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ABSTRACT 
Multi-stable structures and materials have attracted 

extensive research interests because they can provide a wide 
spectrum of adaptive properties and functionalities. Recently, 
origami has been identified as an important source for achieving 
multi-stability and has been exploited for developing 
unconventional mechanical metamaterials and metastructures. 
Once the crease pattern and the constituent materials have been 
specified for an origami structure, its multi-stability profile 
becomes unchangeable. On the other hand, a controllable 
profile would be desirable to endow the origami structures and 
origami metamaterials with further adaptability and versatility. 
This research investigates how to integrate magnets with 
origami to fundamentally alter the stability profiles. By 
embedding magnets into the origami facets or vertices, the 
magnetic potential energy would modify the original elastic 
potential energy landscape both quantitatively and qualitatively. 
Taking the stacked Miura-ori structures as examples, we show 
that different magnet assignments could either enrich the 
original bistable profile into a tri-stable or quad-stable profile, 
or simplify it into a mono-stable profile. Simultaneously, such 
magnet-induced evolutions of stability profile would trigger 
essential changes of the structure’s mechanical properties, 
which are promising to be used for developing multi-functional 
devices or metamaterials/metastructures. In this paper, in 
addition to the analyses, proof-of-concept design and prototype 
are presented. The results of this research would open up a new 
path for designing origami structures and metamaterials with 
controllable stability profiles that can be harnessed for many 
novel applications. 
 
 
 

1. INTRODUCTION 
Origami, fundamentally a mechanism to fold 2-

dimensional (2D) crease patterns to 3-dimensional (3D) shapes, 
has been widely adopted for designing and fabricating 
engineering systems such as biomedical devices [1–3], self-
folding robots [4,5], large-scaled aerospace structures [6,7] and 
kinetic architectures [8]. Recently, origami also receives great 
success in developing mechanical metamaterials and 
metastructures with extraordinary properties and novel 
functionalities, which mainly originate from the folding-induced 
complex geometries and kinematics [9–12].  

In particular, some origami structures possess multiple 
potential energy wells by elaborately prescribing the geometry 
patterns and precisely tuning the crease stiffness parameters. 
For example, in a stacked Miura-ori structure, double-well 
potential profile is achieved due to the non-unique 
correspondence between the folding angles of the two cells 
[13]; by connecting multiple units together, more potential 
minima can be obtained [14]. In generic degree-4 vertex 
origami sheets, the nonlinear relationships between folding 
angles also lead to complex energy landscapes with as many as 
five minima [15]. In these scenarios, rigid-foldability is 
ensured, where the facets are not deformed during folding but 
just rotate around the hinge-like creases. Multi-well potential 
landscapes can also be achieved in non-rigid-foldable origamis 
by incorporating the nonlinear geometry with the elastic facet 
deformations, with typical examples including the square-twist 
pattern [10], the Kresling pattern [16], and the origami balls 
[17]. Note that multi-well potential landscape is the defining 
characteristic of structural multi-stability. Therefore, origami 
offers a new solution to achieve bistability and multi-stability, 
which is completely different with the conventional mechanisms 
of multi-stability that are built upon either curved pre-buckled 
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beams or their close relatives such as pre-stressed bilayer shells 
and axially constrained springs [18–22]. 

The conventional buckled-beam mechanism shows 
simplicity in modeling, mechanical analysis, design and fabrica-
tion; however, due to the one-dimensional nature, they have 
limitations in constructing into truly 3D systems. The origami 
solution can therefore fill this gap by offering both sophisticated 
3D geometries and rich multi-stability mechanisms. The multi-
stable origami structures can stay at different configurations 
without external aids, making them appealing for shape 
morphing; they can exhibit different mechanical properties at 
different stable equilibria, letting them become adaptive to 
variable working environment; multi-stability can also trigger 
unconventional dynamics, leading to various dynamic 
applications including vibration control [23], energy harvesting 
[24,25], bandgap tuning [26], actuation [27,28], and sensing 
[29]. As a result, multi-stability has become an origami research 
interest, from bio-inspiration [30] to robotic application [17], 
from crease pattern design [15] to mechanical analysis [14], 
from statics [31] to dynamics [13], and from deployable 
structures [32] to metamaterial development [10,31]. 

Note that the multi-stability exhibits as an intrinsic property 
of an origami structure if the crease pattern and the constituent 
materials have been specified. In other words, for a given 
origami prototype, the underlying potential energy landscape 
cannot be quantitatively modified nor qualitatively changed. 
However, controlling the multi-stability profile (i.e., the multi-
well potential landscape) without re-designing the crease 
pattern or re-fabricating the prototype is desirable in 
applications. For example, if the depths of the potential wells 
can be quantitatively changed, the critical force for switching 
among different stable states would become tunable to adapt to 
different environments and requirements. Furthermore, if the 
number and positions of potential wells can be altered, adaptive 
materials or structures with tailorable stable configurations can 
be developed for effective and efficient shape morphing. To 
achieve such controllability, additional active components or 
actuations are generally required. For example, a pressure-
dependent multi-stability characteristic was obtained in fluidic 
origami [33]. Upon pressurization, a Miura-ori stacked cell can 
switch its energy landscape between mono-stable and bistable; 
and stacking two pressurized cells could generate more than 
two stable configurations. While showing promising results, the 
pressure solution asks for a hermetic chamber inside the 
origami structure, which significantly limits its applications. 

This research proposes using magnets to control the 
stability profile of origami structure. Note that some studies 
have already explored the multi-stability of systems with 
magnets, e.g., bistable magneto-active compliant mechanisms 
[34], cantilever beams coupled with magnets [35], etc. Magnets 
have also been combined with origami structures to achieve  
magnetic actuation and self-folding [36–39]. However, the 
effects of magnets on the structure’s stability characteristics 
have not been concerned so far. By integrating magnets with 
origami structures, we find that the intrinsic potential energy 

landscape originated from the elasticity of the constituent crease 
material will be quantitatively or even qualitatively changed by 
the additional magnetic potential energy. Hence, if the magnetic 
field strength and the magnetic polarization are tunable, for 
example, through the electromagnet approach, the overall 
energy landscape (i.e., the stability profile) of the integrated 
structure can be effectively controlled. Based on that, we can 
further tailor the mechanical properties accordingly. In addition 
to uncovering the fundamental mechanism, we show that such 
magnet-based approach possesses the advantage of design 
flexibility. For any origami structures, the sophisticated 
geometry could provide rich possibilities (e.g., on vertices or 
facet centers, etc.) to arrange multiple magnets, making this 
approach feasible in diverse origami-inspired structures and 
suitable for various applications like adaptive morphing and 
energy harvesting.  

The rest of this paper will explore the magnet-coupled 
origami designs (Section 2), analyze the effects of different 
magnet configurations on the overall energy landscape through 
two examples (Section 3), and show a proof-of-concept design 
prototype (Section 4). Summary and discussions will be 
presented in Section 5. 

2. MAGNET-COUPLED ORIGAMI DESIGNS 
In this section, we introduce how to integrate magnets with 

origami structures. Note that a generic guideline for arranging 
magnets does not exit; here we provide a few examples to show 
the rich design possibilities.  

An origami structures generally consists of a large number 
of vertices, creases, and facets that are available for arranging 
magnets. Taking a simple stacked Miura-ori (SMO) structure as 
an example, it consists of two Miura-ori cells, namely, bottom 
cell A and top cell B, characterized by crease length ia  and 

ib , and a sector angle i , where i  takes ‘A’ or ‘B’ (Figure 
1(a)). These parameters are not independent to each other but 
satisfy the following constraints for kinematic compatibility 
 

A B B B A A,   cos cos .b b b a a     (1) 
 
Folding of the structure is a one degree of freedom mechanism 
that can be described by the folding angles A  or B , they 
relate to each other by 
 

 1
B A A Bcos cos tan / tan .     (2) 

 
Hence, if taking A  as the independent variable, the outer 
dimensions of the SMO structure, i.e., the length L , the width 
W , and the height H , can be expressed as functions of A : 
 

2 2A A
A A A2 2

A A

B B B A A A

2 cos tan ,   2 1 sin sin ,
1 cos tan

sin sin sin sin .

bL W a

H a a

 
 

 

   

  


 

 (3) 



 3 Copyright © 2018 by ASME 

 
FIGURE 1. Geometry and designs of the magnet-coupled 
origami structures. (a) Geometry of a stacked Miura-ori 
structure, where all vertices are denoted by numbers from 
‘1’ to ‘12’; the external dimensions are denoted by L, W, 
and H; and the dihedral angles are denoted by kiρ  
(k=A,B; i=1,2,3,4). (b) Embedding magnets at four 
coplanar vertices ‘4’, ‘6’, ‘7’, and ‘9’. (c) Embedding 
magnets at the facet centers. For simplicity, the magnetic 
poles are not denoted in (b) and (c). With different pole 
assignments, (d) and (e) show the possible magnet 
configurations based on the arrangements in (b) and (c), 
respectively. Note that in (e), the red and blue dots 
denote the poles that face inside the stacked structure 
(inset). 

Overall, an SMO structure possesses 12 vertices, 20 
creases, and 8 facets that can be utilized for arranging magnets. 
Figure 1(b) and (c) show two designs where the magnets are 
positioned at four coplanar vertices (‘4’, ‘6’, ‘7’, ‘9’) and at the 
facet centers, respectively. With respect to folding, the relative 
distances among these vertices and facet centers would changes 
significantly, thus altering the magnetic energy of the system.  

In addition to changing the magnet positions, the design 
can be further enriched by adjusting the magnetic polarization. 
For the first arrangement, theoretically, the four coplanar 
magnets can make up 16 different magnet configurations. 
However, considering the symmetry among the four magnets as 
well as the identity among certain pole-pole relationships, the 
16 configurations can be deducted into 5 with unique pole 
assignments (Figure 1(d)). For the second arrangement, the 
eight magnets could constitute variegated 3D configurations; 
for illustration, we list a few examples in Figure 1(e).  

It’s worth pointing out that re-constructing the prototype is 
not needed to change the magnetic pole assignment. Instead, by 
employing electromagnets, the magnetic poles can be easily 
reversed by change the direction of electric currents. However, 
to uncover the mechanism, using permanent magnets is still 
acceptable in proof-of-concept analyses and experiments.  

3. THEORETICAL ANALYSIS 
This section studies how magnets would change the 

intrinsic stability profile of origami structures. Specifically, this 
is achieved by examining the energy landscapes originated from 
the elastic potential and magnetic potential energies. 

3.1. Elastic potential energy 

With the rigid-folding assumption, the origami facets 
remain rigid during folding, and the creases are considered to 
be elastic hinges with prescribed torsional spring stiffness. For 
the SMO structure shown in Figure 1(a), we assign Ak  and 

Bk  as the torsional stiffness per unit length for the creases in 
cell A and cell B, respectively, and Ck  as the torsional stiffness 
per unit length at the connecting creases between the two cells. 
Then the torsional stiffness constants ( kiK  and CK ) 
corresponding to each dihedral angle ( ki  and C ) can be 
determined. Hence, the total elastic potential energy originating 
from the torsional creases is [13] 
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In Eq. (4), the dihedral angles  ( A,B;  1,2,3,4)ki k i    and 

C  can be expressed as functions of the folding angle A ; 
0 0
A B,  i i   and 0

C  are the dihedral angles corresponding to the 
stress-free stable configuration at 0

A A  , where no crease 
subjects to deformation. Specifically, we have 
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For clarity, the configurations with A 0   and 0A   are 
denoted as bulged-out and nested-in, respectively (Figure 1(a)). 

Note that by reasonably prescribing the crease stiffness and 
the stress-free folding angles, a double-well potential energy 
landscape can be obtained (e.g., Figure 2(c)), which signifies an 
elastic bistability profile. The origin of this bistability lies in the 
non-unique geometric relationship between the folding angles 

A  and B  showing in Eq. (2).  

3.2. Magnetic potential energy 

To analyze how the magnets contribute to the structure’s 
overall potential energy landscape, a reliable magnetic field 
model is required. Amphère model and Gilbert model are 
always used to calculate the magnetic fields and the forces 
between magnets. Generally, the Amphère model is considered 
to be physically correct, in which the magnet is assumed to 
behave as if there is a macroscopic electric current flowing in 
loops in the magnet with the magnetic field normal to the loops. 
On the other hand, the Gilbert model is practically more 
convenient, which models the force between simple magnets as 
forces between magnetic poles, although the magnetic 
monopole does not exist.  

Based on the Amphère model, if two magnets are small 
enough or sufficiently distant such that their shape and size are 
not important, then both magnets can be models as magnetic 
dipoles with magnetic dipole moments 1m  and 2m . They can 
be treated as point dipoles in calculating their interaction 
potential energy H , which is given by 
 

   0
M 1 2 1 23

ˆ ˆ3 ,
4

H



     m r m r m m

r
 (6) 

 
where 0  is the permeability of free space, 1m  and 2m  are 
the vector dipole moments, r  is the vector between the two 
dipole centers, r̂  is the unit vector parallel to r , and r  is 
the distance between the two dipole centers. 

In this research, as a preliminary modelling effort, the 
Gilbert model is employed instead to capture the qualitative 
interconnections between magnets. Specifically, cylindrical 
magnets are modeled into magnetic dipoles, with magnetic pole 
strength / /rq m d B A   , where m  is the magnetic dipole 
moment, d  is the length of the magnets (i.e., the distance 
between the dipole), A  is the cross-section area, rB  is the 
residual flux density, and   is the permeability of the medium 
(for air 7

0 4 10  T m/A       ). Note that here the 
magnetic dipole moment is due to two equal and opposite 
magnetic poles that are separated by a distance d , which is 

similar to the electric dipole moment due to electrical charges. 
Such magnetic dipole moment is different with that in the 
Amphère model; it is physically incorrect, but is able to give a 
correct field of dipole. Based on this model,  the force between 
two identical magnetic poles yields 
 

2

2( ) ,
4

mqF x
x




  (7) 

 
where x  denotes the distance between two magnetic poles. 
Based on this, the magnetic potential energy between two 
identical poles can be obtained 
 

2 2
0 0

M 2( )d d .
24

m mq q
U F x x x

xx
 


       (8) 

 
where mq  takes positive if it is a north pole, and negative if it 
is a south pole. 

Hence, if there are N identical magnets integrated with the 
origami structure, the system possesses 2N magnetic poles. By 
indexing the dipole of each magnet as ( , )i N i , the total  
magnetic potential energy can be expressed as 
 

22 2
0

M_Total
1,    1

1  .
2 2

N N
m

i i j j ij
i N j j N i

q
U

x

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   

 
 
 
  

   (9) 

 
Then the total potential energy of the structure is 
 

E M_Total .U U U   (10) 
 

In this study, the following magnet geometry parameters 
are used: radius 12.7 mmR  , length 6.35 mmd  . The 
residual flux density rB  is assumed to be tunable. 

3.3. Example 1: Embedding magnets on coplanar vertices  

In this example, four magnets are embedded with an SMO 
structure at the coplanar vertices ‘4’, ‘6’, ‘7’, and ‘9’, as shown 
in Figure 1(b) and 1(d). Specifically, the four magnets are 
aligned with lines ‘4-6’ or ‘7-9’, and one of the poles coincides 
with the vertex, while the other pole is d  apart from the 
vertex (Figure 1(d)). Here, based on two magnet configurations, 
(I) and (II), four cases are studied. Each case shares the same 
origami geometry parameters (Table 1), but possess different 
stiffness parameters ( Ak , Bk , and Ck ) and magnetic residual 
flux density rB . 

Substituting Eq. (4) and (9) into Eq. (10), the total 
potential energy can be obtained in terms of the folding angle 

A . Based on the geometry relations given in Eq. (3), the total 
potential energy with respect to the outer dimensions L , W , 
and H  can be expressed via the following parameterized 
equations 
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Moreover, the corresponding force-displacement relations in the 
L , W , and H  directions can be obtained via 
 

1 1 1
d d d d d d, , .
d d d d d dL W H

A A A A A A

U L U W U HF F F
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  

     
       

     

 (12) 

With Eq. (11) and Eq. (12), we are able to examine the potential 
energy landscapes and the force-displacement relationship in 
specific directions. 

For Case 1 (with magnet configuration I), the potential 
energy and the force-displacement relationship are examined in 
the length (L) direction. Note that with the embedded magnets 
at the vertices, the total potential energy is upraised, especially 
at the regions with small length. Hence, when compressing the 
magnet-coupled SMO structure toward its minimum length, the 
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FIGURE 2. The potential energy profiles and the corresponding force-displacement relationships of the magnet-
coupled origami structures (Example 1). The magnets are embedded at the four coplanar vertices (see Figure 1(b) 
and 1(d)). (a), (b) Case 1, with magnet configuration I, where the force-length relationship experience a 
qualitative change due to the embedded magnets. (c), (d) Case 2, with magnet configuration I, where the elastic 
bistability is changed to a mono-stable profile by the magnets. (e), (f), Cases 3 and 4, with magnet configuration 
II, where the elastic bistability can be changed to a quad-stable profile or another bistable profile by magnets of 
different pole strengths. In these figures, the direction of force is indicated in the inset, and the potential wells 
(aka stable states) are denoted by empty circles. 



 6 Copyright © 2018 by ASME 

TABLE 1. Origami and magnets parameters (Example 1) 

 Par. Values Par. Values 
Origami 
geometry 

A A Ba b b   25.4 mm A  60  

Ba  31.75 mm 0
A  57  

Case 1 
(Config. I) 

A Ck k  0.5 N Bk  0.5 N 

rB  1.48 T   
Case 2 

(Config. I) 
A Ck k  0.001 N Bk  0.05 N 

rB  1.48 T   
Case 3 

(Config. II) 
A Ck k  0.035 N Bk  1.75 N 

rB  1.48 T   
Case 4 

(Config. II) 
A Ck k  0.035 N Bk  1.75 N 

rB  2.96 T   
 
reaction force will increase to an extremely large value. This is 
qualitatively different with the structure without magnets. 

For Case 2 (with the magnet configuration I but different 
crease stiffness), before embedding the magnets, the SMO 
structure possess elastic bistability in the height direction. By 
integrating the magnets, the double-well potential energy 
landscape is changed to a mono-well landscape, signifying a 
transformation of the stability from bistable to mono-stable. 
Hence, accordingly, the force-height curve changes 
qualitatively. For the structure without magnets, there are two 
stable states and a segment with negative stiffness; while for the 
structure with magnets, the number of stable states reduces to 
one. 

For Case 3, magnet configuration II is used. Without the 
magnets, the SMO structure also shows elastic bistability. By 
adding the magnets with pole strength mq  ( 1.48 TrB  ), 
surprisingly, the structure exhibits a quad-stable profile. In 
addition to the original two stable wells, the structure receives 
another two potential energy minima when the structure is 
folded toward flat (i.e., 90A  ). This is induced by the 
strong magnetic attraction as 0L   when 90A  . 
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FIGURE 3. The potential energy profiles and the corresponding force-displacement relationships of the magnet-
coupled origami structures (Example 2). The magnets are embedded at the eight facet centers (see Figure 1(c) 
and 1(e)). (a), (b) Case 1, with magnet configuration III; (c), (d) Case 2, with magnet configuration IV. In these two 
cases, the elastic bistability can be changed to a quad-stable profile or a tri-stable profile by magnets of different 
pole strengths. In these figures, and the potential wells (aka stable states) are denoted by empty circles. 
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At these two states, extremely large forces are needed to 
separate the stuck magnets. 

For Case 4, with the same origami parameters and magnet 
configuration as Case 3, the structure loses the original two 
potential wells when the magnetic pole strength is doubled to 
2 mq  (i.e., 2.96 TrB  ). In such scenario, the structure 
becomes bistable again, where the two stable states locate at the 
positions with minimum and maximum height when 

90A  . 
The above four cases well demonstrates how magnets 

could be exploited for controlling the origami structure’s 
stability profile. On one hand, even the stability profile is not 
qualitatively changed, the corresponding force-displacement 
relationship could experience significant changes due to the 
additional attracting/repelling magnetic forces (Case 1). On the 
other hand, the magnetic potential energy could fundamentally 
change the total energy landscape by erasing the two elastic 
potential wells (i.e., change the elastic bistability to mono-
stability, see Case 2), or by adding additional potential energy 
minima (i.e., change the elastic bistability to multi-stability, see 
Case 3), or a combination (Case 4).  

3.4. Example 2: Embedding magnets on facet centers 

In this example, the magnets are embedded at the eight 
facet centers. As demonstrated in Figure 1(c) and 1(e), each 
magnet is perpendicular to the facet, with one of its side fitting 
with the facet (see inset of Figure 1(e)). Note that even with 
identical magnets, the possible configurations are various and 
abundant. Here, through two case studies (with detailed 
parameters listed in Table 2), we show again that different 
magnet configurations (including different pole strengths and 
different magnetic polarization) could induce different stability 
profiles. 

With Eq. (11) and (12), the potential energy landscape in 
the height (H) direction and the corresponding force-height 
relationship can be obtained and are plotted in Figure 3.  

For Case 1 (with magnet configuration III), when the 
magnets are not embedded, the SMO structure shows elastic 
bistability. By adding the magnets with pole strength mq  
( 0.74 TrB  ), the original two stable wells are remained, and 
the structure gains two new potential energy minima when the 
structure is folded toward the maximum and minimum height. 
Hence, the magnet-coupled SMO structure becomes quad-
stable. It is worth pointing out that practically the size of the 
magnets cannot be ignored, because the magnets may touch 
each other before the origami structure reaches the maximum or 
minimum height (i.e., 90A  ). Hence, folding has to be 
stopped at the touching points, denoted by the dotted vertical 
lines in Figure 3. The new potential energy minima are 
generated by the strong magnetic attracting forces since the 
distance between the magnets are close. If the magnetic pole 
strength is doubled (with rB  rising from 0.74 T to 1.48 T), 
one of the elastic potential well vanishes, giving rise to a tri-
stable profile.  

TABLE 2. Origami and magnets parameters (Example 2) 

 Par. Values Par. Values 

Origami 
geometry 

A A Ba b b   38.1 mm A  60  

Ba  47.62 mm 0
A  40  

A Ck k  1 N Bk  20 N 
Case 1 

(Config. III) rB  0.74 T, 1.48 T   

Case 2 
(Config. IV) rB  1.48 T, 2 T   

 
FIGURE 4. Proof-of-concept design and prototype of the 
magnet-coupled SMO structure. (a) SolidWorks design of 
the prototype and the connector; (b) the 3D-printed 
prototype without magnets; (c) the 3D-printed prototype 
with magnets, showing in a bulged-out state, a middle 
state, and a nested-in state. 

For Case 2 (with magnet configuration IV), similar 
phenomena as Case 1 are observed, where the elastic bistability 
can be changed to tri-stable or quad-stable profiles. However, 
due to the different magnet polarization, the lost elastic 
potential well is different.  

Overall, the above two examples well demonstrate how 
magnets can be incorporated into origami structures to control 
the stability profiles. Such capability is appearing in origami 
application. Particularly, considering that changing magnet pole 
directions and pole strengths can be easily achieved via 
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electromagnetics, the feasibility of the proposed approach can 
be well ensured. 

4. PROOF-OF-CONCEPT PROTOTYPES 
In this section we show a design and prototype of the 

magnet-coupled SMO structure to prove the concept. The 
second example is specifically designed and prototyped. Figure 
4(a) shows the overall SolidWorks design of the magnet-
coupled SMO structure. Holes are reserved at the facet centers 
for embedding magnets. The foldable creases are realized 
through fine pins that connect each two facets, so that the facets 
can freely rotate with respect to the pins. To experimentally 
show the stability changes due to magnets, tension and 
compression tests are needed on universal testing machine. To 
that end, additional connectors are designed.  

The proof-of-concept prototype is fabricated through 3D-
printing technique and human assemble. With the Form 2 
printer, Durable Photopolymer Resin is used to print the 
origami facets (with facet thickness 2.54 mm, sector angle 

60A  , and crease lengths 38.1 mmA A Ba b b   , 
1.5b Aa a ). Figure 4(b) firstly shows the SMO prototype 

without the magnets. By embedding permanent magnets, Figure 
4(c) displays the magnet-coupled prototype, showing in three 
states: a bulged-out state, a middle state, and a nested-in state. 

5. SUMMARY AND DISCUSSION 
This research reports a new method to control origami 

structure’s stability profiles by utilizing magnets. We show that 
by embedding magnets into origami structures, the intrinsic 
elastic potential energy landscape can be significantly changed. 
In addition to quantitatively raising or lowering the total energy 
landscape, the magnetic potential energy could qualitatively 
change the overall energy landscape by removing the original 
elastic potential wells or adding additional potential minima. 
Such changes of energy landscapes suggest the fundamental 
alteration of the origami structure’s stability profile. Through 
two examples, one with magnets embedded at the four coplanar 
vertices of a SMO structure, and the other with magnets 
embedded at the eight facet centers, the capability of controlling 
stability profiles via magnets is demonstrated. Rich stability 
transitions are observed, including degeneration from bistability 
to mono-stability, and various changes from bistability to tri-
stability and quad-stability. Proof-of-concept design and 
prototype is also proposed in this paper to illustrate the 
feasibility.  

Previous studies have demonstrated that origami is a good 
platform to design structures and metamaterials with 
extraordinary stability profiles originating from folding 
geometries. Such discoveries provide a new way to design 
multi-stable metastructures and metamaterials that no longer 
rely on structural instabilities (e.g., pre-buckled beam and pre-
stressed shells). However, the obtained stability profiles are 
intrinsic properties of the origami structures; once the crease 
patterns and the elastic crease materials have been prescribed, 

they become unchangeable. They cannot adapt to variable 
working environments, nor endow the structures with multiple 
functionalities. The proposed controlling method therefore 
fundamentally advances the state of the art. Without re-
designing or re-fabricating the structures, the potential energy 
landscapes can be effectively controlled via magnets. By 
adjusting the magnet configuration (i.e., changing the magnetic 
field strengths and magnetic polarization), the energy 
landscapes can be qualitatively and quantitatively controlled. 
Such control can be easily implemented by tailoring the electric 
currents if electromagnets are incorporated in the origami 
structures. 

Note that the stability profiles play an important role in 
determining the mechanical properties (e.g., structural stiffness) 
and functionalities. Origami structures with controllable 
stability profiles can therefore be exploited for developing 
devices and metamaterials with re-programmable properties and 
multiple functionalities. For example, the proposed approach 
can be used in aerospace structures [40] to obtain improved 
morphing capabilities and adaptive stiffness characteristics. The 
controllable stability profile is also beneficial in the dynamic 
regime. Rather than offering a single dynamic functionality, 
multiple functions can be achieved in the same structure by 
simply controlling the underlying stability profile via magnets. 
For example, the magnet-coupled origami structure can be 
bistable and utilized as an energy harvester, since the 
characteristic snap-through oscillations in a bistable system is 
beneficial for effective and broadband harvesting; on the other 
hand, the same structure can be controlled to be mono-stable so 
that it can serve as a vibration isolator. 
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