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ABSTRACT

Multi-stable structures and materials have attracted
extensive research interests because they can provide a wide
spectrum of adaptive properties and functionalities. Recently,
origami has been identified as an important source for achieving
multi-stability and has been exploited for developing
unconventional mechanical metamaterials and metastructures.
Once the crease pattern and the constituent materials have been
specified for an origami structure, its multi-stability profile
becomes unchangeable. On the other hand, a controllable
profile would be desirable to endow the origami structures and
origami metamaterials with further adaptability and versatility.
This research investigates how to integrate magnets with
origami to fundamentally alter the stability profiles. By
embedding magnets into the origami facets or vertices, the
magnetic potential energy would modify the original elastic
potential energy landscape both quantitatively and qualitatively.
Taking the stacked Miura-ori structures as examples, we show
that different magnet assignments could either enrich the
original bistable profile into a tri-stable or quad-stable profile,
or simplify it into a mono-stable profile. Simultaneously, such
magnet-induced evolutions of stability profile would trigger
essential changes of the structure’s mechanical properties,
which are promising to be used for developing multi-functional
devices or metamaterials/metastructures. In this paper, in
addition to the analyses, proof-of-concept design and prototype
are presented. The results of this research would open up a new
path for designing origami structures and metamaterials with
controllable stability profiles that can be harnessed for many
novel applications.

* Address all correspondence to this author: hongbinf@umich.edu

1. INTRODUCTION

Origami, fundamentally a mechanism to fold 2-
dimensional (2D) crease patterns to 3-dimensional (3D) shapes,
has been widely adopted for designing and fabricating
engineering systems such as biomedical devices [1-3], self-
folding robots [4,5], large-scaled aerospace structures [6,7] and
kinetic architectures [8]. Recently, origami also receives great
success in developing mechanical metamaterials and
metastructures with extraordinary properties and novel
functionalities, which mainly originate from the folding-induced
complex geometries and kinematics [9—12].

In particular, some origami structures possess multiple
potential energy wells by elaborately prescribing the geometry
patterns and precisely tuning the crease stiffness parameters.
For example, in a stacked Miura-ori structure, double-well
potential profile is achieved due to the non-unique
correspondence between the folding angles of the two cells
[13]; by connecting multiple units together, more potential
minima can be obtained [14]. In generic degree-4 vertex
origami sheets, the nonlinear relationships between folding
angles also lead to complex energy landscapes with as many as
five minima [15]. In these scenarios, rigid-foldability is
ensured, where the facets are not deformed during folding but
just rotate around the hinge-like creases. Multi-well potential
landscapes can also be achieved in non-rigid-foldable origamis
by incorporating the nonlinear geometry with the elastic facet
deformations, with typical examples including the square-twist
pattern [10], the Kresling pattern [16], and the origami balls
[17]. Note that multi-well potential landscape is the defining
characteristic of structural multi-stability. Therefore, origami
offers a new solution to achieve bistability and multi-stability,
which is completely different with the conventional mechanisms
of multi-stability that are built upon either curved pre-buckled
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beams or their close relatives such as pre-stressed bilayer shells
and axially constrained springs [18-22].

The conventional buckled-beam mechanism shows
simplicity in modeling, mechanical analysis, design and fabrica-
tion; however, due to the one-dimensional nature, they have
limitations in constructing into truly 3D systems. The origami
solution can therefore fill this gap by offering both sophisticated
3D geometries and rich multi-stability mechanisms. The multi-
stable origami structures can stay at different configurations
without external aids, making them appealing for shape
morphing; they can exhibit different mechanical properties at
different stable equilibria, letting them become adaptive to
variable working environment; multi-stability can also trigger
unconventional dynamics, leading to various dynamic
applications including vibration control [23], energy harvesting
[24,25], bandgap tuning [26], actuation [27,28], and sensing
[29]. As a result, multi-stability has become an origami research
interest, from bio-inspiration [30] to robotic application [17],
from crease pattern design [15] to mechanical analysis [14],
from statics [31] to dynamics [13], and from deployable
structures [32] to metamaterial development [10,31].

Note that the multi-stability exhibits as an intrinsic property
of an origami structure if the crease pattern and the constituent
materials have been specified. In other words, for a given
origami prototype, the underlying potential energy landscape
cannot be quantitatively modified nor qualitatively changed.
However, controlling the multi-stability profile (i.e., the multi-
well potential landscape) without re-designing the crease
pattern or re-fabricating the prototype is desirable in
applications. For example, if the depths of the potential wells
can be quantitatively changed, the critical force for switching
among different stable states would become tunable to adapt to
different environments and requirements. Furthermore, if the
number and positions of potential wells can be altered, adaptive
materials or structures with tailorable stable configurations can
be developed for effective and efficient shape morphing. To
achieve such controllability, additional active components or
actuations are generally required. For example, a pressure-
dependent multi-stability characteristic was obtained in fluidic
origami [33]. Upon pressurization, a Miura-ori stacked cell can
switch its energy landscape between mono-stable and bistable;
and stacking two pressurized cells could generate more than
two stable configurations. While showing promising results, the
pressure solution asks for a hermetic chamber inside the
origami structure, which significantly limits its applications.

This research proposes using magnets to control the
stability profile of origami structure. Note that some studies
have already explored the multi-stability of systems with
magnets, e.g., bistable magneto-active compliant mechanisms
[34], cantilever beams coupled with magnets [35], etc. Magnets
have also been combined with origami structures to achieve
magnetic actuation and self-folding [36-39]. However, the
effects of magnets on the structure’s stability characteristics
have not been concerned so far. By integrating magnets with
origami structures, we find that the intrinsic potential energy

landscape originated from the elasticity of the constituent crease
material will be quantitatively or even qualitatively changed by
the additional magnetic potential energy. Hence, if the magnetic
field strength and the magnetic polarization are tunable, for
example, through the electromagnet approach, the overall
energy landscape (i.e., the stability profile) of the integrated
structure can be effectively controlled. Based on that, we can
further tailor the mechanical properties accordingly. In addition
to uncovering the fundamental mechanism, we show that such
magnet-based approach possesses the advantage of design
flexibility. For any origami structures, the sophisticated
geometry could provide rich possibilities (e.g., on vertices or
facet centers, etc.) to arrange multiple magnets, making this
approach feasible in diverse origami-inspired structures and
suitable for various applications like adaptive morphing and
energy harvesting.

The rest of this paper will explore the magnet-coupled
origami designs (Section 2), analyze the effects of different
magnet configurations on the overall energy landscape through
two examples (Section 3), and show a proof-of-concept design
prototype (Section 4). Summary and discussions will be
presented in Section 5.

2. MAGNET-COUPLED ORIGAMI DESIGNS

In this section, we introduce how to integrate magnets with
origami structures. Note that a generic guideline for arranging
magnets does not exit; here we provide a few examples to show
the rich design possibilities.

An origami structures generally consists of a large number
of vertices, creases, and facets that are available for arranging
magnets. Taking a simple stacked Miura-ori (SMO) structure as
an example, it consists of two Miura-ori cells, namely, bottom
cell A and top cell B, characterized by crease length a, and
b, and a sector angle y,, where i takes ‘A’ or ‘B’ (Figure
1(a)). These parameters are not independent to each other but
satisfy the following constraints for kinematic compatibility

b, =b;=b, azcosy,=a,cosy,. (1)

Folding of the structure is a one degree of freedom mechanism
that can be described by the folding angles &, or 6, they
relate to each other by

G =cos ™' (cos@, tany, /tanyy). )

Hence, if taking 6, as the independent variable, the outer
dimensions of the SMO structure, i.e., the length L, the width
W, and the height H , can be expressed as functions of 8, :

2bcos, t ; .
L oSO ANV W =2a,/l-sin’ @, sin’ y, ,

- \/1 +cos’ @, tan’ y, (3)

H =a,sinf;siny, —a, sinf, siny,.
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FIGURE 1. Geometry and designs of the magnet-coupled
origami structures. (@) Geometry of a stacked Miura-ori
structure, where all vertices are denoted by numbers from
‘1’ to ‘12’; the external dimensions are denoted by L, W,
and H; and the dihedral angles are denoted by p,
(k=A,B; i=1,2,3,4). (b) Embedding magnets at four
coplanar vertices ‘4, ‘6’, ‘7', and ‘9. (c) Embedding
magnets at the facet centers. For simplicity, the magnetic
poles are not denoted in (b) and (c). With different pole
assignments, (d) and (e) show the possible magnet
configurations based on the arrangements in (b) and (c),
respectively. Note that in (e), the red and blue dots
denote the poles that face inside the stacked structure
(inset).

Overall, an SMO structure possesses 12 vertices, 20
creases, and 8 facets that can be utilized for arranging magnets.
Figure 1(b) and (c) show two designs where the magnets are
positioned at four coplanar vertices (‘4°, ‘6°, ‘7°, ‘9’) and at the
facet centers, respectively. With respect to folding, the relative
distances among these vertices and facet centers would changes
significantly, thus altering the magnetic energy of the system.

In addition to changing the magnet positions, the design
can be further enriched by adjusting the magnetic polarization.
For the first arrangement, theoretically, the four coplanar
magnets can make up 16 different magnet configurations.
However, considering the symmetry among the four magnets as
well as the identity among certain pole-pole relationships, the
16 configurations can be deducted into 5 with unique pole
assignments (Figure 1(d)). For the second arrangement, the
eight magnets could constitute variegated 3D configurations;
for illustration, we list a few examples in Figure 1(e).

It’s worth pointing out that re-constructing the prototype is
not needed to change the magnetic pole assignment. Instead, by
employing electromagnets, the magnetic poles can be easily
reversed by change the direction of electric currents. However,
to uncover the mechanism, using permanent magnets is still
acceptable in proof-of-concept analyses and experiments.

3. THEORETICAL ANALYSIS

This section studies how magnets would change the
intrinsic stability profile of origami structures. Specifically, this
is achieved by examining the energy landscapes originated from
the elastic potential and magnetic potential energies.

3.1. Elastic potential energy

With the rigid-folding assumption, the origami facets
remain rigid during folding, and the creases are considered to
be elastic hinges with prescribed torsional spring stiffness. For
the SMO structure shown in Figure 1(a), we assign k, and
k, as the torsional stiffness per unit length for the creases in
cell A and cell B, respectively, and k. as the torsional stiffness
per unit length at the connecting creases between the two cells.
Then the torsional stiffness constants ( K, and K. )
corresponding to each dihedral angle (p,, and p.) can be
determined. Hence, the total elastic potential energy originating
from the torsional creases is [13]

1| < 0\ o 0 \2
UE = _|:ZKAI' (pAi _pAi) +ZKBI' (pBi _pBi)
i=1 i=1

2 @
+4K . (pe - L) }

In Eq. (4), the dihedral angles p,, (k=AB; i=1,2,3,4) and
pc can be expressed as functions of the folding angle 6, ;
Pui» Py, and pl are the dihedral angles corresponding to the
stress-free stable configuration at 6, =6, where no crease
subjects to deformation. Specifically, we have
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Pc=03-0,, py=p, =720,
sin g, cos y,

> 5
J1-sin® g, sin’ y, %)

Prs =27 = P> k=A,B.

Py, = 2arccos

For clarity, the configurations with 6, <0 and &,>0 are
denoted as bulged-out and nested-in, respectively (Figure 1(a)).

Note that by reasonably prescribing the crease stiffness and
the stress-free folding angles, a double-well potential energy
landscape can be obtained (e.g., Figure 2(c)), which signifies an
elastic bistability profile. The origin of this bistability lies in the
non-unique geometric relationship between the folding angles
¢, and 6, showingin Eq. (2).

3.2. Magnetic potential energy

To analyze how the magnets contribute to the structure’s
overall potential energy landscape, a reliable magnetic field
model is required. Amphére model and Gilbert model are
always used to calculate the magnetic fields and the forces
between magnets. Generally, the Amphére model is considered
to be physically correct, in which the magnet is assumed to
behave as if there is a macroscopic electric current flowing in
loops in the magnet with the magnetic field normal to the loops.
On the other hand, the Gilbert model is practically more
convenient, which models the force between simple magnets as
forces between magnetic poles, although the magnetic
monopole does not exist.

Based on the Amphére model, if two magnets are small
enough or sufficiently distant such that their shape and size are
not important, then both magnets can be models as magnetic
dipoles with magnetic dipole moments m, and m,. They can
be treated as point dipoles in calculating their interaction
potential energy H , which is given by

HMfﬁ@(ml~f><mz'r>—mwm2>’ ©)

where g, is the permeability of free space, m, and m, are
the vector dipole moments, r is the vector between the two
dipole centers, r is the unit vector parallel to r, and |r‘ is
the distance between the two dipole centers.

In this research, as a preliminary modelling effort, the
Gilbert model is employed instead to capture the qualitative
interconnections between magnets. Specifically, cylindrical
magnets are modeled into magnetic dipoles, with magnetic pole
strength g=m/d =B A/ u, where m is the magnetic dipole
moment, d is the length of the magnets (i.e., the distance
between the dipole), A is the cross-section area, B, is the
residual flux density, and 4 is the permeability of the medium
(for air p=p, =47x107 T-m/A ). Note that here the
magnetic dipole moment is due to two equal and opposite
magnetic poles that are separated by a distance d, which is

similar to the electric dipole moment due to electrical charges.
Such magnetic dipole moment is different with that in the
Amphere model; it is physically incorrect, but is able to give a
correct field of dipole. Based on this model, the force between
two identical magnetic poles yields

uq,’

F(x)=
) 47 x*

) (7

where x denotes the distance between two magnetic poles.
Based on this, the magnetic potential energy between two
identical poles can be obtained

2 2
- = _[HoDn 4y = HoDn_
U, = _[F(x)dx— j = dx = - (8)

where ¢, takes positive if it is a north pole, and negative if it
is a south pole.

Hence, if there are NV identical magnets integrated with the
origami structure, the system possesses 2N magnetic poles. By
indexing the dipole of each magnet as (i, N+i), the total
magnetic potential energy can be expressed as

2N 2N 2
U 1 Z Z Mo 9
M_Total — 2 2 . ( )
i=lizj j=l X
i#N+) jEN+

Then the total potential energy of the structure is

U=Uy+ UMiTotal . (10)

In this study, the following magnet geometry parameters

are used: radius R=12.7mm, length d=635mm . The
residual flux density B, is assumed to be tunable.

3.3. Example 1: Embedding magnets on coplanar vertices

In this example, four magnets are embedded with an SMO
structure at the coplanar vertices ‘4’, ‘6°, *7°, and ‘9’, as shown
in Figure 1(b) and 1(d). Specifically, the four magnets are
aligned with lines ‘4-6" or ‘7-9°, and one of the poles coincides
with the vertex, while the other pole is d apart from the
vertex (Figure 1(d)). Here, based on two magnet configurations,
(D and (II), four cases are studied. Each case shares the same
origami geometry parameters (Table 1), but possess different
stiffness parameters (k,, k,, and k.) and magnetic residual
flux density B, .

Substituting Eq. (4) and (9) into Eq. (10), the total
potential energy can be obtained in terms of the folding angle
6, . Based on the geometry relations given in Eq. (3), the total
potential energy with respect to the outer dimensions L, W,
and H can be expressed via the following parameterized
equations
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L= L(HA )9
U= U(QA );

{W = W(HA ):

U= U(‘gA );

H= H(HA )3
U=U@,).

(11)

Moreover, the corresponding force-displacement relations in the
L, W ,and H directions can be obtained via

5o U
de,
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With Eq. (11) and Eq. (12), we are able to examine the potential
energy landscapes and the force-displacement relationship in
specific directions.
For Case 1 (with magnet configuration I), the potential
energy and the force-displacement relationship are examined in
the length (L) direction. Note that with the embedded magnets
at the vertices, the total potential energy is upraised, especially
at the regions with small length. Hence, when compressing the
magnet-coupled SMO structure toward its minimum length, the
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FIGURE 2. The potential energy profiles and the corresponding force-displacement relationships of the magnet-
coupled origami structures (Example 1). The magnets are embedded at the four coplanar vertices (see Figure 1(b)
and 1(d)). (a), (b) Case 1, with magnet configuration I, where the force-length relationship experience a
qualitative change due to the embedded magnets. (c), (d) Case 2, with magnet configuration |, where the elastic
bistability is changed to a mono-stable profile by the magnets. (e), (f), Cases 3 and 4, with magnet configuration
Il, where the elastic bistability can be changed to a quad-stable profile or another bistable profile by magnets of
different pole strengths. In these figures, the direction of force is indicated in the inset, and the potential wells
(aka stable states) are denoted by empty circles.
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TABLE 1. Origami and magnets parameters (Example 1)

Par. Values Par. Values
Origami a, =b, =b; | 254 mm Va 60
geometry | g, 31.75mm | 6,° 57
Case 1 k, =k 0.5N kg 0.5N
(Config. ) | B 1.48T
Case 2 k, =k 0.001 N ky 0.05N
(Config. ) | B 148 T
Case 3 ky =k 0.035N ky 1.75N
(Config. 1) | B, 1.48T
Case 4 ky =k 0.035N ky 1.75N
(Config. 1) | B, 2.96 T

reaction force will increase to an extremely large value. This is
qualitatively different with the structure without magnets.
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For Case 2 (with the magnet configuration I but different
crease stiffness), before embedding the magnets, the SMO
structure possess elastic bistability in the height direction. By
integrating the magnets, the double-well potential energy
landscape is changed to a mono-well landscape, signifying a
transformation of the stability from bistable to mono-stable.
Hence, accordingly, the force-height curve changes
qualitatively. For the structure without magnets, there are two
stable states and a segment with negative stiffness; while for the
structure with magnets, the number of stable states reduces to
one.

For Case 3, magnet configuration II is used. Without the
magnets, the SMO structure also shows elastic bistability. By
adding the magnets with pole strength ¢, (B . =1.48T),
surprisingly, the structure exhibits a quad-stable profile. In
addition to the original two stable wells, the structure receives
another two potential energy minima when the structure is
folded toward flat (i.e., 8, —90°). This is induced by the
strong magnetic attraction as L—>0 when 6, - 90".
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FIGURE 3. The potential energy profiles and the corresponding force-displacement relationships of the magnet-
coupled origami structures (Example 2). The magnets are embedded at the eight facet centers (see Figure 1(c)
and 1(e)). (a), (b) Case 1, with magnet configuration lll; (c), (d) Case 2, with magnet configuration IV. In these two
cases, the elastic bistability can be changed to a quad-stable profile or a tri-stable profile by magnets of different
pole strengths. In these figures, and the potential wells (aka stable states) are denoted by empty circles.
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At these two states, extremely large forces are needed to
separate the stuck magnets.

For Case 4, with the same origami parameters and magnet
configuration as Case 3, the structure loses the original two
potential wells when the magnetic pole strength is doubled to
2q, (e, B =296T ). In such scenario, the structure
becomes bistable again, where the two stable states locate at the
positions with minimum and maximum height when
6, —>190".

The above four cases well demonstrates how magnets
could be exploited for controlling the origami structure’s
stability profile. On one hand, even the stability profile is not
qualitatively changed, the corresponding force-displacement
relationship could experience significant changes due to the
additional attracting/repelling magnetic forces (Case 1). On the
other hand, the magnetic potential energy could fundamentally
change the total energy landscape by erasing the two elastic
potential wells (i.e., change the elastic bistability to mono-
stability, see Case 2), or by adding additional potential energy
minima (i.e., change the elastic bistability to multi-stability, see
Case 3), or a combination (Case 4).

3.4. Example 2: Embedding magnets on facet centers

In this example, the magnets are embedded at the eight
facet centers. As demonstrated in Figure 1(c) and 1(e), each
magnet is perpendicular to the facet, with one of its side fitting
with the facet (see inset of Figure 1(e)). Note that even with
identical magnets, the possible configurations are various and
abundant. Here, through two case studies (with detailed
parameters listed in Table 2), we show again that different
magnet configurations (including different pole strengths and
different magnetic polarization) could induce different stability
profiles.

With Eq. (11) and (12), the potential energy landscape in
the height (H) direction and the corresponding force-height
relationship can be obtained and are plotted in Figure 3.

For Case 1 (with magnet configuration III), when the
magnets are not embedded, the SMO structure shows elastic
bistability. By adding the magnets with pole strength ¢,
(B.=0.74T), the original two stable wells are remained, and
the structure gains two new potential energy minima when the
structure is folded toward the maximum and minimum height.
Hence, the magnet-coupled SMO structure becomes quad-
stable. It is worth pointing out that practically the size of the
magnets cannot be ignored, because the magnets may touch
each other before the origami structure reaches the maximum or
minimum height (i.e., €, - £90"). Hence, folding has to be
stopped at the touching points, denoted by the dotted vertical
lines in Figure 3. The new potential energy minima are
generated by the strong magnetic attracting forces since the
distance between the magnets are close. If the magnetic pole
strength is doubled (with B, rising from 0.74 T to 1.48 T),
one of the elastic potential well vanishes, giving rise to a tri-
stable profile.

TABLE 2. Origami and magnets parameters (Example 2)

Par. Values Par. | Values
Origami  |-a=0a=by | 381 mm Yo | 60°
B ag 47.62 mm QAO 40
geometry
ky, =k, IN k, 20N
Case 1
(Config. 1)) | & 0.74T, 148 T
Case 2
(Config. IV) B, 148T,2T
(a) ()

Connector and screw to
-7 install on the universal
| testing machine

~ Magnets
Holes for
magnets

Universal testing
machine

FIGURE 4. Proof-of-concept design and prototype of the
magnet-coupled SMO structure. (a) SolidWorks design of
the prototype and the connector; (b) the 3D-printed
prototype without magnets; (c) the 3D-printed prototype
with magnets, showing in a bulged-out state, a middle
state, and a nested-in state.

For Case 2 (with magnet configuration IV), similar
phenomena as Case 1 are observed, where the elastic bistability
can be changed to tri-stable or quad-stable profiles. However,
due to the different magnet polarization, the lost elastic
potential well is different.

Overall, the above two examples well demonstrate how
magnets can be incorporated into origami structures to control
the stability profiles. Such capability is appearing in origami
application. Particularly, considering that changing magnet pole
directions and pole strengths can be easily achieved via
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electromagnetics, the feasibility of the proposed approach can
be well ensured.

4. PROOF-OF-CONCEPT PROTOTYPES

In this section we show a design and prototype of the
magnet-coupled SMO structure to prove the concept. The
second example is specifically designed and prototyped. Figure
4(a) shows the overall SolidWorks design of the magnet-
coupled SMO structure. Holes are reserved at the facet centers
for embedding magnets. The foldable creases are realized
through fine pins that connect each two facets, so that the facets
can freely rotate with respect to the pins. To experimentally
show the stability changes due to magnets, tension and
compression tests are needed on universal testing machine. To
that end, additional connectors are designed.

The proof-of-concept prototype is fabricated through 3D-
printing technique and human assemble. With the Form 2
printer, Durable Photopolymer Resin is used to print the
origami facets (with facet thickness 2.54 mm, sector angle
o,=60", and crease lengths a,=b,=b,=381mm ,
a, =1.5a,). Figure 4(b) firstly shows the SMO prototype
without the magnets. By embedding permanent magnets, Figure
4(c) displays the magnet-coupled prototype, showing in three
states: a bulged-out state, a middle state, and a nested-in state.

5. SUMMARY AND DISCUSSION

This research reports a new method to control origami
structure’s stability profiles by utilizing magnets. We show that
by embedding magnets into origami structures, the intrinsic
elastic potential energy landscape can be significantly changed.
In addition to quantitatively raising or lowering the total energy
landscape, the magnetic potential energy could qualitatively
change the overall energy landscape by removing the original
elastic potential wells or adding additional potential minima.
Such changes of energy landscapes suggest the fundamental
alteration of the origami structure’s stability profile. Through
two examples, one with magnets embedded at the four coplanar
vertices of a SMO structure, and the other with magnets
embedded at the eight facet centers, the capability of controlling
stability profiles via magnets is demonstrated. Rich stability
transitions are observed, including degeneration from bistability
to mono-stability, and various changes from bistability to tri-
stability and quad-stability. Proof-of-concept design and
prototype is also proposed in this paper to illustrate the
feasibility.

Previous studies have demonstrated that origami is a good
platform to design structures and metamaterials with
extraordinary stability profiles originating from folding
geometries. Such discoveries provide a new way to design
multi-stable metastructures and metamaterials that no longer
rely on structural instabilities (e.g., pre-buckled beam and pre-
stressed shells). However, the obtained stability profiles are
intrinsic properties of the origami structures; once the crease
patterns and the elastic crease materials have been prescribed,

they become unchangeable. They cannot adapt to variable
working environments, nor endow the structures with multiple
functionalities. The proposed controlling method therefore
fundamentally advances the state of the art. Without re-
designing or re-fabricating the structures, the potential energy
landscapes can be effectively controlled via magnets. By
adjusting the magnet configuration (i.e., changing the magnetic
field strengths and magnetic polarization), the energy
landscapes can be qualitatively and quantitatively controlled.
Such control can be easily implemented by tailoring the electric
currents if electromagnets are incorporated in the origami
structures.

Note that the stability profiles play an important role in
determining the mechanical properties (e.g., structural stiffness)
and functionalities. Origami structures with controllable
stability profiles can therefore be exploited for developing
devices and metamaterials with re-programmable properties and
multiple functionalities. For example, the proposed approach
can be used in aerospace structures [40] to obtain improved
morphing capabilities and adaptive stiffness characteristics. The
controllable stability profile is also beneficial in the dynamic
regime. Rather than offering a single dynamic functionality,
multiple functions can be achieved in the same structure by
simply controlling the underlying stability profile via magnets.
For example, the magnet-coupled origami structure can be
bistable and utilized as an energy harvester, since the
characteristic snap-through oscillations in a bistable system is
beneficial for effective and broadband harvesting; on the other
hand, the same structure can be controlled to be mono-stable so
that it can serve as a vibration isolator.
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