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Abstract—Compared to traditional camera-based computer
vision and imaging, radio imaging based on wireless sensing does
not require lighting and is friendly to privacy. This work proposes
a deep learning radio imaging solution to visualize real-time
user indoor activities. The proposed solution uses a low-power,
MIMO Frequency-Modulated Continuous Wave (FMCW) radar
array to capture the reflected signals from human objects, and
then constructs 3D human visualization through a serials of data
analytics including: 1) a data preprocessing mechanism to remove
background static reflection, 2) a signal processing mechanism
to transfer received complex radar signals to a matrix containing
spatial information, and 3) a deep learning scheme to filter
abnormal frames resulted from rough surface of human body.
This solution has been extensively evaluated in an indoor research
lab. The constructed real-time human images are compared to the
camera images captured at the same time. The results show that
the proposed radio imaging solution can result in significantly
high accuracy.

I. INTRODUCTION

Indoor human imaging is of utmost importance to many
intelligent devices or systems. For example, robots need real-
time human images to plan and change the route, and smart
health system needs human images to recognize their activities
for alerts when children or elderly people fall. However, most
human imaging solutions are based on cameras, which are
associated with privacy concern [1f], [2]. Furthermore, lighting
is critical to the performance of these solutions. For example,
a regular camera does not work well in a dark environment.
Hence, radio imaging based on wireless sensing has become a
popular research topic. In addition to privacy protection, two
more benefits are associated with radio imaging to capture
indoor human activities: one is that radio imaging solutions
can “see” human objects in dark light conditions, and the other
is that radio signals can offer human imaging without line-of-
sight requirement, e.g. through a wall.

In this paper, we propose a deep learning radio imaging
solution based on MIMO radar sensing. This solution first uses
a MIMO FMCW radar to sense environment, then converts the
raw signals to 3D human images, which contain spatial infor-
mation of target in real-time. This solution has the following
highlights:

e It designs a framework combining the use of an array
of directional beamforming antennas and the FMCW radar
sensing to obtain the 3D spatial information of environments,
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at very low power with an average transmission power of less
than -40 dbm/MHz.

e It proposes calibration algorithm to remove the static
environment response from raw signals, so that only useful
human motion responses can be reserved, which facilitates the
visualization of the human activitiy.

e It develops a deep learning algorithm to process raw 3D
images. The deep learning model is trained to identify any
abnormal frames and remove them to reflect the real activity
of a human user in imaging.

e Its design leverages off-shelf low-cost devices and
achieves reliable performance in real-time cases.

In the rest of this paper, Section [[I] reviews the literature
solutions related to our work. Next, Section describes
the system architecture, including platform, signal processing
chains as well as data preprocessing to remove static environ-
mental reflections. Then, Section [[V] discusses the technical
details of combining FMCW radar with directional antenna
array to collect and visualize the 3D spatial information based
on the signal power at specific spatial voxels. Section
presents a deep learning solution to recognize and remove
abnormal frames, followed by Section @ that evaluates the
performance of the whole system in real-time cases. This paper
is concluded by Section

II. RELATED WORK

Many algorithms have been proposed to obtain human
activity information based on computer imaging and vision
techniques [3]-[7]]. Sung et al. used RGB-D depth images to
detect and track human motions. Those images with depth
information were properly processed to generate the human
movement in a 3-D space along the time [3]], [6]. Jalal’s
team proposed a solution that uses scaling invariant features
with depth videos to recognize human logging activity [4].
More recently, Microsoft Kinect depth camera was used to
collect human motion data because of its abundant APIs.
Researchers use trained machine learning models to do image
segmentation for Kinect real-time video and obtain the coarse
human outlines and motions [5[], [7].

Radar sensors and RF devices are usually used for military
or wireless communication purpose. However, wireless radio
has been recently considered for smart home applications



because of the benefits in data confidentiality, and the per-
formance does not depend on lighting conditions. Recent
radio imaging research works are either based on FMCW
radar [8]-[11] or off-the-shelf devices [12]-[14]. A research
group at Massachusetts Institute of Technology (MIT), Adib
et al. designed a special MIMO antenna system with FMCW
technique based on a software defined radio platform to detect
human motion [8|] and can capture human movements through
a wall [9], [10]. However, their solution can only generate 2D
imaging of human. Off-the-shelf devices such as ultrasonic
sensor or FMCW radar sensors have also been investigated to
recognize human activities [12]]-[[14]. Avrahami et al. proposed
a human activity recognition scheme based on 2D heat maps
generated by FMCW sensors [14]], while Zhu et al.
adopted traditional signal processing algorithms to filter and
cluster raw data and thus recognize human activities. Both of
them reports an accuracy of over 80% in their outcomes.

III. SYSTEM DESIGN OVERVIEW

To enable real-time indoor human imaging based on wire-
less radio signals, we propose a solution, called DeBat (deep
learning bat), that employs MIMO FMCW radar sensing and
deep learning to generate 3D human temporospatial imaging,
which offers the human activity information along the time in
a space. DeBat scans a 3D surrounding with FMCW chirps
and a beamforming antenna array. While a pair of antennas are
able to compute the direct distance between a detected object
and the antenna pair using FMCW chirps, the beamforming
antenna array is employed to obtain the spatial directions for
3D imaging.

Briefly, DeBat works as follows. It first emits FMCW chirps
to scan a 3D volume of surroundings. Then the received
signals are processed to remove environment background
reflections. After that, DeBat calculates the reflection powers
of any scanned voxel and constructs 3D images. Finally a Deep
Neural Network (DNN) based filter algorithm is designed to
identify and remove any abnormal eruptive reflection frames,
so that the real-time 3D human imaging can be accurately
generated.

A. MIMO FMCW Radar Sensing

Our DeBat solution introduces an MIMO FMCW sensing
design that emits FMCW chirps and collects reflected signals
with a beamforming antenna array. This design is based on
an off-the-shelf ultra-low power radar sensor called Walabot
[15]. The antenna array is laid out on a board with the average
power less than -41 dbm/MHz. The beamforming antenna
array contains 18 pairs of antennas as shown on Figure [T
The frequency range of FMCW chirps is 3.3 GHz-10 GHz,
which is sufficient to detect a direct distance up to 10 meters
based on the gradient of FMCW chirp.

DeBat beamforms FMCW chirps to scan the angles of ¢
in horizontal direction and 6 in vertical direction, as shown
on Figure 2] where 6 is elevation angle to detect the height of
human, and ¢ is wide angle to capture the width of human.
R is the distance between the MIMO FMCW sensor and the
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Fig. 2: Scanned 3D Axis of Walabot

human head, which is also the hypotenuse of triangle whose
angle is 6. The radar scan is the sectoral pyramid of ¢, which
is the space where the triangle of 6 passes in the scan. In our
case, 0 is from —45° to 45° and ¢ is from —90° to 90°. The
distance R can be calculated with FMCW property according
to Figure [3] as in Formula (I} below:
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Fig. 3: Frequency Chirp
In the calculation, At is signal round trip time between
the radar sensor and the human object, and A f is frequency
difference between the transmitting and receiving signals.
df /dt is the slope of a transmitting or echo frequency chirp
and c is speed of light. For reasonable simplification, doppler
frequency shift effect is not considered.

B. Imaging Flowgraph

The imaging of DeBat contains three data processing mod-
ules: 1) data collection and calibration, 2) coarse visualization
and 3) fine visualization, as shown in Figure [4]

In the first phase, DeBat emits FMCW chirps and records
static background reflections during initial setup time. Later
when DeBat starts to scan for human object detection, the
signals sensed by its beamforming antenna array are superpo-
sitions of both the static background and the human object.



The second phase is designed to convert signals to images.
Since DeBat scans 3D surroundings with parameters R, 6 and
¢, the received signals are processed to represent the energy
distribution of every spatial point across different R, 6 and ¢
, namely voxel in scanned space. Then DeBat subtracts the
recorded static background energy to get the energy of the
human objects, which is a 3D matrix M with dimension sizes
of (sizeX, sizeY, sizeZ), where sizeX, sizeY, sizeZ can be
computed with Equation (2), where range(-) is the detection
range of parameters, while res(-) is the designated parameters’
sampling interval, i.e. scan resolution.

sizeX = range(R)/res(R)

sizeY = range(8)/res(0) (2)

sizeZ = range(¢)/res(o)

In this phase of imaging, because human body acts as
an irregular reflector rather than a scatterer, some signals
are reflected directly back to antenna array, while others
travel through multiple indirect reflective paths, which is the
well-known multipath problem in wireless communication.
The multipath indirect reflections result in ambiguous and
abnormal consequence to the constructed 3D images.

In the third phase, a deep learning scheme is designed to
address the multipath indirect reflection problem to achieve
the coarse-to-fine visualization. We build a dataset with both
regular and multipath reflection images, and then train a
Deep Neural Network (DNN) to recognize and remove any
multipath reflections in real-time imaging.
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Fig. 4: Flow Graph of DeBat

IV. CALIBRATION AND VISUALIZATION
A. Theoretical Formulation

The FMCW signals transmitted and sensed by the antenna
array of DeBat are complex signals, which can be represented
with amplitude and phase as follows:

sp = Age PR 3)

Received Beam
with direction ¢

[JAntenna

(a) Multiple Points

(b) 2D shape
Fig. 5: 2D Scanning Scenario

where s; is the signal received at the moment ¢ . A; is the
amplitude of a signal at time ¢, r is travel distance of the signal
and A is the wavelength. Since the received signal phase is
linear function of the travel distance, 27 ;¢ is the signal phase
when it reach the receiving antenna at moment ¢.

Referring to Equation [3] because the receiver is an antenna
array, s; is rewritten as s, ; to specify the signal is received
by which receiving antenna, where n is the n;;, antenna index.
Thus, s, ; refers to a signal received by the antenna n at
moment .

Another parameter needs to be clarified is r. Since human
body is a surface rather than a point, it reflects signals from
different directions to all antennas, the received signals at
moment ¢ of one antenna contains more than one points’
reflections. Thus r varies from multiple reflection points.
Figure [5a] shows a scenario where an antenna array scans a
human body. The left hand p; reflects to antenna a4, as, as, a4
as blue dot line, and the right hand p, reflects to the antenna
array as red dot lines. Based on above description, the received
signals can be formulated}})y Equation [4}

Tn,k
1

Sn,t = ZAn,teijZﬂ-
Pt 4)

Tk = travel(py, an)
The donations are py, is ky, points on the detected object, K

is the number of points being scanned, r, j, is signal traveling
from the reflection p;, to the antenna a.,.

B. Computing Voxel Energy

Energy of Direction: Based on Equations [3] and [ the
problem of computing voxel energy can be formulated as:
with known signals s,, ; received by antenna a,, at moment
t, we need to compute the reflection power of every scanned
points. It should be noted that both angles and distance are
embedded in the phase of received signal. More specifically,
the energy of specific angles ¢,6 can be derived from an-
tenna array properties, while the energy of distance r can
be calculated with FMCW theory. Revisiting Figure [5a] and
converting the antenna array panel to a plane figure, antennas
ai,asq,as,ay receive reflections from py, and the incoming
direction of beam is ¢ as shown in both Figure [5b| and Figure
a1, o, a3,y are angles between the antenna and pg, and
d is the distance between two antennas. As a result, the energy
of direction ¢ can be presented as P(¢) with Equation

N
P(¢) = D sppe 275 5)

. n=
where N is the number o]f antennas. Because s, ; travels
different distance to each antenna, denote the difference with



ndsin ¢ as depicting in light blue color. Then, the phase shift
on the antenna n is Qﬂ’wlsi/\ind), where )\ is signal wavelength.
Energy of Distance: The travel distance of a signal is related
to the direct distance from point p; to antenna a,. FMCW
measures the reflection depth by calculating the frequency shift
between the transmitting and receiving chirps at a moment.
Equation [I] shows the FMCW theory. We define v as the slope
of frequency chirp versus time, where v is equal to df /dt in
Figure |3| The energy of distance r; can be calculated with
phase shift of s;,, as shqwn below in Equation [6}

P(Tk) _ ‘Z Z sn’te—j%rvr,;,ktl ©)

where 7y, is the signal trével @istance from point k and T is the
duration of each chirp. Because f = vt and r/c = tiraper, We
can easily get the phase shift as 27 ft;,.44e;. Thus the energy
of 7y is the sum over duration 7" and all N antennas.
Energy of Voxel: DeBat scans 3D surroundings. Refer to
Figure[Sb| where p;, on the same panel of an antenna. However,
points in a 3D space need three parameters to locate, either
(r, 0, ¢) in spherical coordinate system or (z, y, z) in cartesian
coordinate system. We choose spherical coordinate system
because the energy of # and ¢ can be calculated based on
our 2D antenna array. Figure [6] shows how it works.
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Fig. 6: 3D Voxel Power Description
The 2D antenna array is on X — Y panel, where blocks are

antennas. d, and d, are distances between two antennas in 2D
space. Y — Z panel is the dimension drawn in Figure [5b] and
dy, ¢ are the d, ¢ in Equation [5| while 6 is the elevation angle
from the Y — Z panel to R. In 3D space, R is converted to the
Y — Z panel as Y Z with cos 6, and it is converted to X — Z
panel as X Z with cos ¢, where ¢ is wide angle from the Y Z
panel to Z axis. Thus the distance change on the Y — Z panel
for each antenna is cos 6 * nd, * sin ¢ as blue line, and that
change on the X — Z panel is cos ¢ *md, xsin 6 as light blue
line shows. Since distance change represents phase shift of a
signal, we can calculate energy of any voxel with Equation
Sn,m,¢ 18 the signal received by the antenna 7 and transmitted

by the antenna m at time t.
P(T]m 97 (b) =

M N T
_ion 2k j2m i
| § § E Snm.t€ Jj2m— eI = cos 0(ndy sin ¢+md, cos ¢) |

m=1n=1t=1
(7
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Fig. 7: 2D/3D Image Capturing
C. 3D Imaging

Removing Background Reflection: To get rid of the en-
vironment reflections such as desks or walls, DeBat starts
a sensing process before capturing humans, which is called
calibration. Since the background reflection is static and the
reflection energy is fixed, calibration is performed as sensing,
calculating and recording the background reflection energy
of any voxel. Later when DeBat starts human imaging, it
subtracts the static background reflection energy from the real-
time reflection energy.

Constructing 2D/3D Images: Once DeBat calculates the
energy of every voxel and removes background reflection
power, it generates a 3D matrix M with the dimension
of (sizeX, sizeY, sizeZ), where sizeX, sizeY, sizeZ can be
referred from Equation [2]

A 2D image is related to either (R, 6), (R, ¢) or (0, $). We
choose to construct 2D image with distance and wide angle
(R, ¢). At first, we find the highest energy in M. Suppose the
highest reflection energy is from the point (R,, 0y, ¢.), and
M (R, 0y, ¢c) is the highest value in M. Then M (R, 0y, ¢)
is a 2D array because parameter 6 is fixed as 6,. Thus we can
generate a 2D heatmap image based on M (R, 0y, ¢), where
the color shows reflection energy intensity, the darker color for
the higher energy at (R, 0, ¢). Figure [7a| shows a 2D image
scenario and its corresponding heatmap generated by DeBat.

As can be observed from Figure the range of ¢ is from
—60° to 60°, where ¢ is the angle from dash blue line to
human. In this case where the dash blue line is the base line
in the middle of the sensor, ¢ is the wide angle from the base
line to the object. While 2D image only depicts the highest
power layer of fixed 6, a 3D image shows more information
about object width, height and location. Figure [/b| shows how
to construct 3D images from 2D images. DeBat uses marching
cubes algorithm [[16]] to generate vertices and faces of the
stacked images, then it uses a normalized filter to remove low
power points. From the 3D images, it is very clear to see that
the human object is at a shorter direct distance to radar, and
the height of human is greater than the chairs.



(a) Regular Dataset (b) Ambiguours Dataset

Fig. 8: Dataset Overview
V. ABNORMALITY DETECTION AND REMOVAL

One challenge of real-time human radio imaging is signal
deviation. Since human body is not a plane surface, especially
when a human moves, the surface of body is extremely
deformed. As a result, while the antenna array transmits
signals and scans human body, only some signals are directly
reflected back toward the antennas. Other signals may be
deviated through multiple indirect paths back to the receiver,
which makes the system “misunderstand” the real distance and
angle of the object. This scenario is illustrated in Figure [0}
r18104

rzez?g—";:: ==
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Fig. 9: Signal Deviation
In this case, the distance between the human chest and legs
is not quite large. However, signals reflected by human legs
deviate their incoming path, and as a result the receive antenna
gets signals from r363¢3, where r3 = dy + ds. That antenna
“misunderstands” the human leg position with wrong distance
and angles, and it results in a deformed 3D shape. To address
this issue, we design a Deep Neural Network to decide whether
the current 3D figure is deformed or not, and remove any
abnormal images from the image stream.
DNN Recognization: We use the transfer learning technique
to solve this problem more efficiently. Because this is an
image processing problem, the proper Deep Neural Network
should have convolutional layers to reduce the amount of
possible parameters and calculation. Based on that, we choose
resNet18 to classify our 3D images. In this work, we 1) collect
regular and ambiguous images to build a training dataset, 2)
change the network structure of resNetl8 to design a faster
DNN, and 3) load the pre-trained DNN parameters to remove
bad frames.
Building Dataset: We collect training dataset from real
human activities, where one person walks around in the
lab. We construct 3D images and concatenate them into 3D

videos. Then we label them manually into two categories:
regular frames and ambiguous frames. Figure [§|shows samples
of the dataset. Figure shows the regular 3D reflection
energy and Figure [8b] displays ambiguous images. As can be
observed from the dataset, the regular frames show human
3D position very clear, while the ambiguous frames always
“misunderstand” locations of some parts of the human body.
Redesigning resNet18 DNN: The first step to apply transfer
learning is to change the last Fully Connect (FC) layer. The
last FC layer of a normal resNetl8 [?] is of (512,1000),
which means the FC layer is 512 input features and 1000
output features. The 1000 out feature usually feed into
softmax functions to be classified into 1000 categories. In
our design, we only have 2 categories: regular and ambiguous.
Thus we change the dimension of last FC layer to (512, 2).
The second revision of the original resNetl8 is on the pooling
layer before the FC layer. Resnet18 uses an Average Pooling
layer to compress features to 512. However, Average Pooling
sometimes cannot extract good features because it takes all
values for an average. Since our dataset images have strong
edges, Max Pooling is better to extract the most important or
extreme features.

Loading DNN: In the DeBat system, the trained parameters of
DNN are loaded into the main process. Every frame generated
is fed into the DNN for classification. It is recognized and
labeled by the DNN with either “regular” or “bad” labels. If a
frame is recognized as “bad”, the main process removes it and
reuse the previous frame as the current frame for visualization
. Since the loading and detection process are extremely fast,
DeBat can achieve real-time imaging.

VI. PERFORMANCE

In this section, we evaluate the performance of our 3D
imaging solution as well as its DNN classification. The 3D
imaging parameters are set based on our lab size, with the
direct distance from 0 to 200 centimeters, the wide angle
Phi(¢) from —60° to 60°, and the elevation angle Theta(f)
from —20° to 25°.

Hyper-parameters of DNN: The DNN is trained with mini-
batch strategy to make it converge more smoothly. We use the
cross entropy as loss function as shown in Equation |8| where
x is output of DNN, whose dimension is (minibatchsize,2),
and label is the labels for one mini-batch data with dimension
(minibatchsize,1). We use a SGD optimizer to update pa-
rameters with learning rate = 0.01 and momentum = 0.9,
and a Ir schedular is applied to adjust the learning rate with
stepsize = 7 and gamma = 0.1. Then we collect the running
loss and accuracy of each iteration and plot in Figure[TT] Note
that the running loss and accuracy are cleared after each epoch.
ea:[label]

e ()
Figure [[Ta] shows the original performance of resnet18 and
Figure [ITb| shows the results of our revised DNN. It is

clearly to observe that our DNN converges faster and has less
vibrations compared to the original resnetl8.

loss(z, label) = —log(



Fig. 10: Human Real-time
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Fig. 11: 2D/3D Image Capturing

Imaging of DeBat: We conduct the evaluation of DeBat
imaging in a scenario where a human object moves around
in the lab. The results are shown in Figure [T0] The first row
records real human motions, the second row is the results
before filtering abnormal frames, and the third row is a final
result of the imaging. At the very beginning, human is standing
on the right of radar with a wide angle of 60°, where the cube
in rows 2 and 3 stand around ¢ = 60° and R = 110cm.
With human moving closer to the radar in frames 1 — 3, the
captured images show that the wide angle ¢ and the direct
distance R are decreasing gradually. While the human moves
away from the radar, the wide angle ¢ and the direct distance
R increase. During this time, a frame is detected by the DNN
as “bad”, and the previous frame is reused as the current one
in the visualization.

(b) Max Pooling Result

VII. CONCLUSION

In this paper, we propose a real-time 3D indoor human
imaging solution based on MIMO FMCW radar sensing. This
solution not only localizes human position precisely in a
3D space, but also protects the privacy. This solution also
introduces a deep learning model to remove any abnormal
imaging resulted by multipath reflection problem. Our future
work will focus on recognizing human activities based on the
radio imaging generated by this solution.
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