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Abstract

We review the experimental synthesis of smooth and rough
particles, characterization of surface roughness, quantification
of the pairwise and bulk friction coefficients, and their effect on
the rheology of wet particulate flows. Even in the absence of
interparticle attraction or cohesion, such types of flows are
broadly ubiquitous, spanning enormous length scales ranging
from consumer and food products to earth movements. The
increasing availability of model frictional particles is useful to
advancing new understanding of particulate rheology.
Although hard-sphere particles remain the most widely studied
system due to their simplicity, their rigid and frictionless nature
cannot predict many of the complex flow phenomena in
colloidal and granular suspensions. Besides a myriad of
interparticle forces, the presence of tangential interparticle
friction arising from either hydrodynamics or solid contacts of
asperities is now thought to be responsible for commonalities
in shear thickening and jamming phenomena at high volume
fractions and shear stresses. The overall richness of the sus-
pension mechanics landscape points to the reunification of
colloidal and granular physics in the near future: one in which it
may become possible to apply a universal set of physical
frameworks to understand the flows of model rough particles
across multiple spatiotemporal scales. This can only be
accomplished by properly distinguishing between microscopic
and bulk friction and by decoupling hydrodynamics and contact
contributions within the context of experimental observations.
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Rheological significance of particle
roughness

The flow of particulate suspensions plays an important
role in a broad variety of geophysical phenomena and
engineering applications. These suspensions typically
consist of rough or faceted microparticles packed in a
continuum fluid in the absence of attractive interactions
where the particle type may span colloids, grains, bub-
bles, and emulsions. Collective mesoscale rearrange-
ments of the particles under applied stresses often cause
enormous rheological changes in the bulk material,
ranging from the sudden clogging of pipes [1], lique-
faction and landscape evolution [2—4], to creative ap-
plications such as robotic grippers [5] and liquid body
armor [6]. Despite the importance of suspension
rheology and its investigation since Reynolds and
Einstein [7,8], there is still a persistent gap between the
behavior of industrially relevant particulate systems and
the results obtained from academic model systems.
Flows are especially challenging to predict for dense
suspensions (volume fraction ¢ > 0.40) of colloidal
(typically with particle diameters 2¢ < 2 um) and
granular (typically 2¢ > 2 um) particles. This is because
textbook treatments for low Reynolds number suspen-
sion flows are traditionally developed through three
simplifications [9—11]: (1) particles are perfectly
spherical in shape; (2) interparticle collisions are fric-
tionless and overdamped in the case of colloids or in-
elastic in the case of larger particles; (3) solvent
molecules are much smaller than the particle size, such
that continuum approximations can be used to model
fluid drag between idealized spherical particles. These
assumptions have made theoretical developments from
the Navier—Stokes equations tractable and reduced
computational demands but have also resulted in a
major discrepancy between experimental observations
and predictions. A notable example is found in many
recent investigations of discontinuous thickening and
shear jamming suspensions [12—20], in which rough
particles generated jumps in energy dissipation at
reduced values of ¢ and shear stresses 0 when compared
to smooth, spherical particles [13,15,21,22]. The
prevailing thought is that contact mechanics become
important as lubrication films break down at large ¢
[23—25], although there is a severe lack of m situ
experimental evidence to directly support this
statement.
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The rheology of particulate suspensions was historically
investigated by a combination of fluid mechanics ex-
perts and granular physicists [26—28]. Although the two
fields diverged in the 1950s, they are now beginning to
reconvene due to the need to consider both solid and
fluid mechanics in dense suspension flows. The
convergence of these two fields is found in a number of
reviews on granular physics and suspension mechanics
[29—32]. In addition, we recommend a comprehensive
review by Morris [33] on the computer simulations of
lubricated-to-frictional shear thickening as parallel
reading material, which will prove useful as we discuss
the experimental results here in light of theoretical
findings.

Our review article summarizes recent experimental
methods that are used to break new ground in suspen-
sion rheology. First, we list a number of academic and
industrial particulate materials in which the surface
roughness can be controlled and quantified. Second, we
describe experimental parameters used to characterize
the frictional properties of various particulates based on
their surface morphologies. Finally, we describe the ef-
fects of surface anisotropy on macroscopic rheological
properties as seen in dense suspensions of rough or
frictional particles, with an emphasis on how interpar-
ticle friction impacts their microstructure and me-
chanics. The conclusion provides an outlook on the field
of dense suspension rheology based on past work, pre-
sent observations, and future strategies.

Preparation of smooth spherical particles

A hard-sphere particle is assumed to be undeformable
and impenetrable and interacts with other particles
solely through contact. In experimental systems, par-
ticles possess a finite elastic modulus and can become
deformed by strong flows [34]. The collisions between
particles are inelastic in the case of wet and dry
granular materials where inertia dominates because of
large particle sizes [35] or are overdamped in the case
of colloidal suspensions where viscous dissipation by
the solvent is significant [36]. Perfectly smooth hard
spheres have represented the ideal model system for
many years, allowing researchers to validate simula-
tions and theories of suspension phase behavior and
rheology [37—42]. They also provide a benchmarking
tool for experimental studies involving rough particles
of similar sizes made from the same material. It is
worth remembering that many interparticle forces
(electrostatics, solvophilicity, van der Waals, deple-
tion, hydrogen bonding, and so forth) are in play during
the shear flow of particulate suspensions [9,43] and
that variations in synthesis techniques can produce
similar looking particles with various types of pairwise
interactions that generate completely different rheo-
logical phenomena.

Currently, two common ways to generate such particles
are through microfluidics and wet chemistry synthesis.
Reviews of microfluidic and lithographic tools used to
synthesize particles are found elsewhere [44]. While
these methods are capable of producing particles
from ~10'—10? wm with intricate surface anisotropy
and nearly zero size polydispersity, they are challenging
to scale up to the sheer number of particles required for
bulk rheology measurements. As a point for comparison,
it takes =10 hard-sphere particles (22 = 2 um) to
completely fill a small parallel plate rheometer geometry
(diameter = 20 mm, gap height = 500 um), with a
suspension of ¢ = 0.50. Bulk chemical synthesis is
therefore a much more viable method for producing the
large number of particles used in the investigation of
dense suspension rheology. Owing to their well-
characterized and highly tunable interaction poten-
tials, sterically stabilized silica, polystyrene (PS), and
poly(methyl methacrylate) (PMMA) colloids remain
three of the most popular systems used in academic
studies of suspension rheology. Each system poses
unique advantages and disadvantages. All three types of
particles can be chemically or physically tagged with
conjugated fluorescent dyes for microscopy imaging.

Silica spheres

Monodisperse silica colloids are synthesized using the
Stéber process [45,46] in which the precursor, typically
tetracthyl orthosilicate, is hydrolyzed in alcohols and
grown into colloidal particles through a one-step sol—gel
process. An octadecyl aliphatic chain is then grafted to
the bare surface of the silica particles through high-
temperature silanol esterification [47,48]. This method
readily produces hard-sphere particles with diameters
between 20 nm [49] and 1000 nm [50]. If larger particles
are desired, additional layers of silica or other materials
such as PS can be grown as shells on seed cores, in a
method known as seeded growth polymerization [51].
Depending on the solvent quality, the octadecyl-grafted
chains may undergo a lower critical solution temperature
crystalline transition that leads to thermoreversible
flocculation from a hard-sphere suspension [49]. This
tendency to flocculate at reduced temperatures leads to
the term “adhesive hard spheres” for octadecyl-grafted
silica colloids, which are used in multiple gelation and
self-assembly studies. Small-angle neutron scattering is
typically used to obtain the Baxter temperature, which
quantifies the attraction strength through a square well
potential [52—55]. A key benefit of silica colloids is that
they do not swell or plasticize in most solvents, which
can impact measurements of ¢, as well as hard-sphere
properties. The refractive index mismatch of silica
(7 = 1.459) with common solvents (# = 1.33 for water,
n = 1.429 for tetradecane) is not too large, which does
not significantly hinder their imaging resolution in
confocal microscopy or introduce significant van der
Waals forces. However, since silica colloids have a high
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density (p, = 1.7—2.0 g/ml) compared with that of most
polar and nonpolar solvents (pf = 1 g/ml for water,
pr = 0.76 g/ml for tetradecane), the density mismatch
poses issues due to sedimentation and detachment from
rheometer geometries. This issue is somewhat mitigated
if the sedimentation velocities are reduced by decreasing
the particle size or increasing the solvent viscosity.

PMMA and PS spheres

Polymeric hard spheres form another class of model
systems in studies of suspension rheology, with benefits
and drawbacks that are almost completely opposite to
those of silica colloids. PS and PMMA colloids are
generally prepared by emulsion polymerization [56],
in which conjugated polymer brushes such as poly(vinyl
pyrrolidone) [57], poly(dimethyl siloxane) [58,59],
fluorinated copolymer blends [60], or poly(12-
hydroxystearic acid) (PHSA) [61—65] are covalently
attached to sterically stabilize a particle. Other stabi-
lizers include electrostatic groups that become charged
in specific pH conditions, such as poly(acrylic acid) and
aliphatic amines on PS microspheres. The brushes can
be grafted through a one-pot synthesis as in free radical
polymerization [61—65], with or without the addition of
reversible addition—fragmentation chain transfer agents
[66], or they can be grafted after synthesis through
atom radical transfer polymerization [60]. Given the
suspending fluid, proper choice of the polymer brush is
key as a fully solvated brush provides the largest range of
steric repulsion compared with a collapsed brush. PHSA-
grafted PMMA colloids in nonpolar solvents are widely
considered to be the model of hard-sphere systems and
have been extensively used since the pioneering studies
of Pusey and van Megen [37,67,68]. Direct and indirect
measures of the hard-sphere properties of PHSA-PMMA
colloids are widely available in the literature. The stan-
dard PHSA brush length on these PMMA colloids is
estimated to be = 10 nm, although longer chain lengths
of up to 22.4 nm are possible by varying the poly-
condensation time [65]. The commonly-cited brush
length of 10 nm was measured using a surface force
apparatus to obtain the interaction energy as a function
of the surface separation for two flat mica surfaces graf-
ted with PHSA brushes [69]. Because this study was
conducted in dry conditions, the solvated PHSA brush
length may be different with varying solvent quality.

The basic principle of emulsion polymerization re-
actions in the formation of polymer lattices is as fol-
lows: a monomer, such as styrene or methyl
methacrylate, is dissolved in a solvent mixture in which
it is barely soluble. Heat-activated initiators such
as potassium persulfate and azobisisobutyronitrile, or
ultraviolet light-activated photoinitiators such as
hydroxymethylpropiophenone (Darocur), are triggered

to release free radicals that initiate and propagate the
polymerization reaction. When the oligomers grow to a
certain size, they become insoluble in the solvent
and phase separate out of the solution as nuclei for
further colloidal growth. A thorough review of the
mechanisms involved in emulsion polymerization is
given by Thickett and Gilbert [56]. The major benefits
of using most polymeric colloids are that benign
solvents can be used for complete density and refrac-
tive index matching and that the stabilizer brushes
could potentially be functionalized to introduce
stimuli-responsiveness into particles [70]. Some dis-
advantages include problematic charge screening in
nonpolar solvents [71,72], particle plasticization and
swelling in organic solvents [73], and the added
complexity that comes with the synthesis of conjugated
comb copolymer brushes such as PHSA-g-PMMA.

Other materials

A few other materials are used in the formation
of spherical particles. Poly(N-isopropylacrylamide)
(PNIPAM) microgels have highly tunable Young’s
moduli depending on the concentration of the added
cross-linker (10°> Pa < £ < 10* Pa) and can be syn-
thesized by one-pot emulsion polymerization. They are
used to understand the flow and self-assembly physics
of soft, deformable particles above the random closed
packing volume fraction of hard spheres (@, = 0.64)
because they expand at temperatures below the lower
critical solution temperature [74—76]. The applications
of PNIPAM are especially promising in biomedical
engineering. Owing to their softness, microgels with
fibrin—protofibril—binding motifs have been used as
platelet-like particles to induce blood clotting rapidly
under physiological flow conditions [77], and composite
nanostructures have been added to PNIPAM to
generate stimuli-responsive hydrogels that are highly
stretchable [78]. Another highly versatile colloidal
system is trimethoxysilyl propyl methacrylate (TPM),
which has been used to create polyhedral clusters [79],
light-activated colloidal surfers [80], colloidal alloys
[81], and lock-and-key particles [82]. Non-polymeric
materials such as fatty acid—coated superparamagnetic
iron oxide colloids are prepared by alkali-mediated
precipitation [83] and used in magnetic field—driven
assembly studies [84,85].

Because of the bottoms-up nature of these synthesis
methods, in reality, even so-called smooth particles are
never completely smooth at length scales close to that of
the homopolymer constituents. Smith et al. [86] found
that PHSA-PMMA colloids are slightly porous, with the
density of the PMMA cores being slightly lower than
that of the homopolymers. Silica and PS colloids are also
subject to fluctuations in the particle porosity. This may
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shift the phase behavior of hard-sphere suspensions,
which i1s a function of the osmotic pressure of the
solvent. It could also affect the attraction potential
in specific colloidal gel investigations where the in-
teractions are generated by excluded volumes of small
depletant molecules [58].

Preparation of rough particles

Rough particles were traditionally considered to be un-
suitable as model systems due to their nonuniform
surfaces and challenges in simulating such morphol-
ogies. They are widely found in industrial formulations
due to the use of milling as a common technique to
grind up solids, for example in foods, paints, and coat-
ings [87—89]. Fortunately, recent developments in
chemical and physical methods to synthesize bulk
quantities of rough or bumpy particles have made it
possible to investigate the effects of roughness on sus-
pension rheology (Figure 1). We provide an overview of
industrial and academic methods used to create
geometrically symmetric, yet surface anisotropic, parti-
cles spanning the colloidal to granular length scales. An
in-depth review of the synthesis of porous polymeric
particles is given by Gokmen and Du Prez [90] and will
not be discussed here. Although there is a nontrivial
relationship between roughness and friction [91—93], in
general, surface roughness increases the interparticle
friction coefficient.

In this section, we discuss various physical and chemical
routes to the formation of rough particles in quantities
large enough for bulk rheological characterization. The
physical methods include milling and grinding pro-
cesses, self-assembly of smaller particles on larger ones
through interparticle forces, ## situ templating methods,
and external application of mechanical stresses. The
chemical methods include the seeded growth of small
particles on larger cores, acid or base etching, linker
chemistry and charge compensation, and the addition of
cross-linkers during emulsion polymerization. The
advent of 3D printing has also made it possible to create
granular particles with highly complex geometries.

Grinding and milling

A mill applies kinetic energy to solid materials to break
them up via friction and attrition. Grains formed by
milling are typically very polydisperse in their size
distributions (>10%) and may contain sharp and
irregular facets. In fact, it is not unusual to obtain
polydispersity values ranging from 100% to 300%. A few
articles on the effect of breakage mechanisms on par-
ticulate sizes are available [121,122], but ultimately, it
is an engineering process in which the large number of
process parameters makes predictive capabilities
difficult. Nevertheless, because a mill is easy to use
and can handle large quantities of wet or dry material,

milling remains one of the most common
manufacturing techniques to grind materials such as
organic crystals in pharmaceuticals [123], calcite pow-
ders [124], nanocrystalline metals [89], pigments [88],
and various other particulates down to the desired size
range. Cornstarch, a popular particulate used to study
the physics of shear thickening [17,125,126], is formed
by the wet milling of corn kernels and is therefore
highly subject to size polydispersity and shape
irregularities.

Surface heterocoagulation and seeded growth
polymerization

Electrostatic forces are commonly leveraged to deco-
rate large core particles with smaller, oppositely
charged particles, forming composite raspberry-like
particles with a bumpy exterior. This so-called heter-
ocoagulation mechanism was first used by Ottewill
et al. [94] in which negatively charged PS particles are
coated with smaller, positively charged poly(butyl
methacrylate) (PBMA) particles at reaction tempera-
tures greater than the glass transition temperature of
the PBMA. The authors proposed a simple theory to
explain this process by considering the interfacial
energy of the two polymers. The most important
parameter is the ratio of interfacial energies, as found in
the Young—Dupré equation, which should be kept at an
intermediate value to avoid complete wetting or
dewetting. A mass balance can be used to deduce the
proper ratio of particle radii and particle numbers for
hexagonal close packing of the PS particles on the
PBMA cores. Various electrostatic stabilization and
energy minimization methods were used successfully
by a number of research groups to fabricate a dizzying
array of Pickering emulsions and colloidosomes [99],
surface-modified PS particles [102,127], and raspberry-
like silica particles [128,129]. Other types of particle
interactions, such as hydrogen bonding and w-m
bonding, can also result in the same type of raspberry-
like morphology [98,104,130]. Removal of the bumps
by chemical etching is also possible if golf ball—like
morphologies are desired [113].

A variant of heterocoagulation coupled with seeded
growth polymerization can be used to synthesize larger
raspberry-like particles, in which a core polymeric par-
ticle is coated with a solid shell [95,100,105,116,117]. A
secondary coating step is used to grow the shell cova-
lently on top of the composite bumpy particle. This step
is thought to provide improved mechanical stability to
the asperities during shear such that they do not detach
easily [118]. Although the particle morphology obtained
with heterocoagulation methods is desirable due to their
ease of reproducibility in simulation studies, a major
issue is that each chemical synthesis and cleaning step
reduces the overall yield of particles.
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Surface morphologies accessible for symmetric rough particles and their synthesis methods. Most of these micron-sized colloidal particles are
synthesized by wet chemistry methods [13,94—119,129,276], although 3D printing is also able to fabricate large quantities of granular particles with
arbitrary shapes [120]. Reproduced with permission from indicated references.
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Confinement templating

Raspberry-like particles with multiple bump function-
alities are also obtainable through a microstructural
confinement templating method, in which a small
number of large particles are dispersed in a concen-
trated bath of smaller particles. This method was used
by Gaulding et al. [106] to deposit functionalized
PNIPAM microparticles onto PS spheres, where the
surface bumpiness could be precisely tuned. However,
this method suffers from two drawbacks, in that the
yield of the composite particles is limited and that the
unused PNIPAM microparticles would go to waste if
not recycled. A similar method was used to confine
TPM droplets by cosedimentation with a dense sus-
pension of PS spheres. The deformed TPM droplets
are then polymerized by heat into polyhedral shapes
[107]. The vyield of particles obtained through
templating is likely to be much lower than that ob-
tained through other types of bulk synthesis methods.

In situ mechanical stresses

Other researchers leveraged methods to generate in-
ternal mechanical stresses within particles to create
macroporous microstructures. Peterson et al. describe an
internal templating method in which the precipitation
of low-melting-point salts together with silica nano-
particles using high-temperature aerosol spraying
generated various types of macroporous silica colloids
[109]. Degassing of PS and PMMA spheres in a poly-
electrolyte solvent was also used to create nanometer
scale roughness on their surfaces due to changes in the
charge density on the polymer surface [110]. A similar
gas-producing mechanism was used to create raspberry-
like protrusions on silica particles as they passed through
a flow-focusing microfluidic channel [111]. The surface
morphology is thought to result from the addition of
hydrochloric acid and sodium bicarbonate, which
participate in the Stober sol—gel process and produce
carbon dioxide gas at the silica—water interfacial sub-
phase. Finally, PS dimers and triangles were made by
swelling of PS seed particles in the presence of a cross-
linker [108]. The concentration gradient of the cross-
linker is proposed to mechanically control the direc-
tionality of the phase separations during the seeded
growth polymerization step. These methods are more
likely able to produce the quantities of particles needed
for rheological testing, although the maximum rough-
ness achievable may be limited to the nanometer or
submicron range.

Cross-linker—aided polymerization

The addition of cross-linking monomers during the early
nucleation step of emulsion polymerization can be used
to generate surface morphologies that range from slight
dimpling to that reminiscent of crumpled paper and golf
balls [113,131]. By increasing the concentration of the
crosslinker (ethylene glycol methacrylate) up to 2 wt%

of the monomer, our group has fabricated sterically
stabilized PHSA-PMMA colloids that have root-mean-
squared (RMS) roughness values up to 20% of the
mean particle radius [13]. Increasing the cross-linker
concentration further tends to result in gelation of the
entire polymer network, causing a failed synthesis. This
wet chemistry method is likely to be applicable for any
polymeric materials, such as PS and PNIPAM particles,
that are formed by one-pot free radical polymerization
reactions. The size and polydispersity of the particles
can be tuned somewhat independently of the rough-
ness, although care should be taken such that the elastic
modulus of the particles does not increase significantly
due to the addition of the cross-linker [132]. The
thermodynamic mechanism for the formation of the
rough features is currently unknown, primarily due to
the innate complexity of emulsion polymerization. We
speculate that changes to the oligomer solubility and
nuclei shape during microphase separation could be the
possible reasons for the formation of rough particles.
One of the biggest benefits of this method is that the
entire particle is made out of the same material, which
simplifies the linking of particle interactions and elas-
ticity to bulk suspension mechanics.

Other wet chemistries

If metallic oxide particles with high surface areas are
desired, one-pot and template-free hydrothermal syn-
thesis can be used to prepare copper oxide colloids
coated with a layer of cerium oxide. The particle
morphology resembles the type created by internal
mechanical stresses, and the available surface area for
catalysis can be dramatically increased by up to five
times by this technique [119]. Hydrolytic poly-
condensation of poly(methyl silsesquioxane) with inor-
ganic calcium carbonate particles produced composite
and roughened colloids with increased hydrophobicity
[114]. Photoresponsive raspberry-like colloids were
synthesized by covalently attaching iron oxide nano-
particles to silica cores using cucurbituril and azoben-
zene linkers, which generated reversible changes in
particle morphology from rough to smooth upon illu-
mination with ultraviolet light [115]. The authors show
that the particle shape can be controlled to switch be-
tween shear thinning and shear thickening behavior.
These examples illustrate the large variety of wet
chemistries that can be used to tailor particle shapes in
an equally large variety of particulate materials.

Etching and 3D printing

Chemical etching is a simple method to generate rough
surfaces on almost all types of materials—whether they
are inorganic or organic in nature. By immersing particles
in a strong acid or base for a sufficiently long period of
time, the solvent will etch away parts of the surface,
leaving behind a slightly roughened exterior. Silica and
soda-lime glass beads can be etched using concentrated
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sodium hydroxide [21] and salt derivatives of hydroflu-
oric acid [133,275] The RMS roughness can be tuned by
controlling the immersion time of the particles [133],
although the roughness achievable may be limited to the
nanometer range. On the other hand, it is possible for
metallic particles with high purity to become smoother
after etching.

Finally, 3D printing has emerged as a powerful way to
fabricate reusable granular building blocks with highly
complex geometries. Engineering software programs
such as AutoCAD are typically used to design the par-
ticle shape. Many types of 3D shapes, such as polyhedra
and stars, can be generated with polymer resins that
have different elastic moduli values [120,134]. Acrylic,
nylon, ceramics, and hydrogel particles can all be printed
this way. The particle size and shape details are limited
by the resolution of current 3D printers (=100 pm). A
disadvantage with 3D printing is that particles with very
thin, interlocking features may break easily during
packing or shear due to the low fracture strength of
commercial resins.

Quantifying roughness and friction

The relationships between surface roughness, interpar-
ticle friction, and macroscopic suspension mechanics are
nonlinear. In the field of tribology, it is understood that
surface roughness can completely change the frictional
dissipation between two surfaces in near contact. The
friction between two surfaces is dictated by the contact
area, material elasticity, shearing velocities, and the
presence of lubricant fluid between the surfaces
[91,135]. Friction may arise from either solid—solid
contact or from hydrodynamic drag of the lubricant at
higher sliding speeds. The generic friction coefficient, U,
is an adjustable parameter used in many particulate
simulations and theories. Because of its importance, a
significant amount of effort has been dedicated to
measuring W for various types of particles. No matter how
smooth a particle might appear, a non-zero static friction
coefficient is always present in experimental observa-
tions [32]. Here, we review the methods used to obtain
surface roughness parameters, as well as the interparticle
friction coefficient (i) and bulk stress ratio (i) in
particulate systems. The two parameters represent
physics from distinctly different length scales, and we
suggest exercising great caution in distinguishing them.

Table 1 is a list of w, measured using different
methods for various types of particulate materials in
the literature, although the list is by no means
exhaustive. Roughness parameters and particle sizes
are provided where available. This table is meant to
provide a general reference to the values of u, which
can differ greatly between static and sliding condi-
tions and when additives are present in wet systems.

Atomic force microscopy and roughness parameters
Atomic force microscopy (AFM) is the leading
experimental technique to measure surface roughness
at nanometer resolutions. It involves the use of a
cantilever and tip with known spring constants to
directly probe the topography of a surface in wet or
dry conditions. As an extension to the surface force
apparatus [69,151], AFM can also be used to obtain
the pairwise interactions of surfaces and particles
through approach-retraction measurements
[152,153]. In this section, we focus on the use of
AFM for topographical characterization of surface
roughness. Contact mode involves moving the AFM
tip up and down as the instrument scans the
surface but is typically avoided because the presence
of liquids and adhesive interactions between the tip
and the surface may erroneously influence topography
measurements. A more convenient way to avoid the
pitfalls encountered in contact mode is to use tapping
mode, which involves oscillating the tip up and down
at its resonance frequency using piezoelectric ele-
ments in the cantilever holder [154]. To obtain 3D
surface topography measurements for particles, the
particles must be fixed such that the AFM tip does
not move them around during imaging. This is
accomplished by partially embedding particles in
special epoxies that soften when heated [129] or by
spin coating dilute suspensions onto a layer of poly-
mer media adhered to a flat substrate [13]. The
surface topography measurements are limited to a
relatively small field of view at the top most part of a
particle because imaging artifacts arise from dragging
the AFM tip close to the vertical sides of micron-
sized or larger particles. Ensemble averaging of the
topography across multiple particles is required to
generate enough statistics for quantification, espe-
cially in the case of highly anisotropic particles. In
addition to AFM, other optical methods such as white
light scanning interferometry [133] are reported to
generate 3D topography data of particles. Confocal
laser scanning microscopy is also a possible method,
but the difference in resolution in the horizontal and
vertical planes should be accounted for [155].

Before roughness parameters can be extracted, the
curved surface profiles of spherical particles must be
flattened and compared to a reference surface. This is
best done by first fitting an ideal sphere to the 3D
topography data, centering the sphere location based
on available height information and minimizing the
deviation between the two surfaces (Figure 2) [156].
This procedure effectively flattens the curved surface
for further analysis. The diameter of the fitted
sphere, Zaeﬂ, should be close to the values obtained
from independent measurements of the particle size,
such as from scanning electron microscopy. Experi-
mental measures of the roughness can then be ob-
tained through the discretized form of the two-
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Table 1

List of particulate materials with various roughness and friction coefficients.

Material Method Reference 2aqf Hp Ry
Acrylic Angle of repose [136] =~0.3 cm 0.88 0.7 £ 0.3 um
Angle of repose [136] =0.3 cm 0.96 2.6 +0.1 um
Alumina (hydrated) Lateral force microscopy [137] 6 and 60 um 0.03-0.07 189 nm
Aluminum Angle of repose [136] =0.3cm 0.62 0.32 £ 0.14 pm
Cellulose Lateral force microscopy [138] 16 um 0.22-0.64 13 nm
Lateral force microscopy [139] 25 um 0.35 @
Cornstarch Lateral force microscopy [140] 8 um 0.02 14 nm
Glass Lateral force microscopy [141] 9.78 um 0.9 (Bare) 12.4 nm
Lateral force microscopy [141] 9.78 um 0.02 (Brushes) 12.4 nm
Lateral force microscopy [137] 6 and 35 pm 0.18-0.60 12-19 nm
Sliding [142] 70-110 um 0.25-0.65 a
Angle of repose [133] 140-240 pum 0.42-0.52 @
Angle of repose [143] 3.5 mm 0.20 @
Angle of repose [144] 0.5—-10 mm 0-1 2
Sliding [145] 6 mm 0.13 @
Limestone Lateral force microscopy [137] 4 pm 0.67 102 nm
Ottawa sand Cyclic shear [146] 0.35 mm 0.40 @
Pea gravel Cyclic shear [146] 9 mm 0.42 @
Poly(methyl methacrylate) Simulations [13] 1.6—2.3 um 0 20 nm
Simulations [13] 1.9-2.8 um 0.30-1.00 50-110 nm
Polystyrene Angle of repose [147] 520 nm 0-0.12 @
Polytetrafluoroethylene Angle of repose [136] =0.3cm 0.54 1.1 £ 0.6 um
Polyvinyl chloride Lateral force microscopy [140] 1 um 0.45 2.2 nm
Salmeterol Angle of repose [148] 15-36 um 0.25-0.87 @
Silica Lateral force microscopy [15] 550-700 nm 0.13 0.53°
Lateral force microscopy [149] 3.4-4.0 um 0.34-1.04 2
Lateral force microscopy [150] 5 um 0.08 (Silanated) @
Lateral force microscopy [150] 5 um 0.39 (Bare) 2
Lateral force microscopy [15] 678 nm 0.03 o°
Steel Angle of repose [136] =0.3cm 0.66 0.1 £ 0.02 pm
Titanium Lateral force microscopy [137] 0.2 um 0.04-1.5 131-147 nm
Zeolite Lateral force microscopy [137] 2 um 0.69 148 nm

2 Data unavailable from reference.

® Instead of Rq, a dimensionless roughness ratio of the average asperity height to the average asperity separation was given.

dimensional surface roughness autocorrelation func-
tion [93,157—159]:

1 Ly Ly
Rxy)= Nst’j—(X—i.) i:(—Lx)Z (XhYJ) ’ (Xi T +AY)

(1)

where N, and N, are the number of AFM data points in the
x and y directions, Ly and L, are the lengths of the x and y
directions, Ax and Ay are the pixel sizes, and z(x;, y;) is the
deviatory surface height at a position (x;, y;). It is also
possible to compute a 1D form of the function in each
direction and simply average them if N, = N, From this
function, a variety of surface statistical parameters such as
the spatial distribution of heights, the mean surface
gradient, and the RMS roughness can be obtained. All
these parameters are known to affect w,, with the RMS
roughness R, = (R%)1/? being a popular parameter used in
the engineering literature [160]. To account for different
particle sizes, the value of R, can be normalized by the

particle radius. We emphasize that even nominally smooth
particles will have some level of roughness at the nanoscale.
For example, R, was found to be 0.01% for smooth silica
colloids [21] and 2.6% for smooth PMMA colloids [13].

Lateral force microscopy

Lateral force microscopy (LFM) is a specialized oper-
ating mode of AFM, in which the AFM tip is dragged
horizontally across a substrate at a fixed normal
force (Fy) and at finite sliding speeds
[139,141,149,150,161,162]. The horizontal deflection of
the cantilever is used to generate the frictional shear
force (Fg) according to Hooke’s law. The attachment of
a colloidal particle onto the AFM tip is termed colloidal
probe microscopy. Many researchers have used LFM
with colloidal particles to either measure the value of w,
for a particle sliding on a surface (which may or may not
be coated with particles) or to obtain u, for two
nonrotational particles. Again, we emphasize that even
though LFM provides a measure of the frictional dissi-
pation between two particles, it is not representative of
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Measurements and quantification of surface roughness for particles. Atomic force microscopy (AFM) is one of the most viable methods of probing
surface roughness, as long as the particles are fixed on a flat substrate. The surface morphology of (a) sterically stabilized PMMA colloids [13] and
(b) raspberry-like silica colloids [15] has been successfully quantified using AFM. (¢) The root-mean-squared roughness values for smooth (left) and
rough (right) PMMA colloids are calculated by fitting an effective sphere of radius aq to the raw data, then minimizing the deviation (red arrows) between
the measured profiles and the fitted sphere. Because the AFM tip is likely to produce imaging artifacts near the edge of the particles, regions below a
certain height z (indicated by gray areas) should not be considered for analysis. Reproduced with permission from Refs. [13] and [15].

the multibody and multiscale physics found in flowing
particulate suspensions.

Angle of repose

Consider building a sand pile on a beach: continue to
pour dry sand in one spot and a pile of sand with a
constant angle of repose, f, forms. Adding water to the
interstitial spaces reduces f, whereas the use of coarser
grains might increase 6. The angle of repose for a par-
ticulate material is defined as the steepest angle to
which the granular pile can be built without failure. Two
types of experimental setups are used to obtain the
angle of repose: The first involves a quasi-2D rotating
drum, which spins at a fixed speed and provides the

dynamic angle of repose for a particulate material
[32,163,164], and the second involves a funnel setup
where grains are continuously built into a pile
[136,147,148]. The stress ratio can be estimated from
the angle of repose through Coulomb’s criterion, u;, =

F/Fy = tan 6, for a solid block sliding down an in-
clined plane. This ratio is commonly understood as the
macroscopic friction coefficient of a material [144].
More sophisticated theoretical treatments of the angle
of repose involve using a granular temperature to explain
the local rearrangement events of grains [165,166].
This so-called shear transformation zone theory uses
statistical mechanics principles [167], reminiscent of
the type found in soft glassy rheology [168,169], and
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was able to explain experimental measurements and
computational simulations of specific granular flows
down an inclined plane [170,171].

Rheometry and cyclic shear cells

A rotational rheometer is a standard experimental tool
used to quantify the relationship between the bulk
deformation and bulk stresses of particulate suspen-
sions. When the normal force is fixed and the shear force
is measured, a measure of the bulk friction coefficient u,
can be obtained with various sliding speeds and lubri-
cating solvents. Comprehensive reviews of rheometric
methods are found in many textbooks [9,11,172]. The
constant-volume cyclic shear cells used in granular and
soil mechanics testing are simply a larger version of the
rheometer, capable of plane shearing a packed bed of
grains that have diameters on the order of millimeters
[145,146,173]. These instruments belong to a general
class of rheometry techniques that provide bulk material
properties that are useful in modeling industrial and
geophysical rheological phenomena. Simple shear and
oscillatory shear are two operating modes that are widely
used in the understanding of suspension rheology. They
simulate the type of flows encountered in realistic
scenarios and provide useful dynamical information
about the bulk material through macroscopic parameters
such as the yield stress, shear strength, viscoelastic
moduli, and relaxation spectra. Most instruments are
either strain rate-controlled or shear stress-controlled,
with the cone-and-plate, parallel plate, and annular
Couette cells being some of the most common geome-
tries. Recently, Boyer et al. [174] designed a specialized
porous annular cell to maintain a constant particle
pressure P for dense granular suspensions.

In situ force visualization

The methods described in previous sections provide
measures of u, and W, but these two parameters may
not be representative of the multibody interparticle
friction coefficient when a dense suspension is under-
going deformation. Currently, the best known method to
directly visualize grain-scale forces # situ is through the
use of photoelastic disks made out of commercially
available birefringent polymers. A detailed review of
photoelastic force measurements in granular packings is
provided by Daniels et al. [175]. Briefly, this technique
was pioneered by the Behringer group to display contact
force networks created by dense packing of 2D disks in a
biaxial shear cell [176,177]. Noncircular shapes are also
possible. When each photoelastic disk is subjected to
external normal stresses from its neighbors, local regions
of the material rotates the polarization of light in
accordance with the stress—optic coefficient of the
polymer. This change in the polarization angle is
observable as bright and dark fringe patterns when
viewed with a circular polarizer. Photoelastic force
measurements were used to characterize both the

spatial and temporal distributions of the microscopic
force network for various 2D granular packings under
linear and nonlinear impact [178]. The photoelastic
quantification of force chains in 3D packings has yet not
been accomplished due to challenges in analyzing the
polarization angle and in fully solving the photoelasticity
problem for 3D structures.

Rheological phenomena

A reason for the recent surge of interest in synthesizing
and characterizing rough particles is the attribution of
shear thickening and jamming to interparticle friction.
These flow scenarios are associated with large increases
in the dissipative energy of a dense suspension under
applied shear stresses [12,179—184]. In dense suspen-
sions of colloidal and non-Brownian hard spheres, when
¢ and ¢ are both sufficiently large, there is a gradual
transition from Newtonian flow to mild continuous shear
thickening or to discontinuous shear thickening (DST)
where ¢ jJumps discontinuously as a function of the shear
rate y[185—187]. Both experiments and simulations
found that the suspension viscosity for hard spheres di-
verges as N, ~ (¢ — Pmax) > Where Qe = 0.58—0.60
and o0 = 2.2—2.6 for colloidal glasses [188—190] and
Omax = 0.59—0.64 and . = 2.0 for athermal suspensions
[174,191]. Other particle shapes such as fibrous rods and
ellipsoids with high aspect ratios are known to decrease
the value of ¢,,,, even further [192,193].

Colloidal suspensions behave in an overdamped fashion
due to viscous dissipation from the solvent while inertia
becomes important for granular flows involving very
large particles. A few dimensionless numbers are useful
in conceptualizing the relative importance of inertial
and viscous forces, with subtle differences between each
number. The Stqkes pumber St = ppafﬁq'//nf proyides a
measure of the inertial and viscous forces experienced
by a particle while the Reynolds number Re, = pf')'/aff /
7y describes the competing forces experienced by the
fluid around the particle. These two dimensionless
numbers are different from the conventional Reynolds
number for a continuum fluid in a parallel-plate
rheometer geometry, Rey = psy(27RH) /1, where H is
the gap height and R is the radius of the geometry. It is
well known in the fluid mechanics community that pure
fluids and dilute suspensions undergo inertial or turbu-
lent flows when Rer > 1. These types of inertial flows
exhibit a shear stress to shear rate scaling of o ~ v3/% and
should be differentiated from the Bagnoldian scaling
(0~’5/2) in dense granular flows, which is observed even
at low Re, values depending on ¢ [194].

The onset of shear thickening and dilatancy

At extremely large values of ¢ and g, both colloidal and
granular suspensions may experience an expansion in
volume and dilate against its confining boundaries
[194] or even stop flowing altogether [18,24,195,196].
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Although dilatancy is thought to be related to shear
thickening [197—199], recent data on silica and PMMA
colloids show that their onset stresses and volume
fractions do not always coincide [13,21,200]. Further
investigation is necessary to comprehensively probe the
role of surface roughness on the onset conditions of
dilatancy and shear thickening.

The critical stress of thickening, g,, scales inversely as the
particle radius squared (Jtafff ~ 1) for spherical PHSA-
PMMA and silica colloids with or without electrostatic
repulsion [68,201—203]. This scaling can be interpreted
as a force balance between two particles at “contact”
where the hydrodynamic force acting on a particle pair is
equivalent to the derivative of the interparticle potential
that prevents them from overlapping. If other types of
interparticle forces are present, then the onset stress may
scale in a different way [202,204] or even become
obscured by a yield stress in the case of attractive in-
teractions [193]. Stokesian Dynamics (SD) [205] and
dissipative particle dynamics simulations [34], in tandem
with rheo-visualization experiments [206—208], showed
that short-range lubrication forces are important in
generating compact microstructures in flows [209,210].
Brownian motion introduces a time scale into the onset of
thickening [179,211—213]. The conundrum was that
squeeze flow for perfectly spherical particles could not
explain the large viscosity increases in DST or the ob-
servations that dense suspensions generate a positive
macroscopic normal force due to dilatancy [214]. We note
that experimentalists should exercise care in reading out
normal stress differences directly from a standard
rheometer because the instrument assumes that surface
tension effects are negligible on the boundaries of the
fluid—air interface. Dilation cause particles to protrude
at the interface [194,215], leading to a large decrease in
the first normal stress difference, Nq. The axial force, F,
exerted on the rheometer geometry by the suspension is
a more appropriate way of understanding dilation going
forward. If surface tension terms are negligible, then
[172]

F. = —nR? [(W) + 0 +P,,,m} = %wRZNl
)

where R is the radius of the geometry; g4g, 044, and 0, are
the normal stresses of the fluid in the 6, @, and 7 directions;
and P, is the atmospheric pressure that holds the fluid
boundaries in place. For the conventional N relation in Eq.
(2) to apply, the instrument software assumes that g, is
balanced by P,,—Py.s, where Py, s ~ Y/R; is negligible
due to the large radius of curvature (R,,-) of the interface.
Here, 7 is the surface tension of the liquid. When particles
protrude from the interface due to dilatancy, then
Py,y ~ Ylay generates a significant contribution to 0,
making it difficult to define the first normal stress differ-
ence NV as read out by the rheometer. Particle imaging

experiments have shown that it takes a finite amount of
time for the particles to protrude from the surface of the
suspension [14] and to generate a large negative NV value.
These considerations suggest that it is more appropriate
to use F, instead of N; to characterize a dilating
suspension and that confinement from boundaries plays an
important role in measuring dilation.

Hydrodynamics and granular friction

The term “hydrodynamics” in suspension rheology
refers to the stresses borne by the fluid phase in which
particles are suspended, which are strong functions of
the particle concentration ¢. Einstein famously derived
the relation between the viscosity of a dilute suspen-
sion and its volume fraction, n/ny = 1 + 2.5¢, by
considering the mechanical work done on a continuum
fluid by the presence of a rigid sphere. This was
accomplished through a surface integral for the
expanding sphere [8]. The Stokes—Einstein—Suther-
land relations for dilute suspensions (translational
diffusivity Dy = #pl/6Ttnm, rotational diffusivity
Dp = &’BT/STEnff) were obtained by considering the
Stokes drag around a sphere, the osmotic pressure
exerted by a particle, and Fick’s first law of diffusion. As
the volume fraction increases beyond ¢ > 0.05, the
Einstein relation for viscosity no longer holds because
multibody interactions cause the fluid stresses to
become a function of the sheared microstructure of the
particles [209]. After Einstein, it took nearly 70 years
before an analytical form of the relative viscosity that
includes higher order terms of (]52 was obtained
[216,217], but the Batchelor—Green relation is still
unable to predict the viscosity when ¢ > 0.20. In fact,
most experimental studies of smooth hard-sphere sus-
pensions still rely on empirical correlations and
benchmarking against previous studies to verify the
validity of their measured suspension viscosities at
¢ > 0.50 [13,29,68].

SD simulations developed by Brady and Bossis in the late
1980s created a major inroad into suspension rheology by
incorporating multibody short-range and long-range
lubrication hydrodynamic forces (represented by the
grand resistance tensors) to predict the structure and
dynamics of a sheared suspension up to ¢ = 0.50
[205,212,213,218—220]. Lubrication hydrodynamics
lead to negative Np values in dense suspensions of hard
spheres [180] (up to ¢ = 0.60) due to anisotropies in the
shear-induced microstructure and the formation of
hydroclusters [12,221]. Although surface roughness was
explored using lubrication hydrodynamics models in the
early 2000s, at that time, simulation results did not
match that of experiments in terms of the large increase
in suspension stresses that characterize DST and dilat-
ancy [222—226]. Promisingly, the inclusion of surface
roughness or adaptation of a roughness-corrected
tangential lubrication force below a cutoff distance in
SD simulations appears to generate results that agree
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well with experimental observations even at high ¢

[227].

An alternative mechanism is proposed by researchers
working in granular physics, who have considered the
concept that solid friction is responsible for the flow
behavior of dry granular matter [228]. Specifically, it is
known that dense granular flows exhibit an intermediate
fluid regime where particles interact by inelastic colli-
sions and contact friction [229—231], which are quan-
tified by the restitution coefficient and the friction
coefficient. They also undergo flow-arrest (jamming)
transitions, as illustrated in a series of state diagrams by
Liu and Nagel [232] and O’hern et al. [233]. Although
this problem may appear simple at a glance, difficulties
arise from the lack of constitutive relations for granular
flows. The reasons for these challenges are twofold: (1)
the continuum approximation for small solvent mole-
cules, as in complex fluids and colloidal suspensions,
cannot be applied to discretized granular particles [234]
and (2) there must be a macroscopic friction coefficient
imposed on the suspension [32]. Because there are no
internal stress scales in perfectly frictionless and rigid
spheres, the lack of a macroscopic frictional criterion
means that they would not be able to form any solid-like
structures such as a granular pile.

The introduction of this macroscopic friction coefficient
(ugp) is the origin of the growing interest in bridging
suspension and granular mechanics. Cates et al. [235]
first proposed shearing concentrated colloids as a spe-
cific example of inducing fragility in soft matter, in
which force chains are formed to support compressive
load without plastic rearrangement. This concept was
further developed to explain S-shaped flow curves
[24,236] and to derive local constitutive relations, in
which granular ideas such as jamming and friction were
introduced into shear thickening [125,237]. When
incorporated into simulations, a frictional criterion
generally does well in predicting the long-range velocity
correlations and force networks displayed by granular
flows [143,238—243]. In particular, the relationship
between the bulk stress ratio and the viscous number
above the material vyield stress, or so-called w(/)
rheology, is used to generate predictive models for the
nonlocal rheology of granular flows [244—246].

Currently, most researchers agree that both hydrody-
namic and contact forces are important in sheared sus-
pensions, with a joint effort directed at decoupling the
fluid and solid contact contributions to the overall
dissipation [34,247—249].

Bridging rheology at the macroscale

Recent efforts at bridging colloidal suspensions with
granular matter have suggested bulk u(/) rheology as a
possible unifying framework. At the macroscopic level,

dimensional analysis on frictional granular flows gener-
ates the Bagnoldian relations in which the shear stress
scales as 7 = ppazfl(qﬁ)q'/z and the normal stress scales
as P = ppazfl (¢)7?, where f; and f; are functions of
packing density [250]. The stresses for a flowing
colloidal suspension without frictional interactions scale
as 7~P~mn.y, with thermal motion generating a dy-
namic yield stress at low ¥[9,43]. Boyer et al. [174] used
a constant pressure shear cell to develop a general
constitutive framework for millimeter-sized PS and
PMMA granules, in which the suspension viscosity (1)
and u, are measured as a function of the viscous number
I, = nyy/PP, where v is the applied shear rate and 7 is
the solvent viscosity (Figure 3a). The measured
rheology of the granular suspensions obeys the frictional
framework of granular matter and the viscous framework
of colloidal suspensions [174]. Confined pressure
Brownian Dynamics simulations of hard-sphere colloidal
suspensions by Wang and Brady [251] showed a similar
u(/) scaling, although the yield point is slightly lower
than experimental measurements (Figure 3b). Because
hydrodynamic and frictional interactions were not
imposed in the simulations, the authors showed that
excluded volume alone in colloidal suspensions can
generate similar types of bulk rheological behavior as the
kind seen with frictional granular flows.

Bridging rheology at the microscale

The pairwise friction coefficient , offers a more intu-
itive way of thinking about frictional effects on dense
suspension rheology. Simulation studies explicitly
impose Coulomb’s friction criterion for the particle
tangential and normal contact forces, by applying the
relation F;, = w,F,, when neighboring particles make
contact or overlap with one another [23,185,252]. This
contact load model was developed as an attempt to
overcome the breakdown in continuum approximations
as particles approach within nanometers of one another
in strongly sheared flows. Its success in capturing the
viscosity increases in DST] and a positive first normal
stress difference representative of dilatancy, led to a
subsequent influx of granular concepts into suspension
rheology, including theoretical predictions of S-shaped
flow curves based on a phenomenological relation be-
tween the jamming volume fraction ¢ and the fraction
of broken lubrication films f [24]: ¢; = ¢ f + ¢, (1 —
f). Constitutive models are beginning to become
available [253]. The jamming volume fraction refers
to the value of ¢ at which 7y diverges, in which
¢ = ¢, = 0.64 is related to the isostatic criterion of
frictionless hard spheres (u, = 0) and ¢, = 0.54 is the
random close packing of frictional particles (4, = 1)
[254—257]. 'The lubrication-to-friction  relation
spawned a flurry of other investigations, including a
shear reversal study in which the authors claimed to
have measured contact force contributions to the sus-
pension viscosity in continuous shear thickening [248]

www.sciencedirect.com

Current Opinion in Colloid & Interface Science 2019, 43:94—-112


www.sciencedirect.com/science/journal/13590294

106 Rheology

Figure 3
1:5 10I T T T
a b © Boyer et al. (2011) L
a 4
_Q 1 J
\
=
93 x E|
I w3
2.8
3 05 1 X x 2 x
A P— w2l s e BREE 3 80 |
. x x 50 @ O 45 0
X w XX 100 @m0 5 ® 0
x w X 500 @ O 55 @0
5 x 1000 m 0O 6 ®0
0 : : 107 :
= _ 6 4 2 0 2
107 107 1072 10° 10 10 10 10 10
I, I,
Current Opinion in Colloid & Interface Science

Macroscopic u(/) rheology show commonalities in dense granular and colloidal suspensions. (a) Experiments by Boyer et al. [174] in a pressure-
controlled Couette shear cell showed that the bulk stress ratio plotted against the viscous number for a dense suspension of millimeter-sized beads

(¢ = 0.565) collapse on a master curve. The solvent is a Newtonian fluid. (b) Brownian Dynamics simulations by Wang and Brady [251] using a pressure-
controlled simulation box, enabled by a compressible solvent, showed that hard-sphere colloidal suspensions without friction or lubrication hydrodynamics

exhibit qualitatively similar rheology. Reproduced with permission from Refs. [174] and [251].

with contact load model simulations, it is important not
to overanalyze raw rheometric data below an initial time
of 0.5 s even with modern stress-controlled rheometers.
Our laboratory calibration data show that inertia of the

in contradiction with previous studies. The idea is that
contact forces go to zero immediately upon shear
reversal, whereas hydrodynamic forces stay constant.
While the experimental data were in good agreement
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Experiments and simulations of shear thickening suspensions agree when interparticle tangential friction is considered along with lubrication
hydrodynamics. Dense suspensions of silica [200] and poly(methyl methacrylate) (PMMA) [13] colloids exhibited larger increases in the measured viscosities
as ¢ and ¢ increase, representing a transition from weak to strong shear thickening. The first normal stress differences transitioned from negative to positive
signs, reminiscent of granular dilatancy in which particles push against their confining boundaries to maintain flowing states. Surface roughness shifts these
transition points to lower values of ¢ and a. When interparticle friction was explicitly entered into the equations of motion in dissipative particle dynamics
simulations [247], they captured a qualitatively similar trend as the experiments. Reproduced with permission from Refs. [13], [200], and [247].
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motor combined with the suspension may cause artifacts
in stress measurements across all shear rates tested
[172]. To truly validate the presence of solid contact
friction in dense suspensions, # sizu 31D measurements
of particle-level forces, similar to that of the photoelastic
disks [176] are necessary.

Unfortunately, there is currently no experimental way to
measure the value of u, as a 3D suspension is under-
going flow. Furthermore, the friction between two sur-
faces should not be quantified using an ensemble-
averaged value. This is because of evidence that shows
the tendency for DST and dense granular flows to be
locally and dynamically inhomogeneous, punctuated by
shear bands with jammed and shear thinning regions
that change over time [126,142,167,258,259]. Because
the friction coefficient varies nonlinearly as a function of
the roughness, sliding speed, and separation gap be-
tween two surfaces [260—262], simply substituting a
singular value of w4, into models will not capture the
relevant micromechanics. An excellent simulation study
by Fernandez et al. [16] correctly accounted for the
Stribeck behavior between two particles, which
captured the transition from Newtonian to shear
thickening flows. Experimental measurements of
polymer-adsorbed quartz microparticles supported the
simulation data, although nanotribology friction tests
were performed using flat surfaces in this study [16].

Recently, rheological studies quantified the shear thick-
ening and dilatant properties of colloids with different
roughness parameters or frictional interactions
[15,22,140,200,236,263—266] (Figure 4). Although the
Isa group used LFM to obtain i, for bumpy silica colloids
[15] and our group used the match between simulations
and experimental rheology to back-calculate w, [13], the
take-home message from both studies are similar: fric-
tional dissipation is enhanced by the presence of
submicron-sized surface roughness on particles, possibly
due to particle interlocking mechanisms that slow down
the stress relaxation of the hydroclusters or force net-
works that persist in shear thickening [267—269].

Outlook

This review summarizes the techniques used to syn-
thesize particles with tunable roughness, methods of
quantifying their surface morphology, characterization of
the pairwise and bulk friction coefficient, as well as the
implication of hydrodynamic and contact friction in
flows of dense particulate suspensions. Many of the
sections are presented from an experimental point of
view, with the exception of rheological phenomena in
which connections between interparticle friction and
bulk rheology are primarily drawn from theory and
simulations. Outstanding questions remain as to how
surface roughness affects the interparticle potential
[270—272], how softness of the potential affects shear

properties [62,273], how force networks propagate sus-
pension stresses in space and time [265] and methods to
measure them experimentally, and how hydrodynamic
and contact contributions to the flow forces can be
separated [247,248]. Although many predictive models
already exist, validation is only made possible if new
ways of measuring interparticle forces within flowing
suspensions are developed. Parallel advances in optical
imaging and mechanochemistry may turn this pipe
dream into a real possibility.

The richness of the suspension mechanics landscape
points to the reunification of colloidal and granular
physics in the near future [58,174,274]. In this
version of the future, we envision that it would be
acceptable to apply a universal set of frictional and
hydrodynamic frameworks to understand the flows of
colloids and soils across multiple spatiotemporal
scales and in which rough particles will be considered
model systems for frictional flows. However, care must
be taken to ensure that proposed models are truly
representative of the physics of flowing suspensions in
different regimes. A look at introductory tribology
textbooks immediately illustrates that a friction co-
efficient may arise from either hydrodynamic or con-
tact origins and that the friction between two sliding
surfaces depends nontrivially on lubricant properties
and sliding speeds [91]. Furthermore, a force chain of
fixed length can bear the same amount of load
regardless of whether the particles are held together
by lubrication forces, electrostatic repulsion, or
attractive interactions [227]. The current pool of ev-
idence  suggests that particle micromechanics
contribute in a seemingly nonunique way to the bulk
rheological phenomena. Therefore, physicists and
engineers must continue to work together within the
broader framework of experimental observations if we
are to truly understand and design the contributions
of interparticle forces and friction in the complex
flows of dense suspensions.
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