

# 1 Free energy simulations reveal 2 molecular mechanism for functional 3 switch of a DNA helicase

4 **Wen Ma**<sup>1,2,3,4</sup>, **Kevin D Whitley**<sup>1,3</sup>, **Yann R Chemla**<sup>1,3,4\*</sup>, **Zaida**  
5 **Luthey-Schulten**<sup>1,2,3,4,5\*</sup>, **Klaus Schulten**<sup>1,2,3,4†</sup>

\*For correspondence:  
ychemla@illinois.edu (YRC);  
zan@illinois.edu (ZLS)

†In memoriam.

6 <sup>1</sup>Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign;  
7 <sup>2</sup>Beckman Institute for Advanced Science and Technology, University of Illinois at  
8 Urbana-Champaign; <sup>3</sup>Center for Biophysics and Computational Biology, University of  
9 Illinois at Urbana-Champaign; <sup>4</sup>Department of Physics, University of Illinois at  
10 Urbana-Champaign; <sup>5</sup>Department of Chemistry, University of Illinois at  
11 Urbana-Champaign

## 12 **Abstract**

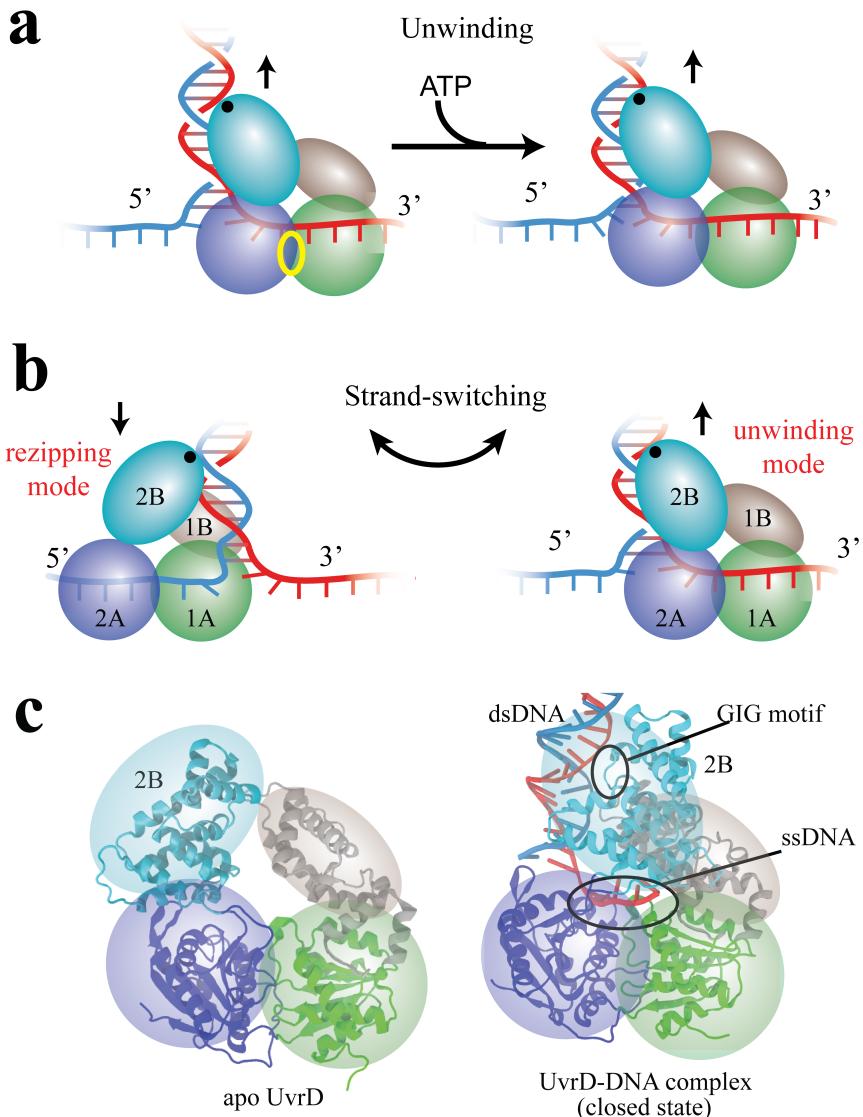
13 Helicases play key roles in genome maintenance, yet it remains elusive how these enzymes change  
14 conformations and how transitions between different conformational states regulate nucleic acid  
15 reshaping. Here we developed a computational technique combining structural bioinformatics  
16 approaches and atomic-level free energy simulations to characterize how the *E. coli* DNA repair  
17 enzyme UvrD changes its conformation at the fork junction to switch its function from unwinding  
18 to rezipping DNA. The lowest free energy path shows that UvrD opens the interface between two  
19 domains, allowing the bound ssDNA to escape. The simulation results predict a key metastable  
20 “tilted” state during ssDNA strand switching. By simulating FRET distributions with fluorophores  
21 attached to UvrD, we show that the new state is supported quantitatively by single-molecule  
22 measurements. The present study deciphers key elements for the “hyper-helicase” behavior of a  
23 mutant, and provides an effective framework to characterize directly structure-function  
24 relationships in molecular machines.

## 26 **Introduction**

27 Helicases are ubiquitous motor proteins that move along nucleic acids and separate duplex DNA or  
28 RNA into its component strands. This role is critical for various aspects of DNA and RNA metabolism;  
29 defects in helicase function in humans can lead to genomic instability and a predisposition to  
30 cancer (*van Brabant et al., 2000; Brosh, 2013*). Characterizing the atomistic mechanism for heli-  
31 case function, though challenging, is crucial to link protein structure with their function and help  
32 engineering helicases with novel activities (*Arslan et al., 2015*).

33 DNA helicases can unwind double-stranded DNA (dsDNA) into single-stranded DNA (ssDNA),  
34 which are later copied during DNA replication or modified in DNA repair processes (*Wu and Spies,*  
35 *2013; Lohman et al., 2008*). They are classified into six superfamilies (SF), among which SF1 and  
36 SF2 helicases are the largest superfamilies and share many similar conserved motifs. The minimal  
37 functional units for SF1 and SF2 helicases are monomers that contain two RecA-like motor domains  
38 for ATP hydrolysis (*Singleton et al., 2007*). SF1 helicases can unwind dsDNA by translocating  
39 on a ssDNA strand as shown in Figure 1a. Such translocation happens in a stepwise manner,

41 during which the chemical energy from ATP hydrolysis is used to break the bonds in dsDNA  
 42 via conformational changes of the motor domains (*Yang, 2010; Patel and Donmez, 2006*). An  
 43 exemplary *E. coli* helicase, UvrD, belonging to SF1, has many cellular roles such as methyl-directed  
 44 mismatch repair (*Iyer et al., 2006; Spies and Fishel, 2015*) and nucleotide excision repair (*Sancar,*  
 45 *1996*) by unwinding duplex DNA. UvrD can also prevent deleterious recombination by removing  
 46 RecA filaments from ssDNA (*Lestini and Michel, 2007*). Along with its homologous proteins PcrA  
 47 and Rep, UvrD has been demonstrated in experiments to translocate on ssDNA progressively  
 48 3' to 5' (*Matson, 1986; Mechanic et al., 1999; Dillingham et al., 2000; Myong et al., 2005; Fischer*  
 49 *et al., 2004*). Structures of UvrD-like SF1 helicase solved so far share a four-subdomain tertiary  
 50 arrangement (1A/2A/1B/2B) (*Singleton et al., 2007*), including two RecA-like domains (1A/2A) which  
 51 contain the ATP binding site and are proposed to function as the translocase (*Dillingham et al., 2001;*  
 52 *Lee and Yang, 2006*), and a flexible domain (2B) which is believed to play a regulatory role in helicase  
 53 activity (*Lohman et al., 2008; Dillingham, 2011*). In particular, the 2B domain is known to adopt  
 54 different conformations (*Velankar et al., 1999; Brendza et al., 2005; Jia et al., 2011; Nguyen et al.,*  
 55 *2017*) and has been proposed to act as a “molecular switch” controlling UvrD unwinding (*Comstock*  
 56 *et al., 2015*).


57 Combining optical tweezers and single-molecule FRET, Comstock et al. (*Comstock et al., 2015*)  
 58 demonstrated that UvrD can switch its activity from DNA unwinding to rezipping (measured by  
 59 optical tweezers) by dramatically changing its conformation between two states (detected by FRET).  
 60 The transition from unwinding to rezipping activities was proposed to occur through switching  
 61 ssDNA strands, accompanied by rotation of the 2B domain (see Figure 1b). In this model, the  
 62 GIG motif on 2B serves as an anchor point on dsDNA above the fork junction, such that rotation  
 63 of 2B can position the 1A/2A translocase domains on either ssDNA strand, leading to 3' to 5'  
 64 UvrD translocation either toward (unwinding) or away from (rezipping) the DNA fork. Two crystal  
 65 structures seem to support this strand-switching model (see Figure 1c): one structure of UvrD  
 66 (pdb code: 2IS2) (*Lee and Yang, 2006*) bound to a dsDNA-ssDNA junction is expected to be the  
 67 “unwinding” state (defined here as the “closed” state) because its 1A/2A domains would translocate  
 68 UvrD into the DNA fork; the other structure (pdb code: 3LFU) (*Jia et al., 2011*) solved without DNA  
 69 is expected to represent the “rezipping” state (defined here as the apo state) because the 1A/2A  
 70 domains presumably would be bound to the opposing strand, translocating UvrD away from the  
 71 DNA fork. The structural differences between closed and apo states mainly involve a simple rotation  
 72 of the 2B domain (Figure 1c).

73 However, in order for the ssDNA strand-switching to happen, the rezipping state must adopt a  
 74 conformation with a gap between the 1B and 2B domain that is large enough for the bound ssDNA  
 75 to escape, whereas in both the closed and apo structures the four domains 1B-1A-2A-2B form  
 76 a closed ring topologically. As we show here, contrary to the common assumption that the apo  
 77 structure is a functional state of UvrD, the FRET signal simulated using real fluorophores attached  
 78 to the apo-state structure does not match the experimentally observed signal of the rezipping  
 79 state, nor the unwinding state. Furthermore, it has been reported that cross-linking the 2B and 1B  
 80 domains of the SF1 helicase Rep can change it into a superhelicase (*Arslan et al., 2015*), capable  
 81 of unwinding thousands of base pairs processively. What are the key regulatory factors for the  
 82 functional switch and is it possible to design mutants with different activities?

83 To characterize the conformational states of UvrD at the fork junction and the transitions be-  
 84 tween those states, we use MD simulations, which are well-suited to study atomic-level mechanisms  
 85 in conjunction with crystallography, single-molecule and biochemical techniques (*Russel et al.,*  
 86 *2009; Zhao et al., 2010; Arkhipov et al., 2013; Cheng et al., 2017; Latorraca et al., 2017*). However,  
 87 due to the very long time-scale of conformational changes, brute-force simulations are challenging  
 88 in the case of large molecular motors such as UvrD. Here, we employed a novel computational  
 89 approach which integrates advanced sampling simulations with bioinformatics tools that survey  
 90 structural information from homologs. We were able to identify modes of motions for function  
 91 switching from principal component analysis of a “trajectory” derived from the alignment of various

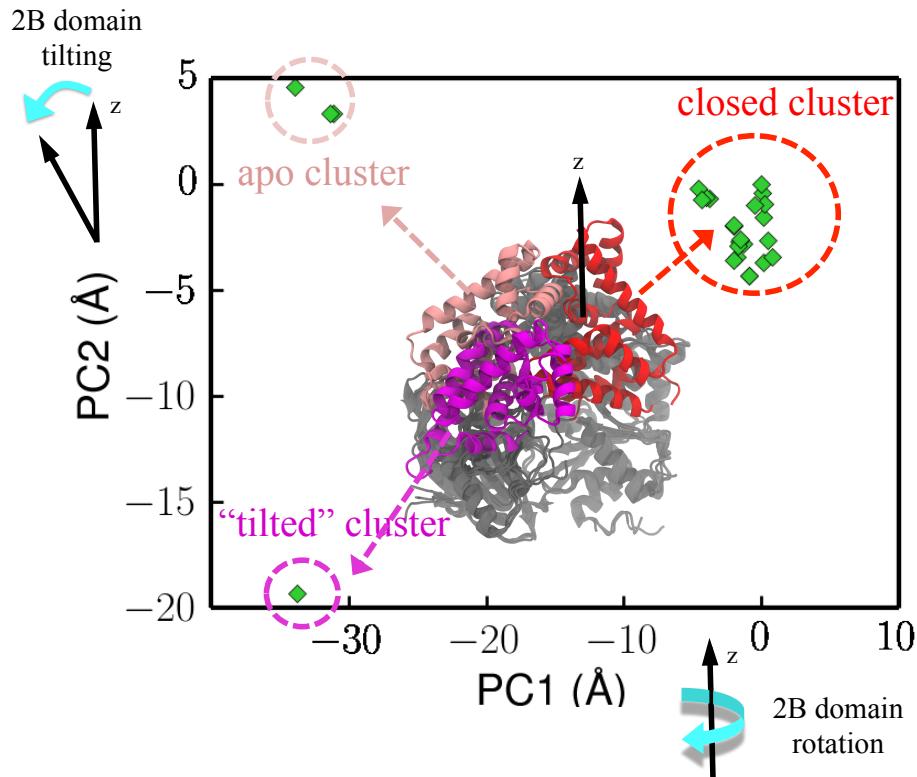
92 surveyed crystal structures. Using the first two principal components as reaction coordinates, the  
93 subsequent all-atom Hamiltonian replica exchange simulations (totaling  $12\mu\text{s}$ ) predict a metastable  
94 “tilted” conformation, which has significantly lower free energy than the apo state. The lowest free  
95 energy path is determined to describe the transition between the closed state to the “tilted” state.  
96 After the closed-to-tilted transition takes place, 2B and 1B domains are separated with enough  
97 distance from each other to enable strand-switching to happen. We demonstrate that ssDNA can  
98 be disengaged from the ssDNA binding domains of UvrD in the tilted state. Furthermore, the  
99 tilted UvrD structure is shown to be able to form stable interactions with the opposing strand after  
100 ssDNA strand switching has occurred. We also highlight the role of the GIG motif in assisting 2B do-  
101 main diffusion along dsDNA during strand-switching. These findings suggest principles underlying  
102 mechanisms of related molecular machines beyond what we have known from existing structures.

103 The properties obtained from the transition pathway are consistent with the single-molecule  
104 data (*Comstock et al., 2015*) as well as mutagenesis studies (*Meiners et al., 2014*). Firstly, we carried  
105 out equilibrium simulations of UvrD site-specifically labeled with FRET dye pair AlexaF555/AlexaF647  
106 for both the closed state and the tilted state. The calculated average FRET efficiencies for the  
107 two states are in good agreement with those for the unwinding and rezipping states measured  
108 in single-molecule experiments, respectively. These simulations also allow us to obtain key fluo-  
109 rophore conformations in the tilted state to explain the shape of the experimental FRET distribution.  
110 Secondly, we illustrate the molecular basis for hyper-helicase activity of a UvrD double mutant  
111 (D403A/D404A) for the first time. Finally, a physical model integrating the simulation results and  
112 the measured equilibrium constant from optical tweezers experiments is provided to explain the  
113 helicase function-switching mechanism.



**Figure 1.** a. Schematic illustration of unwinding by a DNA helicase (UvrD). The helicase uses chemical energy from ATP (hydrolyzed at the site labeled with a yellow ellipse between two motor domains) to unwind dsDNA. b. A proposed model of UvrD functional switching at the fork junction. 1A, 2A, 1B and 2B domains are labeled in green, blue, gray and cyan, respectively. The UvrD conformation on the left represents the rezipping state whereas the conformation on the right represents the unwinding state. GIG motif (residues 414 to 422), drawn as a black dot, is important for UvrD interacting with dsDNA. c. Crystal structures for apo UvrD (3LFU) and UvrD-DNA complex (2IS2, the closed state).

114 **Results**115 **Structural bioinformatics analysis of conformational ensembles of UvrD-like pro-  
116 teins**

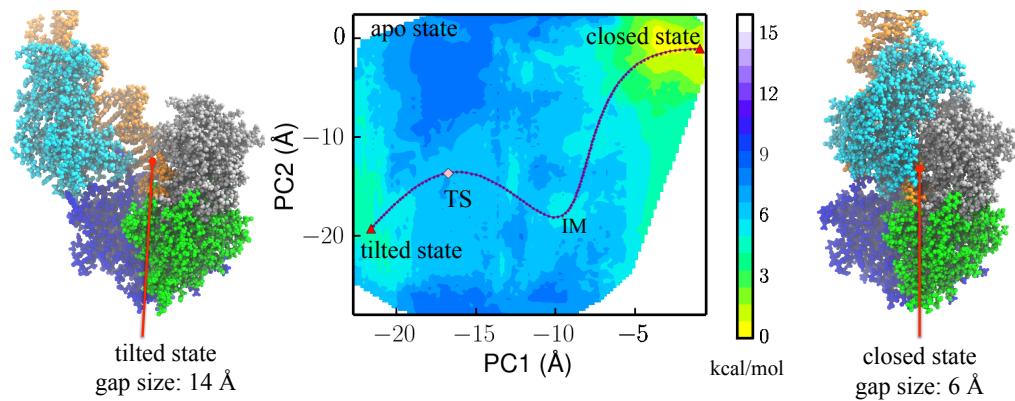

117 Our goal is to characterize UvrD conformational changes that switch its function. Recently free  
 118 energy simulation methods have been successfully applied to study transitions between two  
 119 functional conformational states of complex molecular machines (*Moradi and Tajkhorshid, 2013;*  
*120 Ma and Schulten, 2015; Czub et al., 2017*). However for UvrD all the known structures bound to the  
 121 DNA fork junction belong to the closed (unwinding) state (Figure 1c). It is unclear whether the apo  
 122 state of UvrD could bind to the dsDNA-ssDNA junction. By aligning the apo state to the closed state,  
 123 we found geometrical clashes between the fork junction and the apo state (Fig.1-figure supplement  
 124 1b). We thus forced UvrD at the fork junction to rotate from the closed state to the apo state using  
 125 targeted molecular dynamics (*Schlitter et al., 1994*) (see Fig.1-figure supplement 1c for details).  
 126 However, such an operation experienced large resistance (DNA was free to move), and the protein  
 127 returned back to the vicinity of the closed state after the external force was released. We thus need  
 128 to find new conformations that can represent the rezipping state.

129 In order to reach the rezipping state while bound to the fork junction, UvrD must reach some  
 130 hidden metastable states, which can be far away from the 2B-domain-rotation pathway around  
 131 the dsDNA axis. To identify such states, we developed an approach based on surveying the  
 132 pdb database (details in Methods). We used protein-protein BLAST (basic local alignment search  
 133 tool) to search the swissport database with the UvrD sequence as the query sequence. Then we  
 134 downloaded the pdb files of these homologs with 40% or more sequence identity. A subsequent  
 135 principal component analysis (PCA) was carried out to find out the most significant degrees of  
 136 structural variations among UvrD and its homologs. The coordinates of the homolog structures  
 137 were then projected onto the first two principal components (PC1 and PC2) (Figure 2). Three  
 138 distinguishable clusters are shown in Figure 2: one represents the canonical closed conformation,  
 139 one represents the canonical apo state, and another one represents an interesting structure (from  
 140 the replication initiator protein) in which the 2B domain is tilted from the dsDNA axis. All the  
 141 structures belonging to the apo state are without nucleic acids bound. The structure in the “tilted”  
 142 cluster only has ssDNA bound, and thus very likely it is not a functional state of UvrD because of  
 143 the absence of dsDNA interactions. To characterize the functional state for rezipping, we need to  
 144 carry out all-atom free energy simulations (the next subsection).

145 We next calculated the so-called involvement coefficients (*Lei et al., 2009*) (ICs), which are often  
 146 used to show the contribution of individual modes to the overall structural displacement. For the  
 147 displacement between the closed structure and the tilted structure, the ICs of the first two PCs are  
 148 very high (see Fig.2-figure supplement 1a), indicating that the first two PCs are sufficient to describe  
 149 the protein conformational changes based on the available UvrD homolog structures. Directions of  
 150 motions along the first two PCs are shown on the closed structure (Fig.2-figure supplement 1b). We  
 151 noted that PC1 is in a similar direction as the rotational movement between the closed and apo  
 152 states. PC2 represents a tilting motion orthogonal to the rotation. Since the closed-to-apo rotation  
 153 of the 2B domain cannot bring UvrD to the rezipping state due to steric clashes, we suspect that  
 154 PC2 might make a very important contribution to UvrD conformational switching when bound to  
 155 the junction.

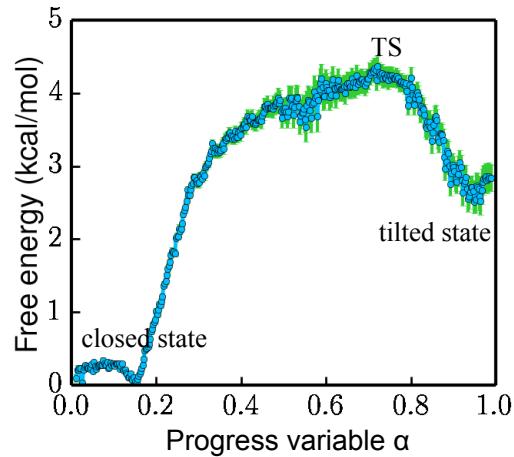
156 **Free energy landscape of UvrD conformational ensembles when bound to the fork  
157 junction**

158 Based on the information revealed by the PCA analysis, we would like to find the UvrD conformation  
 159 responsible for the rezipping state when bound to the dsDNA-ssDNA junction. For this purpose,  
 160 extensive enhanced sampling simulations (12  $\mu$ s in total) were carried out to characterize the free  
 161 energy landscape of UvrD conformations and detect any interesting metastable states in it. See  
 162 Methods for the setup and simulation details.




**Figure 2.** Projection of crystal structures onto the first two PCs from PCA. The structures were obtained through a pdb survey. The structures in the middle of the panel show three structural clusters of the 2B domain, labeled red (closed cluster), magenta (tilted cluster) and pink (apo cluster), respectively. The remaining three domains (1A/2A/2B), which are labeled in gray, only have very small structural variation among the homologs. PC1 represents a rotation motion of the 2B domain around the z-axis, whereas PC2 represents a tilting motion away from the z-axis (see Fig.2-figure supplement 1b).

163 We first characterized the 2D potential of mean force (PMF) using the first two PCs as coordinates  
 164 (middle panel of Figure 3). We identified two conformations located in the two local minima of the  
 165 2D PMF map, respectively (right and left panels of Figure 3). These two conformations are defined  
 166 as “closed” and “tilted” states. The tilted state has features that have not been found in any of the  
 167 existing crystal structures, as we show in the following sections. The PDB file for the newly found  
 168 tilted state is provided as Supplementary File 1.


169 The closed and tilted conformations served as the initial and final states for a transition path  
 170 finding protocol, which was employed to find the lowest free energy path between them (see  
 171 Methods). The most probable transition happens in two phases, during which the 2B domain  
 172 undergoes coupled rotational and tilting motions. In the first phase (closed→IM), 2B carries  
 173 out a large-scale tilting motion along PC2, overcoming a 4.4 kcal/mol barrier before reaching an  
 174 intermediate state IM. In the second phase (IM→TS→tilted), 2B performs mostly a rotational motion  
 175 along PC1, overcoming a 1 kcal/mol barrier ( $G_{TS} - G_{IM}$ ) at the global transition state (TS) before  
 176 reaching the tilted state. Thus the rate-limiting step is the first phase, which involves mostly a  
 177 tilting motion. Fig.3-figure supplement 1 provides the PMF values and intermediate conformations  
 178 along the lowest free energy path. Movie S1 shows the conformational changes of UvrD during the  
 179 transition.

180 One can notice that the region the apo structure represents has a high energy value, which is  
 181 more than 8 kcal/mol higher than the initial state. This demonstrates that the apo state, which  
 182 is connected to the closed state by 2B domain rotation, is very unfavorable at the dsDNA-ssDNA  
 183 junction.



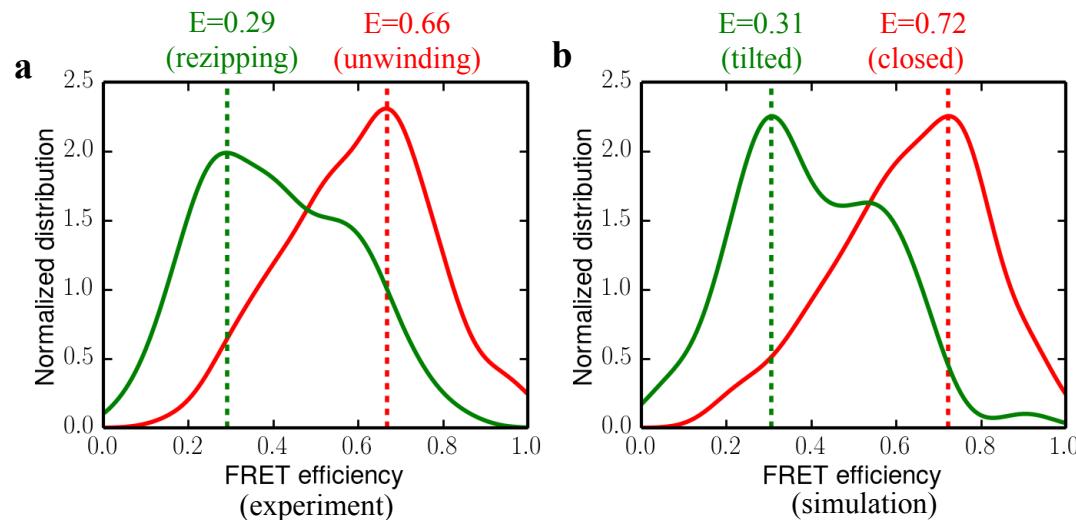
**Figure 3.** Middle panel: free energy profile generated using the projections along the first 2 PCs. The transition state (TS) and an intermediate state (IM) are located between the closed-to-tilted transition (the predicted tilted state PDB is provided as Supplementary File 1). Right and left panels: snapshots for the closed and tilted states are shown along with the gap size, which is defined by the minimal  $C_\alpha$  distance between 2B and 1B domains.

184 We took the representative protein structure in the final and initial states and measured the  
 185 gap size, which is defined by the closest  $C_\alpha$  atom distance between the 2B and 1B domain. The  
 186 extended ssDNA has a diameter around 10 Å (Landy et al., 2013). The initial closed state has a very  
 187 small gap size of 6 Å, through which the ssDNA cannot pass. The final tilted state has a gap size of  
 188 14 Å, which is open enough for ssDNA to pass through.



**Figure 4.** Free energy projected along the progress variable  $\alpha$ , of which the value ranges from 0 to 1.0 (the closed state being 0 and the tilted state being 1.0). The standard error is calculated by a bootstrapping error analysis procedure.

189 The overall free energy landscape projected along a progress variable  $\alpha$  is plotted in Figure 4.  $\alpha$   
 190 is proportional to the projection on PC1 and is scaled from 0 to 1.0 between the closed state and  
 191 the tilted state. The free energy for the metastable tilted state is about 2.5 kcal/mol higher than  
 192 that of the closed state. The system has to overcome a 4.2 kcal/mol energy barrier at the transition  
 193 state (TS) to reach the tilted state.


#### 194 **Validation of the predicted tilted state**

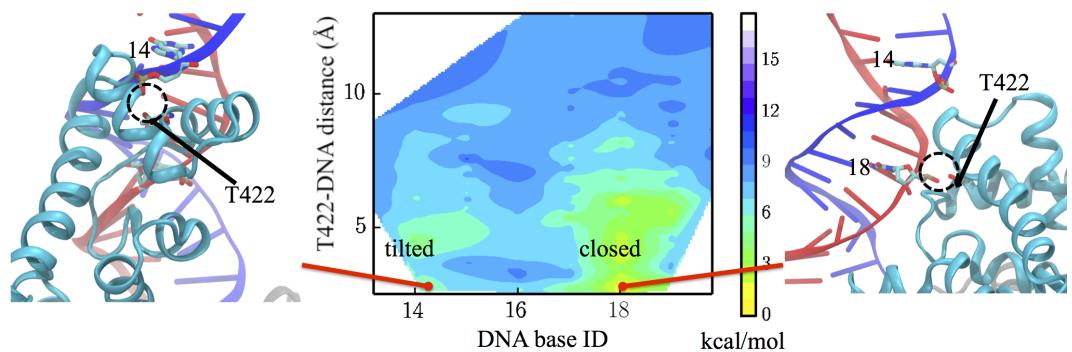
195 We first tested if the ssDNA can escape from the tilted structure. To accelerate the process, we used  
 196 targeted molecular dynamics by adding a harmonic potential to the coordination number between  
 197 UvrD and ssDNA. The targeted coordination number was forced to change from an initial value  
 198 of 18 to 0 in 30 ns. As shown in Movie S2, the ssDNA is seen disengaged from the ssDNA binding

199 domains of UvrD. The final interaction energy between ssDNA and the 1A/2A/1B domains of UvrD  
 200 gradually drops to zeros (see Fig.5-figure supplement 4). Further below, we also show that this  
 201 tilted structure can bind stably to the opposing strand to complete the strand-switching process  
 202 (Figure 8d).

203 To quantitatively validate our simulation results against experimental data, we compared the  
 204 FRET efficiency distributions predicted for the closed and tilted states computationally to those  
 205 of the functional states measured experimentally. We first obtained the 1D FRET efficiency distri-  
 206 butions for the unwinding and rezipping state based on the raw single-molecule data (*Comstock*  
 207 *et al.*, 2015) (see Methods for details). The distributions, shown in Figure 5a, have peak positions at  
 208 0.66 and 0.29 for unwinding and rezipping, respectively. By explicitly simulating UvrD in the two  
 209 states with fluorophore labels (AlexaFluor555/AlexaFluor647) as in the single-molecule experiments,  
 210 we also determined FRET efficiencies for the closed and tilted states (Figure 5b). The simulations  
 211 accumulated 500 ns for each state, and we considered the orientation factor of the fluorophores  
 212 in determining the FRET efficiency (Methods). The predicted FRET efficiency peak for the closed  
 213 state is at 0.72, whereas the peak for the tilted state is around 0.31. The close agreement between  
 214 experimental and simulated FRET distributions reaffirms that the tilted state should be the protein  
 215 conformation responsible for rezipping. As a control, we simulated the apo-state structure with the  
 216 fluorophore labels for 500 ns as well. The apo-state FRET distribution, which peaks at 0.16, is quite  
 217 different from the rezipping-state distribution (Fig.5-figure supplement 1), suggesting that the apo  
 218 structure is not the conformation for UvrD rezipping at the junction.

219 We further examined the representative fluorophore pair conformations at the local maxima  
 220 (FRET Efficiency=0.3 and 0.6) of the tilted state FRET distribution (green curve in Figure 5b). It appears  
 221 that the fluorophores have different conformations at the two different FRET values (Fig.5-figure  
 222 supplement 3), due to the conformational dynamics of the dyes with the long linkers. The “shoulder”  
 223 of the tilted-state FRET distribution curve at 0.6 efficiency is caused by a metastable conformation  
 224 of AlexaFluor555 with different pair-distance and orientation comparing to the conformation at 0.3  
 225 efficiency.




**Figure 5.** Comparing experimental FRET efficiency distributions to the distributions obtained from simulations.  
 a. Experimental distributions for the unwinding and rezipping states. The dotted lines show the peak positions  
 for the two states. b. Simulated FRET efficiency distribution for the closed and tilted states.

### 226 UvrD diffusion along dsDNA

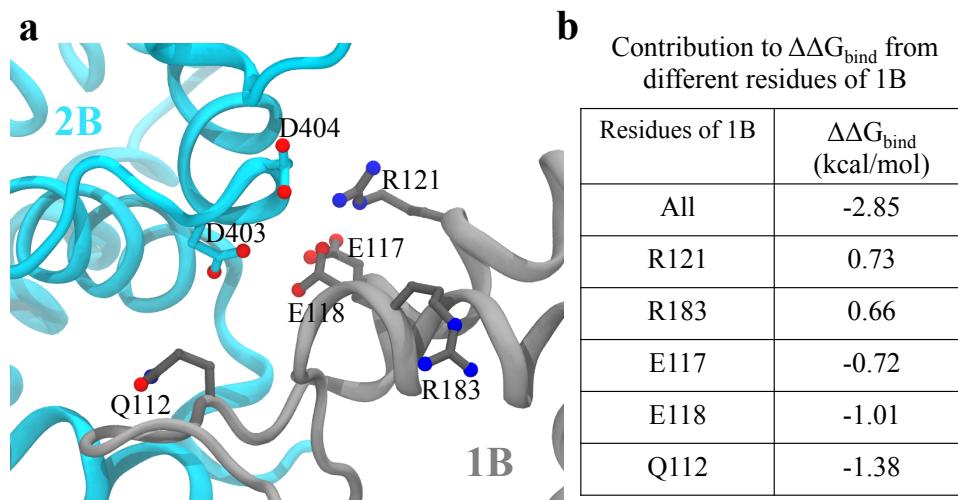
227 In the UvrD functional switching model, the 2B domain of UvrD has to maintain contact with dsDNA;  
 228 otherwise the protein might disassociate from the fork junction during the ssDNA strand exchanging.

229 It is known that the GIG motif (motif IVc) of UvrD plays a key role in interacting with dsDNA (*Myong et al., 2005*), and T422 (a representative residue of GIG) is important for UvrD activity (*Lee and Yang, 2006*). We thus monitored the changes in the interaction between GIG and dsDNA. Figure 6 shows a free energy landscape plotted against the DNA base ID in contact with GIG and the distance between them. For each simulation frame, we calculated the distances between every DNA residue's O2P atom and the OG1 atom of T422. Then the minimal distance and the corresponding DNA base ID were used as the two coordinates. Note the two strands of dsDNA share the same base ID here: for residue x in strand A (indexing according to pdb), the complementary residue in strand B has the same ID x. In the present case, frames with base ID 18 only involve strand A - T422 interaction; whereas frames with base ID 14 only involve strand B - T422 interaction.

239 In the closed state, residue 18 of strand A contacts the GIG motif, whereas in the tilted state, 240 residue 14 of strand B contacts the GIG motif. Thus, there is a diffusional motion along the dsDNA 241 during the conformational change (see Figure 6). In such a way, UvrD is able to switch the binding 242 dsDNA strand and finds an energetically favorable configuration for the ssDNA strand-switching that 243 will happen in the next step. The diffusion happens in a way that the DNA and T422 are disengaged 244 first, and T422 then re-engages with another DNA residue along the double strand. The base ID in 245 contact with T422 during the transition path from the closed state to the tilted state is shown in 246 Fig.6-figure supplement 1. One can see that the 2B diffusion happens late during the transition. 247 Although UvrD diffuses along dsDNA during the transition, there is no base pair unwound during 248 the closed-to-tilted transition.



**Figure 6.** Interaction changes between the GIG motif and dsDNA. Here we use the DNA base ID to represent the closest DNA residue in contact with T422 (part of the GIG motif) on strand A (red) or its complementary residue on strand B (blue). T422 engages with the backbone phosphate of residue 18 of strand A in the closed state whereas it engages with the phosphate of residue 14 of strand B in the tilted state.


#### 249 **Molecular mechanism for the UvrD303 mutant**

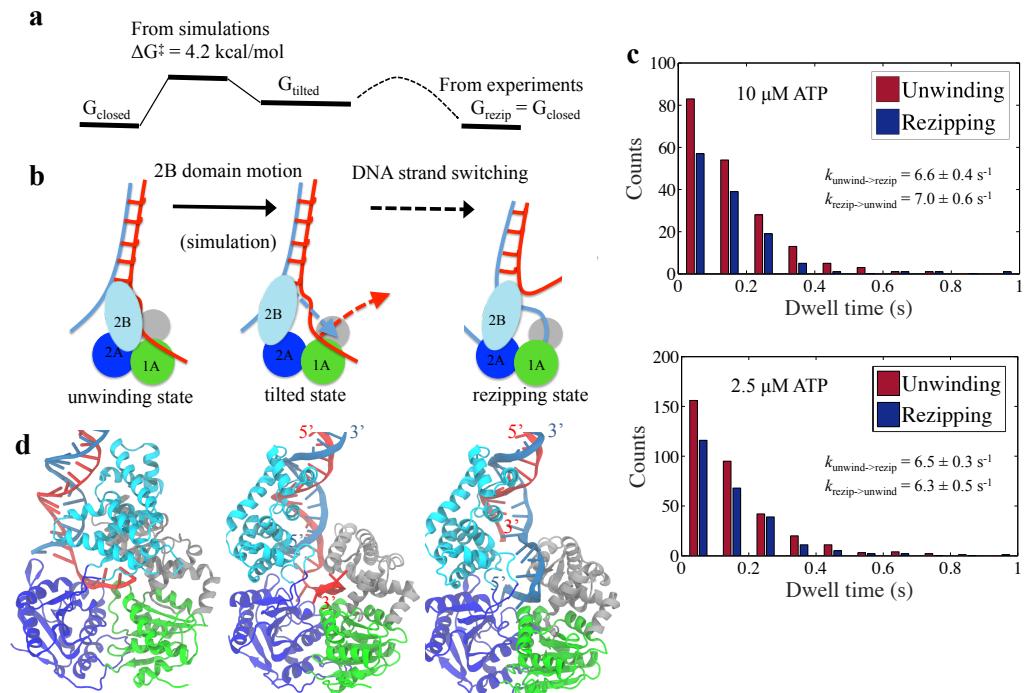
250 Our simulations provide a molecular explanation for the hyper-activity reported for a mutant 251 (UvrD303) that involves two important aspartic acid residues at the 2B-1B interface. Previous 252 experimental work (*Meiners et al., 2014*) discovered that UvrD303 with substitution of two residues, 253 403 and 404 (both from Asp to Ala), in the 2B domain exhibits a “hyper-helicase” unwinding activity 254 in vitro. The authors suggested that such mutations will reduce the 1B-2B domain interactive 255 contacts and thus yield an intermediate conformation instead of a closed conformation. Such an 256 intermediate state they argued would result in the hyper-activity. However, this explanation is not 257 consistent with the single-molecule measurements (*Comstock et al., 2015*) showing that the closed 258 conformation is responsible for unwinding activity.

259 To reconcile the conflict, we estimated  $\Delta\Delta G_{\text{bind}}$  for the binding free energy between the 1B and 260 2B domains upon mutating D403 and D404 into alanine, based on our enhanced sampling trajectory. 261 Here  $\Delta\Delta G_{\text{bind}} = \Delta G_{\text{bind}}^{\text{mutant}} - \Delta G_{\text{bind}}^{\text{WT}}$ , where  $\Delta G_{\text{bind}}^{\text{mutant}}$  is the binding free energy for the mutant and  $\Delta G_{\text{bind}}^{\text{WT}}$  262 is that for the wild type.  $\Delta\Delta G_{\text{bind}}$  calculated for the closed state is around  $-2.85$  kcal/mol, showing

263 a stabilization effect of the double alanine mutant. On the other hand,  $\Delta\Delta G_{\text{bind}}$  calculated for the  
 264 tilted state is around 0. This indicates that UvrD303 actually favors the closed conformation and  
 265 thus will lead to better unwinding activity. The so-called MM/PBSA method (molecular mechanics  
 266 Poisson-Boltzmann surface area) (Kollman *et al.*, 2000; Homeyer and Gohlke, 2012) was used for  
 267 calculating  $\Delta G_{\text{bind}}$ .

268 Figure 7a shows the configuration of D403/D404 and key residues on 1B that contribute most  
 269 significantly to the binding energy change upon the mutation in the closed state. The first five  
 270 residues on 1B with the largest contribution to  $\Delta\Delta G_{\text{bind}}$  are listed in Figure 7b (for the tilted state,  
 271 all the individual residue contributions to  $\Delta G_{\text{bind}}$  become zero). We noted that there are not  
 272 many positively charged residues on 1B that are very close to D403/D404. The maximum number  
 273 of hydrogen bonds formed between D403/D404 and the 1B domain is around two pairs during  
 274 the simulations. Considering that there are also negatively charged residues of 1B (E118/E117)  
 275 near D403/D404, mutating the two aspartic acid residues into alanine will not decrease but rather  
 276 increase the interaction strength between 1B and 2B. We also found that there are significant  
 277 numbers of nonpolar residues located around residues 403 and 404 (L186, A184, L114, I113, L122).  
 278 Thus, mutating the two charged residues into hydrophobic residues instead increases the interaction  
 279 strength between the nonpolar groups and the two alanine residues. Overall, the stabilization of the  
 280 closed state of UvrD303 leads to consistent unwinding of UvrD helicase, reconciling the biochemical  
 281 measurement (Meiners *et al.*, 2014) with the single-molecule experiment (Comstock *et al.*, 2015).




**Figure 7.** a. The configuration of key residues involved in the interaction between D403/D404 (belonging to 2B) and the 1B domain. 2B is shown in cyan whereas 1B is shown in gray. b. A table showing the contribution to  $\Delta\Delta G_{\text{bind}}$  from key residues of 1B upon the mutation. Only residues with  $|\Delta\Delta G_{\text{bind}, x}| > 0.6$  kcal/mol are shown, where  $x$  is the residue index. Positive values indicate destabilization effects of the mutation; negative values indicate stabilization effects.

## 282 Discussion

283 We have characterized the conformational dynamics and a key metastable state of UvrD at a fork  
 284 junction with a hybrid computational approach. The transition pathway as well as the free energy  
 285 landscape for UvrD functional switching at the fork junction was obtained, and we found that the  
 286 opening of the 2B domain involves a major tilting motion followed by a major rotational motion.  
 287 Diffusion of 2B along the dsDNA happens in the late stage of the transition, during which the GIG  
 288 motif switches its contact from one strand of dsDNA to the other strand. The transition leads to  
 289 a gap opening between 2B and 1B, which enables the ssDNA to escape presumably allowing the  
 290 motor domains to strand-switch.

## 291 A physical model for UvrD functional switching

292 A schematic model can be established based on the simulation results (Figure 8a, b). The corre-  
 293 sponding molecular models are shown in Figure 8d. The UvrD functional switching happens in a  
 294 two-step manner. A first step is the opening of the 2B domain, followed by a second step of the  
 295 switching of the bound ssDNA strand, in which the original ssDNA disengages from the 1A/2A/1B  
 296 domain binding site and the other strand fills in.



**Figure 8.** a. Illustration for the whole free energy landscape of ssDNA strand switching enabled by UvrD conformational transition. b. Schematic representation showing the 2-step process of how UvrD switches the ssDNA strand along which the motor domain walks. c. Dwell time distributions for the unwinding and rezipping states at 10  $\mu\text{M}$  and 2.5  $\mu\text{M}$  ATP concentration based on the measured traces from optical tweezers (Methods). d. The structural models for the unwinding, tilted and rezipping states are shown from left to right. The structural model for the rezipping state was obtained from the tilted state after the ssDNA strand switching as illustrated in Methods. Strands A and B of the dsDNA are shown in red and blue, respectively.

297 To obtain the free energy difference between the unwinding and rezipping states, we performed  
 298 a dwell time analysis based on past single-molecule measurements (Comstock *et al.*, 2015). The  
 299 dwell times of the unwinding and rezipping states of UvrD monomers are plotted in a histogram  
 300 and the calculated averaged rates for both transitions are almost equal ( $k_{\text{unwind} \rightarrow \text{rezip}} = 6.6 \text{ s}^{-1}$  and  
 301  $k_{\text{rezip} \rightarrow \text{unwind}} = 7.0 \text{ s}^{-1}$ ) at 10  $\mu\text{M}$  ATP (see Figure 8c). Thus the equilibrium constant is around 1 and the  
 302 unwinding and the re-zipping conformations should have similar free energy. This is consistent

303 with the picture that the tilted state is a little bit less favorable than the initial state but as soon as  
 304 the ssDNA releases and the other ssDNA strand binds to the UvrD, the system returns to a lower  
 305 free energy (the rezipping state) (Figure 8a). For the mutant UvrD303, the free energy for the closed  
 306 state drops around 3 kcal/mol, whereas  $G_{\text{tilted}}$  and  $G_{\text{rezip}}$  remain the same. The relative stabilization  
 307 of the closed state leads to more persistent unwinding.

308 The strand switching is mostly driven by Brownian motion and does not require energy from  
 309 ATP hydrolysis. To address the possible effect of ATP on strand switching, we (1) analyzed additional  
 310 data from the optical tweezers experiments and compared the switching rate at two different  
 311 ATP concentrations and (2) also analyzed the x-ray structures of the closed state with and without  
 312 ATP. The dwell time distributions at 10  $\mu\text{M}$  ATP and 2.5  $\mu\text{M}$  ATP concentration are plotted in  
 313 Figure 8c. The equilibrium constants of switching measured for the two concentrations are very  
 314 similar (both around 1), which suggests that strand switching is likely an ATP-independent process.  
 315 Furthermore, although our simulated system is based on an ATP-free UvrD crystal structure (2IS2),  
 316 our computational approach covered the structural information from ATP (or its analogs) bound  
 317 structures (Fig.8-Figure supplement 1). One can see that the 2B motion between the ATP-substrate  
 318 bound and empty UvrD in the closed state is small relative to the large closed-tilted conformational  
 319 change. Therefore, it is not very likely that ATP binding has a noticeable impact on the closed-to-tilted  
 320 transition.

### 321 **DNA-UvrD conformation at the rezipping state**

322 To explore the structure of the rezipping state further, we built a rezipping structure starting from the  
 323 tilted conformation after ssDNA strand switching has occurred (see Figure 8d and Methods). After a  
 324 100 ns equilibration simulation, the modeled system was stable and had a rmsd around 3 $\text{\AA}$  from  
 325 the tilted state (Fig.8-Figure supplement 2). The newly obtained rezipping structure satisfies the  
 326 following considerations: (1) The protein conformation is very similar to the tilted conformation.  
 327 (2) The interaction configuration between 2B and dsDNA remains the same between the tilted state  
 328 and the rezipping state. Note that during our simulations of the closed to tilted transition, the 2B  
 329 domain changed its contact from one strand of dsDNA to the other (4 bp shift, from the red strand  
 330 A to the blue strand B in Figure 6). (3) The ATPase domains 1A-2A are in the correct orientation  
 331 along the ssDNA (3' to 5'), pointing away from the junction. Such a conformation enables UvrD  
 332 to translocate along ssDNA, allowing the duplex to rezip behind it. In examining the rezipping  
 333 structure, we found a small loop forming between the dsDNA junction and the ssDNA-1A binding  
 334 site. A similar feature was proposed by a translocation model of PcrA helicase in *Park et al. (2010)*,  
 335 which suggested that PcrA can extrude a ssDNA loop while it attaches to dsDNA and translocates  
 336 the 5' ssDNA tail in an open conformation.

337 The apo state seen in the crystal structures without DNA bound is likely not a functional state of  
 338 UvrD at the fork junction. First, the simulated apo-structure FRET distribution is quite different from  
 339 the rezipping-state FRET distribution. Upon completion of the ssDNA strand-switch, we expect the  
 340 conformation of UvrD to stay close to the tilted structure. The FRET signal from the single-molecule  
 341 experiment shows a clear two-state distribution, and our FRET distribution for the tilted state from  
 342 simulations agrees very well with the experiment. Second, we aligned the apo state structure to the  
 343 tilted state in Fig.8-Figure supplement 3, and there are serious clashes between the apo structure  
 344 and the dsDNA. Thirdly, the apo state is highly unfavorable at the fork junction according to our  
 345 simulations.

### 346 **Functional insights for UvrD and its homologs**

347 Our simulations, backed by the single-molecule measurements, provide functional insights for  
 348 UvrD in several important biological processes. For example, frequent strand switching of UvrD  
 349 due to 2B conformational transition results in unwinding over short distances (*Comstock et al., 2015*),  
 350 which is consistent with the small number of basepairs unwound during nucleotide excision  
 351 repair (*Kisker et al., 2013*). On the other hand, UvrD303 is associated with a recombination-deficient

352 phenotype (*Centore et al., 2009*), possibly due to lacking such a structural transition as the closed  
353 state is over-stabilized. It has been reported that UvrD can dismantle RecA filaments from the  
354 ssDNA at a stalled replication fork (*Veautre et al., 2005; Lestini and Michel, 2007*). As RecA has a  
355 central role in homologous recombination (*Cox, 2007*), a population shift towards the closed state  
356 could enhance UvrD's ability to disrupting RecA-ssDNA filaments and impair recombinational repair.

357 The tilted state and related motions found here can possibly help connect structural information  
358 with function for other SF1 helicases. A highly homologous helicase, PcrA, is known to efficiently  
359 strip RecA filaments off ssDNA in an "open" conformation (*Park et al., 2010*). The low-FRET "open"  
360 conformation of PcrA could be similar to the tilted conformation revealed in this study. In this case,  
361 PcrA is anchored to the dsDNA and translocates the 5' ssDNA strand in the direction towards ~~from~~  
362 the junction. A different mode of PcrA is binding to the 3' ssDNA and the dsDNA while unwinding  
363 the duplex in the closed form (*Velankar et al., 1999; Niedziela-Majka et al., 2007*). Another UvrD  
364 homolog RecB, by mostly tilting its 2B domain from the putative closed state, forms interactions  
365 with other subunits in the RecBCD complex (*Singleton et al., 2004; Wilkinson et al., 2016*), which  
366 has a key role in initiating recombinational repair (*Spies and Kowalczykowski, 2005*).

367 It may be possible to engineer UvrD-like helicases with tunable unwinding activities. Experiments  
368 have shown that cross-linking Rep and PcrA in the closed form resulted in superhelicase  
369 activity (*Arslan et al., 2015*). We demonstrated that mutating the 2 aspartic acid residues into  
370 alanine on 2B domain stabilizes the UvrD closed conformation. The ~~contribution~~ analysis of the  
371 binding free energy change upon the mutation (Figure 7b) provides potential target residues to  
372 guide future experimental designs. For example, mutating some negatively charged residues on 1B  
373 might also result in hyper-helicase behavior. Our findings for the conformational dynamics of UvrD  
374 and the related computational strategy establish a foundation for future studies to reveal principles  
375 employed by other related helicase systems.

476 **Methods and Materials**477 **Structural bioinformatics analysis of UvrD homologs**

478 Our computational study is based on analyzing the structural ensemble of UvrD homologs. There  
 479 are two representative structures for UvrD: one being the so-called “closed” state (e.g. 2IS2); the  
 480 other one being the apo state (e.g. 3LFU). As stated in Results, the apo state is likely not a functional  
 481 structure of UvrD at the DNA fork junction. To explore the conformational space of UvrD as much  
 482 as possible, we performed a structural survey for possible UvrD homologue conformations using  
 483 bioinformatics sequence and structure alignment tools (*Altschul et al., 1997; Cock et al., 2009;*  
*484 Bakan and Bahar, 2009; Bakan et al., 2014*). The initial sequence alignments were obtained using  
 485 NCBI blastp search (*Altschul et al., 1997*) of Protein Data Bank database sequences, with UvrD as the  
 486 query sequence. Twenty-six structures were selected from the surveyed structures with sequence  
 487 identity better than 40% and query sequence coverage larger than 60%. The structure alignment  
 488 was generated by ProDy (*Bakan and Bahar, 2009; Bakan et al., 2014*) from the pairwise sequence  
 489 alignments by Biopython (*Cock et al., 2009*). The resulting 26 structures can be interpreted in  
 490 terms of a “trajectory” with the coordinates  $\mathbf{r}(k) = (r_1(k), r_2(k), \dots, r_{3N}(k))^T$ , of which each frame  $k$   
 491 ( $k = 1, 2, \dots, 26$ ) contains  $3N$  coordinates (from  $N C_\alpha$  atoms) of the homologous structures that were  
 492 mapped onto the original UvrD chain.

493 We then performed principal component analysis (PCA) (*García, 1992; Bakan and Bahar, 2009;*  
*494 Raveh et al., 2016*) with ProDy to determine a number of modes for reducing the phase space of  
 495 UvrD motion. Only the  $C_\alpha$  coordinates of the 2B domain were used for the PCA calculations, after  
 496 aligning the 1A/2A/1B domains of all the 26 structures to those of the closed state structure (2IS2).  
 497 The covariance matrix  $\sigma$  for PCA is determined via  $\sigma = \langle (\mathbf{r}(k) - \langle \mathbf{r}(k) \rangle)(\mathbf{r}(k) - \langle \mathbf{r}(k) \rangle)^T \rangle$ , where  
 498 the angular brackets  $\langle \rangle$  denote the average over  $k$  (all the frames). The eigenvectors  $\mathbf{v}_i$  (principal  
 499 components or PCs) of the  $\sigma$  matrix are determined by  $\lambda_i \mathbf{v}_i = \sigma \mathbf{v}_i$ . These PCs, which are ranked  
 500 by their corresponding eigenvalues, represent different directions of conformational motion away  
 501 from the original closed state.

502 The homologous structures were then projected onto the first two PCs with the largest eigen-  
 503 values. As stated in Results, a “tilted” structure based on pdb 1UAA was found as an outstanding  
 504 cluster among the homologous structures. To see the contributions of different PCs to the dis-  
 505 placement between the closed structure and tilted structure, we further calculated the involve-  
 506 ment coefficient  $\eta_i$  (*Ma and Karplus, 1997; Lei et al., 2009*) of the  $i$ th PC.  $\eta_i$  is defined as  $|\mathbf{v}_i \cdot \Delta \mathbf{R}|$ , where  
 507  $\Delta \mathbf{R}$  is the unit vector describing the displacement from the closed structure to the tilted structure.  
 508 Only the first two PCs contribute significantly to the overall motion (Fig.2-Figure supplement 1a).  
 509 PC1 and PC2 are used later as coordinates to compute the free energy landscape.

510 **MD simulation setup**

511 Our simulations were initiated from the closed state (pdb 2IS2) of UvrD (see Figure 1c). The protein-  
 512 DNA system was solvated in a  $100 \text{ \AA} \times 100 \text{ \AA} \times 130 \text{ \AA}$  water box with 55 mM NaCl (the system had  
 513  $\sim 140K$  atoms in total). A  $2 \times 10^4$ -step energy minimization was carried out and the system was then  
 514 heated to 310 K in 30 ps, employing harmonic constraints with 1 kcal/(mol  $\text{\AA}^2$ ) spring constant to the  
 515  $C_\alpha$  atoms. Keeping the spring constant, a 1 ns equilibration in the NPT ensemble (1 atm at 310 K)  
 516 was performed with a Langevin thermostat for temperature coupling. This was followed by a 1 ns  
 517 NVT-ensemble simulation, during which the spring constant was gradually decreased to zero. The  
 518 system was then equilibrated for 60 ns, and the resulting configuration is referred to as the closed  
 519 state. All MD simulations in our study were performed using NAMD 2.10 (*Phillips et al., 2005*) with  
 520 the CHARMM36 force field (*Best et al., 2012; Hart et al., 2012*).

521 **Free energy simulation protocol**

522 To determine the free energy profile along a reaction coordinate, we employed the Hamiltonian  
 523 replica-exchange (HREX) method (*Park et al., 2012; Jiang et al., 2012, 2014*). HREX uses a series

424 of replicas ( $j = 1, 2, \dots, M$ ) of the system, which are simulated concurrently with slightly different  
 425 Hamiltonians and are exchanged frequently among themselves based on the Metropolis exchange  
 426 criterion (Sugita *et al.*, 2000). HREX can be very powerful in reconstructing rugged free energy  
 427 landscapes by exchanging external biasing potentials, which, with different biasing parameters,  
 428 are added to the replicas to enhance the sampling throughout the reaction coordinate (RC). The  
 429 biasing potential (or the window potential) for each replica  $j$  usually assumes the form of  $U_m(\xi_j) =$   
 430  $k_m(\xi_j - p_m)^2/2$ , where  $\xi_j$  is the current value of the reaction coordinate for replica  $j$ ,  $m$  ( $m = 1, 2, \dots,$   
 431  $M$ ) is the index for the biasing potentials (windows),  $p_m$  is the preassigned parameter for the center  
 432 of the harmonic potential, and  $k_m$  is the spring constant. The centers of the biasing potentials ( $p_m$ )  
 433 are selected as an ordered list of values ( $p_1 < p_2 < \dots < p_M$ ) all over the RC to cover the reaction of  
 434 interest fully. Exchanges between two neighboring replicas (replicas with neighboring  $p_m$  values) are  
 435 attempted periodically during the simulations. Without the replica-exchange strategy, this protocol  
 436 reduces to the conventional umbrella sampling, which often suffers from the inefficient sampling  
 437 of degrees of freedom orthogonal to the reaction coordinate (Jiang *et al.*, 2012).

438 The present study chooses the projection on the first PC ( $v_1$ ) as the reaction coordinate  $\xi$   
 439 and includes  $M = 120$  biasing windows between the closed state and the tilted state. The initial  
 440 configurations for the  $M$  windows were generated through a 5 ns targeted MD simulation (Schlitter  
 441 *et al.*, 1994), by driving UvrD from the closed state to the tilted state. The distribution of the obtained  
 442 initial snapshots was roughly uniform along the first PC. An exchange between two neighboring  
 443 replicas was attempted every 10 ps and the spring constant of the harmonic potential was set  
 444 to 100 kcal/(mol Å<sup>2</sup>). The production run of each replica lasted 100 ns, and the total simulation  
 445 time added up to 12 μs (100 ns × 120). Eventually the weighted histogram analysis method  
 446 (WHAM) (Kumar *et al.*, 1992) was applied to obtain the unbiased 1D and 2D free energy landscapes  
 447 in Figure 4 and 3. We performed the Monte Carlo bootstrap error analysis (Stine, 1989; Hub *et al.*,  
 448 2010) to estimate the uncertainty along the reaction coordinate. The basic idea of bootstrapping is  
 449 to obtain several estimates (we obtained 10 trials) for the free energy based on randomly generated  
 450 subpopulations from the histogram in each window. Our simulations with HREX benefitted from a  
 451 scalable multiple copy algorithm (Jiang *et al.*, 2014) which enables simulating hundreds of replicas  
 452 simultaneously on a petascale supercomputer.

453 As stated in Results, the tilted state structure was identified as one of the most important  
 454 metastable states. Based on the free energy landscape using the projections on the first two  
 455 PCs, the lowest free energy path describing the most probable reaction mechanism was localized  
 456 between closed state and the tilted state using the optimization algorithm in Ensing *et al.* (2005).  
 457 The path was then smoothed and 120 images were chosen uniformly along the 2D pathway applying  
 458 the curve-fitting protocol in Ma and Schulten (2015).

#### 459 **FRET efficiency calculation based on simulations with dye molecules**

460 To check if the simulated closed and tilted states generate the FRET signals of the respective  
 461 unwinding and rezipping states measured by the single-molecule experiments, we carried out equi-  
 462 librium simulations with the actual dye molecules for both states. AlexaFluor555 and AlexaFluor647  
 463 maleimides (Molecular Probes, Eugene, OR) were modeled according to Vrljic *et al.* (2010) and Gust  
 464 *et al.* (2014) (see Fig.5-Figure supplement 2). Then the two dyes were, respectively, attached to  
 465 UvrD residues 473 and 100, which were mutated to cysteine from alanine. Force field parameters  
 466 for the dyes linked to a cysteine residue were obtained from the CHARMM General Force Field  
 467 (CGenFF) (Vanommeslaeghe *et al.*, 2010) using the ParamChem server. The total charges were set  
 468 to 0 and -3 for the two dyes respectively (Gust *et al.*, 2014). Partial charges on the atoms were  
 469 further refined by the Force Field Toolkit (ffTK) (Mayne *et al.*, 2013) in VMD (Humphrey *et al.*, 1996).  
 470 Parameters for bonds, angles and dihedrals from CGenFF with high penalty scores were validated  
 471 or refined by ffTK.

472 To sample dye dynamics efficiently, we launched 50 independent standard MD simulations with  
 473 random initial velocity seeds for the closed, tilted and apo states. Every single simulation lasted

474 10 ns and a total 500 ns simulation time was accumulated for each state.

475 The FRET efficiency was determined by  $E = R_0^6/(R^6 + R_0^6)$ , where  $R$  is the distance between the  
 476 donor and acceptor, and  $R_0$  is the Förster radius (or the 50% energy transfer distance).  $R_0$  is given  
 477 by the relationship (Wu and Brand, 1994)  $R_0 = (8.79 \times 10^{-5} n^{-4} \phi_D J \kappa^2)^{1/6}$ , where  $n$  is the index of  
 478 refraction,  $\phi_D$  is the donor quantum yield,  $J$  is the spectral overlap integral, and  $\kappa^2$  is the orientation  
 479 factor.  $R_0$  is determined to be 51 Å when  $\kappa^2$  equals 2/3, assuming that the dyes randomize their  
 480 orientations by rapid diffusion prior to energy transfer. Such an assumption can be problematic,  
 481 and in the present study the orientation factor is calculated using  $\kappa^2 = (\cos\theta_T - 3\cos\theta_D\cos\theta_A)^2$ ,  
 482 where  $\theta_T$  is the angle between the donor and acceptor transition dipole moments and  $\theta_D$  and  $\theta_A$  are  
 483 the angles between these two dipoles and the vector connecting the donor and acceptor (Corry and  
 484 Jayatilaka, 2008). The transition dipole moments for AlexaFluor555/647 or very similar dyes have  
 485 been determined in Corry and Jayatilaka (2008) and Graen (2009). The simulated FRET data were  
 486 integrated to 4 ns per point to obtain its probability distribution using the density kernel estimation  
 487 method (Parzen, 1962).

#### 488 Analysis of single-molecule data

489 To validate our simulation results, analysis based on the raw data from single-molecule experi-  
 490 ments (Comstock et al., 2015) was carried out. Comstock et al. (2015) combined optical tweezers  
 491 (to detect UvrD unwinding activity) and single-molecule FRET (to detect UvrD conformation) mea-  
 492 suring both simultaneously. Example raw time traces of UvrD activity and conformation are shown  
 493 in Fig. 3 and Fig. S5 in (Comstock et al., 2015) (at 10  $\mu$ M ATP concentration). Time traces from the  
 494 optical tweezers were sampled at 267 Hz. Time traces for donor and acceptor intensities were  
 495 integrated to 30-60 ms per data point. The time-dependent FRET efficiency  $E(t)$  was calculated by  
 496  $E(t) = 1/(1 + \gamma(I_D(t)/I_A(t)))$  (Ha et al., 1999; Choi et al., 2010), where  $I_D(t)$  and  $I_A(t)$  are the measured  
 497 donor and acceptor intensities, and  $\gamma$  is a correction factor accounting for the different detection  
 498 efficiencies for the two dyes, and can be measured from photobleaching events.  $\gamma = \Delta I_A / \Delta I_D$   
 499 is determined to be 0.78 from 20 acceptor photobleaching events, where  $\Delta I_A$  and  $\Delta I_D$  are the  
 500 acceptor and donor intensity changes upon acceptor photobleaching, respectively.

501 To measure the FRET efficiency distribution for the unwinding and rezipping states individually,  
 502 we needed to assign each raw data point to the two states separately. Since the helicase velocity  
 503 and FRET efficiency were measured concurrently, we used helicase velocity to define whether each  
 504 data point in the traces belonged to unwinding or rezipping states (see Fig. S5 in Comstock et al.  
 505 (2015)). Time intervals were determined during which the helicase was either unwinding, rezipping,  
 506 or paused (positive velocity indicates UvrD is in the unwinding state; negative velocity indicates  
 507 rezipping; absolute unwinding velocity smaller than 20 bp/s indicates a pause). Paused states  
 508 were not considered in the analysis. FRET efficiencies over each time interval were collected for  
 509 the unwinding and rezipping states from 141 time intervals (13 molecules in total). We then used  
 510 the density kernel estimation method to obtain the experimental FRET distribution (Parzen, 1962;  
 511 Comstock et al., 2015)). A density kernel plot is a summation of small Gaussians centered at each  
 512 FRET data point. We used a standard deviation of 0.06 for the Gaussians.

513 We also analyzed the dwell times for both the unwinding state (high FRET) and the rezipping state  
 514 (low FRET) of UvrD monomers. For this purpose, the duration of each time interval defined above  
 515 was measured using the traces from optical tweezers measurements. We chose to select intervals  
 516 and calculate the dwell time using the tweezers signal because it has a higher time resolution than  
 517 the FRET signal (about one order of magnitude higher). The dwell time distribution was obtained by  
 518 histogramming the collected duration values for the unwinding and rezipping state separately. In  
 519 order to assess the effect of ATP concentration on UvrD functional switching, we analyzed optical  
 520 tweezers data of UvrD activity at two different ATP concentrations. Figure 8c plots the distributions  
 521 of dwell times at 10  $\mu$ M and 2.5  $\mu$ M ATP concentration. The rates of the transitions were estimated  
 522 by the inverse of the averaged dwell times.

**523 Modeling of the rezipping-state structure**

524 To construct a structure of the rezipping state (after ssDNA strand switching) starting from the tilted  
525 conformation (Figure 8d), we consider the following constraints: (1) the 2B domain maintains its  
526 contact with the dsDNA while the ssDNA binding domains (1A and 2A) disassociate from one ssDNA  
527 strand and bind to the other ssDNA strand. Otherwise, the entire protein would dissociate from  
528 DNA. (2) The interaction configuration between ssDNA and the motor domains (1A-2A) must remain  
529 the same after strand switching. The motor domains move from 3' to 5' on the ssDNA in both the  
530 unwinding and rezipping modes. With these considerations, we created a structural model in which  
531 we repositioned the UvrD-bound ssDNA segment from the 3' ssDNA tail (strand A) to the 5' ssDNA  
532 tail (strand B) of the junction in the tilted state. This was achieved by attaching the 5' terminus of  
533 strand B to the 3' terminus of strand A, and by cutting the ssDNA (strand A) at the junction position.  
534 We then equilibrated the modeled system in a water box with 55 mM NaCl for 100 ns.

**535 Acknowledgments**

536 The present contribution is dedicated to Klaus Schulten (1947-2016), whose visionary developments  
537 in high performance simulation tools for molecular dynamics permit characterizing biomolecular  
538 motor action at biologically relevant timescales. This work has been supported by grants from the  
539 NIH (9P41GM104601 to Z.L.-S and K.S; R01 GM120353 to Y.R.C.) and from the NSF PHY-1430124  
540 (Center for the Physics of Living Cells to Y.R.C., Z.L.-S. and K.S.). The authors gladly acknowledge  
541 supercomputer time provided by the Texas Advanced Computing Center via Extreme Science  
542 and Engineering Discovery Environment grant NSF-MCA93S028 and the Blue Waters sustained-  
543 petascale computing project, which is supported by NSF (OCI-0725070 and ACI-1238993) and the  
544 State of Illinois. We also thank former Chemla lab member Dr. Matthew J. Comstock for scientific  
545 discussions.

**546 Additional files**

547 Movie S1: A movie showing the changes in the molecular structure along the optimal transition  
548 path from the closed state to the tilted state.  
549 Movie S2: A movie showing how the ssDNA disengages from its binding domains of UvrD in the  
550 tilted state.  
551 Supplementary File 1: The PDB file for the predicted tilted-state structure of the UvrD-DNA complex.  
552 Supplementary File 2: CHARMM36 force field parameters for the fluorophore molecules used in the  
553 simulations (AlexaFluor555 and AlexaFluor647).

554 **References**

555 **Altschul SF**, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman D. Gapped BLAST and PSI-BLAST: A  
556 new generation of protein database search programs. *Nucleic Acids Res.* 1997; 25:3389–3402.

557 **Arkhipov A**, Shan Y, Das R, Endres NF, Eastwood MP, Wemmer DE, Kuriyan J, Shaw DE. Architecture and  
558 Membrane Interactions of the EGF Receptor. *Cell.* 2013; 152(3):557–569.

559 **Arslan S**, Khafizov R, Thomas CD, Chemla YR, Ha T. Engineering of a superhelicase through conformational  
560 control. *Science.* 2015; 348(6232):344–347.

561 **Bakan A**, Bahar I. The intrinsic dynamics of enzymes plays a dominant role in determining the structural  
562 changes induced upon inhibitor binding. *Proc Natl Acad Sci USA.* 2009; 106(34):14349–14354.

563 **Bakan A**, Dutta A, Mao W, Liu Y, Chennubhotla C, Lezon TR, Bahar I. Evol and ProDy for bridging protein  
564 sequence evolution and structural dynamics. *Bioinformatics.* 2014; 30(18):2681.

565 **Best RB**, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell AD. Optimization of the Additive CHARMM All-Atom  
566 Protein Force Field Targeting Improved Sampling of the Backbone  $\phi$ ,  $\psi$  and Side-Chain  $\chi_1$  and  $\chi_2$  Dihedral  
567 Angles. *J Chem Theor Comp.* 2012; 8(9):3257–3273. PMID: 23341755.

568 **Brendza KM**, Cheng W, Fischer CJ, Chesnik MA, Niedziela-Majka A, Lohman TM. Autoinhibition of *Escherichia coli*  
569 Rep monomer helicase activity by its 2B subdomain. *Proc Natl Acad Sci USA.* 2005; 102:10076–10081.

570 **Brosh RM**. DNA helicases involved in DNA repair and their roles in cancer. *Nat Rev Cancer.* 2013 August;  
571 13(8):542–558.

572 **Centore RC**, Leeson MC, Sandler SJ. UvrD303, a Hyperhelicase Mutant That Antagonizes RecA-Dependent SOS  
573 Expression by a Mechanism That Depends on Its C Terminus. *Journal of Bacteriology.* 2009; 191(5):1429–1438.

574 **Cheng MH**, Torres-Salazar D, Gonzalez-Suarez AD, Amara SG, Bahar I. Substrate transport and anion permeation  
575 proceed through distinct pathways in glutamate transporters. *eLife.* 2017 jun; 6:e25850.

576 **Choi UB**, Stop P, Vrljic M, Chu S, Brunger A, Weninger KR. Single-molecule FRET-derived model of synaptotagmin  
577 1-SNARE fusion complex. *Nat Struct Mol Biol.* 2010; 17:318–331.

578 **Cock PJA**, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B,  
579 de Hoon MJL. Biopython: freely available Python tools for computational molecular biology and bioinformatics.  
580 *Bioinformatics.* 2009; 25(11):1422.

581 **Comstock MJ**, Whitley KD, Jia H, Sokoloski J, Lohman TM, Ha T, Chemla YR. Direct observation of structure-  
582 function relationship in a nucleic acid-processing enzyme. *Science.* 2015; 348(6232):352–354.

583 **Corry B**, Jayatilaka D. Simulation of Structure, Orientation, and Energy Transfer between AlexaFluor Molecules  
584 Attached to MscL. *Biophys J.* 2008; 95(6):2711 – 2721.

585 **Cox MM**. Motoring along with the bacterial RecA protein. *Nat Rev Mol Cell Biol.* 2007; 8(2):127–138.

586 **Czub J**, Wieczór M, Prokopowicz B, Grubmüller H. Mechanochemical Energy Transduction during the Main  
587 Rotary Step in the Synthesis Cycle of F1-ATPase. *J Am Chem Soc.* 2017; 139(11):4025–4034. PMID: 28253614.

588 **Dillingham MS**. Superfamily I helicases as modular components of DNA-processing machines. *Biochem Soc  
589 Trans.* 2011; 39(2):413–423.

590 **Dillingham MS**, Soultanas P, Wiley P, Webb MR, Wigley DB. Defining the roles of individual residues in the  
591 single-stranded DNA binding site of PcrA helicase. *Proc Natl Acad Sci USA.* 2001; 98(15):8381–8387.

592 **Dillingham MS**, Wigley DB, Webb MR. Demonstration of unidirectional single-stranded DNA translocation by  
593 PcrA helicase: measurement of step size and translocation speed. *Biochemistry.* 2000; 39:205–212.

594 **Ensing B**, Laio A, Parrinello M, Klein ML. A Recipe for the Computation of the Free Energy Barrier and the Lowest  
595 Free Energy Path of Concerted Reactions. *J Phys Chem B.* 2005; 109(14):6676–6687. PMID: 16851750.

596 **Fischer CJ**, Maluf NK, Lohman TM. Mechanism of ATP-dependent translocation of *E. coli* UvrD monomers along  
597 single-stranded DNA. *J Mol Biol.* 2004; 344:1287–1309.

598 **García AE**. Large-amplitude nonlinear motions in proteins. *Phys Rev Lett.* 1992 Apr; 68:2696–2699.

599 **Graen T.** Dye'ing for FRET: The HTH motif in smFRET-MD simulation. Bachelor thesis, Georg-August-Universität  
600 Göttingen; 2009.

601 **Gust A**, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D. A Starting Point for  
602 Fluorescence-Based Single-Molecule Measurements in Biomolecular Research. *Molecules*. 2014; 19(10):15824–  
603 15865.

604 **Ha T**, Ting AY, Liang J, Caldwell WB, Deniz AA, Chemla DS, Schultz PG, Weiss S. Single-molecule fluorescence  
605 spectroscopy of enzyme conformational dynamics and cleavage mechanism. *Proc Natl Acad Sci USA*. 1999;  
606 96(3):893–898.

607 **Hart K**, Foloppe N, Baker CM, Denning EJ, Nilsson L, MacKerell AD. Optimization of the CHARMM Additive Force  
608 Field for DNA: Improved Treatment of the B1/BII Conformational Equilibrium. *J Chem Theor Comp*. 2012;  
609 8(1):348–362. PMID: 22368531.

610 **Homeyer N**, Gohlke H. Free Energy Calculations by the Molecular Mechanics Poisson?Boltzmann Surface Area  
611 Method. *Molecular Informatics*. 2012; 31(2):114–122.

612 **Hub JS**, de Groot BL, van der Spoel D. g\_wham-A Free Weighted Histogram Analysis Implementation Including  
613 Robust Error and Autocorrelation Estimates. *J Chem Theor Comp*. 2010; 6:3713–3720. doi: 10.1021/ct100494z.

614 **Humphrey W**, Dalke A, Schulten K. VMD – Visual Molecular Dynamics. *J Mol Graphics*. 1996; 14:33–38.

615 **Iyer RR**, Pluciennik A, Burdett V, Modrich PL. DNA Mismatch Repair: Functions and Mechanisms. *Chem Rev*.  
616 2006; 106(2):302–323.

617 **Jia H**, Korolev S, Niedziela-Majka A, Maluf NK, Gauss GH, Myong S, Ha T, Waksman G, Lohman TM. Rotations of  
618 the 2B Sub-domain of *E. coli* UvrD Helicase/Translocase Coupled to Nucleotide and DNA Binding. *J Mol Biol*.  
619 2011; 411(3):633 – 648.

620 **Jiang W**, Luo Y, Maragliano L, Roux B. Calculation of Free Energy Landscape in Multi-Dimensions with  
621 Hamiltonian-Exchange Umbrella Sampling on Petascale Supercomputer. *J Chem Theor Comp*. 2012;  
622 8(11):4672–4680.

623 **Jiang W**, Phillips J, Huang L, Fajer M, Meng Y, Gumbart J, Luo Y, Schulten K, Roux B. Generalized Scalable Multiple  
624 Copy Algorithms for Molecular Dynamics Simulations in NAMD. *Comput Phys Commun*. 2014; 185:908–916.

625 **Kisker C**, Kuper J, Van Houten B. Prokaryotic Nucleotide Excision Repair. *Cold Spring Harbor Perspectives in  
626 Biology*. 2013; 5(3).

627 **Kollman PA**, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak  
628 P, Srinivasan J, Case DA, Cheatham TE. Calculating Structures and Free Energies of Complex Molecules: Combining  
629 Molecular Mechanics and Continuum Models. *Acc Chem Res*. 2000; 33(12):889–897. PMID:  
630 11123888.

631 **Kumar S**, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM. The Weighted Histogram Analysis Method for  
632 Free-Energy Calculations on Biomolecules. I. The Method. *J Comp Chem*. 1992; 13:1011–1021.

633 **Landy J**, Lee Y, Jho Y. Limiting law excess sum rule for polyelectrolytes. *Phys Rev E*. 2013 Nov; 88:052315.

634 **Latorraca NR**, Fastman NM, Venkatakrishnan AJ, Frommer WB, Dror RO, Feng L. Mechanism of Substrate  
635 Translocation in an Alternating Access Transporter. *Cell*. 2017 2017/07/07; 169(1):96–107.e12.

636 **Lee JY**, Yang W. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. *Cell*. 2006;  
637 187:1349–1360.

638 **Lei M**, Velos J, Gardino A, Kivenson A, Karplus M, Kern D. Segmented Transition Pathway of the Signaling Protein  
639 Nitrogen Regulatory Protein C. *J Mol Biol*. 2009; 392(3):823 – 836.

640 **Lestini R**, Michel B. UvrD controls the access of recombination proteins to blocked replication forks. *EMBO J*.  
641 2007; 26(16):3804–3814.

642 **Lohman TM**, Tomko EJ, Wu CG. Non-hexameric DNA helicases and translocases: mechanisms and regulation.  
643 *Nat Rev Mol Cell Biol*. 2008; 9:391–401.

644 **Ma J**, Karplus M. Ligand-induced conformational changes in ras p21: a normal mode and energy minimization  
645 analysis. *J Mol Biol*. 1997; 274(1):114 – 131.

646 **Ma W**, Schulten K. Mechanism of substrate translocation by a ring-shaped ATPase motor at millisecond  
647 resolution. *J Am Chem Soc*. 2015; 137:3031–3040.

648 **Matson SW**. *Escherichia coli* helicase II (urvD gene product) translocates unidirectionally in a 3' to 5' direction. *J Biol Chem*. 1986; 261(22):10169–10175.

650 **Mayne CG**, Saam J, Schulten K, Tajkhorshid E, Gumbart JC. Rapid parameterization of small molecules using the  
651 Force Field Toolkit. *J Comp Chem*. 2013; 34:2757–2770.

652 **Mechanic LE**, Hall MC, Matson SW. *Escherichia coli* DNA Helicase II Is Active as a Monomer. *J Biol Chem*. 1999;  
653 274(18):12488–12498.

654 **Meiners MJ**, Tahmaseb K, Matson SW. The UvrD303 Hyper-helicase Exhibits Increased Processivity. *J Biol Chem*.  
655 2014; 289(24):17100–17110.

656 **Moradi M**, Tajkhorshid E. Mechanistic picture for conformational transition of a membrane transporter at  
657 atomic resolution. *Proc Natl Acad Sci USA*. 2013; 110(47):18916–18921.

658 **Myong S**, Rasnik I, Joo C, Lohman TM, Ha T. Repetitive shuttling of a motor protein on DNA. *Nature*. 2005;  
659 322:1321–1325.

660 **Nguyen B**, Ordabayev Y, Sokoloski JE, Weiland E, Lohman TM. Large domain movements upon UvrD dimerization  
661 and helicase activation. *Proc Natl Acad Sci USA*. 2017; 114(46):12178–12183.

662 **Niedziela-Majka A**, Chesnik MA, Tomko EJ, Lohman TM. *Bacillus stearothermophilus* PcrA monomer is a  
663 single-stranded DNA translocase but not a processive helicase in vitro. *J Biol Chem*. 2007; 282:27076–27085.

664 **Park J**, Myong S, Niedziela-Majka A, Lee KS, Yu J, Lohman TM, Ha T. PcrA Helicase Dismantles RecA Filaments by  
665 Reeling in DNA in Uniform Steps. *Cell*. 2010; 142(4):544–555.

666 **Park S**, Kim T, Im W. Transmembrane Helix Assembly by Window Exchange Umbrella Sampling. *Phys Rev Lett*.  
667 2012 Mar; 108:108102.

668 **Parzen E**. On Estimation of a Probability Density Function and Mode. *Ann Math Statist*. 1962 09; 33(3):1065–1076.

669 **Patel SS**, Donmez I. Mechanisms of Helicases. *J Biol Chem*. 2006; 281(27):18265–18268.

670 **Phillips JC**, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K. Scalable  
671 Molecular Dynamics with NAMD. *J Comp Chem*. 2005; 26:1781–1802.

672 **Raveh B**, Karp JM, Sparks S, Dutta K, Rout MP, Sali A, Cowburn D. Slide-and-exchange mechanism for rapid and  
673 selective transport through the nuclear pore complex. *Proc Natl Acad Sci USA*. 2016; 113(18):E2489–E2497.

674 **Russel D**, Lasker K, Phillips J, Schneidman-Duhovny D, Velázquez-Muriel JA, Sali A. The structural dynamics of  
675 macromolecular processes. *Curr Opin Cell Biol*. 2009; 21(1):97 – 108. Cell structure and dynamics.

676 **Sancar A**. DNA excision repair. *Annu Rev Biochem*. 1996; 65:43–81.

677 **Schlitter J**, Engels M, Krüger P. Targeted Molecular Dynamics: A New Approach for Searching Pathways of  
678 Conformational Transitions. *J Mol Graph*. 1994; 12:84–89.

679 **Singleton MR**, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases.  
680 *Annu Rev Biochem*. 2007; 76:23–50.

681 **Singleton MR**, Dillingham MS, Gaudier M, Kowalczykowski SC, Wigley DB. Crystal structures of RecBCD enzyme  
682 reveals a machine for processing DNA breaks. *Nature*. 2004; 432:187–193.

683 **Spies M**, Fishel R. Mismatch Repair during Homologous and Homeologous Recombination. *Cold Spring Harbor  
684 Perspectives in Biology*. 2015; 7(3).

685 **Spies M**, Kowalczykowski SC. Homologous Recombination by the RecBCD and RecF Pathways. *American Society  
686 of Microbiology*; 2005.

687 **Stine R**. An Introduction to Bootstrap Methods. *Sociological Methods & Research*. 1989; 18(2-3):243–291.

688 **Sugita Y**, Kitao A, Okamoto Y. Multidimensional replica-exchange method for free-energy calculations. *The  
689 Journal of Chemical Physics*. 2000; 113(15):6042–6051.

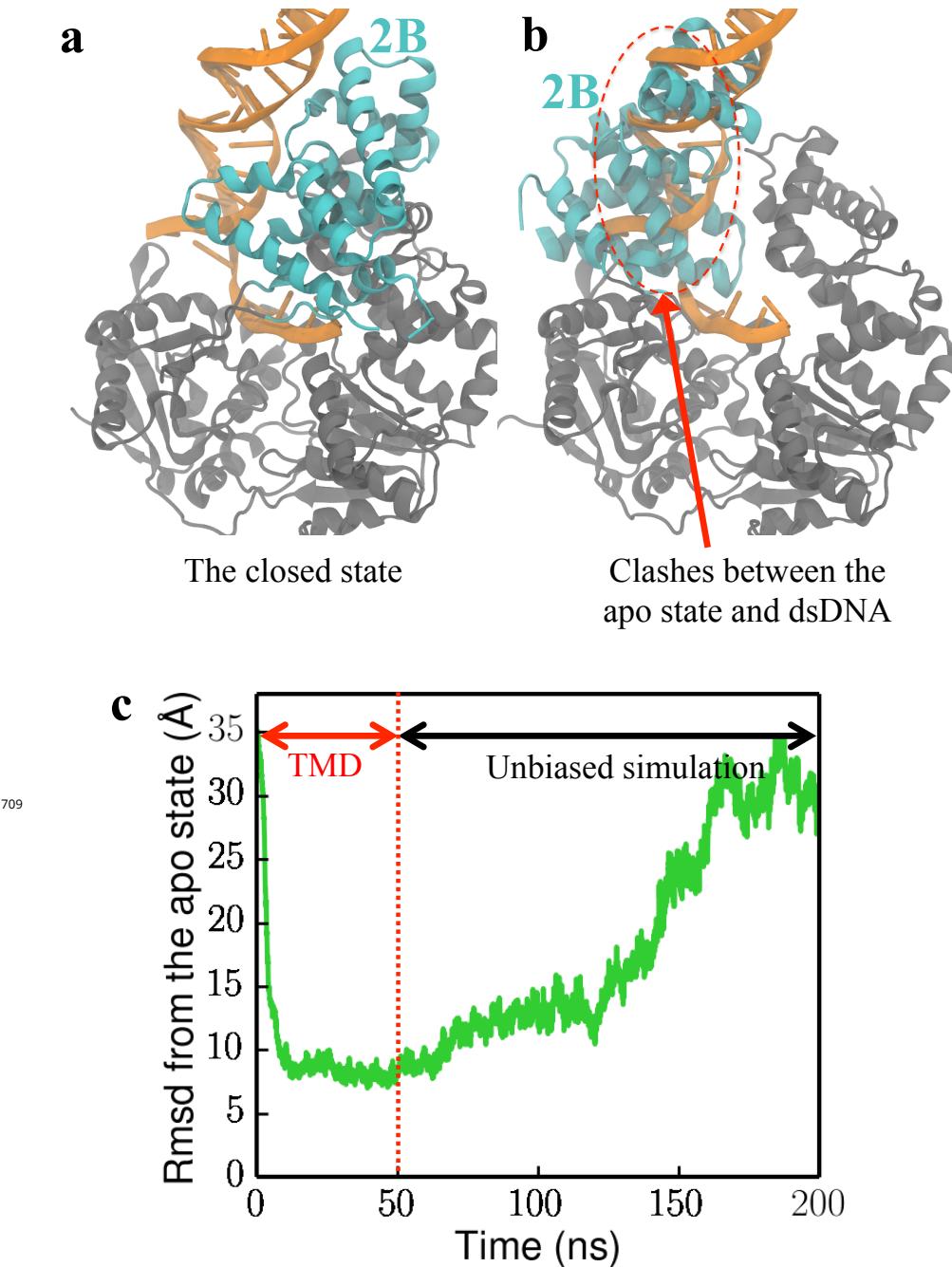
690 **van Brabant AJ**, Stan R, Ellis NA. DNA helicases, genomic instability, and human genetic disease. *Annu Rev  
691 Genomics Hum Genet.* 2000; 1:409–459.

692 **Vanommeslaeghe K**, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I,  
693 MacKerell Jr AD. CHARMM General Force Field: A Force Field for Drug-Like Molecules Compatible with the  
694 CHARMM All-Atom Additive Biological Force Fields. *J Comp Chem.* 2010; 31(4):671–690.

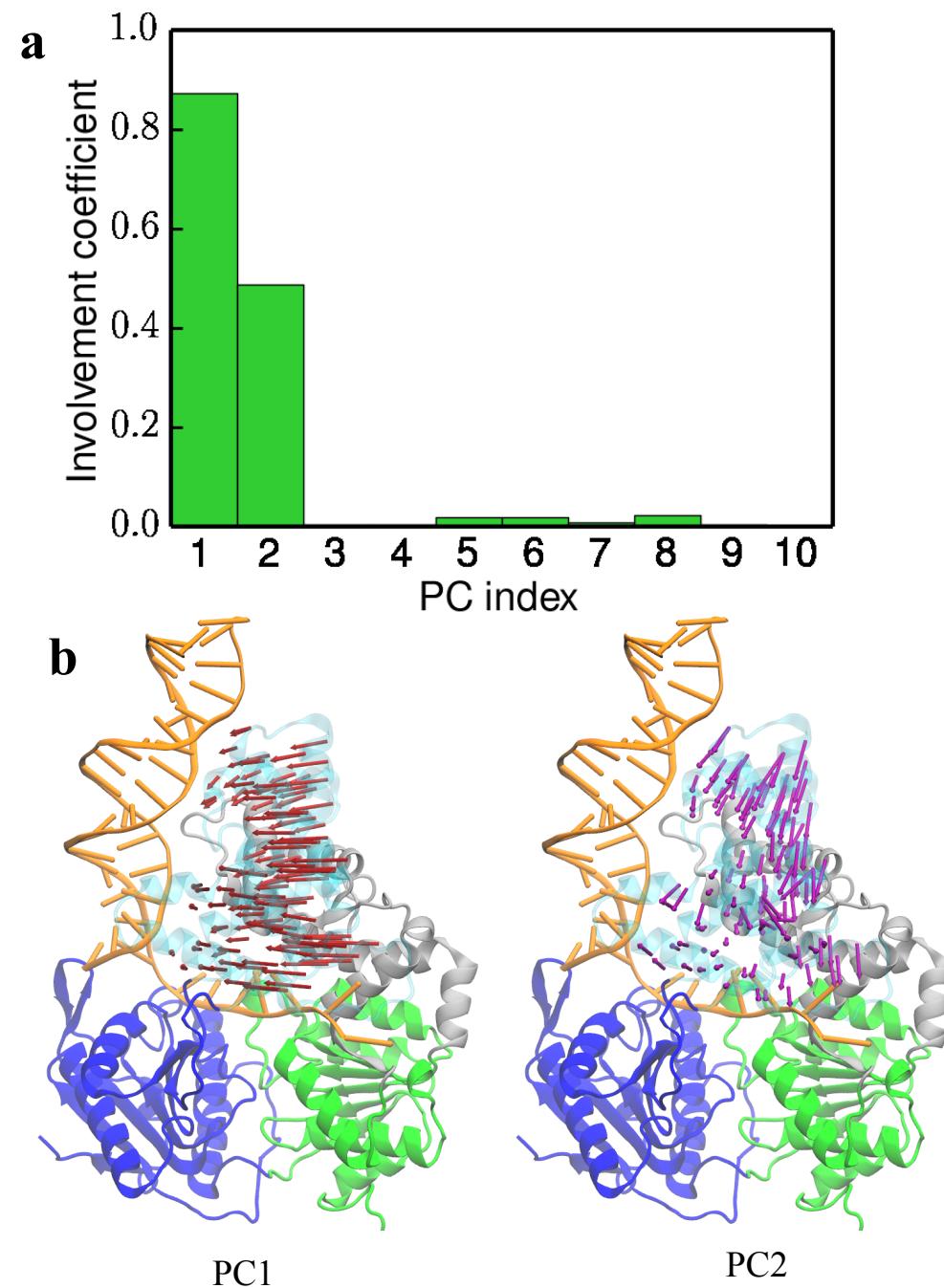
695 **Veautre X**, Delmas S, Selva M, Jeusset J, Cam EL, Matic I, Fabre F, Petit MA. UvrD helicase, unlike Rep helicase,  
696 dismantles RecA nucleoprotein filaments in *Escherichia coli*. *EMBO J.* 2005; 24:180–189.

697 **Velankar SS**, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB. Crystal structures of complexes of PcrA  
698 DNA helicase with a DNA substrate indicate an inchworm mechanism. *Cell.* 1999; 97:75–84.

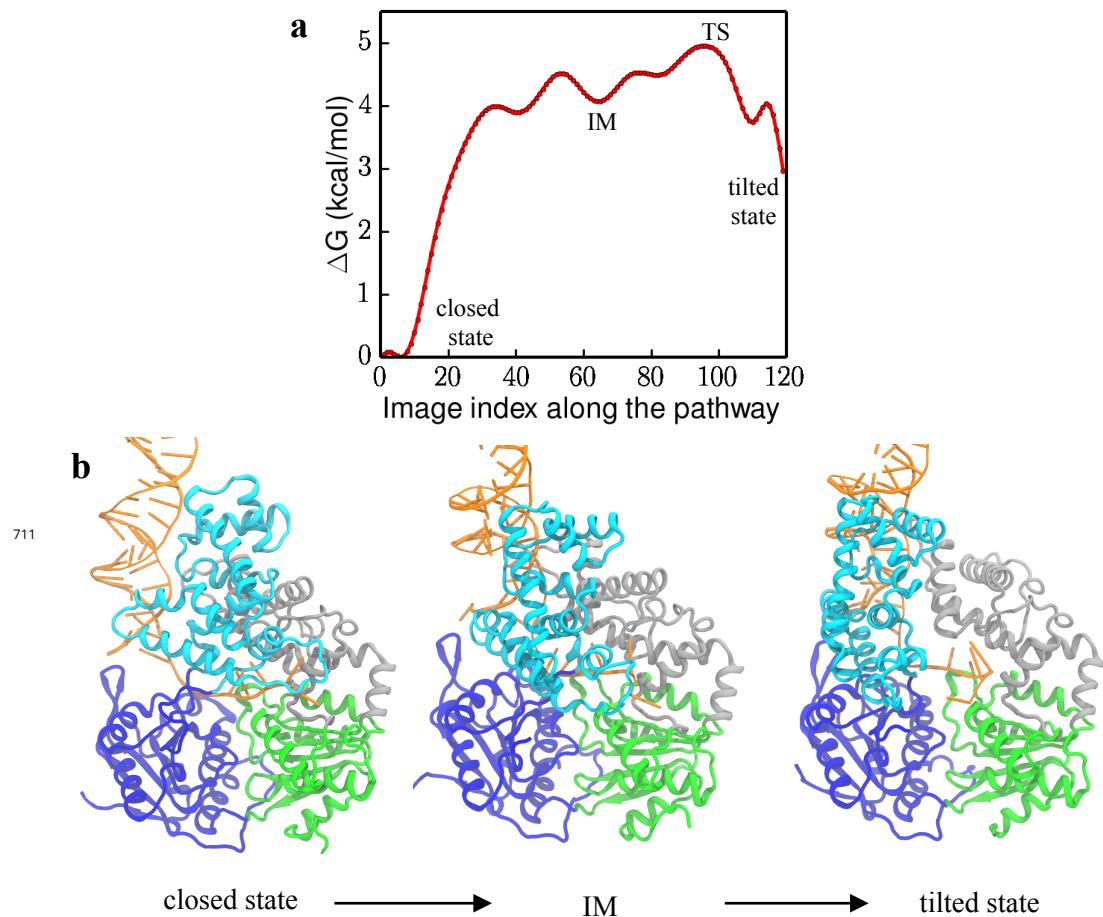
699 **Vrljic M**, Strop P, Ernst JA, Sutton RB, Chu S, Brunger AT. Molecular mechanism of the synaptotagmin-SNARE  
700 interaction in Ca<sup>2+</sup>-triggered vesicle fusion. *Nat Struct Mol Biol.* 2010 03; 17(3):325–331.


701 **Wilkinson M**, Chaban Y, Wigley DB. Mechanism for nuclease regulation in RecBCD. *eLife.* 2016; 5:e18227.

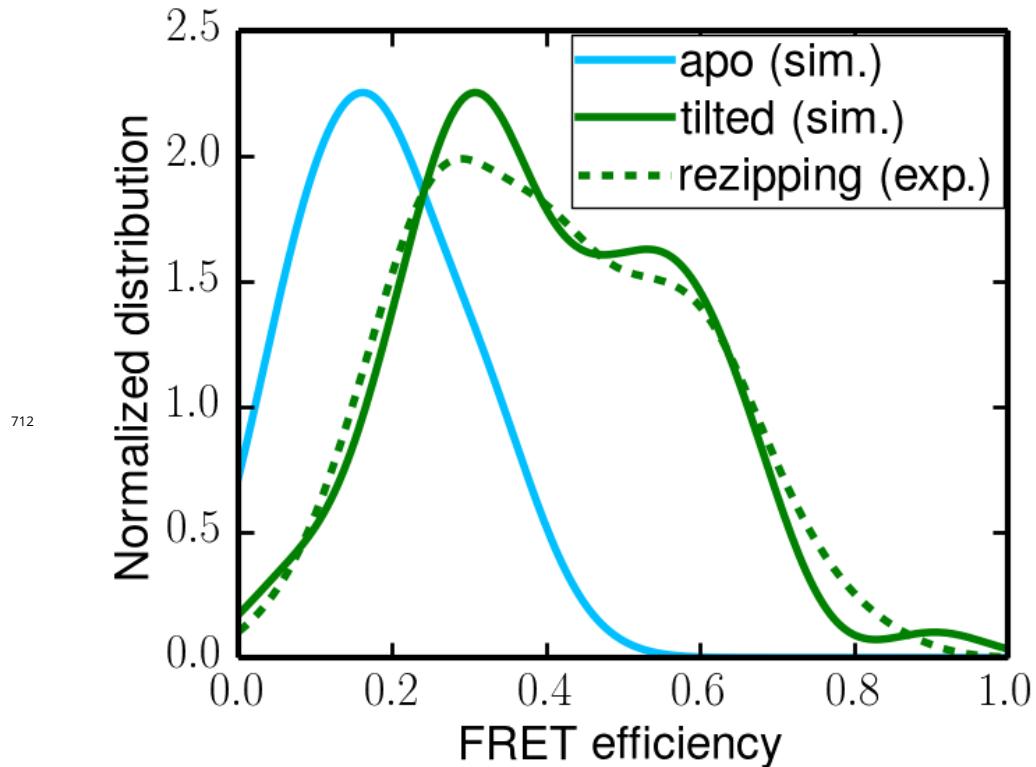
702 **Wu CG**, Spies M. Overview: What Are Helicases? New York, NY: Springer New York; 2013.


703 **Wu PG**, Brand L. Resonance Energy Transfer: Methods and Applications. *Analytical Biochemistry.* 1994; 218(1):1  
704 – 13.

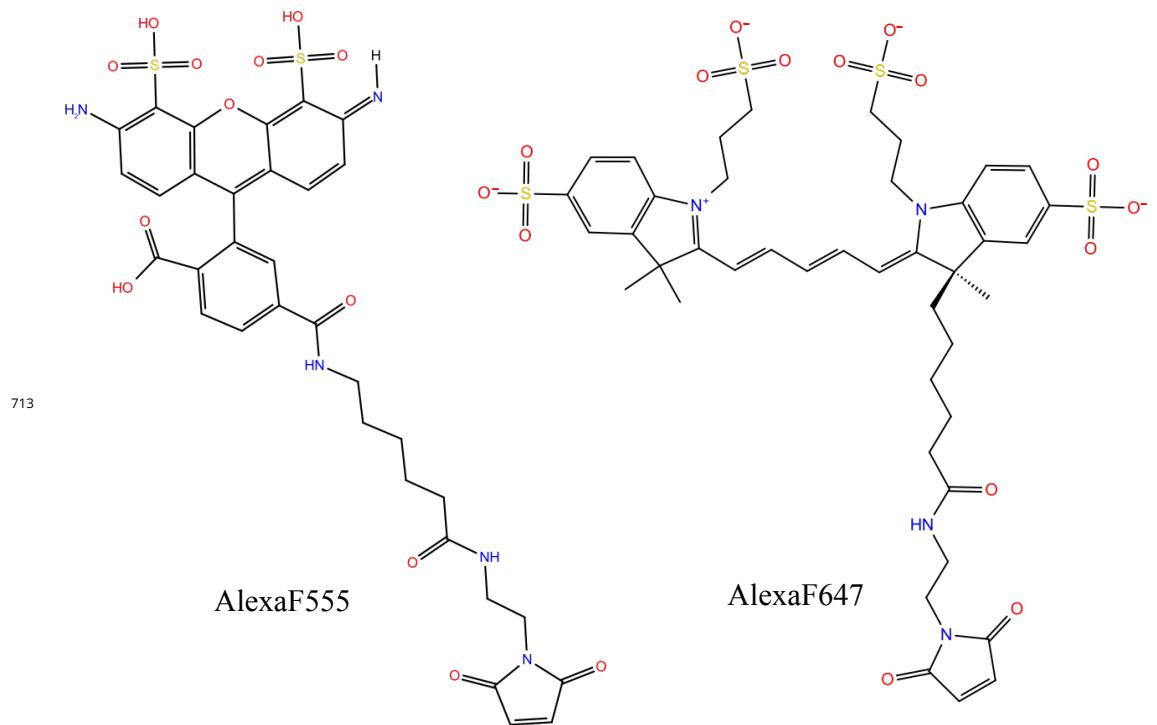
705 **Yang W.** Lessons Learned from UvrD Helicase: Mechanism for Directional Movement. *Annual Review of  
706 Biophysics.* 2010; 39(1):367–385.


707 **Zhao Y**, Terry D, Shi L, Weinstein H, Blanchard SC, Javitch JA. Single-molecule dynamics of gating in a neurotrans-  
708 mitter transporter homologue. *Nature.* 2010; 465(7295):188–193.

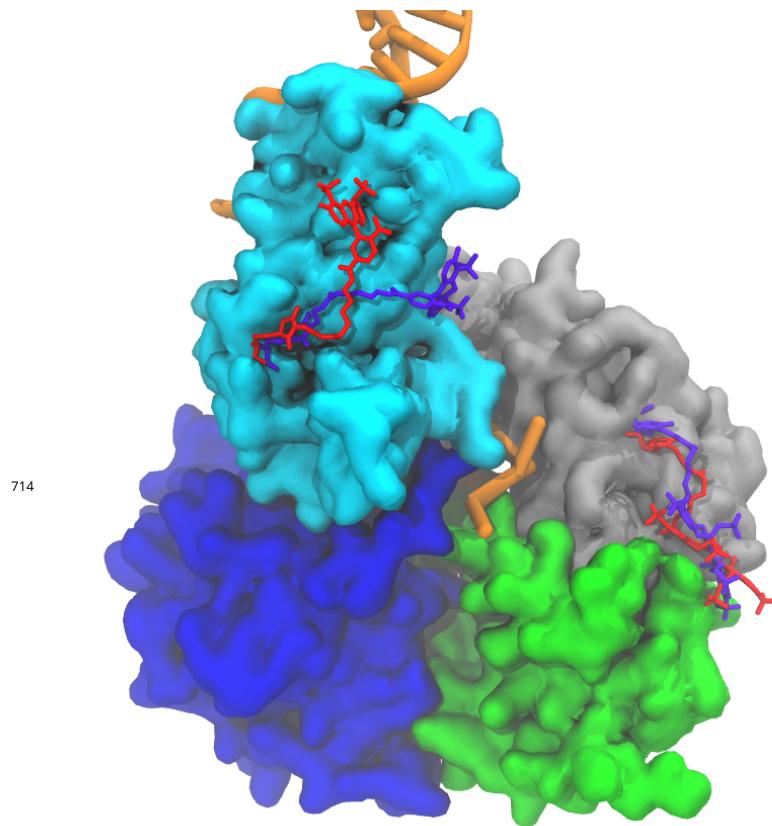



**Figure 1-Figure supplement 1.** UvrD is found unlikely to adopt the apo conformation when bound to a fork junction. a. The closed-state structure of UvrD (2IS2). The 2B domain is shown in cyan whereas the remaining 1A/2A/1B domains are shown in gray. The fork junction is shown in orange. b. The apo-state structure (3LFU) is aligned to the closed-state structure. Major clashes are detected between 2B of the apo state and the fork junction. c. In a forced rotation simulation of the 2B domain at the DNA junction (DNA is free to move), the change of RMSD from the apo state (calculated using  $C_\alpha$  atoms of the 2B domain) is shown. The plot shows a two-stages simulation: starting from RMSD = 35 Å, the first stage is a targeted MD simulation driving UvrD to the apo state from the closed state in 50 ns; the second stage is an unbiased simulation which lasts 150 ns. Eventually UvrD returns to the closed state, indicating that the apo state is very unfavorable.

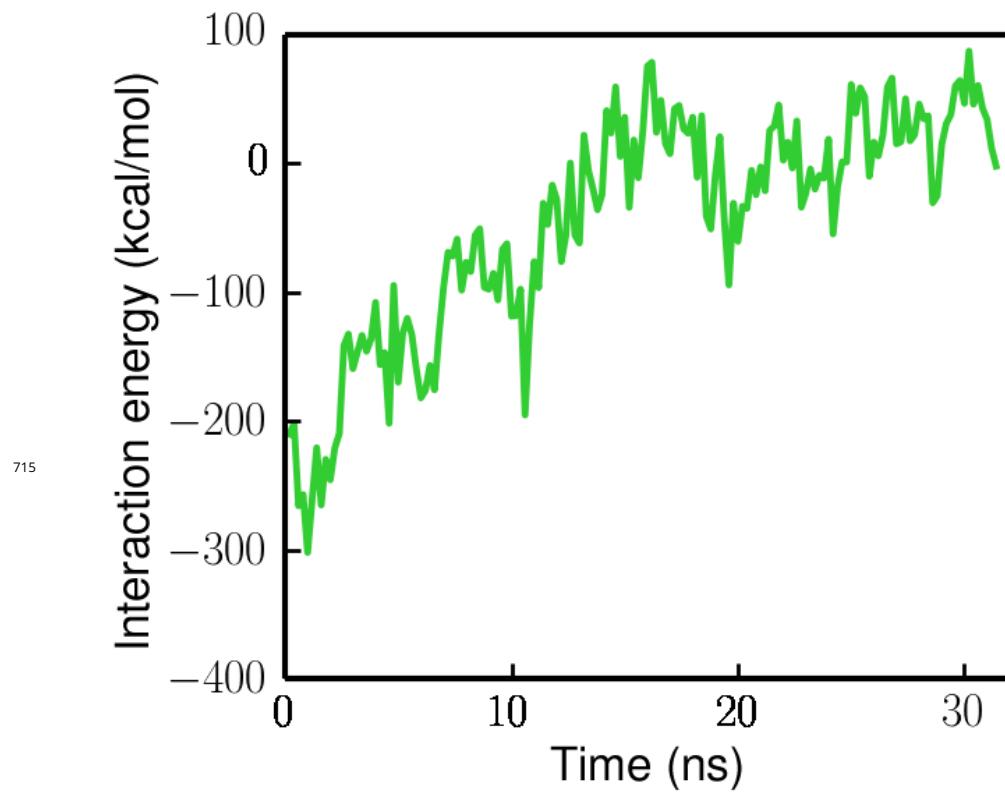



**Figure 2-Figure supplement 1.** a. Involvement co-efficiency of the first 10 PCs for the displacement between the closed cluster and the tilted cluster. b. Directions of motions along the first two PCs shown on the closed state structure.

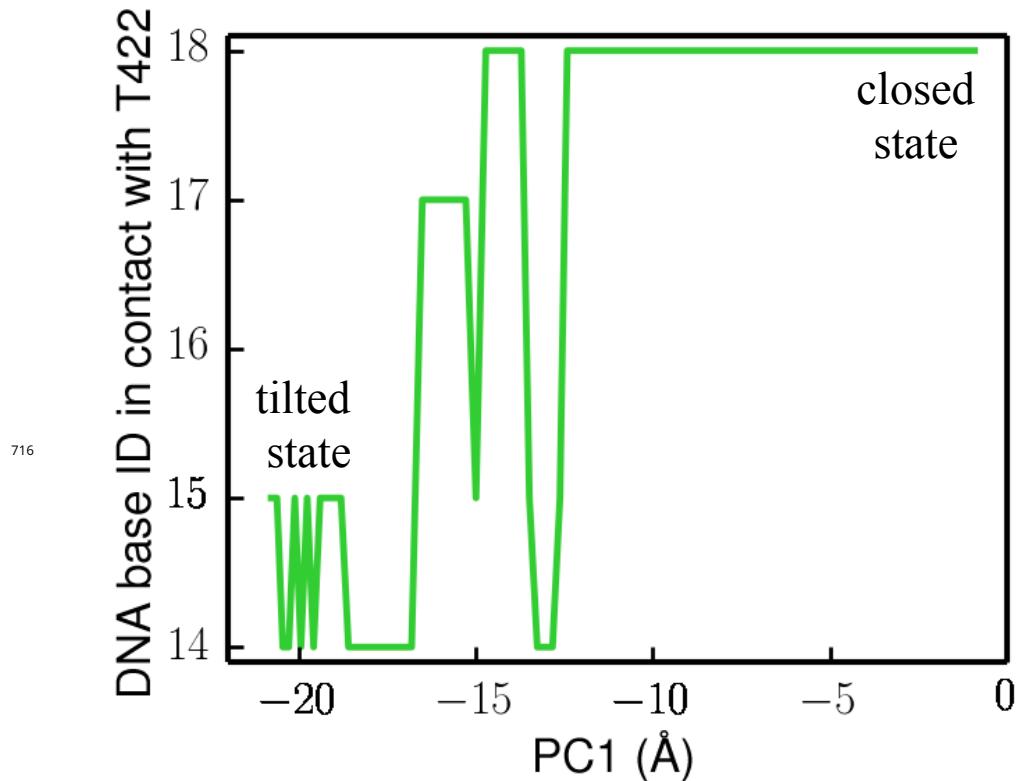



**Figure 3-Figure supplement 1.** a. 1D free energy profile along the lowest free energy path (LFEP) (Figure 3). The x-axis is the index of the 120 data points (images) along the LFEP. The positions of the transition state TS and the intermediate state IM are labeled in the figure. b. Conformations of UvrD-DNA complex during the closed to tilted transition.

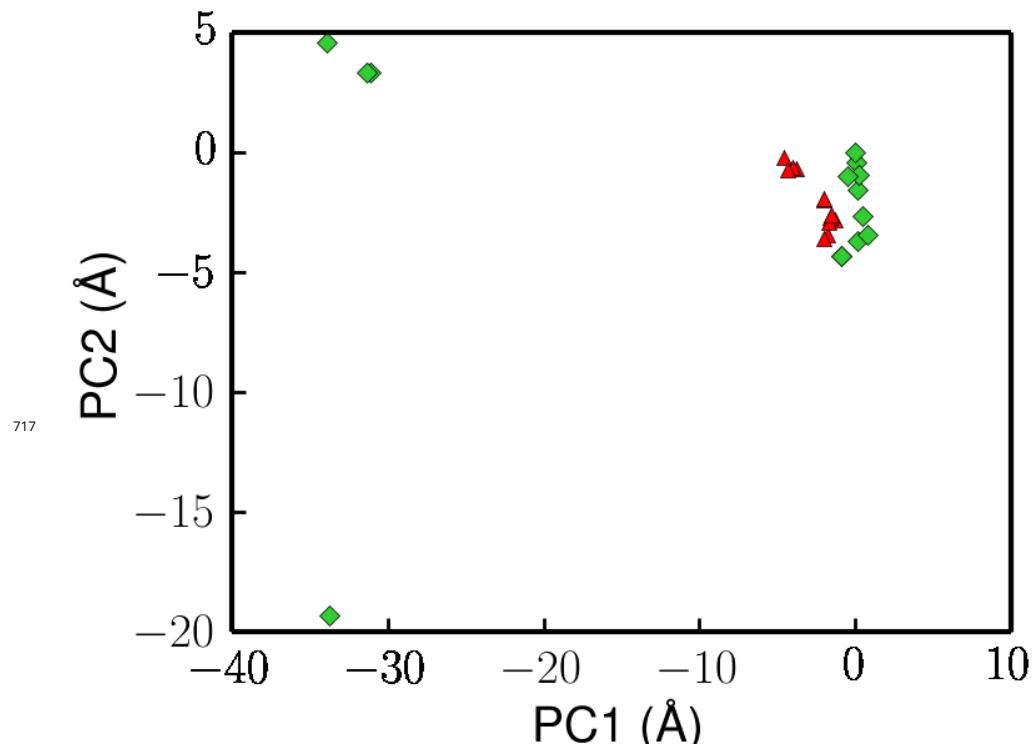



**Figure 5–Figure supplement 1.** Simulated apo-state FRET distribution (solid cyan curve) and its comparison with the distributions for the rezipping state (dotted green curve, from experiments) and the tilted state (solid green curve, from simulations).

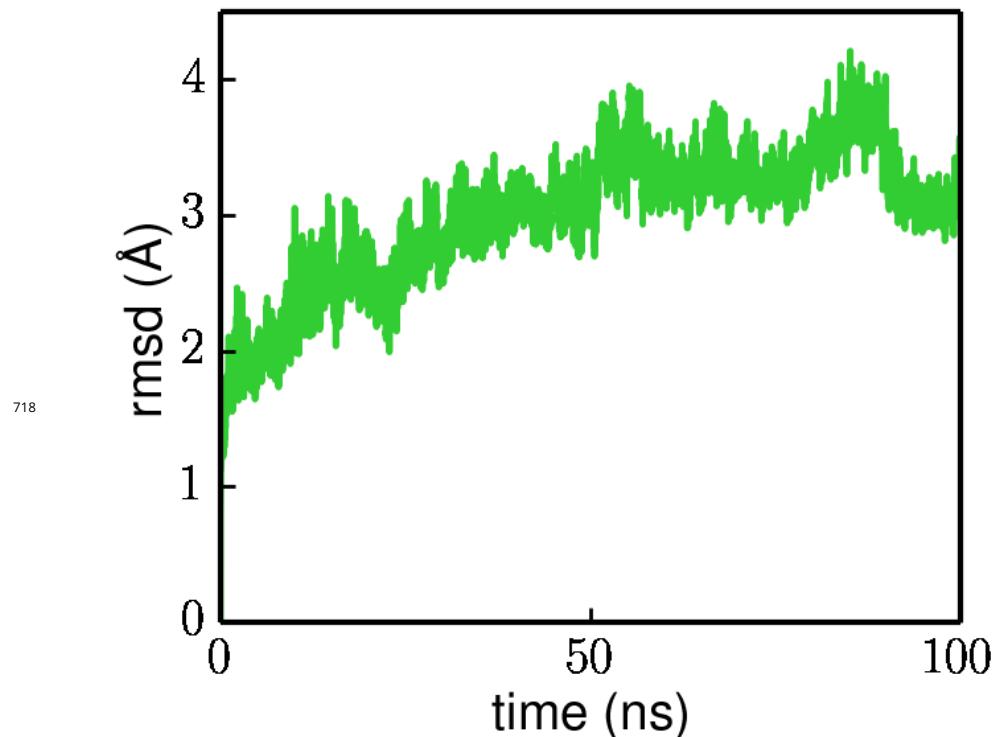



**Figure 5-Figure supplement 2.** Molecular structures of the dyes (AlexaF555/AlexaF647) used in the simulations.

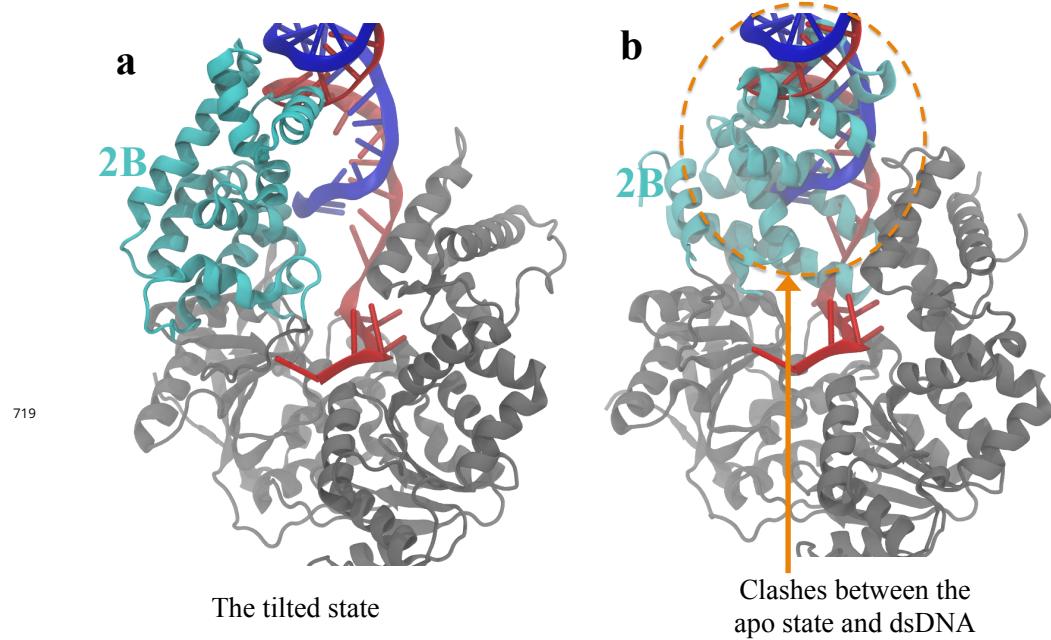



**Figure 5-Figure supplement 3.** Averaged fluorophore pair conformations in the tilted state at different FRET efficiency values. The averaged conformation of the pair at 0.3 FRET efficiency is shown in red. The averaged conformation of the pair at 0.6 FRET efficiency is shown in purple.




**Figure 5–Figure supplement 4.** Interaction energy (electrostatic + Van der Waals) between the ssDNA and the ssDNA-binding domains (1A/2A/1B) during the ssDNA disengagement simulation (the protein is kept in the tilted state).




**Figure 6-Figure supplement 1.** Evolution of the DNA base ID in contact with the GIG motif during the transition from the closed state to the tilted state (along the lowest free energy path).



**Figure 8–Figure supplement 1.** Projection of crystal structures onto the first two principal components from PCA (same data points used in Figure 2). Here, the UvrD structures with ATP or non-hydrolysable analog molecules bound are colored in red.



**Figure 8–Figure supplement 2.** Rezipping-state RMSD (calculated using the protein non-hydrogen atoms) from the tilted state during the 100 ns equilibration simulation.



**Figure 8-Figure supplement 3.** a. The tilted conformation obtained from the simulations. The 2B domain is shown in cyan whereas 1A/2A/1B are shown in gray. Strands A and B of the dsDNA are shown in red and blue, respectively. b. After aligning the apo structure to the tilted structure, geometric clashes between the apo 2B domain and the dsDNA of the tilted state are detected (shown in the orange dotted circle).