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Abstract—Pedestrian regulation can prevent crowd accidents
and improve crowd safety in densely populated areas. Recent
studies use mobile robots to regulate pedestrian flows for desired
collective motion through the effect of passive human-robot
interaction (HRI). This paper formulates a robot motion plan-
ning problem for the optimization of two merging pedestrian
flows moving through a bottleneck exit. To address the challenge
of feature representation of complex human motion dynamics
under the effect of HRI, we propose using a deep neural network
to model the mapping from the image input of pedestrian envi-
ronments to the output of robot motion decisions. The robot
motion planner is trained end-to-end using a deep reinforcement
learning algorithm, which avoids hand-crafted feature detection
and extraction, thus improving the learning capability for com-
plex dynamic problems. Our proposed approach is validated in
simulated experiments, and its performance is evaluated. The
results demonstrate that the robot is able to find optimal motion
decisions that maximize the pedestrian outflow in different flow
conditions, and the pedestrian-accumulated outflow increases sig-
nificantly compared to cases without robot regulation and with
random robot motion.

Index Terms—Deep reinforcement learning (DRL), human-
robot interaction (HRI), pedestrian flow regulation.

I. INTRODUCTION

DEVELOPING pedestrian crowd regulation approaches
can help to avoid crowd accidents in densely popu-
lated areas and for emergency evacuation. Existing work on
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pedestrian crowd regulation includes studies from the per-
spective of evacuation planning [1]-[3] and optimal design of
facilities to improve pedestrian flows [4]-[6]. It was recently
proposed to introduce mobile robots to influence the col-
lective motion of pedestrian crowd through human-robot
interaction (HRI) [7]-[10]. Studies have been reported on
robot-assisted pedestrian regulation in scenarios, such as cross-
ing pedestrian flows [7] and uni-directional pedestrian flow
in an exit corridor [8], [10]. In this paper, we propose a
novel learning-based scheme for robot-assisted regulation of
pedestrian merging flows.

HRI has received considerable attention with the remark-
able advance in socially assistive robotics during the past
decade. Notably, extensive studies have focused on modeling
HRI for human-aware navigation. A traditional motion plan-
ning approach is amended with new considerations of socially
normative HRI when robots navigate in the human environ-
ment [11]. Earlier work focused on modeling HRI explicitly.
For example, an HRI model was reported in [12] to describe
humans’ walking behaviors in the presence of a mobile robot
in a mall environment. The model was used for the robot
to plan a congestion-free trajectory which, in turn, improves
human walking comfort. In [13], a predictive model of human—
robot cooperative collision avoidance is developed. The
proposed model enabled the robot to navigate safely and effi-
ciently in dense human crowd environments. The performance
of the aforementioned model-based approaches may deterio-
rate due to model inaccuracy and uncertainties in complex
human environments. Therefore, learning-based approaches
for HRI have drawn considerable attention [14]-[16].

Inspired by the remarkable success in learning control
policy from high-dimensional image observation [17], deep
learning methods have been exploited to solve challeng-
ing robotic problems in real-world environments, such as
object recognition [18]-[20], robot navigation [21]-[23], and
robotic grasping [24]-[26]. To name a few works, Oliveira
et al. [20] reported a deep learning methodology based on the
convolutional neural network (CNN) for human body part seg-
mentation. The method was tested on real ground and aerial
robots and yielded semantically accurate results. In [24], a
two-stage cascaded deep network architecture was used for
robotic grasp from RGB-D images, which is able to han-
dle multimodal inputs by applying structured regularization.
In [26], end-to-end learning of visuomotor policies using deep
CNNs was reported, which directly maps image observations
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to the torque control output of the robot’s motors. These
encouraging results have inspired the studies of learning-based
methods for complex robotic problems.

In this paper, we formulate a robot motion planning problem
for robot-assisted pedestrian flow optimization. A mobile robot
is introduced in two merging pedestrian flows, and the goal of
the robot motion planner is to find the best motion decision
for the robot to efficiently interact with the pedestrians so that
the number of pedestrians going through the exit (referred to
as “pedestrian outflow” in this paper) is maximized. Due to
the complexity in human collective motion behavior and the
effect of HRI, it is difficult to use model-based approaches for
such a motion planning problem. Our previous work [10] uses
adaptive dynamic programming (ADP) to learn HRI online
and plan for robot motion. However, the input to the ADP
algorithm is the pedestrian features (e.g., pedestrian positions
and velocities) extracted from the image of the environment.
It requires an additional tracking system, such as that used
in [27] and [28], to extract these features from the images.
Since the images have rich information about the pedestrians
and HRI, it motivates us to use raw images directly for efficient
HRI control.

We propose an end-to-end learning control scheme that
maps from raw image observation to robot control actions. The
end-to-end model extracts the features of environment states
from image observation and outputs robot motion decisions to
achieve optimal pedestrian flow regulation. A deep reinforce-
ment learning (DRL)-based approach is developed to solve
the robot motion planning problem we formulated. Given the
images of the environment as input, the proposed approach
learns the optimal robot motion that maximizes the pedestrian
outflow. Unlike our previous work on learning-based robot
motion control [10], where we used the measured features,
such as pedestrian velocities and outflow as the algorithm
input, the approach proposed in this paper provides end-to-
end motion planning from image data of pedestrian flows,
which avoids the burden of performing feature detection and
extraction, thus saving processing time and improving online
learning efficiency. Simulation results show that the robot finds
its best positions for HRI, and the pedestrian outflow increases
compared to cases without robot regulation and with random
robot motion.

The contribution of this paper is two-fold. First, our for-
mulated robot motion planning problem provides a new
method to use HRI to optimize pedestrian flows. Compared
to our early work that considers the uni-directional exit
corridor environment, the proposed merging flow environ-
ment is motivated by a real-world crowd disaster scenario
and presents much more challenging dynamics due to the
bottleneck effect. Second, the proposed DRL architecture
achieves end-to-end robot motion planning from sensor images
to robot motion decisions. Compared to traditional learn-
ing methods such as ADP, this deep neural-network (DNN)
structure avoids hand-picking features and utilizes CNN to
learn discriminative features to achieve optimal performances.
To the best of our knowledge, this is the first time that
DRL is used in the HRI study for robot-assisted pedestrian
regulation.
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The rest of this paper is organized as follows. Section II pro-
vides the background and related work. Section III presents
the problem formulation of the robot motion planning for
pedestrian flow optimization. Section IV provides the DRL
algorithm design for the defined problem. Section V presents
the simulation results. We conclude this paper in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we first review the related works on HRI for
human-aware robot navigation and pedestrian flow regulation
and then the application of DRL in robotic problems.

A. HRI for Human and Robot Collective Motion

HRI has been studied for robot motion planning in the
human environment. Particularly, the effect of HRI has been
considered in human-aware robot navigation to respect human
comfort, naturalness, and social constraints in robot motion.
To mention a few, Luber et al. presented learning pedestrians’
socially aware motion prototypes from real-world pedestrian
motion data in [29], where a hierarchical clustering approach
was adopted. The learned motion prototypes that respect a
comfort distance were used for the robot to establish a dynamic
cost map for generating socially acceptable paths among
pedestrians. Kim and Pineau [30] proposed a Bayesian inverse
reinforcement learning (RL) approach to learn human motion
behaviors, which are cast as a cost function in considera-
tion of social variables. The learned cost function, and the
observation from the RGB-D sensor, is fed into the robot’s
path planner to generate socially adaptive motion. The afore-
mentioned works aimed to utilize HRI in a socially adaptive
manner, which improves robot acceptance when navigating in
the human environment.

On the other hand, it has been found that human motion
behavior can be implicitly influenced by passive HRI [7],
[9], [10], [31]; namely, the robot moves in a planned motion
and the humans adjust their motion to avoid colliding with
the robot. In this manner, human collective motion can be
modified with a moving robot that dynamically interacts
with humans. The effect of passive HRI has been utilized
for pedestrian regulation, where desired pedestrian collective
motion was achieved with optimized robot motion. The work
presented in [9] studied the effect of deploying mobile robots
to affect crowd dynamics and showed that the flow efficiency
was improved with appropriately designed robot maneuvers
and formation patterns. The work shed light on how to utilize
passive HRI for controlling and optimizing pedestrian flow.
Yamamoto and Okada analyzed the characteristics of passive
HRI in a crossing pedestrian flows scenario in [7], and the
results were used to find optimal robot motion that can reduce
congestion in crossing flows. In our earlier work [10], we
proposed regulating the average velocity of a uni-directional
pedestrian flow with a robot moving perpendicularly to the
flow direction. Due to the effect of passive HRI, the deployed
robot behaves as a “virtual gate” that slows down the flow
velocity around the robot, and the average flow velocity can
be regulated to a desired value by adjusting the robot velocity.
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We designed a robot motion control algorithm based on ADP
to provide adjustable robot motion online therein.

In this paper, we adopt a pedestrian regulation approach
based on passive HRI. We aim to find the optimal robot motion
planner that maneuvers the robot to the best positions in which
maximum pedestrian outflow can be achieved.

B. Deep Reinforcement Learning in Robotics

In the past two decades, robot planning and control
with RL have attracted considerable attention from
researchers [32]-[38]. Beom and Cho [32] studied robot
navigation in uncertain environments by utilizing RL and
fuzzy logic. Asada er al. [33] applied an RL framework
to train a soccer robot with a look-up table. In these
applications, the control policy was learned without the
model of the environment. However, the proposed learning
algorithms deal with discretized state and action space and,
thus, are not applicable to problems with the continuous or
high-dimensional state and action space. In order to overcome
this drawback, neural-network techniques were developed
to handle continuous or high-dimensional input in robotics
RL. For instance, Gaskett er al. [34] exploited a three-layer
perceptron to learn the wandering and visual servoing under
continuous state and action space. In [35], a fuzzy neural
network enabled the robot to learn basic navigation under
a changing environment. However, these approaches used
shallow neural networks that have a limited capability of rep-
resentation learning [36], thus operating on hand-engineered
features which require in-depth domain knowledge.

Recently, DNN obtained great success in many complex
applications, such as image classification [39]-[42] and object
detection [43], [44]. Owing to the strength of DNN, Mnih
et al. [17] developed a DRL that combines DNN with RL.
The DNN consists of a CNN and a Q-network where the
CNN was applied to extract useful features from the high-
dimensional input images. Then, the Q-network was used
to generate actions based on these features. The DNN was
trained using RL. The performance of DRL on the Atari games
was comparable to that of a professional human player [17].
This achievement was mostly contributed by the representation
learning with DNN that enabled automatic feature extraction
and end-to-end RL through a gradient descent.

The bloom of DRL techniques [17], [45]-[47] has inspired
the development of new methodologies for robot planning and
control. Chen et al. [48] reported a robot motion planner for
decentralized collision avoidance in the human environment. A
DRL algorithm was developed to solve the collision-avoidance
problem. The algorithm was fed with manually designed
features, including the positions and velocities of the robot
and other agents. The representation learning capability of
deep learning enables robot controllers to operate directly on
raw sensory inputs. Various end-to-end leaning approaches
have been successfully applied in mobile robot navigation
and localization. Tai et al. [49] developed a mapless motion
planner that only takes the sparse laser rangefinder measure-
ments and the target position as input. The motion planner
was trained through DRL without prior demonstrations and
manually designed features. In addition to laser rangefinders,

image-based visual observations were used as input to end-
to-end motion planners. To name a few, Zhang et al. [50]
proposed a successor-feature-based DRL approach to conduct
the navigation task in a simple maze-like environment by using
depth images from a Kinect sensor. In [51], a visual navi-
gation problem was studied, where a robot navigated in an
indoor environment using only visual observation without a
map. A DNN was developed and trained to model the end-to-
end robot’s policy that generated robot motion action directly
from a given visual input.

Although DRL has achieved encouraging progress in
robotics, its applications in social navigation where a
robot influences human behaviors have not been extensively
reported. Recent studies [52], [53] have used RL for pedes-
trian simulation and show that RL is capable of learning
human behaviors. In this paper, we explore applying DRL
to a cutting-edge robotic application, namely, learning HRI
for robot-assisted pedestrian regulation. We follow the idea
of end-to-end learning for robot motion planning and develop
a novel DNN-based method to learn a robot motion planner
from raw sensor images for optimal pedestrian regulation.

III. PROBLEM FORMULATION

In this section, we first present the environment setup and
then formulate the robot motion planning problem.

A. Motivation and Environmental Setup

Inspired by the empirical study [54] of a real-world
crowd stampede incident that caused significant casualties in
Mina/Makkah in 2006, we are interested in pedestrian regu-
lation in an environment where two pedestrian flows merge
from different directions going through a bottleneck area.
Understanding the complex merging behavior of pedestrian
flows is of profound practical importance to avoid such pedes-
trian crowd incidents; thus, studies have been conducted to
find out the underlying causes and seek solutions [54]-[57].
In [54], the transition from laminar flow to turbulent flow that
caused the stampede was observed by analyzing the video
recordings. The quantity, crowd pressure, was proposed to
quantitatively measure the buildup of the pedestrian crowd.

To avoid the buildup of crowd pressure that leads to crowd
stampedes, crowd regulation is required. The existing work has
reported solutions that either optimize the geometric design or
the placement of facilities [4]-[6], [58]. However, the design
of the stationary architecture and facilities cannot adapt to
the real-time change of pedestrian flows. For example, it has
been found in [6] and [58] that the regulation performance
of pillar-like obstacles depends on the crowd density, and
the optimal placement of such obstacles varies under dif-
ferent levels of crowd density. In this paper, we adopt a
pedestrian regulation approach based on passive HRI for the
merging human flow scenario, where the robot moves in a
planned and controlled motion, and the pedestrians around
the robot adapt their motion to avoid potential collisions with
the robot. Thus, the motion of the robot affects the collective
pedestrian flows through passive HRI. Note that the effect of
passive HRI on pedestrian flows was previously validated in
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Fig. 1. Merging pedestrian flow scenario. The green-dashed rectangle indi-

cates the robot workspace and the red-dashed line indicates the exit where
the instantaneous pedestrian outflow ¢; is measured.

simulations [10] and in experiments [59]. Particularly, in [59],
the results showing the effect of passive HRI are consistent
with simulations using social force models. This paper also
shows that the use of a robot is acceptable to humans, simi-
lar to a stop sign or a stationary object placed in front of an
exit. In such a way, the robot deployed in the environment
acts as a moving obstacle that adaptively adjusts its position
to regulate the pedestrian flows. As the pedestrian flow con-
dition changes, the robot needs to find the optimal position to
prevent the formation of high crowd density and to mitigate
congestion, thus maximizing the pedestrian outflow through
the bottleneck under different flow conditions.

In this paper, we study the optimal motion planner for the
robot to move to the best positions that maximize the pedes-
trian outflow. Specifically, our environment setup is shown in
Fig. 1. Two pedestrian flows A and B merge before the cor-
ridor and move toward the exit. The amount of instantaneous
inflow A and inflow B are represented by g; and g, respec-
tively. The entrance of the corridor becomes a bottleneck when
the merged flow exceeds the capacity of the exit corridor. Our
task is to prevent this congestion using a moving robot through
HRI so that the pedestrian outflow from the corridor can be
maximized. In Fig. 1, the robot workspace is represented by a
green-dashed rectangle, and the outflow is denoted as ¢;, which
is defined as the number of pedestrians passing through the
exit at time step f.

B. Learning Problem Formulation

A finite Markov decision process (MDP) with discrete time
step t = {1,2,...,T} is used to formulate our robot motion
planning problem. MDP provides a mathematical architecture
to model a sequential decision-making process. An MDP is
defined as the five-tuple (X, U, P(-, -), q(-, -), v), where X rep-
resents the observation space of the system, U denotes a set
of permissible actions, P(-, -) represents the observation tran-
sition model, g(-, ) is the immediate reward, and y denotes a
discount factor. We define our robot motion planning problem
using these five elements as follows.

1) Observation Space: The observation x; is the image of
the pedestrians in the environment at time step ¢. It not only
contains the positions of the pedestrians but also shows other
features about the pedestrians that are essential for our robot
motion planner, such as density.

2) Action Space: In our formulation, the robot workspace
is discretized as a regular grid. The robot moves on the grid
points. The action space U contains four permissible direc-
tions of the robot motion decision u;, that is, “up,” “down,”
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“right,” and “left,” in the grid-based map defined in the robot’s
workspace.

3) Observation Transition: The transition from observation
Xx; to the next observation x;y1 is defined as

X1 = f (%, uy). (D

The robot position is updated according to the robot motion
decision u;. Then, the robot influences the pedestrian motion
through HRI, and the system observation transits from x;
to x;41. It is challenging to model the accurate observa-
tion transition function for pedestrians because the HRI
and the human motion are exceedingly complex. In this
paper, a data-driven approach is proposed to provide control
action.

4) Reward: The reward is the instantaneous outflow g;
which is the number of pedestrians passing through the exit
at time step .

In this paper, an action-value function, Qy (x, u), is defined
to assess the performance of taking a motion decision u when
given an observation x under a robot motion planning policy
7. This policy maps from each system observation to the prob-
ability of taking the robot motion decision. QO (x, u) is defined
below as the expected sum of rewards starting from observa-
tion x, taking the motion decision u by following policy =,
that is:

K
On(x,u) = Eq Z Viarke =x,u = u (2)
k=0
where K represents the number of future time steps, Ej[.]
denotes the expected value given that the robot follows pol-
icy m, and y balances the importance between the future
rewards and the immediate reward. In this paper, y is set to
1, which means that the future rewards have the same impor-
tance as the immediate reward. Since ¢; is the instantaneous
outflow, O (x, u) is equivalent to the accumulated outflow in
the horizon of K time steps.
The objective of the robot motion planning problem is
to determine the optimal policy m* which maximizes the
expected sum of rewards as

Q" (x, u) = max Oy (x, u) 3)

where Q*(x, u) represents the optimal action-value function.

Thus, following the optimal policy =* and starting from an
arbitrary initial observation xj, we can maximize the number
of pedestrians passing through the exit in the horizon of K
time steps, that is, Q*(x1, #) = max Zlf:() Qret1-

IV. PROPOSED APPROACH

Traditional learning-based approaches rely on feature
extraction that is designed with experience. This feature engi-
neering process may neglect some important features since
finding all useful features requires thorough insight into the
problem. These features, however, can be easily observed in
the images of the environment, which have rich information
on the state of the robot and the pedestrians. Also, it is chal-
lenging to find the optimal robot motion policy m* using
high-dimensional images. To tackle the challenges, a CNN is
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applied to extract discriminative features from the input image.
The CNN can learn to extract suitable features, based on which
a Q network is applied to generate robot motion decisions.

The overall diagram of the DRL-based robot motion plan-
ning for pedestrian regulation is illustrated in Fig. 2. A
simulated environment is used in this paper. The image of
the simulated environment is passed into a DNN to approxi-
mate the action value of robot motion decision u. The decision
u;, with the highest action value, is selected for the robot. It
is worth noting that the proposed approach is end to end; that
is, it learns the optimal robot motion planning policy directly
from the image.

A. Architecture of the Deep Neural Network

As discussed above, the architecture of the DNN shown in
Fig. 2 consists of a CNN and a Q network, the details of which
are presented next.

1) CNN: A two-layer CNN is implemented to extract dis-
criminative features from the image to facilitate the robot
motion planning process. The convolutional layers (Conv 1
and Conv 2 in Fig. 2) have several feature maps which are rep-
resented by green and blue squares in the figure. The feature
map in the Conv 1 layer is obtained by applying a convolution
operation to the input image. If we denote the jth feature map
as 2/, whose filters are determined by the weight matrix W/
and bias bj, then the feature map Z is obtained as

L M
nv—g(b,—i—ZZW’

=1 m=1

m 0n+l,v+m> 4)

where (I, m) represents the index of the weight matrix whose
dimension is L x M, (n,v) denotes the coordinates on the
feature map, g(.) denotes the rectified linear unit (ReLU) acti-
vation function, and o represents the input image. Similarly,
the feature map in the Conv2 layer is obtained by applying the
convolution operation to the Convl layer. Then, these feature
maps are flattened into a vector d. More details about CNN
can be found in [60].

2) Q Network: The features extracted by the CNN are
fed into the Q network, a three-layer fully connected neu-
ral network. This type of neural network with a finite number
of hidden units can uniformly approximate continuous func-
tions [61]. The value of the hidden unit can be calculated as

h = g(Wy, xd + by) (5)

where Wy, and by, represent the weights and the bias, respec-
tively. Then, the hidden layer is connected with the output
layer. The value of the output unit is the estimation of the
action-value for robot motion decision # when given the input
observation x, i.e.,

O@x,u) = g(Wo xh +b,) (6)

where W, and b, represent the weights and the bias, respec-
tively. Finally, the robot motion decision with the largest
action-value is outputted, that is, u = argmax, .y Q(x, u).

Algorithm 1 Training of the DNN
Input: Image observation x and reward g
QOutput: DNN’s parameters 6
1: Randomly initialize main DNN’s parameters 6.
2: Initialize a target DNN with parameters 6 = 6.
3: for Epoch=1:N do
4: Initialize the environment and obtain observation xj.
5: for Time step t = 1:T do
/I apply e-greedy search method

6: Sample ¢ from a uniform distribution /(0, 1).
7: if ¢ > ¢ then
8 Obtain u; from the main DNN.
9: else
10: Randomly select u; from the action set U.
11: end if
12: Update robot position p,, observe reward ¢,
and obtain the next image observation x;1.
13: Store the tuple (x;, u;, qs, X;+1) in buffer 5.
14: Randomly sample a batch of tuples
{ (), qj’x]+1)} from .
15: yj <— g+ yQ(xH_l argmax, O (xjy1.u; 6;); ).
16: Calculate the loss function
L) = 35 Y7 [y — Qs 61) ]
17: Update parameters 6,11 = 0; — n v, L(6;)
18: Every S steps reset 6 = 6.
19: end for
20: end for

B. Training of the Deep Neural Network

Algorithm 1 illustrates how to train the DNN according to
double Q-learning [62]. The input of Algorithm 1 is the image
observation x and the reward ¢, respectively. Its output is the
DNN'’s parameters 6. Parameters 6 include the weights and
bias of the CNN and the Q network, that is, Wj, bj, Wy, by,
W,, and b,.

In Algorithm 1, the DNN in Fig. 2 is referred to as the main
DNN. In line 1, the main DNN’s parameters 6 are randomly
initialized. Then, we initialize a target DNN, and its parame-
ters 6 are cloned from the parameters of the main DNN. In
the outer loop starting from line 3, the parameters 6 are iter-
atively updated through N epochs. At the beginning of each
epoch, we first initialize the environment; that is, the pedes-
trian and the robot positions are initialized. Then, the initial
image observation xj is obtained. In the inner loop starting
from line 5, the environment evolves for T time steps. At each
time step, from lines 6 to 11, an e-greedy search method [63]
is applied to choose the action u;. Specifically, a random num-
ber c is generated from a uniform distribution on the interval
(0, 1). If ¢ is larger than a constant €, the action u; is gen-
erated by the main DNN in Fig. 2. Otherwise, the action u,
is randomly chosen from the action set U. After that, in line
12, the robot position is updated according to the action u,,
the reward ¢; (instantaneous outflow) is observed, and a new
observation x;y1 is obtained. Then, in line 13, the experience
tuple (x;, us, q;, X;41) is stored in a buffer 5. From lines 14 to
17, the main DNN’s parameters 6 are optimized. Specifically,
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Fig. 2. Overall diagram of the robot motion planning for pedestrian regulation. The DRL-based approach gets the image from the simulated environment,

observes the reward ¢, accordingly, and generates the robot motion decision u;. The variable d represents the feature vector extracted by the CNN.

in line 14, a batch of tuples {(x;, u;, qj,xj+1)}j';1 is randomly
sampled from the buffer B. With these tuples, in line 15, the
target action-value y; is calculated as

yji=¢qj+ )/Q(xj+1, argmax Q(x;11. u: 6,); 9_>. (7)
u

Then, in line 16, we can derive the loss function as

D

L) = % S by - 0wz 6)] 8)
j=1

which is the mean squared error between the target action-
value y; and the action-value Q(x;,u;; 6;) estimated by the
main DNN. Then, the loss function is minimized by updat-
ing the main DNN’s parameters 6 according to the gradient
descent rule, that is, 6,41 = 6; — 1 Vs, L(6;), where n denotes
the learning rate and vy, L(6;) is the gradient of the loss func-
tion. Then, at every S step, the target DNN’s parameters are
reset as 6 = 6. After the training process, the main DNN’s
parameters 6 will be outputted for the online robot motion
planner deployment.

C. Robot Motion Planner

After the training process in Algorithm 1, the parameters
of the DNN will be fixed for the online robot motion planner
deployment.

The deployment algorithm is summarized in Algorithm 2.
Its input is the images of the simulated environment, and its
output is the robot motion decisions. In line 1 of Algorithm 2,
we first load the DNN’s parameters 6 trained by Algorithm 1.
Then, the robot position p can be initialized as any position
in the robot workspace. In the loop starting from line 3, the
robot is controlled by the DNN to regulate the pedestrians for
T time steps. The image of the environment is obtained from
the simulated environment. Then, this image is fed into the
CNN to extract discriminative image features, as introduced
in Section IV-A. After that, in line 6, these features are fed
into the Q network to calculate the action-value Q(x;, u; )
for all permissible robot motion decisions. Then, in line 7, the
decision u; is selected as u; = argmax,, .y Q(x;, u; 0). Finally,
u, is outputted to the robot.

Algorithm 2 Robot Motion Planning
Input: Images of the environment
Output: Robot motion decisions uy.7
1: Load the DNN’s parameters 6 trained by Algorithm 1.
2: Initialize robot position py,.
3: for Time step t = 1:T do
4 Obtain the image of the environment x;.
5 CNN extracts features from the image.
6: Q network calculates action-value Q(x;, u; 6).
7
8
9:

u; <— argmax, . Q(x;, u; 0)
Output robot motion decision u;.
end for

V. SIMULATION RESULTS

The effectiveness of the DRL-based end-to-end robot
motion planning approach is verified through the simulation
experiments. In this section, we first introduce our simulation
setup and then present the HRI characteristic results which
serve as the ground truth for algorithm validation. After that,
we evaluate the performance of the proposed approach with
different robot initial positions and pedestrian inflow condi-
tions. We also evaluate its performance under the scenario
where the pedestrian inflow changes.

A. Simulation Setup

1) Environment: A simulation environment is developed for
the merging pedestrian flow scenario. The image used to train
the DNN is generated from the simulated environment and is
shown in Fig. 3. The dimension of this image is 200 x 200.
The pedestrians in flow A and flow B are represented by red
and blue circles in this simulation environment. The robot is
denoted by a black square. The size of the environment is
8 x 8 m with an exit corridor of w = 4 m in width, that is,
x ~ [4,8] m and y ~ [4, 8] m. The environmental space is
continuous for the pedestrians. The robot moves on the grid
points of a regular grid defined in x ~ [0,4] m and y ~
[0, 8] m. The grid size is 0.2 m. The instantaneous outflow g,
is averaged over 5 most recent measurements taken at every
second to reduce the noise of the observation.

2) Pedestrian Motion Simulation: We use the existing
social force model (SFM) with HRI forces to simulate the
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Fig. 3. Snapshot of the environment used in our simulation. The red and
blue circles represent the pedestrian in flow A and flow B, respectively. The
black square denotes the robot.

pedestrian’s motion and HRI. The SFM is a commonly used
model to simulate the pedestrian’s behavior and has been used
to simulate pedestrian’s motion in recent studies on robot
navigation [10], [64], [65]. In the SFM, the pedestrian is rep-
resented by a plane circle with mass m;. The motion dynamics
of pedestrians are governed by the self-driven force and the
interaction forces exerted on a pedestrian by the environment,
including other pedestrians, the boundary wall, and the robot.
The robot is a passive element in the SFM; that is, the robot
does not suffer a repulsive force from the pedestrians. Using
the robot as a passive element has been validated by real
human-robot experiments [59]. The details of the SFM and
its parameters are shown in the supplementary material. The
pedestrian’s initial speed is set as 2 m/s, and the pedestrian’s
position is randomly initialized using a uniform distribution
U(a, b). For pedestrians in flow A, x ~ U(—5, —3) mand y ~
U(4.5,7.5) m. For pedestrians in flow B, x ~ 1£(0.5,3.5) m
and y ~ U(—5, —3) m. The radius of the robot is set to 0.2 m.

3) Simulation Scenarios: We have conducted extensive
simulations with random robot initial positions and different
pedestrian flows. The inflow ratio between flow A and flow B
is denoted as ¢q1/q>. We set the sum of the number of pedes-
trians in flow A and flow B to be 300 and vary the inflow ratio
q1/q> to create different cases. We first present two simulation
cases with different flow ratios q1/q2. We set q1/q2 = 1/3 for
case 1 and q1/q2 = 2/1 for case 2. In each case, we choose
different robot initial positions and validate whether the robot
can find a good motion planning policy such that the accumu-
lated outflow Ztho q(?) is maximized. The duration of each
simulation run is set as 7' = 400 s. Then, we perform the sim-
ulation of case 3 where the initial inflow ratio of flow A and
flow B is q1/g> = 5:1, and then it changes to g1/q2 = 1:11
at ¢+ = 300 s. The duration of the simulation run is set to
600 s. The robot is expected to adjust its position accordingly
to maximize the accumulated outflow under these two flow
ratios.

4) DNN Structure: The filter size of the Convl layer in
CNN is 8 x 8. The output of the Convl layer is 16 feature
maps, each of which is of dimension 49 x 49. The filter size
of the Conv2 layer in CNN is 4 x 4. The output of the second
layer is 32 feature maps, each of which is of dimension 23 x23.
These feature maps are flattened into a 16928-D vector and
fed into the Q network. The hidden layer and output layer of
the Q network have 256 and 4 units, respectively.

5) Learning Process of DNN: During the learning process,
the Adam optimizer is used to minimize the loss function by
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Fig. 4. HRI characteristics for case 1: (a) top-view and (b) 3-D-view. The

color indicates the quantity of the accumulated outflow, ZLO qr, at T =
400 s. The rectangle in (a) highlights the robot positions with the highest
accumulated outflow.

updating the parameters of DNN. The learning rate is set as
0.0001. The exponential decay rates for the first and the second
moment estimates are set as 0.9 and 0.999, respectively. The
ReLU activation function is used in the DNN. There are 32
tuples in a batch.

6) Computer Configuration and Implementation: The train-
ing and testing of the proposed approach are conducted on a
workstation with one 12-core 17-6800K CPU and two NVIDIA
TITAN Xp GPUs. The DNN is implemented with Python on
GPU 0 while the pedestrian motion model is implemented with
PyCUDA on GPU 1.

B. HRI Characteristics

Before verifying the DRL algorithm, we first analyze the
effect of the HRI on the pedestrian-accumulated outflow by
performing the simulations with the robot placed at different
fixed positions. Specifically, we choose a set of 800 robot posi-
tions from the region defined in x ~ [0, 3.8] mand y ~ [0, 7.8]
m on the grid map with the grid size of 0.2 m. In each run,
the robot is placed at one of the positions and the accumulated
outflow at T = 400 s is recorded. For each position in the set,
five runs are repeated and the average accumulated outflow
over these five runs is calculated. Fig. 4(a) and (b) illustrates
the top view and 3-D view of the HRI characteristics results
for case 1, respectively. The quantity of the accumulated out-
flow of each position is indicated according to the color bar
on the right, ranging from dark red (high accumulated out-
flow) to dark blue (low accumulated outflow). To better show
the difference of the positions in the accumulated outflow,
we adjust the range of the accumulated outflow value to be
mapped on the color map. Thus, accumulated outflow values
that are lower than the minimum of the range are indicated
by the same color (i.e., dark blue). The robot positions with
the highest accumulated outflow are marked by a rectangle in
Fig. 4(a). Similarly, the HRI characteristics results for case 2
are presented in Fig. 5. The robot positions with the highest
accumulated outflow are marked by an ellipse in Fig. 5(a).
The HRI characteristics results for the two inflow ratios in
case 3 are illustrated in Fig. 6. The ellipse in Fig. 6(a) and the
rectangle in Fig. 6(b) highlight the robot positions with the
highest accumulated outflow.

Fig. 4 demonstrates that under the inflow ratio q1 /g2 = 1:3
(which represents the main flow A being less than the branch
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Fig. 6. HRI characteristics for case 3: (a) g;/q> = 5:1 and (b) q1/q2 =
1:11. The color indicates the quantity of the accumulated outflow, tho q,
at T =400 s. The ellipse in (a) and the rectangular in (b) highlight the robot
positions with the highest accumulated outflow.

flow B), the best position for the robot to stay is the region
located on the right of the branch channel (flow B). Fig. 5
shows that under the inflow ratio g1 /g> = 2:1, the best position
for the robot is the region where the two flows merge. A simi-
lar region of the best robot positions can be found in Fig. 6(a)
for an inflow ratio of ¢g1/g2 = 5:1. Comparing Fig. 4(a) with
Fig. 5(a), we can observe that the optimal regions for case 1
and case 2 are different. It is intuitive that when the main flow
A is bigger in case 2, congestion may occur in the merging
area, and the robot should stay in the position to impede more
pedestrians from getting into the bottleneck to prevent conges-
tion. On the contrary, when branch flow B is bigger in case
1, the robot should stay away from the middle of the flow
to have more people passing through to maximize the over-
all pedestrian outflow. It is worth noting that when the branch
flow B keeps getting bigger, the inflow condition can reach the
extent that nearly all of the incoming pedestrians are in flow
B, which is represented by the inflow ratio of ¢;1/g> = 1:11 in
case 3. Fig. 6(b) shows that in this case, the robot should stay
away from flow B, thus keeping flow B as smooth as possi-
ble. The HRI characteristics show that optimal robot positions
exist to maximize the outflow of pedestrians and, thus, are
used as the “ground-truth” to validate whether the proposed
approach can learn the optimal robot motion planning such that
the accumulated outflow is maximized under different inflow
ratios.

C. Training Process

We present the training performance by running Algorithm 1
in this section. The DNN is trained for 3500 epochs to
learn the optimal robot motion policy. In each epoch,
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Fig. 7. Evolution of the accumulated outflow at 7 = 400 s over 3500 epochs
during the training process.

the inflow ratio ¢j/g» is randomly chosen from the set
(5:1,2:1, 1:1, 1:2, 1:3, 1:11), which represents different pedes-
trian distributions in the two merging flows. The robot initial
position is randomly chosen from the grid point. The sim-
ulation time for each epoch is 400 s. The evolution of the
accumulated outflow at 7 = 400 s over 3500 epochs is shown
in Fig. 7. In the first 250 epochs, the robot motion deci-
sion is randomly chosen from the four permissible directions.
Then, from epoch 250 to epoch 500, the robot motion deci-
sion is randomly selected with probability €, otherwise, and
it is generated by the proposed DNN. In this phase, the prob-
ability € gradually reduces from 1.0 to 0.1 and keeps 0.1
afterward. In Fig. 7, we can observe that the accumulated
outflow increases steadily before 2000 epochs, and then it con-
verges with small oscillations. This training result shows that
the proposed approach succeeds in learning a robot motion
policy to maximize the accumulated outflow under different
robot initial positions and different inflow ratios.

D. DRL Control for Merging Pedestrian Flows

After the training process, we run Algorithm 2 and present
the robot motion planning results in this section. The proposed
approach is evaluated under case 1 and case 2 defined in
Section V-A. In each case, we conducted extensive simulations
with random initial robot positions.

1) Case I: In case 1, we test the pedestrian flow g1 /g2 =
1:3. The results of case 1 with the robot initial position [0.4, 2]
are illustrated in Fig. 8. The robot trajectory is shown in
Fig. 8(a), where the robot moves in the grid-based map defined
in the robot’s workspace. The robot initial position is denoted
by a red star, and the robot positions at different time steps
are represented by black stars. The arrow at the star indi-
cates the robot motion direction generated by the proposed
approach. The time history of the robot position in the x
and y directions is presented in Fig. 8(b). We can observe
that after around 20 s, the robot converges into a region,
x ~ [2.6,3.6] and y ~ [2.6, 3.8], which is the optimal region
as verified in HRI characteristics and marked by the rectan-
gle in Fig. 4(a). Fig. 8(c) shows the instantaneous outflow ¢,
where the black curve shows the result with the proposed reg-
ulation strategy, and the red curve shows the result without
robot regulation. One can see that the instantaneous outflow,
q:, with the proposed regulation is higher than that without
robot regulation. Furthermore, in the green box, there is a sig-
nificant drop in the red curve, which is caused by congestion
without the robot regulation. It can be seen that the conges-
tion is avoided by the proposed robot regulation, and the black
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curve is relatively more smooth without sharp drops. The accu-
mulated outflow Y/ g, at T = 400 s with and without the
robot is 6522 and 5950, respectively. With robot regulation,
the accumulated outflow increases by 9.61%.

Similarly, Fig. 9 illustrates the results of case 1 with the
robot initial position [3.4, 7.4]. We can see that the robot learns
to avoid the region in Fig. 4(a) that results in a low accumu-
lated outflow. After around 100 s, the robot converges into
the optimal region. The accumulated outflow at 7 = 400 s
with and without the robot is 6313 and 5950, respectively.
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Fig. 10. Average accumulated outflow for case 1 under robot initial positions
[0.4, 2] and [3.4, 7.4] over ten runs. Error bar indicates the standard deviation
value.
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Fig. 11. Time history of the robot position under ten robot initial positions

for case 1: (a) x direction and (b) y direction. The shadow area shows the
boundary of these ten trajectories, and the blue solid line illustrates the average
position of these trajectories.

With robot regulation, the accumulated outflow increases by
6.10%.

We also provide statistical results to demonstrate the effec-
tiveness of the proposed approach. The performance of the
proposed approach is compared with no robot, a randomly
moving robot, and an ADP-control robot. For the randomly
moving robot, robot motion is randomly selected from the
permissible actions. For the ADP-control robot, robot motion
is generated by ADP which has been successfully used in [10]
for pedestrian regulation. The simulation is repeated ten times
for each initial position. The average accumulated outflow at
T = 400 s is calculated over ten runs. The simulation results
for case 1 under robot initial positions [0.4, 2] and [3.4, 7.4]
are shown in Fig. 10. Without the robot, the average accumu-
lated outflow is 5989, and its standard deviation is 73. With
a randomly moving robot, the average accumulated outflow
under these two initial positions is 6198 and 4650, respec-
tively. Their standard deviations are 240 and 514, respectively.
With the ADP-control robot, the average accumulated outflow
under these two initial positions is 6286 and 6143, respec-
tively. Their standard deviations are 35 and 37, respectively.
With the proposed DRL control, the average accumulated out-
flow increases to 6475 and 6310, respectively. Their standard
deviations are 53 and 36, respectively. We can see that the
proposed approach greatly improves the accumulated outflow
compared to the no-robot case, the randomly moving robot
case, and the ADP-control robot case.

In order to extensively evaluate the performance of the
proposed approach, we present the results of ten different robot
initial positions in Fig. 11 for case 1. These initial positions are
randomly selected from the boundary of the robot workspace,
which are away from the optimal region marked in Fig. 4(a).
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Fig. 12. Robot initial position [0.4, 2] for case 2: (a) robot trajectory; (b) time
history of the robot position in the x and y directions; and (c) instantaneous
outflow, ¢g;. The grid in (a) shows the robot workspace. The green box in (c)
indicates that the congestion is avoided with robot regulation.

The shadow area highlights the position range from the maxi-
mum to minimum of the ten trajectories at each time step, and
the blue solid line illustrates the average position of these tra-
jectories at each time step. We can observe that the robot can
converge to the optimal region from different initial positions.

2) Case 2: The results of case 2 with the robot initial posi-
tion [0.4, 2] are shown in Fig. 12. Fig. 12(a) and (b) shows
that the robot converges into the optimal region marked by
an ellipse in Fig. 5(a) after around 20 s. One can see from
Fig. 12(c) that the instantaneous outflow with robot regulation
is higher than that without robot regulation. In the green box,
there are sharp drops in the red curve that indicates severe
crowd congestion. The accumulated outflow with and without
a robot is 6509 and 5989, respectively. With robot regulation,
the accumulated outflow increases by 8.68%. Similarly, the
results of case 2 with the robot initial position [3.4, 7.4] are
shown in Fig. 13. From Fig. 13(a), one can observe that the
robot learns to avoid the region in Fig. 5(a) that results in
low outflow. In addition, the robot converges into the optimal
region after around 50 s. Fig. 13(c) shows the improvement of
instantaneous flow. The accumulated outflow with and without
a robot is 6356 and 5989, respectively. With robot regulation,
the accumulated outflow increases by 6.13%.

The statistical results for case 2 under robot initial positions
[0.4, 2] and [3.4, 7.4] are shown in Fig. 14. The simulation
is repeated 10 times for each initial position. The average
accumulated outflow at 7 = 400 s is calculated over ten
runs. Without a robot, the average accumulated outflow is
6027, and its standard deviation is 33. With a randomly
moving robot, the average accumulated outflow under these
two initial positions is 6060 and 4796, respectively. Their
standard deviations are 69 and 821, respectively. With an ADP-
control robot, the average accumulated outflow under these
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Fig. 15. Time history of the robot position under ten robot initial positions

for case 2: (a) x direction and (b) y direction. The shadow area shows the
boundary of these ten trajectories, and the blue solid line shows the average
position of these trajectories.

two initial positions is 6223 and 6129, respectively. Their stan-
dard deviations are 27 and 18, respectively. With the proposed
DRL control, the average accumulated outflow increases to
6485 and 6347, respectively. Their standard deviations are 17
and 30, respectively. We can see that the proposed approach
greatly improves the accumulated outflow compared to these
benchmark solutions.

We also present the results of ten robot initial positions in
Fig. 15 for case 2. These initial positions are randomly selected
from the boundary of the robot workspace, which are away
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TABLE I
COMPUTATIONAL TIME AND RESOURCE USAGE

Time GPU 0 memory GPU | memory CPU memory
Training 30 hours 4.44% 2.64% 2.07%
Online 125 ms 4.44% 2.64% 1.49%

from the optimal region marked in Fig. 5(a). The shadow area
highlights the position range from the maximum to minimum
of the ten trajectories at each time step, and the solid blue line
illustrates the average position of these trajectories at each time
step. We can observe that the robot can converge to the optimal
region marked in Fig. 5(a) from different initial positions.

These results demonstrate that the proposed approach suc-
ceeds in learning the optimal robot motion planning such that
the accumulated outflow is maximized under different inflow
ratios and different robot initial positions.

3) Computational Time and Resource Usage: The compu-
tational time and resource usage for the training phase and the
testing phase are presented in Table I. It takes about 30 h to
train the DNN on the workstation mentioned in Section V-A.
The GPU memory usage is 4.44% and 2.64% for GPU 0
and GPU 1, respectively. The CPU memory usage is 2.07%.
For the online robot motion planner running Algorithm 2, the
image of the environment is fed into the robot every 1 s. It
takes about 125 ms for Algorithm 2 to generate the robot
motion decision after receiving the input image. The GPU
memory usage is 4.44% and 2.64%. The CPU memory usage
is 1.49%. We can see that after the training, the robot motion
planner is fast enough for online control.

E. DRL Control for Changing Pedestrian Flows

In this section, we evaluate the performance of the
proposed DRL-based approach when the pedestrian inflow
ratio changes. We conduct the simulation of case 3 where the
initial inflow ratio of flow A and flow B is ¢1/¢> = 5:1, and
then it changes to q1/g> = 1:11 at r = 300 s. Case 3 repre-
sents the scenario where the main inflow (flow A) is more than
the branch inflow (flow B) initially and then the main inflow
receives less than the branch inflow. The robot is expected to
adjust its position accordingly to maximize the accumulated
outflow under these two flow ratios. Fig. 6(a) and (b) shows
the HRI characteristics of the inflow ratios g;/g> = 5:1 and
q1/q2> = 1:11, respectively. The ellipse in Fig. 6(a) and the
rectangle in Fig. 6(b) highlight the robot positions with the
highest accumulated outflow. The robot is expected to con-
verge into the ellipse region in Fig. 6(a) for ¢1/q2 = 5:1
and then adjust to the rectangular region in Fig. 6(b) for
q1/q2 = 1:11.

Fig. 16 shows the simulation results for case 3 where the
robot initial position is [1, 1]. We can observe that the robot
converges to the ellipse region in Fig. 6(a) at about 30 s. When
the inflow ratio changes at 300 s, the robot adjusts its position
and converges to the rectangular region in Fig. 6(b) after 340
s. These results verify that the proposed approach can replan
the robot motion in real time according to the change of the
pedestrian inflows.
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Fig. 16. DRL control for changing pedestrian flows: (a) robot trajectory and
(b) time history of the robot position in the x and y directions. The grid in
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Fig. 17. 3-D environment constructed by the Unity 3-D engine. (a) Snapshot
of the 3-D environment. (b) 3-D pedestrian model.

VI. EVALUATION RESULTS IN 3-D ENVIRONMENT

In this section, we have evaluated our proposed approach
in a 3-D continuous environment constructed by the Unity
3-D engine. The new 3-D environment is shown in Fig. 17(a).
The pedestrians in flow A and flow B are represented by red
and blue, respectively. The 3-D pedestrian model is shown in
Fig. 17(b).

The evaluation results under pedestrian flow g1 /g2 = 1:3 are
shown in Fig. 18. The robot trajectory is shown in Fig. 18(a).
The robot initial position is denoted by a red star, and the
robot positions at different time steps are represented by black
stars. The arrow at the star indicates the robot motion direc-
tion generated by the proposed approach. The time history of
the robot position in the x and y directions is presented in
Fig. 18(b). We can observe that after around 20 s, the robot
converges into a region, x ~ [2.8,3.8] and y ~ [2.0,3.6],
which is in the optimal region as verified in HRI characteris-
tics and marked by the rectangle in Fig. 4(a). Fig. 18(c) shows
the instantaneous outflow, g;, where the black curve shows the
result with the proposed regulation strategy, and the red curve
shows the result without robot regulation. One can see that
the instantaneous outflow g; with the proposed regulation is
higher than that without robot regulation. Furthermore, in the
green box, there is a significant drop in the red curve, which
is caused by congestion without robot regulation. It can be
seen that congestion is avoided by the proposed robot regu-
lation, and the black curve is relatively more smooth without
sharp drops. The accumulated outflow Zszo q: at T =400 s
with and without the robot are 6549 and 5950, respectively.
With the proposed robot regulation, the accumulated outflow
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Fig. 18. Evaluation results in the 3-D environment: (a) robot trajec-

tory; (b) time history of the robot position in the x and y directions; and
(c) instantaneous outflow, g;. The grid in (a) shows the robot workspace. The
green box in (c) indicates that the congestion is avoided with robot regulation.

increases by 10.07%. These results verify the effectiveness of
our proposed approach in this 3-D environment.

VII. CONCLUSION

In this paper, we proposed a DRL-based approach for
robot motion planning to regulate pedestrian flows. The robot
motion planning problem was solved using a DNN that con-
sists of a CNN and a Q network to learn the optimal policy
for robot motion decisions that maximize the pedestrian out-
flow. The proposed approach provides an end-to-end motion
planner that directly uses the images of the environment.
In comparison with existing work on learning-based pedes-
trian regulation, the CNN is applied to extract discriminative
features from the input images for optimal robot motion
decisions. Extensive simulations were performed, and the
results verified the effectiveness of the proposed approach on
pedestrian flow regulation.

This paper focused on the formulation of the robot-assisted
pedestrian regulation problem and the novel DRL approach
to solve it. While our approach was validated in a simu-
lated environment in this paper, we plan to implement the
proposed approach in real-world scenarios in our future work.
Specifically, we plan to set up an environment with an installed
surveillance camera and a pedestrian tracking system, collect
real images of pedestrian flows from the surveillance camera,
transmit images and instantaneous outflow data to a mobile
robot via a local-area network, and have the robot calculate
motion decisions using our proposed algorithm.
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