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Abstract— Cyber insurance is a viable method for cyber risk
transfer. However, it has been shown that depending on the
features of the underlying environment, it may or may not
improve the state of network security. In this paper, we consider
a single profit-maximizing insurer (principal) with voluntarily
participating insureds/clients (agents). We are particularly inter-
ested in two distinct features of cybersecurity and their impact
on the contract design problem. The first is the interdependent
nature of cybersecurity, whereby one entity’s state of security
depends not only on its own investment and effort, but also
the efforts of others’ in the same eco-system (i.e., externalities).
The second is the fact that recent advances in Internet measure-
ment combined with machine learning techniques now allow us
to perform accurate quantitative assessments of security posture
at a firm level. This can be used as a tool to perform an initial
security audit, or pre-screening, of a prospective client to better
enable premium discrimination and the design of customized
policies. We show that security interdependency leads to a “profit
opportunity” for the insurer, created by the inefficient effort levels
exerted by interdependent agents who do not account for the risk
externalities when insurance is not available; this is in addition to
risk transfer that an insurer typically profits from. Security pre-
screening then allows the insurer to take advantage of this addi-
tional profit opportunity by designing the appropriate contracts
which incentivize agents to increase their effort levels, allowing
the insurer to “sell commitment” to interdependent agents,
in addition to insuring their risks. We identify conditions under
which this type of contract leads to not only increased profit for
the principal, but also an improved state of network security.

Index Terms— Cybersecurity, cyber insurance, pre-screening,
security interdependence.

I. INTRODUCTION

THE market for cyber-insurance products has been
growing steadily in recent years [3], [4], with over

70 carriers around the world and total premiums estimated
over $3B and projected to reach $10B by 2020. These
products enable organizations and businesses to manage
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their cyber-risks by transferring (part of) their risks to an
insurer in return for paying premiums. This growing market
has motivated an extensive literature (see e.g. [5]–[15]),
which aims to understand the unique characteristics of these
emerging contracts, their effect on the insureds’ security
expenditure, and the possibility of leveraging these contracts to
shape users’ behavior and improve the state of cybersecurity;
see Section II for an overview of the related literature. The
conclusions of these studies depend on the assumptions
on the insurance market model (profit maker vs. welfare
maximizing insurers), the agents’ (insured’s) participation
decisions (compulsory vs. voluntary insurance), and the
assumed model of interdependency among the insured.

In this paper, we are interested in analyzing the possibility
of using cyber-insurance as an incentive for improving network
security. We adopt two model assumptions which we believe
better capture the current state of cyber insurance markets
but differ from the majority of the existing literature; we
shall assume a profit-maximizing cyber insurer, and voluntary
participation, i.e., agents may opt out of purchasing a con-
tract. Under this model, we focus on two features of cyber-
insurance: (i) availability of risk assessment for mitigating
moral hazard, and (ii) the interdependent nature of security.

The first feature is due to the fact that recent advances
in Internet measurements combined with machine learning
techniques now allow us to perform accurate, quantitative
security posture assessments at a firm level [16]. This can
be used as a tool to perform an initial security audit, or pre-
screening, of a prospective client to mitigate moral hazard
by premium discrimination and the design of customized
policies. The second distinct feature, the interdependent nature
of security, refers to the observation that the security standing
of an entity often depends not only on its own effort towards
implementing security metrics, but also on the efforts of
other entities interacting with it within the eco-system; see
e.g., [17]–[20]. Such interdependency is crucial for the
insurer’s contract design problem, as the insurer will need to
offer coverage to each insured for both its losses due to direct
breaches, as well as indirect losses caused by breaches of other
entities.

To distinguish the effect of each feature on the cyber-
insurance contract design problem, we begin by considering
a single-agent; this allows us to remove the effects of risk
interdependence and focus on the role of pre-screening.
We consider both risk-neutral and risk-averse agents. We first
show that when the agent is risk-neutral, a market for

1556-6013 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4223-3254
https://orcid.org/0000-0002-2277-1709


KHALILI et al.: DESIGNING CYBER INSURANCE POLICIES: ROLE OF PRE-SCREENING AND SECURITY INTERDEPENDENCE 2227

cyber-insurance does not exist, this is consistent with
previous results, see e.g. [21], [22]. For the risk-averse agent
on the other hand, a cyber-insurance market exists. We show
that the agent’s effort inside the contract increases as the
quality of pre-screening increases, that is, the insurer can
use pre-screening to mitigate moral hazard. Nevertheless,
we show that even with perfect pre-screening, the agent’s
effort inside the contract remains below his effort before the
introduction of insurance. In other words, for a single-agent,
and even in the absence of moral hazard, the introduction of
cyber-insurance deteriorates the state of network security.

We will next analyze the effect of risk interdependence
by considering the design of cyber-insurance contracts for
a network of two interdependent agents. We again consider
both risk-neutral and risk-averse agents. Here, in contrast to
the single agent case, we obtain a rather surprising result:
an insurance market exists even for two risk-neutral agents.
As there is no risk-transfer between the agents and the insurer
in this scenario, we conclude that the emergence of a market is
due to the agents’ interdependence. We intuitively interpret this
finding as follows. The interdependency among agents leads
them to under-invest in security at the no-insurance equilib-
rium; this is commonly referred to as free-riding, see e.g., [20].
This inefficiency gap between the no-insurance equilibrium
and the agents’ utilities at more efficient investment levels
creates a “profit opportunity” for the insurer. In particular,
the insurer can use pre-screening to offer a pair of contracts
that incentivize the agents to improve their levels of effort.
In return for improving his effort level as prescribed by the
contract, an insured is not only offered coverage in case of
a loss, but further the “commitment” of the other agent to
also improve its security, which will lead to further reduction
in the insured’s risks. Consequently, network security under
these contracts is higher than the no-insurance equilibrium,
which further benefits the insurer by lowering the risks of the
insureds in its portfolio.

We will then consider the combined effect of risk transfer,
interdependence, and security pre-screening, by considering
a network of two interdependent risk-averse agents. Similar
to the risk-neutral case, the interdependence leads to free-
riding by agents in the absence of insurance. Consequently,
the insurer can extract profit from both fronts: risk transfer,
and taking advantage of the efficiency gap by incentivizing
agents to exert higher effort. We identify a sufficient condition
under which insurance leads to the improvement of network
security compared to the no-insurance scenario. We illustrate
these results in both a two-heterogeneous-agents model and
an N-homogeneous-agents model. Lastly, we will discuss the
effects of correlation in agents’ losses, as well as a risk-averse
insurer, on the cyber-insurance contracts, and illustrate our
findings through numerical simulations.

Our main finding is that security interdependence among
agents seeking cyber-insurance leads to a profit opportunity for
the insurer. A cyber-insurer profits not only from risk-transfer,
but also from selling commitment to interdependent agents:
each agent will be required to improve its levels of investment
in security, in return for the guarantee that other agents will do
so as well. Security pre-screening allows the insurer to take

advantage of this additional profit opportunity, by designing
the appropriate contracts which incentivize agents to increase
their effort levels. Together, these contracts can lead to an
improvement in the state of network security.

Our analysis is primarily based on a two-agent model.
While technically limited in scope, this simple model offers
substantial conceptual insights, some of which are more gener-
ally applicable. We also use numerical examples to highlight
where conclusions are expected to hold under more relaxed
assumptions.

Preliminary versions of this work appeared in [1] and [2].
In [1], we studied the role of pre-screening in designing
cyber insurance contracts between a risk-neutral insurer and a
risk-averse agent, as well as two homogeneous interdependent
risk-averse agents. In [2], we examined the problem of design-
ing cyber insurance contracts using pre-screening between
a risk-neutral insurer and agents in the following scenarios:
(i) a single risk-neutral agent, (ii) two heterogeneous inter-
dependent risk-neutral agents, (iii) two heterogeneous inter-
dependent risk-averse agents, and (iv) N homogeneous
interdependent risk-averse agents. In addition to a better expo-
sition of our work by including numerical results and techni-
cal analysis in the appendix, we extend our previous work
by considering a risk-averse insurer and N interdependent
agents whose losses are correlated. In this scenario, we study
the effect of correlated losses and insurer’s risk-aversion on
network security.

The remainder of the paper is organized as follows.
We review related work in Section II. We present the single
agent model in Section III, followed by the analysis in
Section IV. We present the two-agent model and analysis
in Section V. We discuss an N-homogeneous-agent case in
Section VI, present numerical results in Section VII, and
conclude in Section VIII.

II. RELATED WORK

We provide an overview of existing literature that is most
closely related to this paper. These studies have considered
either competitive or monopolistic insurers, as well as either
mandatory or voluntary adoption by the insured. The works
in [5]–[10] consider competitive insurance markets under
compulsory insurance, and analyze the effect of insurance on
agents’ security expenditures. Shetty et al. [5], [6] consider a
competitive market with homogeneous agents, and show that
insurance often deteriorates the state of network security as
compared to the no-insurance scenario. References [7] and [8]
study a network of heterogeneous agents and show that the
introduction of insurance cannot improve the state of network
security. Ogut et al. [9] study the impact of the degree of
agents’ interdependence, and show that agents’ investments
decreases as the degree of interdependence increases.
Yang and Lui [10] study a competitive market under the
assumption of voluntary participation by agents, with and
without moral hazard. In the absence of moral hazard,
the insurer can observe agents’ investments in security,
and hence premium discriminates based on the observed
investments. They show that such a market can provide
incentives for agents to increase their investments in self
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protection. However, they show that under moral hazard,
the market will not provide an incentive for improving agents’
investments.

The impact of insurance on the state of network security
in the presence of a monopolistic welfare maximizing insurer
has been studied in[11]–[13], [23], and [24]. In these models,
as the insurer’s goal is to maximize social welfare, assuming
compulsory insurance, agents are incentivized through pre-
mium discrimination, i.e., agents with higher investments in
security pay lower premiums. As a result, these studies show
that insurance can lead to improvement of network security.
An insurance market with a monopolistic profit maximizing
insurer, under the assumption of voluntary participation, has
been studied in [14], which shows that in the presence of
moral hazard, insurance cannot improve network security as
compared to the no-insurance scenario.

Our assumptions on the model, namely a profit-maximizing
insurer and voluntary participation, are similar to [14]. Our
work differs from [14], as well as other existing work,
in that we illustrate (i) the role of pre-screening in mitigating
moral hazard, and (ii) the possibility of designing contracts
that leverage sufficiently accurate pre-screening and agents’
interdependence to improve the state of network security.

III. MODEL AND PRELIMINARIES: SINGLE AGENT

We begin by considering the single-period contract design
problem between a single risk-neutral insurer and a single
agent1; we refer the interested reader to [22] for an overview
of contract theory. The analysis of the single-agent case allows
us to study solely the role of pre-screening by excluding the
interdependency, and later, in conjunction with the analysis of
Section V-B and V-C, to uncover the role of interdependency.

An agent exerts effort e ∈ [0,+∞) towards securing his
system, incurring a cost of c per unit of effort. Let Le denote
the loss, a random variable, that the agent experiences given
his effort e. We assume Le has a normal distribution,2 with
mean μ(e) ≥ 0 and variance λ(e) ≥ 0.3 We assume both
μ(e) and λ(e) are strictly convex, strictly decreasing, and
twice differentiable. The decreasing assumption implies that
increased effort reduces the expected loss, as well as its
unpredictability. The convexity assumption suggests that while
initial investment in security leads to considerable reduction in
loss, the marginal benefit decreases as effort increases. In other
words, it is not possible to reduce risk from cyber attacks
to zero even if the agent exerts very large effort [25], [26].
We further preclude the possibility of misclaims by assuming
that the realized loss is observed perfectly by both the insurer
and the agent.

In general, the effort exerted by an agent is not observable
by the insurer; this information asymmetry is formally referred
to as moral hazard. We assume that in order to reduce this

1Throughout the paper, we use she/her and he/his to refer to the insurer and
agent(s), respectively.

2The normal assumption on Le is to some extent justified by the fact that
Le is meant to capture the sum total of losses from a variety of sources, such
as hacking, malware, insider threats, etc.

3For ease of exposition, we assume that λ(e) is sufficiently small compared
to μ(e), so that Pr(Le < 0) is negligible.

asymmetry and attain better information about the agent,
the insurer can conduct a pre-screening of the agent’s security
standing. Through pre-screening, the insurer obtains a pre-
screening assessment or outcome Se = e + W , where W is a
zero mean Gaussian noise with variance σ 2. We assume both
agent and insurer know the distribution of Se; such assessment
can be obtained through a range of possible methods and
(Internet) measurement techniques, information from initial
surveys filled out by the agent, external audits, or internal
audits conducted by a third party firm. We assume Se is
conditionally independent of Le, given e. The pre-screening
outcome Se will be used by the insurer in determining the
terms of the contract.

A. Linear Contract and the Insurer’s Payoff

We consider the design of a set of linear contracts.
Specifically, the contract offered by the insurer consists of a
base premium p, a discount factor α, and a coverage factor β.
The agent pays a premium p − α · Se, and receives β · Le as
coverage in the event of a loss. We let 0 ≤ β ≤ 1, i.e., coverage
never exceeds the actual loss. Thus the insurer’s utility (profit)
is given by:

V (p, α, β, e) = p − α · Se − β · Le. (1)

The insurer’s expected profit is then given by V (p, α, β, e) =
p − αe − βμ(e).

B. Risk-Neutral Agent

The utility of a risk-neutral agent is given by,

U(e) = −Le − ce ⇒ U(e) = E(U(e)) = −μ(e) − ce (2)

If the agent chooses not to enter a contract, he bears the
full cost of his effort as well as any realized loss. Therefore,
the optimal effort (m) of the agent outside the contract is
m = arg mine≥0 μ(e) + ce and his expected utility outside
the contract is uo := U(m).

On the other hand, if the agent purchases a contract (p, α, β)
from the insurer, then his utility, and expected utility, are given
by:

Uin(p, α, β, e) = −p + αSe − Le + βLe − ce

U
in

(p, α, β, e) = E(Uin(p, α, β, e))

= −p + (α − c)e + (β − 1)μ(e) (3)

C. Risk-Averse Agent

For simplicity we shall use the same notation for risk-averse
agents as for risk-neutral agents. The utility of a risk-averse
agent is given by:

U(e) = − exp{−γ · (−Le − ce)}, (4)

where γ denotes the risk attitude of the agent; a higher γ
implies more risk aversion. We assume γ is known to
the insurer, thereby eliminating adverse selection and solely
focusing on the moral hazard aspect of the problem.
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Using basic properties of the normal distribution, we have
the following expected utility for the agent:

U(e) = E(− exp{−γ · (−Le − ce)})
= − exp{γ · μ(e) + 1

2
γ 2λ(e) + γ ce}. (5)

Using (5), the optimal effort for an agent outside the contract
is given by m := arg mine≥0

{
μ(e) + 1

2γ λ(e) + ce
}
. Again,

let uo = U(m) denote the maximum expected payoff of the
agent without a contract.

If a risk-averse agent accepts a contract (p, α, β), his utility
is given by:

Uin(p, α, β, e)

= − exp{−γ · (−p + α · Se − Le + β · Le − ce)}. (6)

Noting that Se and Le are conditionally independent, his
expected utility is

U
in

(p, α, β, e) = − exp{γ (p + (c − α)e + 1

2
α2γ σ 2

+(1 − β)μ(e) + 1

2
γ (1 − β)2λ(e))}. (7)

D. Insurer’s Problem

The insurer designs the contract (p, α, β) to maximize her
expected payoff. In doing so, the insurer also has to satisfy
two constraints: Individual Rationality (IR), and Incentive
Compatibility (IC). The first stipulates that a rational agent
will not enter a contract with expected payoff less than his
outside option uo, and the second that the effort desired by
the insurer should maximize the agent’s expected utility under
that contract. Formally,

max
p,α≥0,0≤β≤1,e≥0

V (p, α, β, e) = p − α · e − β · μ(e)

s.t. (IR) U
in

(p, α, β, e) ≥ uo

(IC) e ∈ arg max
e′≥0

U
in

(p, α, β, e′) (8)

The above optimization problem can be simplified, for
risk-neutral and risk-averse agents, respectively. As the base
premium is a constant in the contract, the (IC) constraint for
a risk-neutral agent can be rearranged as:

e ∈ arg min
e′≥0

(c − α)e′ + (1 − β)μ(e′). (9)

Similarly, the (IC) constraint for a risk-averse agent can be
rewritten as:

e ∈ arg min
e′≥0

(c − α)e′ + (1 − β)μ(e′) + γ

2
(1 − β)2λ(e′) (10)

Next, we can simplify the (IR) constraint using the follow-
ing lemma; proofs can be found in the online appendix [27].

Lemma 1: The (IR) constraint is binding in the optimal
contract.

By lemma 1, the (IR) constraint of a risk-neutral agent can
be written as −p − (c − α) · e − (1 − β)μ(e) = uo and, for a
risk-averse agent,

p + (c − α)e + γ

2
α2σ 2 + (1 − β)μ(e)

+ γ

2
(1 − β)2λ(e) = wo, (11)

where wo := ln(−uo)
γ = mine≥0{μ(e) + 1

2γ λ(e) + c · e}.

Using the above expressions to substitute for the base
premium p in the objective function in (8), and using the
simplified expressions for the (IC) constraints, we re-write the
insurer’s contract design problem as follows.

1) Insurer’S Problem With a Risk-Neutral Agent:

max
α≥0,0≤β≤1,e≥0

− uo − μ(e) − c · e

s.t., e = arg min
e′≥0

(c − α)e′ + (1 − β)μ(e′) (12)

2) Insurer’s Problem With a Risk-Averse Agent:

max
α≥0,0≤β≤1,e≥0

wo − μ(e) − γ

2
(1 − β)2λ(e) − ce − γ

2
α2σ 2

s.t., e = arg min
e′≥0

(c − α)e′ + (1 − β)μ(e′) + γ

2
(1 − β)2λ(e′) (13)

IV. ROLE OF PRE-SCREENING FOR A SINGLE AGENT

We now solve the optimal contract problem posed in (12)
and (13), respectively.

A. Risk-Neutral Agent (Problem (12))

In this case, the objective function of the insurer is given by
−uo −μ(e)− c · e. However, note that uo = maxe≥0{−μ(e)−
ce}, and therefore the insurer’s profit is at most zero. A con-
tract with (p = 0, α = 0, β = 0) will yield a payoff of
zero, making it an optimal contract. We thus conclude that
it is optimal for the insurer to not offer a contract to a risk-
neutral agent. Also note that in this case the quality of pre-
screening, or indeed the availability of pre-screening regardless
of the quality, plays no role in either the insurer’s or agent’s
decisions.

B. Risk-Averse Agent (Problem (13))

We start with the following theorem on the state of network
security, defined as the effort exerted by the agent, before and
after the purchase of a contract.

Theorem 1: Assume that (α̂, β̂, ê) solves optimization prob-
lem (13). Then ê ≤ m, where m is the level of effort outside
the contract; in other words, insurance decreases network
security.

Proof: Assume that (α̂, β̂, ê) solves optimization
problem (13), and that, by contradiction, ê > m ≥ 0.

First, recall that the agent’s optimal effort m outside the
contract is given by m := arg mine≥0

{
μ(e) + 1

2γ λ(e) + ce
}
.

For m to be the minimizer, we should have c + μ′(m) +
1
2γ λ′(m) ≥ 0. Next, consider the following two cases:

(i) α̂ = 0. Starting from the first order condition (FOC) on
the (IC) constraint, we have,

(1 − β̂)μ′(ê) + 1

2
γ (1 − β̂)2λ′(ê) + c = 0

⇒ μ′(ê) + 1

2
γ λ′(ê) + c < 0

⇒ μ′(m) + 1

2
γ λ′(m) + c < 0 (14)
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Here, the second line follows from the decreasing nature of
μ(·) and λ(·), and the third line follows from their convexity.
The last inequality is impossible given the optimality of the
effort m outside the contract. This contradiction shows that we
cannot have ê > m.

(ii) α̂ > 0. Given the assumption that ê > m, and μ(·) and
λ(·) are strictly convex, we have,

0 ≤ c + μ′(m) + 1

2
γ λ′(m)

≤ c + μ′(m) + 1

2
γ (1 − β̂)2λ′(m)

< c + μ′(ê) + 1

2
γ (1 − β̂)2λ′(ê) (15)

Therefore, if the insurer decreases α̂, the agent decreases
his effort (this can be seen from the IC constraint), and
consequently the insurer’s utility increases, as the objective
function of the insurer, wo − μ(e) − 1

2 (1 − β̂)2λ(e) − ce −
1
2γα2σ 2, is decreasing in e and α at e = ê, α = α̂. Therefore,
(α̂, β̂, ê) is not the optimal contract. Again by contradiction,
we conclude that the agent’s effort in the optimal contract
should be less than or equal to m. �

Theorem 1 illustrates the inefficiency of cyber insurance
as a tool for improving the state of security. Existing work
in [6] and [24] have also arrived at a similar conclusion
when studying competitive/unregulated cyber insurance mar-
kets. Note also that Theorem 1 holds regardless of the pre-
screening quality. We next examine the role of pre-screening
in this model. We first analyze its impact on the insurer’s profit.

Theorem 2: Let v(α, β, e, σ 2) denote the payoff of the
principal, at a contract (α, β) when the agent exerts effort e,
and the noise of pre-screening is σ 2. Let z(σ 2) :=
{maxα≥0,0≤β≤1,e≥0 v(α, β, e, σ 2), s.t. (IC)} be the principal’s
payoff under the optimal contract as a function of the pre-
screening noise. We then have z(σ 2

1 ) ≤ z(σ 2
2 ), ∀σ 2

1 ≥ σ 2
2 .

That is, z(σ 2) is a decreasing function of the pre-screening
noise.

Proof: Let v(α, β, e, σ 2) be the payoff of the principal,
at a contract (α, β), when the agent exerts effort e and the
noise of pre-screening is σ 2, and let z(σ 2) be the insurer’s
profit at the optimal contract as a function of the pre-screening
noise. We have,

z(σ 2
1 + σ 2

2 ) = max
α,0≤β≤1,e≥0,IC

v(α, β, e, σ 2
1 + σ 2

2 )

≤ max
α,0≤β≤1,e≥0,IC

v(α, β, e, σ 2
1 )

+ max
α,0≤β≤1,e≥0,IC

{−1

2
α2γ σ 2

2 }
≤ max

α,0≤β≤1,e≥0,IC
v(α, β, e, , σ 2

1 ) = z(σ 2
1 ) (16)

Therefore, z(σ 2
1 + σ 2

2 ) ≤ z(σ 2
1 ), ∀σ 2

2 . That is, z(σ 2) is a
decreasing function of the pre-screening noise. �

The above result is intuitively to be expected, as a strategic
insurer can leverage improved pre-screening to better mitigate
moral hazard and attain a higher payoff. The more interesting
observation is on the effect of pre-screening on the state of
network security. The following theorem presents a sufficient
condition under which the availability of a pre-screening

assessment improves network security, compared to the no pre-
screening scenario. Note that we use σ = ∞ for evaluating
the no pre-screening scenario. The equivalence follows from
the fact that, as shown in the online appendix [27], by setting
σ = ∞, the insurer’s optimal choice will be α = 0, which
removes the effects of pre-screening.

Theorem 3: Let e1, e2, e∞ denote the optimal effort of the
agent in the optimal contract when σ = σ1, σ = σ2 and

σ = ∞, respectively. Let k(e, α) = μ′(e)+
√

μ′(e)2−2γ (c−α)λ′(e)
−γ λ′(e) .

If k(e, α1)
2λ(e) − k(e, α2)

2λ(e) is non-decreasing in e for all
0 ≤ α1 ≤ α2 ≤ c, then e1 ≥ e2 if σ1 ≤ σ2. In other words,
better pre-screening improves network security. In addition,
if k(e, 0)2λ(e) − k(e, α)2λ(e) is non-decreasing in e for all
0 ≤ α ≤ c, then e1 ≥ e∞. That is, the availability of a pre-
screening improves network security over the no pre-screening
scenario.

Sketch of Proof: The proof proceeds in the following steps:
• We first show that 0 ≤ αi ≤ c using the KKT conditions

for the (IC) constraint of (13), given by

(1 − βi )μ
′(ei ) + 1

2
γ (1 − βi )

2λ′(ei ) + c − αi − vi = 0

vi · ei = 0, ei ≥ 0 (17)

• We next show that α1 ≥ α2; this follows from the
inequalities determining the optimality of the contracts at
their respective pre-screening noises. In other words, as pre-
screening noise decreases, the insurer offers higher discount
factor.

• We then proceed by contradiction, assuming 0 ≤ e1 < e2.
As e2 > 0, by (17) we have,

(1 − β2)μ
′(e2) + γ (1 − β2)

2λ′(e2)

2
+ c − α2 = 0

1 − β2 = μ′(e2)+
√

μ′(e2)2 − 2γ (c − α2)λ′(e2)

−γ λ′(e2)
:= k(e2, α2)

(18)

In addition, as e1 < e2 and α1 ≥ α2, we can show that
α1 > 0 and e1 > 0. With e1 > 0, by (17) we have,

(1 − β1)μ
′(e1) + γ (1 − β1)

2λ′(e1)

2
+ c − α1 = 0

1 − β1 = μ′(e1)+
√

μ′(e1)2 − 2γ (c − α1)λ′(e1)

−γ λ′(e1)
:= k(e1, α1)

(19)

• Lastly, we show that if (k(e, α2)
2 − k(e, α1)

2)λ(e) is
non-decreasing, then α1 and e1 are not the maximizer of
the insurer’s profit when σ 2 = σ 2

1 . This is a contradiction.
Therefore, we conclude that e1 ≥ e2. �

Several instances of μ(e) and λ(e), e.g., (μ(e) = 1
e ,

λ(e) = 1
e2 ), and (μ(e) = exp{−e}, λ(e) = exp{−2e}), satisfy

the condition of Theorem 3.

C. Comparison

By comparing the contracts in the risk-neutral and risk-
averse agent cases, we observe that a market exists and
the insurer makes profit only when offering a contract to a
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risk-averse agent. This is indeed to be expected, as insurance
is primarily a method for risk transfer; risk-averse agents
are willing to pay premiums that are higher than their
expected loss, in order to reduce the uncertainty in their
loss, consequently allowing the risk-neutral insurer to
make a profit. We further observe that when the market
exists, the introduction of pre-screening benefits the insurer
(Theorem 2) as well the state of network security (Theorem 3).

V. MODEL AND ANALYSIS FOR TWO AGENTS

We next study the contract design problem between the
insurer and two agents. In particular, we analyze the impact
of interdependency and pre-screening on the optimal contract
and agents’ effort, in the case of two risk neutral and two
risk averse agents, respectively, with the former allowing us
to exclude the effect of risk aversion and focus on the effect
of interdependence.

A. Model of Two Agents

The two agents are interdependent, in that the effort exerted
by one agent affects not only himself, but also the loss that
the other agent experiences. We model the interdependence
between these two agents as follows:

L(i)
e1,e2

∼ N (μ(ei + x · e−i ), λ(ei + x · e−i )). (20)

Here, {−i} = {1, 2} − {i}, and L(i)
e1,e2 is a random variable

denoting the loss that agent i experiences, given both agents’
efforts. The interdependence factor is denoted by x ∈ [0, 1).
Note that this is not a unique modeling choice and is indeed
a simplification; a more general way of expressing correlated
risks would be to model the losses as jointly distributed; more
on extensions is discussed in Section VIII.

We assume the agents’ utilities are again given by
(2) and (4) for risk-neutral and risk-averse agents, respectively,
with the loss distributions replaced by the above expression.
We allow the two agents to have different effort cost c1, c2,
as well as different risk attitudes γ1, γ2.

The insurer can again conduct a pre-screening assessment,
Sei = ei + Wi , on each agent i , where Wi is a zero mean
Gaussian noise with variance σ 2

i . We assume that W1 and
W2 are independent, 4 and that Se1 , Se2 , L(1)

e1,e2, L(2)
e1,e2 are

conditionally independent given e1, e2.
Similar to the single agent case, we need to evaluate the

agents’ outside options from purchasing a contract. These will
then be used to impose the individual rationality constraints
in determining the terms of the contracts. However, compared
to the single agent case, the outside option of one agent is
now influenced by the participation choice of the other agent
as well. Specifically, we need to evaluate the agents’ utilities
as well as potential contracts in the following three scenarios:

(i) neither agent enters a contract;
(ii) one enters a contract, while the other opts out; and

(iii) both purchase contracts.

4An example and discussion on correlated pre-screening noises can be found
in the online appendix [27].

Here, Case (ii) is the outside option for agents in Case (iii),
and Case (i) is the outside option for agents in Case (ii).
Therefore, in order to evaluate the participation constraints
of agents when both purchase insurance contracts (Case (iii)),
we first need to find the optimal contracts and agents’ payoffs
in Cases (i) and (ii). We therefore evaluate the agents’ utilities
for each case, and subsequently solve the insurer’s contract
design problem, in Sections V-B and V-C for risk-neutral and
risk-averse agents, respectively.

B. Two Risk-Neutral Agents

Our first two-agent model is for risk-neutral agents to solely
focus on the effect of interdependence. As mentioned above,
in order to evaluate the agents’ opt-out options and finding the
optimal contract, the insurer’s problem and the agents’ utilities
need to be studied under three different cases. We begin by
analyzing these three cases, and then proceed to discussing
the role of pre-screening and the contracts’ effect on network
security.

1) Case (i): Neither Agent Enters a Contract: Let Goo

denote the game between two risk-neutral agents which have
purchased cyber insurance contracts. In this game, Agents’
efforts e1, e2 are their actions, and the expected payoffs of
risk-neutral agents, with unit cost of effort c1, c2 > 0, are
given by:

U i (e1, e2) = −μ(ei + xe−i ) − ci ei . (21)

The best response of each agent is therefore given by

Bout
i (e−i ) = arg max

ei≥0
− μ(ei + xe−i ) − ci ei . (22)

The above optimization problem is convex, and has the
following solution:

mi = arg min
e≥0

μ(e) + ci e, i = 1, 2,

Bout
i (e−i ) = (mi − xe−i )

+, (23)

where (a)+ = max{a, 0}. The Nash equilibrium is given by
the fixed point of the best-response mappings Bout

1 (e2) and
Bout

2 (e1):

e1 = (m1 − xe2)
+, and e2 = (m2 − xe1)

+ (24)

To find a fixed point, we consider three cases,
• e1 = 0, e2 ≥ 0: In this case, e2 = m2. Also, this case is

valid if m1 − xm2 ≤ 0 otherwise e1 should be nonzero.
• e2 = 0, e1 ≥ 0: similar to previous case, e1 = m1. This

case is valid if m2 − xm1 ≤ 0 otherwise e2 should be nonzero.
• e1 > 0, e2 > 0: In this case, we solve the following

system of equations:

e1 = m1 − xe2, and e2 = m2 − xe1 (25)

The solutions of above equations is given by,

e1 = m1 − x · m2

1 − x2

e2 = m2 − x · m1

1 − x2 (26)

Notice that this case is valid if m1−x ·m2
1−x2 > 0 and m2−x ·m1

1−x2 > 0.
Therefore, given 0 ≤ x < 1, system of equations (24) has a
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unique fixed point, and agent i ’s effort, e∗
i (mi , m−i ), at the

unique Nash equilibrium:

e∗
i (mi , m−i ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mi −x ·m−i
1−x2 if mi ≥ x · m−i and

m−i ≥ x · mi

0 if mi ≤ x · m−i

mi if m−i ≤ x · mi

(27)

Therefore, uoo
i = Ui (e∗

1(m1, m2), e∗
2(m2, m1)) is the utility

of agent i in the equilibrium when agents do not choose to
enter the contract. As we will see shortly, an insurer uses her
knowledge of uoo

i to evaluate agents’ outside options when
proposing optimal contracts.

2) Case (ii): One and Only One Enters a Contract: Assume
without loss of generality that agent 1 enters a contract, while
agent 2 opts out. We use Gio to denote the game between the
insured agent 1 and uninsured agent 2. The agents’ expected
payoff in this case is:

U
in
1 (e1, e2, p1, α1, β1) = −p1 − (c1 − α1)e1

−(1 − β1)μ(e1 + xe2)

U2(e1, e2) = −μ(e2 + xe1) − c2e2 (28)

Let Bin
1 (e2) denote the best response of agent 1. The following

optimization problem finds its best response:

Bin
1 (e2) = arg max

e1≥0
U

in
1 (e1, e2, p1, α1, β1) = arg max

e1≥0

−p1 − (c1 − α1)e1 − (1 − β1)μ(e1 + xe2). (29)

The above optimization problem is convex, and has a solution
given by,

m1(α1, β1) = arg min
e≥0

{(c1 − α1)e + (1 − β1)μ(e)}
Bin

1 (e2) = (m1(α1, β1) − xe2)
+ (30)

For the uninsured agent 2, it is easy to see that the best-
response function is given by Bout

2 (e1), the same best
response function in game Goo. We can now find the Nash
equilibrium as the fixed point of the best-response mappings.
Agents’ efforts at the equilibrium are e∗

1(m1(α1, β1), m2)
and e∗

2(m2, m1(α1, β1)), as defined in (27). For notational
convenience, we denote these efforts by e∗

1, e∗
2.

Let V
io

(p1, α1, β1, e1, e2) denote the insurer’s utility, when
agent 2 opts out and the insurer offers contract (p1, α1, β1) to
agent 1, and agents exert efforts e1, e2. The optimal contract
offered by the insurer to the participating agent is the solution
to,

max
p1,α1,0≤β1≤1,e1e∗

2

V
io

(p1, α1, β1, e∗
1, e∗

2)

= p1 − α1e∗
1 − β1 · μ(e∗

1 + x · e∗
2)

s.t ., (IR) U
in
1 (e∗

1, e∗
2, p1, α1, β1) ≥ uoo

1 ,

(IC) e∗
1, e∗

2 are the agents’ efforts in NE of Gio

(31)

Similar to Lemma 1, we can show that the (IR) constraint is
binding under the optimal contract. Therefore, we can re-write

the insurer’s problem by replacing the base premium p1,
leading to,

max
α1,0≤β1≤1,e∗

1,e∗
2

−uoo
1 − μ(e∗

1 + xe∗
2) − c1e∗

1

s.t ., (IC) e∗
1, e∗

2 are the agents’ efforts in NE of Gio

(32)

Let uio
2 be the second agent’s utility when the insurer offers

the optimal contract to the first agent and the second agent
opts out. The insurer can calculate uio

2 by finding the optimal
contract in problem (32) and the resulting Nash equilibrium
of game Gio. Similarly, uoi

1 denotes the first agent’s utility
when he opts out and the second agent purchases the optimal
contract. The insurer uses her knowledge of uio

2 and uoi
1 in

designing a pair of contracts to attract both agents.
3) Case (iii): Both Agents Purchase Contracts: Let Gii

denote the game between the two agents when they are both
in a contract. Assume the insurer offers each agent i a contract
(pi , αi , βi ). The expected utility of the agents when both
purchase contracts is given by

U
in
i (e1, e2, pi , αi , βi )

= −pi − (ci − αi )ei − (1 − βi )μ(ei + x · e−i ). (33)

Following steps similar to those in Section V-B.2, Bin
i ,

the best-response function of agent i , is given by

Bin
i (e−i ) = (mi (αi , βi ) − xe−i )

+, (34)

where mi (αi , βi ) is the solution to,

mi (αi , βi ) = arg min
e≥0

{(ci − αi )e + (1 − βi )μ(e)}. (35)

The agents’ efforts at the Nash equilibrium are again the fixed
point of the best-response mappings, and will be given by
e∗

i (mi (αi , βi ), m−i (α−i , β−i )), with e∗
i (., .) defined in (27).

For notational convenience, we will denote these as e∗
i .

To write the insurer’s problem, note that the outside option
of agent 1 (resp. 2) from this game is his utility in the
game Goi (resp. Gio). Then, the optimal contracts offered
by the insurer to the agents is the solution to the following
optimization problem:

max
p1,α1,0≤β1≤1,p2,α2,0≤β2≤1,e∗

1,e∗
2

p1 − α1e∗
1 − β1 · μ(e∗

1 +x · e∗
2)

+ p2 − α2e∗
2 − β2 · μ(e∗

2 + x · e∗
1)

s.t., (IR) U
in
j (e∗

1, e∗
2, p j , α j , β j ) ≥ uoi

j , j = 1, 2

(IC) e∗
1, e∗

2 are the agents’ efforts in NE of Gii (36)

The (IR) constraints can again be shown to be binding.
Therefore, the insurer’s contract design problem for two risk-
neutral agents is given by,

v ii := max
α1,0≤β1≤1,α2,0≤β2≤1,e∗

1,e∗
2

−uoi
1 − uio

2 − μ(e∗
1 + x · e∗

2)

− c1 · e∗
1 − μ(e∗

2 + x · e∗
1) − c2 · e∗

2

s.t., e∗
1, e∗

2 are the agents’ efforts in NE of Gii (37)
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4) Optimal Contracts for Two Risk-Neutral Agents: We now
analyze the properties of the contracts designed based on the
optimization problem (37), and their impact on agents’ efforts.

Theorem 4: Let eo
i denote the effort of agent i when

insurance is not available, and ein
i denote the effort of agent

i in the solution to (37), i.e., when purchasing the optimal
contract. Also, let ẽi denote the effort level of agent i in the
socially optimal outcome (i.e, the efforts maximizing the sum
of agents’ utilities). Then, the insurer offers contracts to both
agents, with the following properties,

(i) ein
i = ẽi , for i = 1, 2. That is, the agents exert socially

optimal effort levels in the optimal contract.
(i i) ein

1 +ein
2 ≥ eo

1 +eo
2. That is, when both agents purchase

optimal insurance contracts, the overall effort exerted toward
security increases compared to the no-insurance scenario.

(i i i) v ii ≥ U1(ẽ1, ẽ2) + U2(ẽ1, ẽ2) − U1(eo
1, eo

2) −
U2(eo

1, eo
2). That is, the principal’s profit is higher than the

gap between agents’ welfare at the socially optimal solution
and the no-insurance equilibrium.

Theorem 4, implies the following. Firstly, recall that, as dis-
cussed in Section IV-C, the insurer cannot make profit from
offering contracts to a single risk-neutral agent, as there is no
risk transfer from risk-neutral agents to an insurer. However,
we observe that the insurer can make profit when offering
contracts to interdependent risk-neutral agents. We conclude
that this improvement is due to the agents’ interdependency,
and can be interpreted as follows. Due to interdependency,
agents under invest in security at the no-insurance equilibrium.
This leads to a profit opportunity for the insurer, in which
she uses her (accurate) pre-screening assessments to offer
premium discounts and (full) coverage of losses, and in turn
requires the agents to exert higher efforts (in this particular
case, the socially optimal levels of effort). This increase in
efforts is in the insurer’s interest, as it lowers the risks of both
of its contracts. In addition, this effect can be viewed as the
insurer “selling commitment” to agents. That is, the insurer is
also providing each agent with the commitment of the other
agent to exert higher effort, if he also commits to exerting high
effort.

Secondly, Part (iii) of the theorem shows that the profit
opportunity for the insurer is even higher than the welfare gap
between the socially optimal and Nash equilibrium outcomes.
This is due to the fact that the outside option from the contract
for agent i is an outcome in which the insurer offers a contract
(only) to agent −i . The insurer will select this contract in
a way that it requires agent −i to exert low effort and get
high coverage, effectively forcing agent i to bear the full
cost of effort, leading to a utility lower than the no-insurance
Nash equilibrium for agent i . Consequently, as agents’ (IR)
constraints are also binding, it follows that the insurer’s profit
is in fact the gap between welfare attained under the optimal
contract, and the welfare at these low payoff, unilateral opt
out outcomes.

Finally, note that the statements of this theorem do not
depend on the pre-screening noises σi < ∞. This is because
the expected utilities and consequent effort choices of risk-
neutral agents are only sensitive to the mean, but not the
variances of uncertainties in the problem parameters. As such,

under the assumption of zero mean noise in the pre-screening
assessments, agents’ behavior will be independent of σ .

C. Two Risk-Averse Agents

We next analyze the case of two risk-averse agents. Again,
as discussed in Section V, in order to evaluate the agents’
individual rationality constraints and finding the optimal con-
tracts, we need to account for three possible cases based on
the agents’ participation alternatives.

The ensuing analysis is similar to that presented in
Section V-B, by replacing the agent’s utility functions with
their risk-averse versions and solving the resulting optimiza-
tion problems. We thus present the details in the online
appendix [27]. Following the analysis, the simplified insurer’s
optimization problem is given by

v ii = max
α1,0≤β1≤1,α2,0≤β2≤1,e∗

1≥0,e∗
2≥0

woi
1 + wio

2

− μ(e∗
1 + x · e∗

2) − 1

2
γ1(1 − β1)

2λ(e∗
1 + x · e∗

2)

− c1 · e∗
1 − 1

2
α2

1γ1σ
2
1 − μ(e∗

2 + x · e∗
1)

− 1

2
γ2(1−β2)

2λ(e∗
2 + x · e∗

1) − c2 · e∗
2 − 1

2
α2

2γ2σ
2
2

s.t ., e∗
1, e∗

2 are the agents’ effortsin NE of game Gii (38)

where woi
1 = ln(−uoi

1 )
γ1

and wio
2 = ln(−uio

2 )
γ2

.
We now discuss how different problem parameters,

particularly the availability of pre-screening, affect the
insurer’s profit in the optimal contracts, as well as the
system’s state of security. We first consider the utility of
the insurer. Note that the insurer always has the option to
not use the outcome of pre-screening by setting α = 0 in the
contract. Therefore, the insurer’s utility in the optimal contract
with pre-screening is larger than that in the optimal contract
without pre-screening; i.e., the availability of pre-screening is
in the insurer’s interest.

We now turn to the effect of pre-screening on the state of
network security, which we shall measure by the total effort
toward security, e1 + e2.

Theorem 5: Let mi = arg mine≥0 μ(e)+ 1
2γiλ(e)+ ci e. Let

ei and eo
i denote the effort of agent i in the optimal contract

and in the no-insurance equilibrium, respectively.
(i) Assume perfect pre-screening, i.e., σ1 = σ2 = 0. Then,

e1 + e2 ≥ eo
1 + eo

2, if,

1. μ′(mi ) <
−ci + xc−i

1 − x2 , i = 1, 2

2. (μ′)−1(
−ci + xc−i

1 − x2 ) ≥ x(μ′)−1(
−c−i + xci

1 − x2 ), i = 1, 2

(39)

That is, under these conditions, insurance improves network
security compared to the no-insurance scenario.

(ii) Assume both pre-screening assessments are uninforma-
tive. i.e., σ1 = σ2 = ∞. Then e1 + e2 ≤ eo

1 + eo
2. That is,

the insurance contract without pre-screening worsens network
security as compared to the no-insurance scenario.

The results of Theorem 5 can be intuitively interpreted
as follows. By Theorem 1, with a single risk-averse agent,
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the insurer profits from the agent’s interest in risk trans-
fer. However, the introduction of insurance always reduces
network security. In contrast, Theorem 5 shows that with
interdependent agents network security can improve, while
the insurer continues to make profit. Therefore, it is agents’
interdependency that plays a role in the improvement of
security. To see why, note that the insurer uses pre-screening
and offers premium discounts accordingly in order to incen-
tivize the interdependent agents to increase their effort levels.
Providing such incentives is in the insurer’s interest, as higher
effort exerted by the agent decreases both agents’ risk, and
consequently, the coverage required by the insurer once losses
are realized. Note also that it is the availability of (accurate)
pre-screening that provides the required tools for the insurer in
designing such incentives; otherwise, as shown in part (ii) of
the theorem, improving network security is no longer possible.

The conditions of part of (i) of the theorem can also be
interpreted as follows. The first condition imposes a restriction
on the derivative of μ, so that the decrease in loss as a function
of effort is faster than the normalized cost of effort; as a result,
the insurer will have the option to make more profit through
loss reduction (by encouraging agents to exert higher effort).
The second condition imposes a restriction on the agents’ cost
of effort and guarantees that both agents exert positive effort
(see proof of Theorem 5). Specifically, when the two agents’
effort costs are sufficiently similar, this condition is satisfied,
and both agents exert non-zero effort.

VI. N HOMOGENEOUS AGENTS, CORRELATED

LOSSES, AND RISK-AVERSE INSURER

In this section we show a number of extensions of our
results. First, in SectionVI-A we study the optimal con-
tracts in a network of N homogeneous risk-averse agents.
In Section VI-B, we examine the case where the losses of
these agents are not only distributionally dependent but also
correlated in their realizations; we will also consider the
impact of risk aversion on the part of the insurer on the
resulting contract.

A. N-Homogeneous Risk-Averse Agents

Consider a network of N homogeneous risk-averse agents
given by γi = γ , ci = c, and σi = σ , ∀i . The assumption of
homogeneity simplifies the insurer’s problem, allowing us to
obtain additional insights about the contracts and their impact
on network security. Let eee = (e1, e2, · · · , eN ) denote the
vector of efforts of all agents. The loss of agent i is given by,

L(i)
eee ∼ N (μ(ei + x

∑

j �=i

e j ), λ(ei + x
∑

j �=i

e j )). (40)

The agents’ expected utility outside the contract is,

Ui (eee) = E(− exp{−γ (−L(i)
eee − cei)})

= − exp{γ (μ(ei + x
∑

j �=i

e j )

+γ λ(ei + x
∑

j �=i e j )

2
+ cei )} (41)

Let m = arg mine≥0 μ(e) + 1
2γ λ(e) + ce. Then, the best

response mapping of agent i is given by,

Bout
i (eee−i ) = (m − x

∑

j �=i

e j )
+, (42)

where (x)+ = max{0, x}. The Nash equilibrium is the
fixed point of the above best response functions, leading to
efforts e = m

1+(N−1)x by each agent at the symmetric Nash
equilibrium.

When agent i purchases a contract (p, α, β), his expected
utility will be given by,

U
in
i (eee, p, α, β)

= E(− exp{−γ (−p + α · Sei − L(i)
eee + βL(i)

eee − c · ei )})
= − exp{γ (p + (c − α)ei + 1

2
α2γ σ 2

+ (1−β)μ(ei + x
∑

j �=i

e j )+
γ (1 − β)2λ(ei + x

∑
j �=i e j )

2
)}

(43)

Therefore, the best response of agent i , when he enters the
contract, is as follows,

Bin
i (eee−i ) = (m(α, β) − x

∑

j �=i

e j )
+

m(α, β) = arg min
e≥0

(1 − β)μ(e)

+1

2
(1 − β)2γ λ(e) + (c − α)e. (44)

Similar to the two-agent case, we can write the insurer’s
contract design problem as follows,

max
α,β,e

N · {p − αe − βμ(e + x(N − 1)e)}

s.t ., (IR) U
in
i (eee, p, α, β) ≥ uout

(IC) eee = (e, · · · , e) is the effort of the agents at

the NE where all agents purchase contracts (45)

Here, uout denotes the utility of an agent when he is opts
out of purchasing a contract, while all other agents purchase
contracts. We can again show that the individual rationality
constraints in the above problem are binding at the optimal
contract. Consequently, the insurer’s optimization problem
simplifies to:

max
α,β,m′ N · {wout − μ(m′) − (1 − β)2γ λ(m′)

2

− c · m′

1 + (N − 1)x
− γα2σ 2

2
}

s.t ., (IC) m′ = arg min
e≥0

(1 − β)μ(e)

+ (1 − β)2γ λ(e)

2
+ (c − α)e (46)

where wout = ln(−uout )
γ . Note also that problem (46) prescribes

identical contracts for all agents.
We now analyze the effect of the pre-screening noise,

σ , on the state of network security, defined as the sum of
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all agents’ efforts; with homogeneous agents, this is equivalent
to each agent’s effort.

Theorem 6: Assume N homogeneous agents purchase
contracts from an insurer, and let m = arg mine≥0 μ(e) +
1
2γ λ(e) + ce. Let eo be the effort of an agent in the no-
insurance symmetric equilibrium, e′ and ê denote the effort
in the optimal contract with perfect pre-screening and no
pre-screening, respectively. Then,

(i) If pre-screening is accurate, i.e., σ = 0, and m > 0,
then e′ ≥ eo if and only if μ′(m) < − c

1+(N−1)x . That is,
network security improves after the introduction of insurance
with prefect pre-screening.

(ii) If pre-screening is uninformative, i.e., σ = ∞,
then eo ≥ ê. That is, network security worsens after the
introduction of insurance without pre-screening.

Note that this theorem, as well as its interpretation, is similar
to the statements of Theorem 5 for two heterogeneous agents.
In particular, it is straightforward to check that the conditions
of part (i) of these theorems are equivalent when setting ci = c
in Theorem 5 and N = 2 in Theorem 6.

Finally, the next theorem shows that with sufficiently accu-
rate, yet imperfect pre-screening, the use of pre-screening can
lead to improvement of the state of network security compared
to the no-insurance equilibrium.

Theorem 7: Assume N homogeneous agents
purchase contracts from an insurer. Let
m = arg mine≥0 μ(e) + 1

2γ λ(e) + ce, and assume μ′(m) <
− c

1+(N−1)x . Let ê and eo be the effort level of agents in
the optimal contract and at the no-insurance equilibrium,
respectively. Let m̃ be the effort at which μ′(m̃) = − c

1+(N−1)x .

Then, if σ ≤ μ(m)+ c
1+(N−1)x m−μ(m̃)− c

1+(N−1)x m̃

0.5γ c2 , ê ≥ eo. That

is, introducing pre-screening improves network security as
compared to the no-insurance equilibrium.

B. Case of Risk Averse Insurer and Correlated Losses

We next study the problem of designing cyber-insurance
policies in a network of N homogeneous risk-averse agents
with perfect pre-screening (i.e., γi = γ and ci = c and
σi = σ = 0) with correlated losses defined as follows.

Let θ be the covariance between any two losses, that is,

Cov(Li
eee, L j

eee ) = θ, ∀i �= j (47)

We further assume that the insurer is risk-averse, with risk
attitude δ ≥ 0 and the vector (L1

eee, · · · , L N
eee ) has the multi-

variate Gaussian distribution. The insurer can conduct a pre-
screening of each agent’s security posture and receives the
pre-screening outcome Si = ei as the pre-screening is perfect.
Similar to (45), we can write the insurer’s problem as follows,

max
p,α,β,e

E(− exp{−δ(
∑

i=1,··· ,N

p − αSi − βLi
eee)})

= − exp{Nδ(−p + αe + βμ(e + x(N − 1)e)

+δβ2λ(e + x(N − 1)e)

2
+ (N − 1)

2
δβ2θ)}

s.t ., (IR) U
in
i (eee, p, α, β) ≥ uout

(IC) eee = (e, e, · · · , e) is the effort of the agents at the

NE where all the agents purchase contrcts (48)

As the (IR) constraint is binding, similar to (46), we have

max
α,β,e

wout − μ(m′) − β2δ + (1 − β)2γ

2
λ(m′)

− c

1 + (N − 1)x
m′ − (N − 1)

2
δβ2θ

s.t ., m′ ∈ arg min
e≥0

(1 − β)μ(e)

+ γ (1 − β)2λ(e)

2
+ (c − α)e (49)

The following theorem characterizes the effect of pre-
screening in the presence of a risk averse insurer.

Theorem 8: Let m = arg mine≥0 μ(e) + γ
2 λ(e) + c and

assume θ = 0 and m > 0. Then the agents exerts higher
effort than their effort outside the contract if and only if
μ′(m) + 1

2
δγ

γ+δ λ′(m) + c
1+(N−1)x < 0.

Notice that the condition of Theorem 8 reduces to the
condition of Theorem 6 if we set δ = 0. Also, notice that
the condition of Theorem 8 is more likely to be satisfied for
larger values of δ. For instance, if δ = ∞, the condition is
always satisfied, and the agents exert higher effort inside the
contract. In other words, if the insurer is more risk averse, it is
more likely that she encourages agents to exert higher effort
as compared to their efforts outside of the contract.

We close this section by characterizing the effect of corre-
lation on agents’ efforts given perfect pre-screening.

Theorem 9: Assume θ ≥ 0, i.e., positive correlation
between losses. Then, agents’ efforts inside the contract
increase as θ increases.

Theorem 9 implies that if agents’ losses are more correlated,
a risk averse insurer encourages the agents to exert more effort.
This is because with correlated losses, it is more likely for
losses to happen simultaneously as compared to a scenario
with independent losses. Note that when δ = 0 in (49),
i.e., when the insurer is risk neutral, the problem becomes
independent of θ , meaning that the covariance between any
two losses does not affect the optimal contract or the agents’
efforts if the insurer is risk neutral.

VII. NUMERICAL RESULTS

We next present numerical examples of the findings of
Sections IV-VI. Our main focus is on the impact of pre-
screening noise in various scenarios. Throughout the first part
of this section we use the following parameters:

μ(e) = 10

e + 1
, λ(e) = 10

(e + 1)2 , c = 2, γ = 1. (50)

A. Impact of Agent’s Risk Attitude γ

Figure 1 illustrates the optimal contract as a function of γ .
As the agent becomes more risk-averse, the insurer can set
a higher base premium p, offer a lower discount factor α,
and offer a higher coverage β. In other words, pre-screening
becomes less important as the agent’s risk-aversion increases,
as more risk-averse agents are most interested in transferring
more of their risk to the insurer, making their own efforts less
important.
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Fig. 1. Parameters of the optimal contract v.s. risk aversion level γ .

Fig. 2. Effort of agent vs. risk aversion level γ .

Fig. 3. Insurer’s profit vs. pre-screening noise σ2 with a single risk-averse
agent

Figure 2 illustrates network security (agent’s effort), both
inside and outside of a contract, vs. his risk attitude γ . First,
we see that as suggested by Theorem 1, the agent’s effort in the
contract is less that his effort outside of the contract. In other
words, insurance decreases network security. Intuitively, as the
agent transfers his risk to the insurer, he does not have the
incentive to exert high effort. We also observe that the agent’s
effort in the optimal contract is a decreasing function of γ .
This is due to the fact that as shown in Fig. 1, as the agent
becomes more risk-averse, he transfer more risk to the insurer,
and further decreases his effort. Finally, when the agent is
outside of the contract, he can only decrease his risks by
exerting higher effort. Therefore, we observe that as an agent
without insurance becomes more risk-averse, he exerts higher
effort.

B. Impact of Pre-Screening Noise

1) A Single Risk-Averse Agent: Figure 3 illustrates the
insurer’s profit as a function of the pre-screening noise σ 2.
The observation is consistent with Theorem 2, which states
that the insurer’s profit is a decreasing function of σ 2. Figure 4
illustrates the effort of the agent inside and outside the contract
as a function of σ 2. We see that the effort outside the contract
is independent of the pre-screening noise, while it decreases

Fig. 4. Agent’s effort vs. pre-screening noise σ 2 with a single risk-averse
agent.

Fig. 5. Principal’s utility vs. σ 2 with two homogeneous risk-averse agents.

Fig. 6. Network security (e1 +e2) vs. σ 2 with two homogeneous risk-averse
agents.

inside the contract as σ 2 increases. This highlights that as the
insurer becomes less accurate in her observation of the agent’s
effort, she starts to place less importance on the pre-screening
outcome; as a result, it becomes less beneficial for the agent to
exert high effort without receiving sufficient discount. In other
words, low quality pre-screening dampens its effectiveness
in mitigating moral hazard; consequently, network security
worsens. A second observation here is that as the participation
constraint is always binding, the constant effort outside the
contract also means that the agent’s utility remains constant
regardless of the pre-screening noise. Thus, it is only the
insurer who benefits from pre-screening.

2) Two Homogeneous Risk-Averse Agents: We next con-
sider two homogeneous agents with interdependence factor
x = 0.5. Figure 5 shows the insurer’s utility as a function
of the quality of pre-screening, which illustrates the insurer’s
profit decreases when the pre-screening accuracy decreases.
Figure 6 shows the network security as a function of pre-
screening noise. Here, the conditions of Theorem 6 is satisfied.
As we can see, security under the contract is higher than that
without insurance for small values of σ ; but as σ increases,
security worsens and drops below that without contract.
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Fig. 7. Network security (e1 +e2) vs. σ 2 with two heterogeneous risk-averse
agents

Fig. 8. Principal’s profit vs. σ 2 with two heterogeneous risk-averse agents

Fig. 9. Network security (e1 +e2) vs. σ 2 with two heterogeneous risk-averse
agents. In this example, the conditions of Theorem 5 do not hold but network
security improves after the introduction of insurance.

3) Two Heterogeneous Risk-Averse Agents: We next con-
sider two heterogeneous agents with the following parameters:

μ(e) = 10

e + 1
, λ(e) = 10

(e + 1)2 , c1 = 1, c2 = 1.1

γ1 = 1.2 γ2 = 1, x = 0.5 (51)

We assume that the pre-screening noise (σ 2) is the same for
both agents. These parameters together satisfy the condition of
Theorem 5. Figure 7 shows that the introduction of insurance
can indeed improve the state of network security provided
the pre-screening is sufficiently accurate. Figure 8 shows that
the insurer’s profit decreases as pre-screening becomes less
accurate.

C. On the Sufficient Conditions of Theorem 5

Consider an example with parameters similar to those given
in (51), except that γ1 = 1.5 and c2 = 1.5. In this case,
it can be verified that the conditions of Theorem 5 do not
hold. However, Figure 9 shows that network security improves
after the introduction of insurance. This example shows that
the sufficient conditions in Theorem 5 are not necessary.

Consider again the same parameters given in (51), except
x = 0.15. In this case, it can again be verified that the

Fig. 10. Network security (e1 + e2) vs. σ 2 with two heterogeneous
risk-averse agents. In this example, the conditions of Theorem 5 do not hold,
and network security worsens after introduction of insurance.

Fig. 11. Agent’s effort vs. σ 2 with a single risk-averse agent and exponen-
tially distributed loss.

conditions of Theorem 5 do not hold. Figure 10 shows that the
network security worsens with the introduction of insurance
and thus the sufficient conditions are meaningful.

D. Loss With Exponential Distribution and Pre-Screening
With Uniform Distribution: An Example

1) Single Risk-Averse Agent: Throughout our analysis,
we assumed that losses and pre-screening outcomes are
normally distributed. In this section, we provide a numerical
example under the assumption of exponentially distributed
losses and uniformly distributed pre-screening outcomes. We
illustrate how our previous observations hold in this instance
as well. Let,

γ = 0.9, c = 0.25, E(Le) = μ(e) = 1

1 + e
,

Le ∼ exp(
1

μ(e)
),

Se = e + W, W ∼ Uni f (−b, b) (52)

Figure 11 illustrates the agent’s effort when pre-screening
noise W is uniformly distributed in interval [−b, b]. This
figure shows that even though the loss and pre-screening out-
come are not normally distributed, the agent’s effort inside the
contract is less than outside the contract; similarly, it remains
a decreasing function of b.

2) Model With Two Risk-Averse Agents: We further con-
sider a network of two risk-averse agents with the following
parameters,

γ1 = γ2 = 0.9, c1 = 0.25, c2 = 0.5, x = 0.5

E(Li
e1,e2

) = μ(ei + xe−i ) = 1

1 + ei + xe−i

Li
e1,e2

∼ exp(
1

μ(ei + xe−i )
),

Sei = ei + Wi , Wi ∼ Uni f (−b, b), i = 1, 2 (53)
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Fig. 12. Network security (e1+e2) vs. σ 2 with two heterogeneous risk-averse
agents with exponentially distributed interdependent losses.

Where, W1, W2 are independent and uniformly distributed in
interval [−b, b].

Figure 12 illustrates network security in a network of two
risk-averse agents with exponentially distributed interdepen-
dent losses and uniformly distributed pre-screening outcomes.
In this example, when pre-screening is sufficiently accurate
(b is sufficiently small), by exploiting agents’ interdependence,
the insurer can design contracts in a way that network security
inside the contract is higher than prior to the introduction
of insurance. In contrast, when pre-screening is not accurate
enough (b is large), network security inside the contract falls
bellow network security outside the contract. Again, these
observations are consistent with our results under normally
distributed losses and pre-screening.

VIII. CONCLUSIONS AND DISCUSSIONS

We studied the problem of designing cyber insurance
contracts by a single profit-maximizing insurer, for both
risk-neutral and risk-averse agents. While the introduction
of insurance worsens network security in a network of
independent agents, we showed that the result could be
different in a network of interdependent agents. Specifically,
we showed that security interdependency leads to a profit
opportunity for the insurer, created by the inefficient effort
levels exerted by free-riding agents when insurance is not
available but interdependency is present; this is in addition to
risk transfer that an insurer typically profits from. We showed
that security pre-screening then allows the insurer to take
advantage of this additional profit opportunity by designing the
right contracts to incentivize the agents to increase their effort
levels and essentially selling commitment to interdependent
agents. We show under what conditions this type of contracts
leads to not only increased profit for the principal and utility
for the agents, but also improved state of network security.

There are a number of directions to pursue to extend the
above results. As mentioned earlier, all our results are derived
under the assumption of perfect information. Studying the
problem with pre-screening under partial information assump-
tions would be an important direction of future research; this
would include imperfect knowledge of the agents’ type by
the principal as well as imperfect knowledge of the interde-
pendence relationship by the agents and the principal. Other
modeling choices such as alternative use of pre-screening
assessment (as opposed to linear discounts on premiums),
and more general ways of capturing correlated risks (e.g.,
joint distribution of losses as opposed to average loss being a

function of joint effort), would also be of great interest. Finally,
a competitive market setting and its effects on network security
is also worth studying.

APPENDIX

Proofs are given in [27].
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