take place. The HYCOM simulations have also been shown to carry a
partial IGW continuum spectrum, a first for global models (Miiller et al., 2015). The IGW

continuum spectrum is more fully developed in new simulations of the MITgcm carried out at
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higher horizontal resolutions (up to 1/48°) and vertical resolutions (90 z-levels) than the 1/25°, 41-
hybrid level HYCOM simulations. The HYCOM and MITgem IGW continuum spectra have been
compared to dynamic height variance spectra from McLane profilers (Savage et al., 2017b) and the
MITgem spectra have been compared to kinetic energy spectra from Acoustic Doppler Current
Profilers (Rocha et al., 2016a). It seems inevitable to us that in the near future many high-resolution
global ocean models will include tides, and that many researchers will be exploring the applications
of such models to operational oceanography, understanding satellite altimeter observations, and

achieving better understanding of mixing in the global ocean.

Figure 13.41. Maps of the M2 RMS error (cm) between the HY COM simulations and TPXO8: TO, early eight-
constituent simulation with scalar SAL and Garner (2005) wave drag; T1, intermediate five-constituent
simulation with bathymetry extended to include floating Antarctic ice shelves, tuned Jayne and St. Laurent
(2001) wave drag, and iterated SAL; T4, ASEnKF predicted tide using a 0.5 mm constant global observation
error; TS, blended ASEnKF predicted tide combining an Atlantic-only prediction with 1 cm observation error
and T3 for the rest of the ocean. Reproduced from Figure 6 of Ngodock et al. (2016), which can be consulted
for more details including details of the T3 simulation.

Ongoing work

In a partial list of ongoing work, we are examining tidal mixing fronts in shelves in global HY COM
(Timko et al., paper in revision), comparing non-stationary internal tides in HYCOM vs. altimetry
(Nelson et al., paper in preparation), examining the IGW kinetic energy spectrum in MITgcm and
HYCOM vs. McLane profilers (Ansong et al., paper in preparation), performing regional runs of
the MITgcem, forced by global MITgem at their boundaries, with even higher resolution, and
comparing the vertical wavenumber spectrum of IGW kinetic energy and density variance from the

regional simulations with spectra from McLane profilers (Arbic et al., paper in preparation),
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computing the SSH horizontal wavenumber spectra from the same regional simulations, and
comparing the IGW kinetic energy and temperature variance spectra from global HYCOM and
MITgcem with spectra computed from ~3000 historical moored instruments (Luecke et al., paper in

preparation).

Challenges for the future

There are many remaining challenges for global internal tide and IGW continuum models. One
view of the applications of such models for satellite altimetry is that the global IGW field consists
of near-inertial flows, which are an important source of energy for the IGW continuum but which
do not have large SSH signals, and three different classes of IGWs that do have SSH signals.
Stationary internal tides will be the easiest of these to predict, although even they represent a
significant challenge for global internal tide and IGW models. Quantitative feature matching
between different empirical internal tide models, and between empirical models and HY COM, has
just begun (Carrére et al., paper in preparation). Non-stationary internal tides will be more difficult
to predict accurately, as such a prediction would require accurate modeling of mesoscale eddies in
conjunction with accurate mapping of internal tides. Our HY COM simulations contain an ASEnKF
that improves the accuracy of modeled barotropic tides, which should improve the accuracy of the
modeled internal tides, at the same time that they contain data assimilation acting on mesoscale
eddies. It is possible that accurate internal tide modeling in conjunction with accurate placement of
mesoscale eddies will allow prediction of non-stationary internal tides. It remains to be seen whether
this challenge can be met in time for the SWOT mission. The technical challenges of assimilating
eddies while accurately modeling internal tides are considerable, but we note that the United States
Navy has as a goal to run such a system operationally by 2018. For now, we have mapped the
amount of SSH variance in non-stationary vs. stationary internal tides, as well as in the IGW
continuum, in HYCOM (Savage et al., 2017a).

There are many more technical challenges for models of this size and complexity. Hourly output
is standard for tidal analysis, but this makes the storage requirements 24 times more burdensome
than the storage requirements of models that store daily-averaged outputs. Yet the spectra shown in
Fig. 13.28 indicate that even hourly model outputs are not frequent enough to avoid aliasing of the
IGW continuum in the outputs of such models. Another technical problem is that near-inertial
waves, a crucial source of energy for the IGW continuum, are generated by high-frequency winds,
while ocean models are often forced by atmospheric models that only update their fields every 3-6
hours. One solution to this problem would be to run high-resolution coupled ocean-atmosphere
models, in which the atmosphere updates every time step, rather than high-resolution “forced
ocean” models. The SAL term presents another challenge and opportunity. As noted in Hendershott
(1972), the SAL term acts on all barotropic motions, not just tides, and should therefore act on the
entire mass (non-steric) signal in ocean models. The computational cost and complexity of inline
computations involving spherical harmonics has prevented most researchers from incorporating a
“full SAL” (not just one acting on tidal motions) into global ocean general circulation models.

Vinogradova et al. (2015) represents a significant recent attempt to solve this problem. The SAL
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term did not add greatly to the cost of running their model. However, they were running relatively
coarse resolution simulations, and it is not clear whether their solution would work well in
simulations with much higher horizontal resolution. We have been in frequent discussions with
mathematicians who have techniques that could potentially incorporate SAL without greatly
increasing the computational cost.

A technical challenge for HYCOM in particular is the presence of numerical instabilities in
specific regions, noted by Buijsman et al. (2016) and others. Ongoing efforts are underway to
implement the Adcroft et al. (2008) solution for this instability in HYCOM. Technical challenges
for the MITgem simulations presented here include deciding whether these simulations should
continue to be developed, and implementing a plan for more extensive comparison of the

simulations to observations, as has been done with the HYCOM simulations.
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Figure 13.42. Area-weighted root mean square of the difference between model bathymetry with and without
the statistical abyssal hill roughness of Goff and Arbic (2010) at 1/12.5°. The root mean square is calculated
over a 1/4° x 1/4° sub-grid. Contours are drawn from 40 m to 200m at 40m intervals. The boxed regions shown
in the South Pacific, North Atlantic and South Atlantic oceans are used in Timko et al. (2017) to estimate
internal wave response to changes in bottom roughness. Reproduced from Figure 4 of Timko et al. (2017).
Another challenge relates to bathymetry. The Smith and Sandwell (1997) bathymetry dataset
does not resolve topographic features with horizontal length scales less than about 10 km, except in
limited regions where high-quality acoustic sounding data is available. As a result, abyssal hills, the
most common landforms on Earth, are largely unresolved in global bathymetric datasets. It also
means that the horizontal resolution of some global models, and many regional models, is quickly
outstripping the actual feature resolution of the underlying topography—except, as noted above, in
special regions where high-quality soundings are available throughout the domain. Goff and Arbic
(2010) and Goff (2010) make note of this problem and offer, as a partial remedy, realizations, in
both physical and spectral space, of topography that does include abyssal hills with the “correct”
statistics. The spectral characterization of the Goff and Arbic (2010) and Goff (2010) products was
used in offline computations of a parameterized topographic wave drag, that were then inserted

inline into a global model of the eddying general circulation (Trossman et al., 2013, 2016). Both
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the spectral and physical space realizations were used by Melet et al. (2013) in a linear analysis
study of tidal conversion over abyssal hills.

In Timko et al. (2017), the statistical abyssal hill roughness was employed in HYCOM
simulations of the internal tides, set up under the same simplified conditions used in Arbic et al.
(2004) and Simmons et al. (2004b), to examine the extra explicitly resolved internal tide activity
arising from the small-scale roughness missing in global bathymetric datasets. Timko et al. (2017)
found that the roughness does indeed increase internal tide generation and energy levels, especially
in the higher vertical modes that are generated by smaller-scale topography (St. Laurent and Garrett,
2002; Simmons et al., 2004b). Fig. 13.42 shows the small-scale roughness that we introduce through
the Goff and Arbic (2010) and Goff (2010) work, as it appears once filtered down to 1/12.5°
horizontal resolution. The method employed by Timko et al. (2017) to add statistical roughness to
a global internal tide model could be adapted to researchers studying other phenomena, in other
models, and with different grid resolutions. In fact, in regional models with higher resolutions than
the 1/12.5° and 1/25° resolutions used in Timko et al. (2017)’s global models, the effects of the
statistical roughness will be greater because as resolution increases the radius of the smoother that
must be applied to put the raw statistical bathymetry onto a grid will decrease.

A persistent question, discussed at length amongst the co-authors of Arbic et al. (2004) and
Simmons et al. (2004b), and again amongst the co-authors of Ansong et al. (2015), is whether a
parameterized topographic internal wave drag, or some other damping mechanism, should be
employed in global internal tide and IGW continuum models. One point of view is that
parameterizing internal wave drag while at the same time partially resolving the spectrum
constitutes double counting. A point of view argued in Arbic et al. (2004, 2010), Ansong et al.
(2015), and Buijsman et al. (2016) is that such models do not resolve internal wave breaking and
therefore still require some damping of low-mode internal tides to make up for this deficit. Ansong
et al. (2015) shows that, at least for 1/12.5° HYCOM simulations, some damping is necessary for
the internal tides to agree well with altimetry. We are currently planning to test damping
mechanisms other than parameterized topographic internal wave drag, such as upper-ocean wave-
wave interactions, in HY COM. Of course, at some time in the future, models will reach the point
where they are resolving much of the IGW spectrum and its cascade to small-scale dissipation, at
which parameterized damping will indeed have to be abandoned.

Global internal tide and IGW continuum models appear to be resolving some of the nonlinear
interactions needed to produce an IGW continuum spectrum; presumably, if they were not doing
so, then they would not carry a partial continuum. An important question is what such models should
do to “go the rest of the way” to the even smaller scales where internal wave breaking takes place.
Driving regional models which have higher horizontal and vertical resolutions is one solution;
letting eddy viscosities take care of the partial IGW cascade that has taken place is another. No
doubt other ideas for handling this problem will arise as such models continue to advance.

Finally, it is likely that global internal tide and IGW continuum models will help us to
understand better the processes leading to the IGW continuum. The classical paradigm is that the

energy source for the IGW continuum is primarily near-inertial waves and internal tides, with
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nonlinear interactions filling out the continuum. This view was supported by high-resolution two-
dimensional (depth + one horizontal direction) numerical simulations in Sugiyama et al. (2009).
However, Barkan et al. (2017) finds that a Garrett-Munk IGW continuum spectrum can develop in
idealized models that contain only near-inertial waves and mesoscale eddies. Barkan’s results
suggest a role for mesoscale eddies in the formation of the IGW continuum spectrum. Whether there
is a role for internal lee waves generated by mesoscale eddies flowing over topographic features in
forming the IGW continuum, is another open question, discussed by the lead author with Stephanie
Waterman and Bernard Barnier in September 2017. We conclude by stating that there are many

interesting questions to explore with global internal tide and IGW continuum models.

Dedication
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Appendices

A Linear internal gravity wave dispersion relation

A Development of Sturm-Liouville problem

This appendix develops the linear IGW dispersion relation, and the related eigenfunctions for the horizontal
velocities and vertical displacements of density surfaces, under the simplifying assumptions of a rigid lid at
the ocean surface, and plane wave solutions. The more realistic case, of a free surface, can be found in, for
instance, Nugroho (2017). The orthogonality of the eigenfunctions is affected by the nature of the boundary

condition (rigid lid versus free surface).
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The linearized governing equations for the conservation of mass, momentum, and density, under the

Boussinesq/incompressible approximation, with total density p = p + po(z) + p'(x, y, z,t), are given by

ou Ov Ow 0 (22)
or oy ' 0z
ou_ 1oy @)
ot 5Oz’
o\ fu= 1 (24)
at p Oy
ow ap' 7 25)
/’7 = T o. P9,
i.)/) (l/)(]
— — =0,
BT +u 1 (26)

(see Gill, 1982; Wunsch and Stammer, 1997), where (u, v, w) are the velocities in the zonal, meridional, and

vertical (x, y, z) directions respectively, fis the Coriolis frequency, p is pressure, g is acceleration due to

gravity, p isa constant density, po(2) is the background density variation and 0 '(x, y, z, f) is the perturbation

density due to internal gravity waves. Note the slight change in notation between the appendix and the

remainder of the text; in earlier sections, po was used to denote the constant average seawater density.
Combine equations (25) and (26) to get

0w gdpo 1 o'
o Vpdz ~  powot 27
The buoyancy frequency, A, is defined as
o 1po
N = D8
P dz (28)
such that (27) becomes
Ow N — 1 9%’
oz TV YT T ohe (29)
Combine (22)-(24) to obtain
0? o\ Ow 10 (0% O
—+f ) === + .
otz Oz  pot \ 022 Oy?
s e Ow _ 10, (30)
—\e2 "' )8z " pot -
Introduce separation of variables (for separable solutions):
[u(z,y, 2, 1), v(z,y, 2, t)] = [U(z,y,t), V(z,y,t)|F(z), (€20
w(z,y, z,t) = 13(.1'. y,t)G(z), (32)
plz,y,2,t) = [)i)(.l‘. y, t)F(z). (33)

Note that each of the equations (31)-(33) should actually be a summation over different vertical modes (e.g.
Kundu, 1990, page 499); for example,

w(z,y, z,t) = Z 1~’,,(.r. Y. t)Gn(2),

n=0
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where 7 is the vertical mode number. For simplicity we leave the equations as given. In addition, we set all
dependent variables to be proportional to e~'?’, where ¢ is the wave frequency. Our goal is to determine the
vertical structure functions F (z) and G(z). Substitute (32)-(33) into (29) to get

(—io)? + NYP - G(z) = ioP - (11]‘ '
az
_— (J\‘r.-) =R ”2) "( :;) [ﬂ(lll (34)
(
o 10 dF
=|C(2) = g

Note that because 10 is a constant, e z aepenaence o1 me verucal aispracement function is given by an
expression in Wunsch and Stammer (1997), viz.

G(z) 1 dF (35)

i N2 —og2dz’

Gi(z) =

Substituting (32)-(33) into (30) yields

¢, -dG -

(—io)2T ((1 +f-[’(d" = —(io)F(z)V2P, (36)
9. (l(r : - 9 7
= (0* - PP = (i0)F(:) V3P,

(02 — fA)(dG(z)/dz) v2p (37
= (i0)F (=) TP

Note that the left-hand-side of (37) is a function of only z and the right-hand-side is independent of z. Thus we
can write

— AdG(x)/dz) _VRP (38)
(i0) F(2) - p
0. dG ) 9 1
= (o2 - 12 ‘d( ) — _(i0)12F(2) (39)

where 7 2 is a separation constant. From equations (34) and (39), we can determine equations for only the
F(z) and G(z) functions. From these equations, we respectively obtain

dG _ d o dF
dz  dz \N2—¢o2dz

dG i

@& WY 2
P o f27 F(z).
Equating the above equations results in
—j (1] [
— +~v°F(z) =0. 40
dz (;\"') —o?dz rEz) 0
From (39) we see that
5 0 d°G . odf
( f )(1.'.'" o dz
From equation (34), we have
df N2_g2
— =——"G(2). 41
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Therefore, we have

~
[=9)

N 1o

el O
L P
[

(o* - f?) = —v3(N? - 6®)G(2),

1
G N2—o2 (42)

B

Thus the equation governing the vertical modal structure of velocity and pressure is (40) and that governing
the vertical displacement is (42). The boundary conditions for these equations come from requiring that the
vertical velocity vanish (w = 0) at the top (z = 0) and bottom (z = —H) of the domain. From equation (32), this

implies that G(z) = 0 at z= 0 and z = —H. Equation (41) then implies that j—: =0atz=0andz=—H.
The main equations and their boundary conditions, with an assumed rigid lid, are rewritten below for

convenience:
d [o?— f2dr 1
. > 5 1 —F(z) = O7 (43)
dz <J\”—02 dz Jr)\2 2)
with boundary conditions
dF
E =0 at z= 0./ *H7 (44)
where the condition at z=0 is the rigid lid assumption, and
dQG 17\[2 - O’2 1
@ + <02—f2> EG(Z) = 0, (45)
with boundary conditions
G(z)=0 at z=0,—H, (46)

where H is the water depth and 1/ A 2= 7 2 represents the eigenvalues of the eigenfunctions F(z) and G(z). We
denoted ¥ ?as 1/ A 2 here so that the equations resemble those solved in our MATLAB code (discussed below).

A.1.1  Dispersion relation & meaning of eigenvalues

Here we determine the meaning of the eigenvalues in the vertical mode equations, and we derive the dispersion
relation for internal gravity waves. First we combine the governing equations (22)-(26) into a single equation

for the vertical velocity, w. We perform V}zl ((29) + % (30) to eliminate p', and obtain, after some steps,

0 s | O 272 2w
w (Vh + @ w+ N Vhw + f W =0. (47)
We now assume a plane-wave solution:
w = G(2)e' ke tlv=n), (48)

Note that the plane-wave assumption does not impact vertical structure; however, in the actual ocean, the
horizontal structure is not always well-represented by plane waves. Substituting (48) into (47) results in

(—io)? | G(2)(ik)? + G(2)(il)* + %ﬁ] N?[G(2)(ik)* + G(2)(il)*] + f2f7f =0,
= (K + )G (2) — 02(:7? — N2(k* + %) + fg%g =0,

— (K2 + )(0? — N)G(2) + (f* — a2>f7f =0,

— B+ )V - AG() + (0 - )G

22
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Thus,
d’G N? — o2 5
— + [ =—= | (*+1PG(2) =0. (49)
ot (S ) 2+ )6
Comparison of equations (49) and (45) demonstrates that the eigenvalues, A, are related to the horizontal
wavenumber:

1

| (50)
A k2 + 12
An alternative (and simpler) way to derive (50) is to employ equation (38):
P, 1
P =-7 = >\27 (51)
and assume
F) _ Poe'i(kr+ly—at). (52)
Substituting (52) into (51) gives
V3P 1
h (K +17) = ~3%
1
2 _
=N =
We rewrite equation (45) as
1 &G 1
——— 5t 55 G(2) =0, 53
V- d2 et &)
and define the eigenspeed, c., as | )
2 = (02 — 2N’ (54)
such that
(@®— /%)
2=\ f (55)
“ k2 + 12
or
‘02 =f2+Ek+ 12).‘ (56)

Equation (56) is the dispersion relation of internal gravity waves for a general N 2(z). It is analogous to
the dispersion relation for Poincare waves (surface gravity waves in the absence of horizontal boundaries),
with the surface gravity wave speed / gH replaced by the eigenspeed c. for IGWs. Equation (53) may now be
written as

1 G 1

N2 —o2dz?2 ¢

To see that the eigenspeed, c., is the speed of propagation of waves, we present two arguments: a comparison
to the surface gravity wave dispersion relation, and a scaling analysis.

G(z) =0. (57)

1) We note that equation (56) is identical to the dispersion relation for surface (external) gravity waves

if ci is identified with gH. This argument is similar to that presented in Kundu (1990; page 501).
G(z) = S—ZG(Z). Therefore,

1

2) Since z ~ H, the left-hand term of (53) scales as (assuming N » 0) ey

we have ce~ N H.

To derive the dispersion relation for a constant N (z), we employ equation (57) and assume G « ¢, such

2
that % ~ —m?. Thus (57) becomes
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N2 — g2 c2’ (58)

) N2 _ 0.2
- C, = -
m
Substituting (58) into the dispersion relation (56) gives

o?=f1+ N (K +12)

N m?2 '

= o’m? = f*m? + (N? — %) (k* + %),
(59)

= (M + K2+ 1) = fPm® + N2 (K + 12),

s PmP4 N2(K2 +1?)
o -
m? + k2 + [2

We see immediately from (59) that the frequency of IGWs is bounded by f'and N, as discussed previously.

A.2 Orthogonality & Orthonormality of eigenfunctions

As mentioned above, the eigenfunctions of the Sturm-Liouville equation are known to be orthogonal [see the
book by Heinbockel (2003) for additional details]. We show this in the following section. Experts, or those
uninterested in the details of the proof of the orthogonality of the Sturm-Liouville system, may wish to skip
this section and proceed to the next section. Note once again that when the rigid lid assumption employed here
is replaced by a more realistic free surface boundary condition, the orthogonality of the displacement functions
becomes more involved (Nugroho, 2017). Using vertical modes computed using a rigid lid assumption to
perform an energy budget in shelf regions can be problematic (Nugroho, 2017; Florent Lyard, personal
communication, 2018).

A.2.1  General Orthogonal Functions

The inner product of two real functions f(z) and g(z) with respect to a weighting function W(z) (which is never
negative) over the interval a <z < b is defined by

(1.9 = [ W (60)

a

The inner product of the function with itself is equal to the square of the norm and is written as

b
(F.0) =IIFIP = [ W) (61)

A set of functions {fi(z), f2(z), - - -, fu(z), - -+, fm(z), - - - } is said to be orthogonal over an interval a <z < b
with respect to a weight function #(z) > 0 if for all integer values of n and m, with n # m, the inner product of
fm With fu satisfies

b
(i fo) = [ Wl fal2)dz =0, m £ @)

If the sequence of functions {fx(z)}, n=0, 1, 2, - - - is an orthogonal sequence we can write for integers m and
n that the inner product satisfies the relation [combining (61) and (62)]

‘ 0, m#n
(fms fa) = anHz(Smn - (63)
1l m=n

where J'mn is the Kronecker delta. In the special case where ||fz|[> = 1, for all values of n, the sequence of
functions is said to be orthonormal over the interval a <z <b.
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If a sequence {gn(z)} is orthogonal with respect to the weight function ## (z), then we can construct a new
orthonormal sequence fx(z), defined by ( )
Gn{Z

fn( ) = 64
Tlon()IT (©4
We show below that equation (64) is orthogonal. Multiply (64) by W(z)fu(z) and integrate to get
. . 1 .
I= [ W e = s [ W ()0,

_gm(2)

gn dZ,
||9n H / Hgm(Z)H (65)
o | W (2)gn(2)gm(2)dz,
~ lga(z )Hllgm 2 I/

=0, for n#m,
because the sequence {gu(z)} is orthogonal. Moreover, from (64)
[lgn ()]
a2 = =1,
| loa21 )

= ||fn(z)”2 =1,

and therefore, the sequence {f.(z)} is orthonormal.
The proof above shows that the most important property is orthogonality. Once an orthogonal sequence is
obtained, we can easily construct an orthonormal sequence by dividing by the norm of the functions.

A.2.2  Orthogonality of eigenfunctions

Consider the Sturm-Liouville equation

d dr
_ P F —
a4z (Q(z) dz) +W(2)AF(z) =0, (67)
with general boundary condition
F
F(Z)+BdTiz):o at z=a,b, (68)

where @ and /£ are constants. We remark that, one could go through the following derivations using the more
general boundary condition above, as is done in Nugroho (2017). However, here we use simplified boundary
conditions, either

F(z)=0 at z=a,b, (69)
or aF(2)
2

T 0 at z=ua,b. (70)

To determine orthogonality, we consider equation (67) with two different values of A such that

d dF, ) B
P (Q(z) P ) +W(2)\Fu(2) =0, (71)
1 1F .

é (Q(z)( = > F W () A En(2) = 0. 72)

Perform [(72)%Fu]-[(71)*Fu] to obtain

d dFm d dEl y .
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Before returning to (73), we note that

d . _pd dfm o 4Fm APy 74)
dz ( '7Q(~) ) N F"dz <62(2> dz > + QL) dz dz’
d dF7L d ~ dF7L dF"L dF7L
o (FmQ(Z) P ) =g (‘M P ) HE (75)

so that (74)-(75) gives

R (0042) - rdl (0082 = L (R i) - L (Ra2). e

Substituting (76) into (73) yields

dF,\  d dF, , -
(P2 - £ (FQETE) + On - MW EFLE, =0 )

Integrating equation (77) from z = a to z = b results in

[rac >dF"‘]a— Q)

b
} + O — M) / W (2) Ep Fodz — 0.

The first two terms vanish due to the boundary condition (69) or (70):

F(z F,(z
AFn(2) _, _dE(2)

dz dz 2=ab (78)

Therefore, we obtain
b
(A — )\n)/ W(2)F,, F,dz =0, n#m,

b (79)
— / W(2)FnFodz =0, n#m,
a
proving the orthogonality of the F (z) eigenfunctions.
Note that when m = n, the vanishing of the left-hand side does not give us any additional information but
the resulting integral is expected to be nonzero (Heinbockel, 2003). As shown above, by having an orthogonal
sequence {Fu(z)}, we can construct an orthonormal sequence by dividing by the norm.

Comparing (67) to (43) shows that the weight function W(z) = 1 so that the sequence {Fu(z)} may be
othonormalized as

1 0
IEGEI - (30)
1E()1En(2)]] /,HW)Fm( )dz = b

On the other hand, comparing (67) to (45) shows that

N2 _ 0.2
W(z) = (m) :
so that we can orthonormalize {Gu(z)} by

N20>
Gn(2)Gm(2)dz = O, 81
[eXeEm ||/( (2)Gn(2)d @)

ie.r= [ (5=2) e

such that
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A3 Computation of expansion coefficients

The vertical structure of internal gravity waves in the ocean (or from a model) can be decomposed into a linear
combination of dynamical modes (Wunsch, 1975) such that

M

u(z,t) = un(t)Fu(2), (82)

M
n(z,t) =) na(t)Gn(2), (83)
n=1
where u = (u, v) is the horizontal velocity and 7 is the isopycnal displacement, » is an index of vertical mode
number, z is vertical coordinate, ¢ is time, M is the total number of vertical modes, and Fy(z) and Gu(z) are the
fixed vertical structures of the mth baroclinic mode respectively.

In practice, u(z, ) and 7(z, ¢) are known from either observational measurements or from a model output,
and Fu(z) and Gu(z) can be computed from a profile of buoyancy frequency, N(z). Here we discuss how to
compute the expansion coefficients u.(f) and 77.(f) in (82)-(83). We first discuss a theoretical approach, and
later outline a second approach via the method of least squares.

A.3.1 Theoretical solution method

Suppose that F,(z) is an eigenfunction such that

1 O
% / Fo(2)Fn(2)dz = 0mn, (84)
—-H
where H = ||[Fu(z)||Fm(z)|]. The F ’s may also be orthonormalized in a depth-averaged sense by setting
H =) = H, (85)

[e.g., see equation (2.3) in Flierl (1978)], and similarly for the displacement modal functions. If we expand the
velocity u as (82):

u(z,t) = Zun(t)Fn(z),

Then Y o
%' [ Bz 0z = ?i{ [ R() ;um(t)Fm(z)dz
1 0
= %:um(t)ﬁ 1 ., F,(2)Fyp(2)dz
= Z Um, (T) (smn
= u,(t).
Thus,
1 0
un(t) = —/ Fo(2)u(z,t)dz. (86)
H ) _u

Following an approach similar to the one above, we can determine the expansion coefficients for the
vertical displacement. For an orthogonal sequence, {Gn(z)}, we have

1 0
5 [ WG ()G () = G, &)

where G = ||Gu(2)||Gn(2)|| and W (2) is a weighting function. Using the expansion in (83), we get
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Gn(2)n(z,t)dz = V(2)Gn(z N (0) G (2)d2z
g/,, i g/u )3 16)Gin(2)

1 7(~ A A A
= Zﬂ: nm(zﬁ)a ' /_ ; W (2)Gr(2) G (2)dz
= Z N (1))

=T (7‘> .
Thus,

M =g / W(2)Gy(2)n(z,t)dz. (88)

A.3.2 Least-squares method

Another practical way to determine the expansion coefficients is by solving each of (82)-(83) as a least-squares
problem (Dushaw et al., 1995; Nash et al., 2005). For instance, at each time, the u equation from (82) may be
cast as a multivariate regression model (Emery and Thompson, 1997), such that

w; = aolio + arFy + aoFie - - + ap Fiv + € (89)

where each i (=1, - - -, N') equation 1s tor each depth and & 1s the error to be minimized in the regression
method. The set of equations in (89) can then be written as

U=A-F+E, (90)
where
Uy Fo iy - Fiu
Us Fy Fy - Foy
U= F = ,

uN Fno Fyi1 -+ Py
agp &1
ay Eg

A= E= ,

ang EN

and the boldface letters indicate matrices. Solving (90) for A, we obtain
A=(F -F)'F-U 91)

(see Emery and Thompson, 1997, page 239-240, for more details). Note that MATLAB’s regress and
plsregress functions give solutions similar to (91).
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Ay Solutions to the modal equations

There are no known analytical solutions for general N ?(z) (see e.g., Kundu, 1990; Gill, 1982). Equation (43)
is a Sturm-Liouville type of equation for which the eigenfunctions are known to be orthogonal. Often, equation
(43) with (44) is solved for F (z) (sometimes the solution approach also gives dF/dz) and then equations (34)-
(35) can be used to obtain G(z). To be precise, the i 0 factor in (34) is a constant, and the entire function in
(35) will be adjusted to be orthonormal, so we can ignore the i .

Also note that the 4 ’s are unknown and must be solved for together with the eigenfunctions. Numerical
solutions can be found via two main methods:

1) The matrix approach in which equation (43) is often discretized.

2) The shooting method, in which equation (43) is solved in two parts. This approach is described in
this section and was used to compute linear IGW dispersion relations in Miiller et al. (2015) and
Savage et al. (2017b), based upon Matlab code that was originally developed by Glenn Flierl for
solving the normal modes of the quasi-geostrophic equations (Glenn Flierl, personal communication,
1995; Flierl, 1978). See also Emery & Thomson (1997) for references to NAG Fortran shooting
method routines.

a)

b)

<)

d)

e)

Integrating (43) gives
o?— f2dF 1 /0
Let
e 93
d= fF/JIF(z)dz., ©3)
dd 1
R 94
P )\QF(Z). (94)

Note that (94) is a first order differential equation which can be solved using Euler’s
method, for example, for a given boundary condition at one end. Because F(z = 0) is
unknown, we set = 1 at the top boundary (later we will normalize the function) and make
an initial guess for 4. However, d (which is proportional to the derivative of F (z)) is
known at the first boundary from the boundary conditions. Once we have d, we can then

solve (92); given in the form
dFr N2 —o?
T \oapz)d ©5)

to get F(z). This gives the value of F(z) at the next step, and the procedure is repeated until
we get to the other boundary.

We then check to see whether the solution from the step above satisfies the boundary

dF

condition at the other end, o |z=—g = 0. If not, then we need to choose a different initial

guess for A.

The approach used here is to provide the code with several initial guesses for 4 and then
determine several derivatives, d(z) at z = —H. Because the boundary conditions require d(z)
=0 at z = —H, each pair of A4 guesses that gives values of d with different signs at z = —H
can be used to narrow-in on the actual A’s that will give d(—=H) = 0. [For example, if A1
results in d = 20> 0 and A results in d = —40 < 0 at z = —H, then we know that the value
lies between the two A’s. We may then narrow-in on the actual A4 by choosing the mean
of A1 and A2]. The fzero function in MATLAB can be used to find the zeros (i.e., the
actual A’s).

Now that we have the 4 ’s that give us the correct boundary condition at the other end, we
have our solution F (z). The F' (z) functions are then normalized as described in section
A2.

Determine the vertical displacement eigenfunctions G(z) by dividing the d’s by o? — f2
(see equation 35).



382 « BRIAN K. ARBIC ET AL.

A.4.1  Example solution

Using the buoyancy frequency displayed in Fig. 13.43a, we computed the first three vertical normal modes for
velocity (Fig. 13.43b) and vertical displacement (Fig. 13.43c). As is common in the ocean, the buoyancy
frequency profile depicted in Fig. 13.43a is surface-intensified (i.e., has its largest values in the upper ocean).
The three lowest horizontal velocity normal modes, F(z), depicted in Fig. 13.43b also take on their largest
values in the upper ocean. The mode-2 and mode-3 displacement normal modes, G(z), take on their largest
values in deeper parts of the water column. Figs. 13.43b and 13.43c demonstrate that, as is dictated by the
mathematics of the Sturm-Liouville problem, the nth horizontal velocity mode has # zero crossings, while the
nth displacement mode has n-1 zero crossings.
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Figure 13.43. (a) Buoyancy frequency profile. Vertical mode structures for (b) horizontal velocity, and (c) vertical
displacement. The modal structures are dimensionless, and satisfy orthogonality conditions as described in the text.
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