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Abstract

We consider nonlinear elastic wave equations generalizing Gol’dberg’s five constants
model. We analyze the nonlinear interaction of two distorted plane waves and char-
acterize the possible nonlinear responses. Using the boundary measurements of the
nonlinear responses, we solve the inverse problem of determining elastic parameters
from the displacement-to-traction map.

1 Introduction
1.1 The nonlinearity in elastodynamics

We introduce the nonlinear elastic system to be studied in this work. Our model is
a generalization of the five constant model widely used in the literature since the
work of Gol’dberg [4]. We shall follow the presentation in Landau-Lifschitz [12].
The materials are classical, however we would like to review its derivation to show
the sources and significance of the nonlinearity in elastodynamics.
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Consider an elastic body occupying an open bounded region 2 C R? with smooth
connected boundary 3£2. The closure is denoted by 2. We denote points in R? by x =
(x1, x2, x3). When the body is deformed, the distances between points are changed.
Suppose that point x € £2 is displaced to x” = (x{, x5, x;) € R? and the displacement
vector is u = x’ — x. The length element dI = (dx| + dx; + dm)é is changed to
dl' = (dx| + dx} + dx})7 and

(dl"? = dI* + 2ejrdxidx,

where e; is the strain tensor defined by

1 [ 0u,, ouy, ouyg ouy
€mn = 3 _ .
2 \ 0xy, X, 00X, 0Xp,

ey

Hereafter, the Einstein summation convention is used. The strain tensor describes
the changes in an element of length when the body is under deformation. For small
deformations, one ignores the quadratic terms and take

- 1 (du ou
emn — m + n
2 \ 0x, 0X
as an approximation of e,,;,. This is the strain tensor used in linearized elasticity.
We only consider the thermostatic state of the body so that the free energy & of the
body is a scalar function of the strain tensor only, namely & = & (e;¢). For an isotropic

elastic medium, we can express & in terms of the invariants Tr(e), Tr(ez), Tr(e3 ) etc.
For small deformation, one expand & up to quadratic terms in Vu to get

& =6+ %A(x)(Tr’e‘)2 + 1(0) Te(@) = & + %A(x)(’e‘ﬁ)z + 1),

where & is a constant and A, u are called Lamé coefficients. Note that the ;; above
are indeed e;; as the higher order terms are ignored. The stress tensor is given by

Son = 2 = A+ 20 @)
0€mn
To show the dependence of Sonx € R3 and u, we also use the notation §(x, u).
The stress tensor is related to the internal force T of the body under deformation
viaT = V - §. Now using Newton’s second law, we obtain the differential equation
describing the deformation of the body

2

0“u ~
PW=V'S(X,M)+F, (3)

where F = (F}, F», F3) € R? is an (external) force on the body (e.g. the gravity) and

p is the density of the elastic medium. Actually, we just derived the linearized elastic
wave equation.
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Now we take into account the nonlinear effects. We expand the energy density &
to cubic terms

E =&+ %A(x)(Tr e)? + n(x) Tr(e?)
+ %A(x) Tr(e) + B(x) Tr(e*) Tr(e) + %C(x)(Tre)3
1 2 2 1 2 1 3
=& + Ek(x)(eii) + p(x)ej; + §A(x)eikeizekz + B(x)ejren + §C(x)(eu) ,

see Landau—Lifschitz [12, Section 26]. In the reference, A, i, A, B, C are all constants
so the model is called the five constant model. Other equivalent forms in the literature
and their relations can be found in Norris [17]. Here, we consider a more general
model in which all the parameters are smooth functions on £2. In the expression of &,
we should use the strain tensor in (1) and keep the nonlinear terms. We consider the
tensor defined as

0& Qup dum
Smn = m = A(x)ej; (amn + E) +2p(x) (enm +enjﬁj)
+AWX)epjen; + B(x)(2ejjemn + €jjeijomn) + C(x)eji€jjdmn, m,n=1,2,3.

“)

This tensor is no longer the stress tensor and it is not symmetric. However, the quantity
V - § still gives the internal force, hence we again get the dynamical equation of the
same form

0%u
This is the nonlinear elastic equation we study in this work. We point out that the
nonlinearity of the system comes from two sources: the higher order expansion of the

free energy & and the nonlinear term in the strain tensor.

1.2 The interaction of two waves

We consider the initial boundary value problem for (5):

0%u(r,
% VSO u(t,x) =0, (t,x) €Rx £,

u(t,x) = f(t,x), (t,x)eR; x082,
ut,x)=0, (,x)eR_x £, (6)

where S(x,u(t,x)) is given by (4). Throughout this work, we assume that
A, i, A, B, C are smooth functions on Q. Here, for simplicity, we took p = 1. We
know (see e.g. [20]) that upon changing variables and introducing lower order terms,
the system (5) can always be reduced to p = 1. Also, we took F = 0 in (5). It is
easy to see that u = 0 is a trivial solution to the problem if f = 0. Later, we also use
Z=RxQandY =R x 9£2.

@ Springer



M. de Hoop et al.

The equation in (6) is a second order quasilinear system. In general, the solution
may develop shocks and we do not expect long time existence result. We establish
the well-posedness for small boundary data in Sect. 2. The novelty of this work is
that we analyze the nonlinear interactions of two (distorted) plane waves and show
that certain nonlinear responses are generated and they carry the information of the
nonlinear parameters. More precisely, let the boundary sources f be

f=eafP+ear®

depending on two small parameters €1, €;. The solution u of (6) with boundary source
f has an asymptotic expansion

U= elu(l) + ezu(z) + elzu(“) + e%u(zz) + elezu(lz) + higher order terms in €1, €.
Here, ", u® are linear responses satisfying the linearized equations

Pu®(,x) =0, (t,x) e Rx £,
u® @, x) = fO%,x), (t,x) e Ry x 082,
u®@t,x) =0, (t,x)eR_x £, (7)

where e = 1,2 and D, 412 4,22 are nonlinear responses satisfying

PuD(t,x) =V -g® u?), (t,x) eRx R,
w(t,x) =0, (t,x) eRy x 382,
u(t,x) =0, (1,x)eR_x 2, ®)

where i, j € {1, 2} and the term ¥ is quadratic in uD, 4D and comes from the
nonlinear terms of (6), see (22) for its exact form.

The nonlinear interactions of elastic waves are of great interest in seismology, rock
sciences etc. In the literatures e.g. [4,7,11] among many others, they have been mostly
analyzed by taking ", u® as (smooth) plane waves of the form

el(—tw-ﬁ—kx)a,

where 12 = —1 and a, k € R? are the polarization vector and wave vector respec-
tively. The nonlinear responses are recognized as sum or difference harmonics. One
disadvantage of the plane wave approach is that the plane waves extend to the whole
space hence it becomes difficult to localize the nonlinear interactions. We shall use
distorted plane waves propagating near fixed directions. Locally, they can be expressed
as oscillatory integrals of the form

/ 00, x: E)dE,

where the amplitude a(z, x; &) belongs to some symbol spaces. The waves and non-
linear responses are characterized using their wave front sets. We construct proper
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sources f(® so that u(® are conormal distributions. This is done in Sect. 3 using
microlocal constructions for the initial boundary value problem. The conormal dis-
tributions appear frequently in applications, such as Heaviside functions and impulse
functions, see [8] for more examples. Next, we show in Theorem 3 that the nonlinear
interactions of "), u® generates new singularities in u!?. Because of the P—S wave
decomposition, there are many cases of the interaction. We are able to determine all
the possible responses and find conditions when the responses are non-trivial. The
results are summarized in Table 1 in Sect. 4.

1.3 The inverse problem

Our next goal is to determine the elastic parameters from the boundary measurements
of the nonlinear responses. We introduce notions to state the result. For the linearized
equations

P o V.Su)=0
u=——-—V-Skx,u) =0,
at?

where §(x, u) is defined in (2), the characteristic variety of P is the union of sub-
varieties

Zp={(r,6) e T*R x 2): T — (£,6)p =0}, (£,8)p = (A(x) +2u(x))[E[%,
e ={(1,E) e T*R x 2) : 1% — (£,€)s =0}, (&, &)s = u()|E|%, )

which corresponds to shear and compressional waves. We assume that
A4+pu>0 p>0o0ns. (10)

Then the operator P is a system of real principal type (in the sense of Denker [2]),
see [6, Prop. 4.1]. We let gp,s be the Riemannian metric on 2 corresponding to
() p/s and let diam p 5 (§2) be the diameter of £2 with respect to g p;s. We notice that
diamg(£2) > diamp (£2) in view of (9) and (10).

Using the well-posedness result established in Sect. 2, we define the displacement-
to-traction map as follows. For any fixed Ty > 0, we show in Theorem 2 that there
exits €9 > 0 so that for any f € C™ ([0, Tp] x 9£2) supported away from r = 0 and
f sufficiently close to the zero function, there exists a unique solution u(¢, x) of (6).
Then we define the displacement-to-traction map as

Aqy o f = uljo,i1xa02 — v - S, u)l[o,15]x00 >

where v = v(x) is the exterior normal to 2. We also use A for Ay, when Tj is clear
from the context.

Theorem 1 Assume that 952 2 is stricily convex with respect to gp;s and there is no
conjugate point for gp;s in $2. For Ty > 2diams(§2), the parameters A, v, A, B are
uniquely determined in §2 by Ar,.
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It is worth mentioning that the linear version of Theorem 1 has been extensively
studied in the literature. In particular, for the isotropic elastic equations, it is proved
in [19] and [6] that the P/S wave speeds (hence the Lamé parameters) are uniquely
determined by the displacement-to-traction map. Because the linearized problem in
our model is isotropic, the main interest here is to determine the nonlinear parameters.
We also remark that our proof leads to an explicit way to reconstruct the nonlinear
parameters from the measurement with properly chosen boundary sources. Also, we
prove in Proposition 3 that the parameter C cannot be determined at least from the
leading term of the generated nonlinear responses. However, it is likely in view of the
work [13] that C can be determined from the interaction of three or more waves. This
is not pursued in this work.

2 The well-posedness for small boundary data

We establish the well-posedness of the initial boundary value problem (6) which we
recall below
du(t,
% VS u(t,x) =0, (t,x) €R x £,
u(t,x) = f(,x), (t,x) Ry x 982,
u(t,x)=0, (t,x)eR_x £,

where

17 17
Smn (X, u) = )\(X)ejj Simn + +2u(x) | enm + €nj -
0xy, 0x;

+AX)epmjen; + B(x)(2ejjemn + eijeijdmn) + C(x)ejie)jdmn.

In the literature, the well-posedness of quasilinear hyperbolic systems are studied for
the initial value problem (£2 = R?) in [10] with applications to nonlinear elastody-
namics and general relativity. Some variants of the results are obtained by Kato for
scalar equations or other initial-boundary conditions. Dafermos and Hrusa studied the
initial-boundary value problem for nonlinear elastic equations in [1] which applies
to our model. However, only the short time existence result was established for the
Dirichlet boundary conditions. Their result is close to what we need. We shall mod-
ify their proof to obtain our result. We refer to [16] for similar treatments for one
dimensional scalar wave equations.

We denote the L? based Sobolev space on 2 of order m by WP (§2; R). The
compactly supported Sobolev functions are denoted by W(;" "7 (£2,R). When p = 2, we
also use H™(2) = W™2(2; R), Hy'(2) = W(;”’2(.Q;R). For f € C"(M), M C
R*, we denote the semi-norm by

I fllemony = sup > 192 f(x)].

xXeM lee|<m
The main result of this section is
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Theorem2 Let Ty > O be fixed. Assume that f € C™([0, To] x 9§2),m > 3 is
supported away from t = 0. Then there exists €y > 0 such that for || f ||cm < €0, there
exists a unique solution

u e ()40, Tol; W (2, R))
k=0

to (6) and we have the estimates

max ||8,m_k
1ol

u(r m—k, <C m )
 max O llwn-s22) = Coll flen@xaz)

where Cy > 0 does not depend on f.

We make several remarks. We formulate and prove the result specifically suited
to our need. The assumption that f is supported away from ¢ = 0 is for simplicity.
In general, the theorem should work if f satisfies certain compatibility conditions
at {0} x 0£2 with the initial conditions. The proof of the theorem is based on some
modifications of [1, Theorem 5.2]. Indeed, the proof in [1] is quite involved and was
build upon an abstract framework. To minimize the amount of additional work, we
will follow [1] very closely, even their notations. We remark that we have not tried to
get sharp results which are not necessary for the inverse problem.

Proof of Theorem 2 The first step is to convert the problem to a Dirichlet problem.
Suppose that f € C™(R x 0§2) with m > 3 and f is compactly supported in t > 0.
We use the Seeley extension, see [14, Section 1.4]. Following the arguments there, we
can find a function f € C™(R x £2) such that f IRxa2 = f and f is supported in
t > 0. Moreover, the extension is continuous namely,

I fllcn®x2) < Cllfllcm®xag)-

Hereafter, C denotes a generic constant. Let u = u + f We have
Sy = (i, ) + S(),

where

o AEGH D e~
%%Amf)—5Eﬁ;ﬁgsu_Sm)+anthvmf;ny

Here, .# is a smooth function of its arguments and we recall that & is the scalar energy
function. We can further write

3 2~
> &-amfai -
joop=1 ®0%p

(V- /@ 1),

(A(x) + p(x) Z

R Z L it x W VAL TV,
j
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where E; denotes the nonlinear terms. Becausg Z,-a jp comes from a scalar energy
function, we know (see e.g. [1, Section 1]) that A;4 ;g = A;gj« are symmetrlc More-
over, because of the assumptions on A, u and the compactness of £2, A satisfy the
strong ellipticity condition, namely there exists § > O such that

Aiajp&i€iCats = SIEIPICI?, £, € RS,

for all 7 in a sufficiently small open neighborhood & of the zero function in C” (R x £2)
such that det(/ + Y'IZ) > 0.
Now u = u — f satisfies the equation

0% _
au—v d@ H=F nRx%Q,
=0, in(Ryxd2)UR_ x ), (11)
where
27

=S(f) — 3— e C"72([0,T] x ).
It is clear that
| Zllen2 < Cllflen < Clifllen.
Then the assumptions of [1, Theorem 5.2] are all satisfied and the problem can be

reduced to the following abstract problem studied in [1, Section 4]: for any 7y > 0,
consider the initial value problem

3%u _
a2+E(t)€148uf8f)u— , 1In][0, Tp] x £2,
u=0, inR_x$, (12)

where E satisfies the assumptions (E1)—(E4) and F (automatically) satisfies assump-
tions (g1)—(g2) of [1, Section 4]. Here, to conform with the notations in [1] we have
changed the meaning of u and f so that they are C” functions on R x £2. Also, we
let H, = WS2(2,R), V = W0 (.Q R) and X; = V N H. In [1, Theorem 4.2], the
local in time existence was established for this abstract problem. In particular, for any
F € C™([0, T] x $£2), there exists a Tp > 0 and a unique solution

m
ue ()"0, Tol; Xi—p)-
k=0

The proof of Theorem 5.2 of [1] follows from this result. Here, we claim that for fixed
Ty > 0, if F is sufficiently small, there exists a unique solution u of (12) as above and
lullcm < C||F|cm. The proof of the claim is based on modifying that of Theorem
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4.2 of [1], which is essentially built upon Theorem 4.1 of [1] for a simplified version
of the problem (12) i.e.

2

ot 9.2
u=0, inR_x$, (13)

+Awu=F, in[0,Ty] x £2,

where A satisfies the assumptions in Section 4 of [1]. To clearly indicate the modifi-
cations we need, we shall prove our claim for this problem.

For M, T > 0, we define a function space Z(M, T) consisting of all functions w
satisfying

3

w e ﬂ WE([0, T1; Hyr), ess-supeqo,ry D lw(®llh,_, < M.
k=1 k=0

For w € Z(M, Tp), consider the linearized problem

2

ot 9.2
u=0, inR_xg. (14)

+ A(t,x,wyu=F, in[0, Ty] x £2,

For this problem, Theorem 3.1 of [1] shows that there exists a unique solution u €
N, Wk ([0, Tol; Hyu—k) with the estimate

Z ()2, < CoN(Tp)eXo™, 1 e [0, To),

where Cy, K¢ are positive constants depending only on the coefficient of the equation,
and

N(Tp) = sup Z IF @) -

te[0,Tp] k=0

We observe that N(Tp) = O(€?) if |Fllcm < €. We denote by 7 the map which
maps w € Z(M, T) to the solution of (14). We let

M3 = 4N(Ty)CoeXoTo = 0(e)
and choose € sufficiently small so that .7” maps Z(My, Tp) into itself. Following the
rest of proof of [1, Theorem 4.1] especially equation (4.37), we see that the map is a

contraction if

CMoT()eCMoTO < 1.
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We choose € sufficiently small so this is true. This finishes the proof of the claim. This
implies the claim for system (12) which further concludes the proof of the theorem.

3 Microlocal analysis of the linearized system

We consider the initial boundary value problem for the linearized equation (7) recalled
below

a%u(r, -
I;(I2X)_V'S(x’”(f,x))=0, (t,x) e R x £2,

u(t,x) = f(t,x), (,x)eRyx082,
u(t,x) =0, (,x)eR_x . (15)

Pu(t,x) =

where

S duj aul au
Smn(x,u)=/\(X)a_]5mn+u(X)< -+ n)
Xj 0xp, X,

Our goal is to construct boundary sources f so that the solution u has conormal type
singularities propagating into the region §2. Such u will be called distorted plane
waves. We start with basic microlocal analysis for boundary value problems of the
linear system.

Let & = (&,&,&) € R3 be the dual coordinate of x in T;‘E and we let
(t,x;7,6) e T*(R x 5)\0 be the local coordinates. The Euclidean metric of R3 is
used to define inner product £ - £, V& € R? and to identify tangent and co-tangent vec-
tors on R3. For a non-zero direction £ € R3\0, we denote by 7 = 7(£) = £ ®&/(£-£)
the orthogonal projection to £. From [6, Proposition 4.1], we know that P is a system
of real principal type (in the sense of Dencker [2]) with principal symbol

p =psId—m) 4+ ppm,
where
Pps(t. X, T.6) =1° — (£,8)pys.

For > 0, we see from (9) that 0 < (&, &)s < (£, &)p, & € R3\0. It is well-known
that the system P can be decoupled as follows. We decompose u to the P/S modes as

uf = Hpu=A""V(V-u) and u® = Hgu = (d —IIp)u,

where V. = (0y,, Ox,, Ox;) 1s the gradient and A = 21-3:1 3)%1- is the Laplacian.
Observe that the symbols of ITp, [T are o (I1p)(x, &) = w(§) and o (I15)(x, &) =
Id —7(£), (x, &) € T*R3. It follows from Taylor’s diagonalization method [21] (see

also [20, Lemma 2.1]) that Pu = 0 is equivalent to
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82uP
—5 =10 +2mA+ B’ + R,
8%u’
oo = 1A+ Bal’ + Rou, (16)

where Bj, B, are first order pseudo differential operators (denoted by ¢ (R3)) and
R1, Ry are smoothing operators. The boundary data f can be decomposed to f =
fP + £5 so the system (7) is decoupled up to a smoothing term.

For the two symbols pp g, the corresponding Hamiltonian vector fields are

(£,8) 0 0(,8) 0
pr/s = 2‘1,'— —i—Z[ PIS 2 ox; - —Bx,-P/S 3_51]

The integral curves on 7* (R x £2) are called bicharacteristics. For x € 32, & € Tx*ﬁ,
we define the projection 7y : T.F (R x ) > T (R x 082) by 7y (&) = &|77(352)- The
pointy = (t, x; 7, m3(§)) € T*(R x 9£2)\0 is called elliptic, hyperbolic or glancing
for P/S mode if the following quadratic equation in z

Pps(t, x; 7,6 —zv(x)) =0

has no real roots, two distinct real roots or a double real roots, see [6, Section 4]. The
cotangent bundle 7*(R x 9£2) is decomposed into elliptic regions &p g, hyperbolic
regions J#p,s and the glancing hypersurfaces ¢¥p,s for the P/S modes. Because of
the assumption that u > 0, it is easy to see that &5 C &p and H#p C 5. We let
9 = 9Yp UYs. A simple real root z is called forward (backward) if the bicharacteristic
curve starting in direction & — zv enters R x £2 when time increases (decreases). We
denote by zp,s the forward real root or the complex root z with positive imaginary
part opr/S(t, x,7,§ —zv) =0,and weuse Ep/s =& — zp/sv(X).

Consider the displacement-to-traction map of the linear system (7), that is
Ajin(f) = v - §(u). We will see later in (18) that this is just the linearization of
the displacement-to-traction map for the nonlinear system (11). It is proved in [6,
Proposition 4.2] that Ay;, is a first order pseudo-differential operator near every non-
glancing point y € T*(R x 9£2)\¥.

For a Lagrangian submanifold A of T*M e.g. M = R x £2, the Lagrangian dis-
tributions of order w are denoted by I#(A), see [9] for the definition. Let K be a
codimension k submanifold of M. The conormal bundle N*K = {(x,¢) € T*M\O0 :
x € K, ¢|r.k = 0} is a Lagrangian submanifold. The conormal distributions of order
u to K are denoted by I*(N*K).

Now let K be a codimension one submanifold of R x 92 (hence codimension
two in R x £2). We use N3K to denote the conormal bundle of K as a submanifold
of the boundary R x 3£2 and N*K the conormal bundle in R x £2. We assume that
N3 K N .7p has an open interior and consider distributions f € I*(N; K). Indeed,
we are interested in the singularities of f in the hyperbolic directions. We introduce
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AR =R x2)n UexpsHpP(N*K nxp |,

s>0

Ay =R x2)N UexpsHpS(N*K N Xg)

s>0

These are Lagrangian submanifolds of 7*(R x £2). Their projections to R x £2 are
geodesic flow out of N*K with respect to the Lorentzian metrics —dr> + gp /S-

Proposition 1 Ler K, f be defined as above and u be the solution of (7) with boundary
source . Let f = fP + fS and u = u® + uS. We have the following conclusions.

1. There exists (Fourier integral) operators Q}fd/; such that u®/S = Q;ﬂ{\?(fP/S) €

n-1/4 A ;/ S) are Lagrangian distributions.
2. Let (z,¢) € T*(R x 2) lie on the bicharacteristic strip of pr/s Sfrom (20, o, p/s)

for some (20, 2o) € T*(R x 382). Then the principal symbols of u®*'S and f¥/S
are related by

o @)@ &) = 04y 2. ¢ 20, 200 (f /%) (z0. 20).

where Q}fd/j are 3 x 3 invertible matrices and bdy stands for boundary value
problem.

Proof For simplicity, we use Z = R x £2 and ¥ = R x 9£2. Locally near Y, we can
make a change of variable to flat the boundary. Then the problem (7) is equivalent to
the Cauchy problem for the second order system Pu € C°°(Z) with Cauchy data

Cu = (pou, poV - Sw)) = (f, Auin(f)),

where py is the restriction operator to Y. In particular, pg is an Fourier integral operator
in 1Y 4(Z, Y: Rp), where the canonical relation

Ro = {((z0, 60), (2. 0)) € (T*Y x T*Z)\0 : 20 = 2, §o = m3(§) = ¢lrz v}
see [3, Section 5.1]. According to [3, Theorem 5.2.1], there exist Fourier integral
operators Qo € I~ V/*(Z,Y;Co) and Q| € I7'"V4(Z,Y; Cy) which are maps
&' (Y) — 2'(Z) such that
PQ; € C¥(Z), poQj =280, poAQ; =261, i,j=0,1,

where Cy is the canonical relation

{((z, ), (0, €0)) : (z, &) € T*Z is on the bicharacteristic strip of p through some
(20.¢) € T*Z such that 73 () = ¢o, for (20, {0) € T*Y}.
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Suppose that f € I*(NjK) is conormal. By the composition of Fourier integral
operators (see e.g. [9]), we have Qo f € I*~V*(Ak), O1f € I*"'=V/*(Ak). So the
solution u = Qo f + Q1 f € I* /4(Ak). Suppose that ((z, ¢), (z0, (o)) € Co, then
the principal symbol

ou)(z, &) =0a(Qo)(z. ¢, 20, S0)o (f)(zo0, %0).

where Qy is invertible. Finally, we apply these arguments to the decoupled system
and let Qé)d/ys = Qé)/s + Qf/s el V4z,v; Cé)/s) where
Cé)/s ={((z,©), (20, %)) : (z,¢) € T*Z N Xpys is on the bicharacteristic strip of
Pp ;s through some (20, {) € T*Z N Zpys such that m (£) = ¢o. for (z0, &o) € T*Y}.

This completes the proof.

At last, we use the proposition to construct distorted plane waves. Let yy =
(to, x0, 70, &0) € T*(R x 02)\¥,190 > 0,x9 € 952 be a hyperbolic point in
Hp C 5. We let Ky be a codimension one submanifold of R x 952 so that
Yo € Nj Ko. For § > 0 sufficiently small, we define

K(yo;8) = KoN{(t,x) e Rx a2 : |t —ty| < 8, dist(x, x9) < 8},

which is a small neighborhood of (#y, x¢) contained in K¢. Then IH(5) = N;‘K (y0; 8)
is a small open neighborhood of yy and () N #p # @. As § — 0, the set IH(5)
tends to the vector yp. Now we consider their flow out under the Hamilton vector fields

of pps

AP (0; 8) = | exp s Hp, (N*K (0 8) N Zp),

s>0

AS(n0; 8) = | exp s Hp (N*K (03 ) N Zs).

s>0

which are Lagrangian submanifolds of 7*(R x £2). As § — 0, they tend to the
forward bicharacteristics corresponding to yOP/ S = (to, x0, 70, §0,P/s). By our non-
conjugate point assumption, we know that the projections of Ag /5 to R x 2 should
be co-dimension one submanifolds &, .%y. So we have

AP (y;8) = N* Py,  AS(y0; 8) = N* A.

Also, as § — 0, P tends to the geodesic of the metric —dt> + gp from yOP and .%p
tends to the geodesic of the metric —dt? + g5 from y;. For f € I"*V4(N¥K (yo; 6)),
the solution u of (7) satisfies u = u? + uS,u” € I*(N*Py),u’S € I"(N*.%),
which is called a distorted plane wave. See Fig. 1. We see that for § small, the singular
P/S . . P/S
supports of u are close to the corresponding geodesics from y,
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Fig. 1 Construction of distorted
plane waves

K(70;0)

4 The nonlinear interaction
4.1 Construction of sources

We consider the nonlinear effects in this section. First, we construct two distorted
plane waves.

Definition 1 Let y1, y» € T*(R4 x 9£2)\¥ be hyperbolic points and construct two
sources f e IHFVA(N*K (y1;8)) and f@ e IMTVH(NIK (y2:6)) with u <
—23/4 as in the end of Sect. 3. The corresponding distorted plane waves are denoted
by uD, u @ We write

u® =u®S P e =12,
such that

u® P e 1M(AP (ya; 8)) = IM(N* 2,),
u®S € I"(AS(ya; 8)) = I"(N*.S).

Here, &, , .%, are codimension one submanifolds of R x £2. We assume that Z;N.%; =
#,i = 1,2, (i.e. no self-interactions) and that

PNNPy =Zpp, AN =ZLss, P1NS=ZLps, S1NPr=Zsp,

where the above intersections are either empty or transversal so the Z, are codimension
two submanifolds.

We would like to construct a source f = € 1) + e, f@ for two small parameters
€1, €2 > 0 so that the linearized solutions are distorted plane waves. In general, this
might lead to reflections of the waves at the boundary and it becomes difficult to
determine the nonlinear responses. Therefore, we proceed as follows.
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Proposition 2 For V), f@ W 4@ in Definition 1 and €, €2 sufficiently small,
there exists f. € C*(R x 982) supported in R, x 982 so that the solution u¢ of (6)
has the expansion

Ue = elu(l) + 6214(2) + e%u(“) + e%u(n) + elegu(lz) + 0(612) + o(e%), a7

where u®, e = 11, 12, 22 are determined by uD @ through (8).

In the expansion (17), we let v = euD + e2u® and call it the linear response.
The terms u', 4% and u'? are called nonlinear responses. We are particularly
interested in #'? as we shall show below that it contains new singularities which
do not belong to the linear response. The point of the proposition is revealed in the
displacement-to-traction map A. We have

e, A(f)le=0 = v - SUD)rxon = Ain(fD), i =12, (18)
and
3e, 06, A(f)ler=1=0 = v - SU)rsag +v - (V- GV, uP)rxae,  (19)
where ¢ (-, -) is the quadratic term in (8), see also (22).

Proof of Proposition 2 For €, ¢, > 0, we take

fe = auVrxoo + u?®|rxsn + fo,

where f;z consists of higher order terms in €y, €> and is to be specified below. From
the finite speed of propagation for the linear system, we see that f, = €] f(1) +¢,
modulo higher order terms in a sufficiently small neighborhood of 1, y». Now consider
the regularity. Recall that for a codimension k submanifold K of M of dimension n,
we have

I"(N*K) C H*(M) C C" (M), (20)

wheres < —u—n/4andr < s —n/2. We should take u < —9/2 so that V), @ ¢
C%(R x 382). We apply Theorem 2. For any Ty > 0, there exists €y > 0 such that for
€1, €y < €y, there exists a unique solution u, of (11) with boundary source f. such
that

2
uc € E*R x 2) = ﬂ ck (0, Tol; H**(2)) c H*R x )
k=0

and we have the asymptotic expansion (17) in which the remainder terms are also in

E%(R x £2). Now we need more regularity so that u. € C>(R x £2). Thus, we demand
thatin (20) s = 5Sand © < —5 — 3/4 = —23/4. Then we let
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fo = [u™ 4 3u® + eeu"rysn + fi3,

where f.3 € C?(R x 3R2) and f.3 = o(e?) + 0(e3). We see that f.s will not affect
the terms in the asymptotic expansion (17). This finishes the proof.

We remark that since we will only concern y1, y» so the corresponding bicharac-
teristics do not meet at the boundary, the wave front of v - (V - AL u(z))) IRxg0 In
(19) will be contained in that of ! and u®. Thus it suffices to find the singularities
of v- §(u(12))|RXaQ in u'? which we do next.

4.2 Generation of the nonlinear response

Among all the nonlinear terms in (6), we only consider the quadratic terms in S(u),
denoted by G (u, u) where

G ( ) 'V me 4 1)\ Buk Bwk s ) ~ 8wm T auk 3wk
u,w)y=xre;j— +=A|{— || — eni— —
m I 0xy, 2 0x; ox; m Henj 0x; Maxm 0xy,

+ Aémjfilzj + B(zéjj ﬁnn + gz/ ﬁ/Smn) + C’Eii]?.;'jsmn» 2D

~ ad a
n m

). Because G (u, w) is not symmetric, we let

Gu,w) =G, w)+ G(w, u).

Then we see that for v = e;u") + e;u®,
1 1
G(v,v) = E%E%(u(l), uDy + e%zg(u(z), u®) + 129wV, u?).

Thus #1? is the solution of

52,(12) N
Pu' = ——— —v.5u"?) =v.9u®P, u?) (22)
with zero initial and boundary conditions. This is the precise form of the Eq. (8). If we
choose the parameter 8 in the distorted plane waves sufficiently small, 4 (u", u®) is
compactly supported in R x £2. Thus by the finite speed of propagation, we can treat
(22) as a source problem on R x R? before the waves reaches the boundary. Although
this is not necessary for our proof, it is worth mentioning that in [18] Rachele showed
the determination of A, i and their normal derivatives to any order on the boundary
R x 982 from Aj;,. Thus one can ignore the boundary and extend the system (22) to
R x R3. Because of the P/S decomposition, we have

g(u(l)’ u(2))
— %(u(l)’P, u(2),P) + {f(u(l)’P, u(2),s) + %(u(l)'s, u(z)’P) + g(u(l),s’ M(Z),S)
— gPP + gPS + gSP + gSS’
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where the ¢° in the second line corresponds to the four terms in the first line.
These terms represent the P-P interactions, P-S interactions, S—P interactions and
S-S interactions. Their singularities can be described using the notion of paired
Lagrangian distributions. Let M be an n-dimensional smooth manifold. For two
Lagrangians Ao, A1 C T*M intersecting cleanly at a co-dimension & submanifold
ie. TyAoNTy Ay =T, (AgN Ay), Yg € AgN Ay, the paired Lagrangian distribution
associated with (Ag, A1) is denoted by I7/(Ag, A1). The wave front sets of such
distributions are contained in Ag U Aj. We refer the reader to [5,15] for the precise
definition and properties.

Now consider ¥p p and assume Zpp # (. From [22, Lemma 4.1], we know that
the components of Vu(®-* are in I*T1(AF), e = 1, 2. Then we can apply [5, Lemma
2.1] to get

Gpp € I'THIXNT Zpp N* ) + 1M N2 (N Zpp, N* ).
Using [22, Lemma 4.1] again, we get
V- Gpp € IMTHTXN*Zpp, N P)) + [MTHR2(N* Zpp, N* D).

The wave front set of ¢ ¥ is contained in the union of N* %p p and N* 2|, N* P,.
For the propagation of the nonlinear response, we are interested in the co-vectors of
N*%pp which are also in X'p or Y.

Lemma 1 Suppose that &) intersect &7 transversally at Zpp # (. Then

1. (N*Zpp\(N*Z|UN*Fy))NXp =40.
2. For any p € Zpp, there are two linearly independent vectors {4, ¢{— € Xg N
N*f'fpp at p.

Proof We remark that (1) is a known fact, but we give an elementary proof below for
completeness. Let p = (t,x) € Zpp and ¢V € N2, @ e N3 2. We write
(m = (!, Ei), i e R, Si € R3,i = 1, 2. Then we have

@) =G+2wlg’ P, i=1,2.
Now consider vectors ¢ = atV + bc® e N*Zpp,a, b € R. Without loss of
generality, we assume that a # 0 and rescale the vectors so that E®| =1landa = 1.
If ¢ € X¥p, we have

(' +0tH? = A+ 2w E" + b8P = b(1 — &' £7) =0.

Because £! - £2 # 0, we conclude that b = 0 which implies ¢ = ¢ (V. If ¢ € X5, we
must have

(' + bt = plgt + 057
= A+ wb* +2(2p + 1) — pg' b+ (A +p) =0.
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Because we assumed A + & > 0, the equation above is quadratic and the determinant
is positive if £! - £2 £ 1, which is automatically true by the transversal intersection
assumption. In this case, we get two real distinct roots b, b_ and two co-vectors in
YXsNN*Zpp

(=W 4@ =W 4 @
Similarly, we have
Lemma 2 Assume that 2| intersects .5 transversally at Zps # . Then
V- Gps € IMTPITHN* Zpg, N* 1) + IMPHT2(N* Zpg, N*.77).

For any p € Zps, there exists a unique {4 € Xp\N*P| and ;_ € Xs\N*.%5 at p.
The same conclusion holds for Gsp.
Proof Let (t,x) € Zps and (W oe N*2,,c@ e N*%. We write ¢ =
(t',€"),&" e R} |&'| = 1,i = 1, 2. Then we have

@ = +2wIE'?, (@ = g
Now consider vectors ¢ = ¢ + 5@ € N*Zpg, b € R.If ¢ € ¥p, we must have

(t' +07°)? = .+ 2p)lE" + b€
= b2+ ) 4+ 2b(E" 2L +2u) — V(h +2p)) = 0.
The equation has two real solutions. One is b = 0 corresponding to the P vector ¢!

and bp # 0 corresponding to a new vector in X' p. Now consider the vector ¢ in X.
We arrive at the equation

(t' +01)? = plg! + 057
= 2b(V (O 4+ 2 — pE' - E) + o+ p) = 0.
So we get one non-trivial solution bg. Thus, we conclude that N* Zp s has one P vector

and one S vector. Similar conclusion holds for 57

Finally, we have

Lemma 3 Assume that .7] intersects . transversally at Zss # (. Then
V- Gss € IMTHITHN Zgg, N* A1) + IHTHEF2(N* Zsg, N*.74), and
1. (N*Zss\(N*1 UN*))N Xg=0.

2. For p € Zss, there are two linearly independent vectors {4,{_ € N*Zss N Xp
if the following interaction condition holds:

for¢' = (¢ £ € N3 i = 1,2, we have cos(¢', %) < 1))

A+2u
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Proof Let (1,x) € Zss and g(l)_ e N*#,¢@ € N*. We write c® =
(1, €Y), 6l e R3,i = 1,2 sothat |€'] = 1. We have (t!)2 = n|g!)2 =pn, i=1,2.
Now consider vectors £ = ¢V +b: @ € N*. 5, b € R.If ¢ € X, we must have

'+ bt = A+ 2p)E +bEX?
= A+ wb* +2((A+2wE" 2 — Wb+ A+ =0. (23)

The equation has two distinct real roots b4 if

In this case, we get two P vectors in N* Zsg.

We remark that by our assumption A+p > 0, u > 0, wehave —A/(A+2u) € (-1, 0).
Thus one can find ¢!, ¢% at p € g so that the interaction condition holds.

Next, let’s recall the microlocal parametrix for Pu = f on R x R3. Let Diag =
{(z,Z)) € R* x R* : 7 = 7'} be the diagonal of the product space and N*Diag be
the conormal bundle minus the zero section. We regard the symbols pp,s(z, §) as

functions on the product space. Then we denote by A, AS the flow out of N*Diag
under Hy,, Hy,. So A”/S are Lagrangian submanifolds of 7*(R* x R*). We know
that the system P is decomposed to the diagonal form. So according to [15], there
exits a distribution

Qsour = Qfour + Q:vgour’
OF e I7373(N*Diag, AP), Q5. €I 3~ 2(N*Diag, A%

sour

such that P Q. = Id up to a smoothing term. Here, the subscript sour stands for
the source problem. In the following, we denote

APPS = AS o N*Zpp, ASSP = AP o N* s,
APSP — AP ON*E.ZFPS, APSS — ASON*QOPS,
ASPP — AP ON*D@FSP, ASPS — ASON*D@%‘P.

Again, because of the no conjugate point assumption, these are conormal bundles. In
fact, A* = N*%,, e = PPS,SSP, PSP, PSS, SPP, SPS where %, are codimen-
sion one submanifolds of R x £2.

Theorem 3 Suppose u'V, u'® are distorted plane waves in Definition 1.

1. The solution to (8) can be decomposed as

u(12) :uPPS-{—uPSP +MPSS+MSPP —{—MSPS—i—uSSP,
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such that microlocally away from Af U A; U Af U Ag, we have

u® € I*"*3(A%), o= PPS, PSP, PSS,SPP,SPS, SSP.

SSp ASSP

Moreover, u is smooth on unless ., . satisfy the interaction condition.
2. If Z, intersect R x 082 transversally at %,, then

9e,0e, A(f2) € IPMT3(NI9)

are conormal distributions.

3. Consider the symbol at % = #pps. Let (z0,¢0) € T*Z and the bicharac-
teristic from (20, Co) intersect T*Y transversally. Let (z,) = AP (20, Zo) and
(2], ¢)) = Ro(z, ¢) with Ry the canonical relation of the restriction operator. Then
the principal symbol satisfies

0 (e, 36, AL (21, &) = 0 (P0) (2, &) 2, £) Q5 (24 €, 205 C0)T (V- G TP (20, €0),

where Q5 and o (po) are 3 x 3 invertible matrices. Similar statements hold for

%,,¢= PSP, PSS,SPP,SPS,SSP.

Proof We analyze u”?S and the others are similar. We know that away from AT, AZ,
V. 9PP ¢ [PM"2(N*Zpp). Because N* Zpp intersect X transversally, we can
apply Proposition 2.2 of [5] to get

uPPS = 0S(v . 4PPy ¢ 1u+2+u+zf%,—%(N*gPP’ APPS)

modulo a distribution whose wave front set is contained in a neighborhood of Af) , Ag .

Thus, away from Zpp, uf?S € 1243 (APPS),

Next, if APPS intersect the boundary Y transversally, we see that 0, 0c, A(fe) =
£0 (uP Ps ) near the intersection. By the composition of FIOs, we know the term is a
conormal distribution with order —1/4 less than that of u”?5.

We remark that because 2, are of codimension one, the singularities of the nonlinear
response u® above are of the same type as a distorted plane wave, see Fig. 2. Also,
if 942 is strictly convex with respect to gp/s, the intersection of Z, and R x 942 is
transversal. We also remark that u” 7S can be regarded as consisting of two waves in
view of Lemma 1. The same is true for #55” in view of Lemma 3.

4.3 Symbols of the nonlinear responses
We determine the symbol of the interaction terms and show that they are not always

vanishing. This would confirm the generation of new waves. Roughly, there are three
kinds of interactions so we split the section to three subsections.
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) ~_ ﬁ r
N sorr
F.P
Fig. 2 Illustration of the interaction of two P waves. The picture is in R3. The white ellipses show the

evolution of the singular supports of two P waves for different time ¢ > 0 along the two paths. The gray
ellipses show the generation and evolution of the wave fronts of the generated S wave

Fig.3 The interaction plane for
P-P wave interactions

4.3.1 P-P interactions

We take u(®-F ¢ I“(Af), e = 1,2, and consider the singularities of @PP For ease
of calculation, we introduce some quantities for the interaction. Let z € & N &2,
and (z,¢") € AP, (z,¢%) € Af. Assume that ¢ = ¢! +¢2 € X5 Let ¢* =
(t°,£°%),&° € R3,e = 1,2. We call the plane determined by Sl, 52 the interaction
plane. Then & = Sl + £ 2 Because we consider the S wave, we let & H be a unit vector
in the interaction plane perpendicular to & and £ be a unit vector orthogonal to the
interaction plane. We define the angles «, 1 through

gl g2 = |E11E% cosa, £ -E% = [£]|E%| cos Y.

See Fig. 3. The angles «, ¥ and the relations have been used in the literatures (e.g.
[11]) and they are physically useful.

We consider the term & (u"-P, u®-P). The symbol of u® ¥ at (z,¢®) € AL is
the projection of o (u®)(z, £®) by o (I1p) at z along the £°, ¢ = 1, 2 direction. Thus
we can write o (u®-*)(z, £®) = a®&*® for some constant a®. Then consider
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(0),P (o),P
1 [ du ou
~e m n +1 P
= — c IM A N = 1, 2.
Cmn 2 ( 0xy, + X ) (4.). o

The corresponding symbol of ¢® is

U® =1a,6%TE%, e=1,2.

Here, 1> = —1 and &° are regarded as row vectors hence £*7£® are 3 x 3 symmetric

matrices. Let { = ¢! 4+ ¢2. We denote the principal symbol of 4 uM-* 4Py ¢
TMU(N*Zpp)at (z,0) € N*ZppN Xg by g(z, ¢). We recall the symbol calculation
from [13, Lemma 3.3]. For u®-* e [*(N*22,), consider the principal symbol of
uDPy@.P e 203 (N* 55 p\ N* P2 U N* ) in local coordinates of p € Zpp.
For ¢ = ¢ 4+ & € N*Zpp with ¢, € N* P, we have

o@D uP Pz, 0) = o@D )@ t)o @ ). ).

Here, we absorbed the (277)~! factor in [13, Lemma 3.3] to the symbols. Then we use
[22, Lemma 4.1] and the expression (24) of G (u, u) to get

— 8w = MU J;Up, + AU Uy + AU U 8n
+ 20U,y Upi + 11U, UG, + 20U Uy + UL, UL,
+ AU, Uy + Up Ub1+ BQU U, +2U5U,,
+2U U8 mn) + C2U U7, 8
= (A +2B)arax[|E' PEnEr + €276 + (€ - E7) 0]
+ (A + 3w arar[En &l 6067 + ERELE 6N + 2Ca1ar € PIE2 PO (24)

(The negative sign is due to the symbol of two derivatives.) Then we get
h(z O) =o(V- G’ u® ") ¢) =18 0.

Because we consider the S wave propagation, we project the symbol h along the &7
and £ directions, which are denoted by h5#  hSV respectively. Then the symbol h5*
are

E°172(E%g (2, OE)E® = (Engunén)E®, o=V, H. (25)

We first compute the symbol h3Y:

thSV(z,0) = A+ 2B)ajaal|E 2V - D (E2 - £) + 18217V - gHE" - e)1EY
+@u+ Dajar[ Y g E-E2)(E &)
+@EV - EHEEHE 1KY =0,
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because of &V is perpendicular to the interaction plane. Next we consider the symbol
hSH:

S (2, ¢) = o+ 2B)aranl | P (T - £D &% &) + 182126 - gD o)
+E - EH2ET et
+0u+ Aarar[ET - eHE eHE? o+ T eHEr ehE! - oi?
+2Caray ' 21822 ET - )EH
= ajapl'P1€%2|E][(A + 2B) (sin ¢ cos ¥ — sin( — ¥) cos(a — 1))
4+ (A 4+ 3u)(—sin(a — ) cosa cos ¥ + sin ¥ cos o cos(a — 1//))]$H

Using trigonometry identities, we obtain that
W72 0) = —iaial§' PIE7P1E1 (L + 30 + A+ 2B) cos asinQy — o)™

If A + 3w+ A+ 2B # 0, this is non-vanishing for (¥, @) in any open set of (0, 7).
In this sense, we call the symbol generically non-vanishing. We also observe that in
the principal symbol of 47 ¥ the information of C(x) is lost.

4.3.2 P-Sinteractions

Consider the term ¢75 = @M 4 ®-5). The analysis for 45 is the same. For
simplicity, we let u) = 4P and u® = u®-S. For the principal symbol of u®>S
at(z,¢)=(t,x;1,8) € A5, we observe that

51 1
2))(z 0 = Zgllé | |;|2§§1 o (2)3)_0'
i=1

(Another way to see this is that the S component of u is divergence free.) This type
of term appears in C¢;; €8, of G(u, u) so C(x) does not appear in the symbols for
interactions involving S waves. Therefore, before we compute the symbols explicitly,
we proved

Proposition 3 For the two distorted plane waves u'™,u® in Definition1, the
principal symbols of the corresponding terms 4°,¢ = PP,PS,SP,SS are
independent of C(x). So are the symbols of the nonlinear responses u®,e =
PPS,PSP,PSS,SPS,SPP,SSP.

Now we proceed to determine the principal symbol of ¥75. We again introduce
the interaction plane to simplify the calculation, see Fig. 4. Let z € % N %, and
(z, é’l) € Af, (z, 42) € Ag. Let {i = (¢}, <§i), i = 1, 2 as before. We call the plane
determined by & I &2 the interaction plane. Let £/ be a unit vector in the interaction
plane orthogonal to £2. Then let £" be a unit vector orthogonal to the interaction plane.

We first consider the P mode of 5. Assume that ¢¥ = ¢! 4+ ¢% € Xp and let
¢ = (zf, £P). We define the angles «, 1 through

glog2 = |EY|g% cosar, £ -7 = |E]|E | cos v,
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Fig.4 The interaction plane for P-S wave interactions. Left: picture for the P mode. Right: picture for the
S mode

see the left figure of Fig. 4. Now we can express the principal symbols of u(", u?
in terms of these quantities. We let o(uDPy(z, ¢!y = ag! for some constant ¢ and
we decompose o (u?5)(z,¢%) = by&H + bygY for some constants b,. We let
U' = agbT &L 5o that the principal symbol of 2! is 1 U!. Next we let

Won = E2(bugl +byeY) = 2yl + 2byeY = wi +w)

corresponding to the H, V decomposition. We observe that the principal symbol

2.8
0 (—=—) is t Wy,,. Now we define
0xy,
1 1 1
U = SW A+ WD) = 28T 0" +by") + S0t +byvg" e
1 1
= EbH(EZ'T%'H +§-H,T%-2) + EbV(SZT%-V +§.V,T§.2) — UH + UV,

where U, UV are defined by the second line. So the principal symbol of 22 is 1 U?.
We remark that the U matrices are symmetric but W matrices are not. Because of the
H, V decomposition, we will write U(%PS)(z, Z) = gH + gV where g®, ¢ = H,V
are defined as

— 8o = AU Wi, + AU WS + 20U, Wi + wUp, Wi, + 20U U,
+ W, Uk, + ALU Upy + Up Uy + BQU Upy 42U U 8n)
= raby(E117EnEr + & E]ELETSn)
+21abyE,E [ EnET + 1abELENERES + pabe(ENET + ETEDENE]

1
HHabETELELE, + AabuSE,E] (ETE] +ETED + (6087 +E7E0E,E]]
+ Babu (611 (En&r + EnEn) + &/ &) (767 + E7E7)0mn). (26)

Then we get
h(z,0) =a (V-G u>5H) @z, 0) =1z, 0) + 8"z 0)Er.
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Finally, we project the symbol to £ direction to get the symbol of the P mode:
h*” = 5712 e @ 0EDE", e=H, V.
We compute

WPz, 1)
=1eP1 2abgn + 2B P ER - e ER gy + g gDt g EPP1E?
+1EPI2aby G+ AIET - eHE D) E g + P gt eP)E! - g2)E?
=aby &' 1E2)1EH |[(A + 2B)(— cos ¥ sin ¢ — cosa sin )
+(A 4+ 3u)(—cosy cos( — ) sina — sin i cos(a — ) cos a)]éP.

We observe that

—cos Y cos(a — ) sina — sin ¥ cos( — ) cosa = — cos(o — ) sin(o + )
= —cos Y siny — cosa sin .

Thus we have
WP (z,¢) = 1aby |E"21E2| (0 + 2B + A + 3) cos(a — ) sin(a + ¥)EL.

This term is generically non-vanishing when A + 2B + A +3u # 0.
Next, consider the interactions with the V components of x-S,

th¥P(z,¢)
= EP172aby 0 +2B)[IE' P ET £ ED V) + &' et E -V ER ET
+HEP | Paby G+ AIET - e E - E g
+E7 - gVyE gD E" - e2El = 0.

PSP hHP

Thus we conclude that the symbol of u and the term is
generically non-vanishing.

It remains to consider the generation of S mode from the P-S interaction. In this
case, we let &£ = £5 and £5¥ be the unit vector in the interaction plane orthogonal to
£S5, We decompose u to the plane determined by £5 and £V, see the right picture of

Fig. 4. The computation of g is the same as (27) and we have the symbol of ¢S

at (z, ¢) is given by

h(z ) =0 (V-G u®)E ) =1e" @ o) +8" @ )5
We project the symbol to £*, « = V, SH directions to get the symbol of the S mode:

h** = 6% 721(E% g (2, O)ES)E*, e=V,H, %=V, SH.
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We compute

th**(z,¢)
= ab A[|E P ET - EERE5) + (& ENE gD @ET-E5)E

+2uaby (% - £ (& - E2) (€' - E5)E" + pab, (€' - £%)(E" - £%) (&% - £5)¥

+uab (' - £*)(E" £ @E - E5) + N E £ E? £

+(E2 M) g E - E5)E

1

+Aab.§[(€1 ENE - EHE S+ EnE e ET -85

+@E*-eME - EHE £

+(E?-ENE - ENE - £5E

+Bab,[|E" P (6% - £%) (2 - £5) + | F(&° - £5) (% - £%)

+2( e @E D ET - EDE
We observe thatif e = V,x = SH or e = H, * = V then the term must be zero. So
it suffices to consider two cases. After some calculations, we find that

th3% (2, ¢) = abp|g" *£%]1&%|[A cos® ¥ + pu(cos(2) + cos” ¥)
+ %A cos(2Y) + B(cos ¢ — sin® )57

= aby|E'171€211E5) [(A +2u+ B+ %A) cos® ¥ — (u +B+ %A) sin? w] g5H

The following lemma is straightforward.

Lemma4 For ¢ € (0,7), consider the vector V() = [cos®, sin>]. Then
det(v(y1), V(¥2)) is non-vanishing for V1, ¥ in any open subset of (0, 7)>.

In this sense, we say that the symbol hf1SH

TA+B#0orpu+3A+ B #0.
Next, we calculate that

is generically nonvanishing if A 4+ 2u +

th"Y (z,¢) = aby|€'171€21185|[) cos ¥ + 2 cos @ cos(a — )

1
+§A cosa cos(a — ) + Bcos W]SV

= aby |E1 2162 1€5] [(x + B)cos ¢ + (2M + %A) cos o cos(a — w)] gV,

Similarly, we conclude that the term is generically non-vanishing if A + B # 0 or
2u+ $A #0.

4.3.3 S-S interactions

We let uD = 45 and u® = 45 and we consider ¥55. We decompose the S
modes according to the interaction plane, see Fig. 5. Letz € .1 N.% and (z, {') €
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Fig.5 The interaction plane for
S—S wave interactions

AIS, (z, ;2) € Ag. Let g“i = (ri, Ei), i =1, 2 as before. We call the plane determined
by &', £2 the interaction plane. Let £ be a unit vector in the interaction plane
orthogonal to Ei, i =1,2. Then let & V be a unit vector orthogonal to the interaction
plane. We can decompose u", u® to H, V modes.

We decompose o (u5)(z, ¢?) = b g1 + bl,&"Y for some bl constants, i =
1,2, e = H, V. Similar to the previous case, we let

Wi = & (Bgi + i) = eblyel + el ef? =will + Wit i=1.2,

@).S
corresponding to the H, V decomposition. The principal symbol o ( L(;m ) ist Wi

mn*
Xn

Now we define

1 . . 1 . L. . 1 .. . ,
E(Wl + Wt,T) — Egl,T( tH%.l,H +bzvgt,V> + 5( }_]ELH,T +bzvst,V,T> 5’
1

5blH (sl,Té:l,H +$Z,H,T€:l)+§blv (él’T«fl'V—i—gl’V’T«‘El)=UI’H+UI’V,

So the principal symbol of ) is 1U’. Because of the H, V decomposition, we will
write

O’(gPS)(Z, é.) — gHH +gHV +gVH _i_gVV’
where g*°, x, @ = H, V are defined as
gt = xwk‘j:*w,f;'amn + 2/¢Unljt*le‘j° FuWlrwEe + 2MUjj1‘w)nvj* Fuwiiwle
+ALUNTUS + Uy U1+ 2BUS U Sy,
1 2,0 1, . 1, 2,0
= MEEJETE S+ WENTE] A ENE S VERET + ke EDES

U ERED + ERETVENE 4+ nEyELE ] E)
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1
+ JALEE] + 6,8 ENE] T EE) + (676 + 6066 E] +£,E)]

1
+ 3 BEE] +E 6 EE + 78 ). 27)

These terms represents the interaction of all possible combinations of the H, V modes.
Remember that we are computing the P mode of ¢35 when the interaction condition
is satisfied. Sowe let ¢ ¥ = ¢!+ ¢2 e 2P and ¢? = (27, &P). As before, we get

h(z,¢) = o (V-GS u>5))(z,¢)
=g+ o+e" @ o+ @ 0))Er.

Finally, we project the symbol to £ direction to get the symbol of the P mode:
h* = |g7172 " 1g° (2, ©)eP)eP, e=HH,HV,VH,VV.

Because of the orthogonality, one can check that hV = hV# = 0 (details are
omitted). We compute h”# 'h"V carefully. We have
"V = by by 712 P E 6 -6 + 2! EMEY - ENE? 8T
1
+5AE - ENEY - ENDE - EN + BIETPEY £N)E "

= b b2 1" 1621 | Gt By cosa + (A 42 N
= OyOy > i) cosyrcos(a — ) | €.

This term is generically non-vanishing if A + B # 0 or %A + 21 # 0. At last, we
compute

l|§P|2hHH
= pbl by (N g2y g P g P)ET
+uby by [EHH - ePyE" -2 EN gDy @ gDy @E? g E gD

+E"-gPy@E? - gPyEMH g2y ¢ gV L gPy e gy g2
+EM Py g2y gDy 4 N g2y e Py gD ET

1
+AbybylENT e E - EHENT €T + €T EDE e E e
+E ENHEYT eHE T g @ E T g2 ET M)

1
+AbbyET ENE e EN e e enE e DE e

+@E2-eP)E>H gY@ L gP) 4 g2 Py gV E EPE?
+Bby by [ENT g2y @E e 4 g e 2 TEn.
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Table 1 All possible nonlinear interactions

Interactions Non-vanishing conditions

P+ P — SH A+2B+3u+A#0

P+ SH— P A+2B+3u+A#0

P+ SH— SH A2+ iA+B#Ooru+iA+B#0

P+ SV— SV A+BAOor2u+ SA#£0

SH+SH —- P Interaction condition and
At2u+tA+B#£Oorp+ A+ B#£0

SH+SV—> ¢ None

SV+SV—->P Interaction condition and

A+BAOor2u+ sA#0

SH stands for the S mode within the interaction plane, SV stands for the S mode perpendicular to the
interaction plane. Non-vanishing condition means the principal symbols of the nonlinear responses «*® in
Theorem 3 are non-vanishing. The interaction condition is in Lemma 3

Then we have
hfH = b},b%llél ||$2| [A cos® o + ,LL(ZCOSZ(X —sina) + %A(cosza — sin? o)
—i—B(cosza — sin? oz):| §P
A |:(k +2u+ B+ %A) cos® ot — </L + B+ %A) sin2a] 28

This term is generically non-vanishing if A + 2 + %A +B #0orpu+ %A + B #0.
To conclude this section, we summarize all the possible interactions in Table 1.

5 The inverse problem

We complete the proofs of Theorem 1 in this section.

Proof of Theorem 1 First of all, from the displacement-to-traction map A, we derive the
linearized map Ay;,, which corresponds to the linearized elastic equation (7), see (18).
This problem have been studied in [19] for © > 0, 3% 4+ 21 > 0 on 2 and in a more
general setting in [6] for £ > 0, A + u > 0. We conclude that one can determine the
P and S wave speed /A + 274 and /7, hence A and  from Ay 1), To > diamg(£2).

It is convenient to consider the P, SV wave interaction. So for any (#p, xo) € R x £2
and & L Ez two linearly independent vectors at x(, we choose two geodesics ¢1 (s), c2(s)
for —dt*> + gp, —dt?® + gg respectively such that

Ce(0) = (te, xo) € R x a2, Co(se) = (f0, X0), e >0,
and Co(se) = (1°%,£%), e=1,2.
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We let y® be the corresponding cotangent vectors at (f,, Xo), ® = 1, 2. Then we con-
struct two distorted plane waves u(", u® as in Definition 1 for y!, y? and a small
parameter 8. We take f() = f(D0.P @ = £@.5 hence y(V = 4P 12 = ;2.8
by Proposition 1. Following the nonlinear analysis in Sect.4, we see that for §
sufficiently small, the nonlinear response u”5% in Theorem 3 is a conormal distri-
bution to APSS (away from the wave front sets of the linear responses). From the
principal symbol of ¢, ¢, A(fe)le;=e,=0 at the boundary (for a measurement time
Ty > 2diamg(£2)), we can determine the principal symbols of ufSS at #pg. From
the symbol of the SV mode, we obtain the value of A + B and 2u + %A at xop, see
Table 1. This determines the value of A, B at x( and finishes the proof of Theorem 1.
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