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Abstract
We show that the travel time difference functions, between common interior points
and pairs of points on the boundary, determine a compact Riemannian manifold with
smooth boundary up to Riemannian isometry if the boundary satisfies a certain vis-
ibility condition. This corresponds with the inverse microseismicity problem. In the
proof of this result, we also construct an explicit smooth atlas from the travel time
difference functions.
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1 Introduction

Let (N , g) be a complete, connected smooth Riemannian manifold of dimension two
or higher. We split the manifold into two parts that are a closed set M , with non-
empty interior M int, and the closure of the exterior F := N \ M int. We assume that
the boundary ∂M of M is a smooth co-dimension one manifold. The set F is the
known observation domain, and M is the object of interest, for instance, the Earth.
The Riemannian metric g can be seen as a proxy of the material parameters of M .

For any p, q ∈ N , we denote by dN (p, q) the length of a distance minimizing
geodesic of (N , g) that connects p to q. If the wave speed in F is much smaller than
in M and if ∂M is strictly convex, we may assume that distance minimizing geodesics
of (N , g) connecting p to q stay inside M if p, q ∈ M . This implies

dM (p, q) = dN (p, q), p, q ∈ M, (1)
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where dM (p, q) is the distance from p to q in M , that is given as the infimum of
lengths of curves from p to q that stay in M . For the present, we assume that (1) holds
and we denote dM = dg .

Suppose that there exists a Dirac point source (p, s) ∈ M × R of a Riemannian
wave equation, with zero Cauchy data. It follows from [4,6,7] that the singularities
emitted from (p, s) propagate along the co-geodesic flow of (N , g) (see for instance
[12] for more details). When this flow is projected to M , we obtain the family of unit
speed geodesics emitted from p.

For every z ∈ ∂M , we define the arrival time Tp,s(z) to be the infimum of times
when a sphericalwave emitted from (p, s) is observed at z.HenceTp,s(z) = dg(p, z)+
s. Although the arrival time function depends on the emission time s, it holds that travel
time difference function

Dp(z1, z2) := Tp,s(z1) − Tp,s(z2), z1, z2 ∈ ∂M,

is independent of s as it is given as the difference of the arrival times. Thus, the function
Dp can be determined without the knowledge of the emission time s or the location of
the origin p. This paper is devoted to the study of the inverse problem of travel time
difference functions. This problem can be formulated as follows. Does the collection

{Dp : p ∈ M int},

determine the Riemannian manifold (M, g) up to isometry?
Let n ≥ 2 and (M, g) be a compact, connected, n-dimensional smooth Riemannian

manifold with smooth boundary ∂M . We omit condition (1). Since M is compact for
any points p, q ∈ M there exists a distance minimizing C1-smooth curve c from p to
q, see [1]. Moreover for any t0 ∈ [0, dg(p, q)] such that point c(t0) is an interior point
of M there exists ε > 0 such that c : (t0 − ε, t0 + ε) is a geodesic. We use the notation
SM for the unit sphere bundle of (M, g). Therefore, each (p, v) ∈ SM determines
the unique maximal unit speed geodesic, γp,v say, of (M, g).

We note that dg(x, y), x, y ∈ M is not generally obtained by minimizing the
lengths of geodesics connecting x to y. Therefore, we will redefine the travel time
difference function without using the arrival times. For any p ∈ M , the corresponding
travel time difference function is

Dp : ∂M × ∂M → R, Dp(z1, z2) := dg(p, z1) − dg(p, z2). (2)

The function Dp is continuous. We assume that the following travel time difference
data

(∂M, {Dp : p ∈ M int}), (3)

is given. That is, we assume, that the (n−1)-dimensional smoothmanifold ∂M without
boundary and the collection of functions {Dp : ∂M ×∂M → R | p ∈ M int} are given.
We re-emphasize that a priori the points p related to Dp are unknown.
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The aim of this paper is to prove that travel time difference data determine (M, g)
up to isometry. Before stating our main theorem, we describe an additional geometric
property for ∂M under which we can prove the uniqueness of the inverse problem.
Let (N ,G) be any smooth closed Riemannian manifold that extends (M, g), such that
g = G|M . We use the notation

�(x, v) := inf{t > 0 : γx,v(t) ∈ N \ M}, (x, v) ∈ SM,

for the exit time function. Thus, the domain of definition for γx,v is [−�(x,−v),

�(x, v)]. Moreover by [18, Lemma 1], �(x, v) is independent of the extension. We
note that γx,v may intersect the boundary tangentially in many points.

We say that a point q ∈ M is not a cut point to p ∈ M along a distance minimizing
geodesic γp,v, (p, v) ∈ SM from p to q contained in M if there exists a closed
Riemannian manifold (N ,G) that is an extension of (M, g) satisfying the property

dg(p, q) < τG(p, v) := sup{t > 0 : dG(p, γp,v(t)) = t}. (4)

Above dG is the distance function of (N ,G). The function τG is the cut distance
function of (N ,G).

Definition 1.1 We say that a smooth, complete, and connected Riemannian manifold
(M, g) satisfies the visibility condition if the following holds: For every p ∈ ∂M , there
exists (p, η) ∈ ∂SM, such that η is transverse to ∂M and �(p, η) < ∞. Geodesic
γp,η : [0, �(p, η)] → M is a distance minimizer, and γp,η(�(p, η)) is not a cut point
to p, γ̇p,η(�(p, η)) is transverse to ∂M and γp,η((0, �(p, η))) ⊂ M int.

Similar type of condition on the boundary has been considered before in [18].
Let (M1, g1) and (M2, g2) be two smooth compact and connected Riemannian

manifolds with smooth boundaries ∂M1 and ∂M2. The next definition formalizes
what does it mean if the manifolds (M1, g1) and (M2, g2) have the same travel time
difference data.

Definition 1.2 We say that the travel time difference data of (M1, g1) and (M2, g2)
coincide if there exists a diffeomorphism φ : ∂M1 → ∂M2 such that

{Dp(φ
−1(·), φ−1(·)) : p ∈ M int

1 } = {Dq : q ∈ M int
2 }. (5)

Our main result is the following

Theorem 1.3 Let n ≥ 2 and (Mi , gi ), i = 1, 2 be compact, connected n-dimensional
Riemannian manifolds with smooth boundaries ∂Mi . Suppose that (M1, g1) satisfy
the visibility condition 1.1. If the travel time difference data of (M1, g1) and (M2, g2)
coincide, then there exists a Riemannian isometry	 : (M1, g1) → (M2, g2) such that
the restriction of 	 on ∂M1 coincides with φ.

The proof of this theorem is given in Sect. 2. It consists of three steps. First, we
construct a map	 : (M1, g1) → (M2, g2), as in Theorem 1.3, and show that this map
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is a homeomorphism. Then, we show that 	 is a diffeomorphism. Finally, we will
show that g1 = 	∗g2, where 	∗g2 stands for the pullback of metric g2.

While preparing this paper for submission, the authors became aware that S. Ivanov
very recently posted a preprint [8] on ArXiv with a result related to Theorem 1.3
presented here. He extends the result of [12] in the following way. Let N be any
complete, connected Riemannian manifold without boundary. Let F,U ⊂ N be
open. If the topology and differential structure of the observation domain F and
Dp : F × F → R, p ∈ U are given then these data determine the geometry of
the domain (U , g|U ) uniquely up to a Riemannian isometry. Furthermore, he proves
that the determination of (N , g) from travel time difference functions Dp is stable if
the underlying manifold has a priori bounds on its diameter, curvature, and injectivity
radius. Reference [8, Proposition 7.3] provides a result closest to our Theorem 1.3,
for complete manifolds with nowhere concave boundary. We point out, also, that the
proof given in [8] is different from ours in essential ways. S. Ivanov’s proof is based
on distance comparison inequalities implied by Toponogov’s theorem and minimizing
geodesic extension property. The latter property provides a lower bound on the length
of a minimizing extension of a geodesic beyond a non-cut point in terms of the length
of a minimizing extension beyond the other endpoint.

We end this section by comparing the visibility condition to the nowhere-concave
condition for the boundary. Recall that the boundary ∂M of Riemannian manifold
(M, g) is nowhere concave if for every z ∈ ∂M the second fundamental form of ∂M
at z, with respect to the inward-pointing normal vector, has at least one positive eigen-
value. This condition on the boundary was considered in [23]. If ∂M is nowhere con-
cave, then by the proof of [23, Proposition 3.4] and [17, Sect. 4.1], it holds that (M, g)
satisfies the visibility condition. Notice that an annulus, contained in Euclidean plane,
satisfies the visibility condition, but not the nowhere-concave condition on the bound-
ary. Therefore, the visibility condition is more general characteristic of these two.

Finally, we give an example of such geometry that does not satisfy either of these
conditions. Let M ⊂ S2 be a spherical cap larger than the hemisphere. If g is the
round metric on M , then (M, g) does not satisfy the visibility condition, since any
g-distance minimizing curve between boundary points lies in ∂M and therefore, it is
not a geodesic of S2. In this case, ∂M is not nowhere concave either.

Background

Four Geometric Inverse Problems Related to the Riemannian Wave Equation In this
section, we assume that N , M, F and g are as in Sect. 1. There are four different
data sets that are all related to Riemannian wave equation with the Dirac point source
(p, s) ∈ M × R with zero Cauchy data.

(1) The inverse problem of travel time functions have been considered in [9,11]. The
authors study the properties of themapR : M → C(∂M), in which a point p ∈ M
is mapped into the corresponding travel time function rp : ∂M → R, given by the
formula

rp(z) = dg(p, z), z ∈ ∂M .
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The authors show that the data (∂M, {rp : p ∈ M}) determine a manifold (M, g)
up to isometry. They use themapR to construct an isometric copy ofM inC(∂M).
They do not impose any restrictions to the geometry.

(2) In [12], the authors prove a result related to Theorem 1.3. In this paper, it is
assumed that the travel time difference function is given in the observation set F
with non-empty interior

Dp : F × F → R.

In addition, they assume that the Riemannian structure of (F, g) is known. The
proof of the main theorem in [12] is somehow similar to the proof of Theorem 1.3
presented here, and we will often refer to it for the details that are not presented
in this paper.

(3) The inverse problem related to the set of exit directions


p = {(γp,v(�(p, v)), γ̇p,v(�(p, v))) ∈ ∂SM : v ∈ SpM}

of geodesics emitted from p has been studied in [13]. Let

I (g, w, z, l) := number of g-geodesics of lenght l connecting w to z,

w, z ∈ N , l > 0

The authors show that if (N , g) is a closed manifold such that

sup
w,z,�

I (g, w, z, l) < ∞, (6)

M is non-trapping and ∂M is strictly convex, then the collection of exiting direc-
tions

{
p ⊂ ∂T M : p ∈ M int}

determine the manifold (M, g) up to isometry. Assumption (6) is needed to show
that each set 
p is produced by the unique p ∈ M . As far as we know, it is
not known if (6) follows from the convexity of the boundary and non-trapping
properties. On the other hand, in [10], it is shown that (6) is a generic property in
the space of all Riemannian metrics of N .

(4) The final data set is related to a generalized sphere of radius r > 0, that is given
by the formula

S(p, r) =: {expp(v) : v ∈ TpM, ‖v‖g = r , expp is not singular at v}.

In [3], the authors show that the spherical surface data

{S(q, t) ∩ F : q ∈ M, t > 0}
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determine the universal cover space of N . If a generalized sphere S(p, r) is given
the authors show that there exists a specific coordinate structure in a neighborhood
of any maximal normal geodesic to S(p, r) such that in these coordinates metric
tensor g can can be determined. However, this does not determine g globally. The
authors provide an example of two different metric tensors which produce the
same spherical surface data.

Microseismicity In this paper, the results in [12] are adapted, in a fundamental way,
to data available from actual seismic surveys. The point sources are microseismic
events detected in dense arrays at Earth’s surface. In our theorem, we show that the
data determine the metric up to change of coordinates. This implies that one can locate
the closest surface point and determine the corresponding travel time to each event.

In the seismological literature, the problem of simultaneously determining the
hypocentral parameters (location and origin times of interior point sources or events)
and the wave speed has been formulated as double-difference (travel time) tomogra-
phy. This problem is precisely addressed in this paper, but its resolution requires a key
modification of the data. For reference, we describe the notion of double-difference
travel times [20]: One takes the difference between the travel times of a pair of events
located closely to one another and a common boundary observation point, and then
collects this difference for a given pair at many of such observation points. A pair of
events is also referred to as a doublet. The data are formed by combining all available
pairs of events. The difference is typically linearized in the hypocentral parameters
associated with both events relative to a reference configuration. In seismology, the
idea to decouple the doublets to locate the events was introduced by Poupinet et al.
[15]. Zhang and Thurber [21,22] extended this double-difference locationmethodwith
an attempt to simultaneously solve for both wave speed structure and event locations
by incorporating wave speed perturbations. They added the absolute arrival times to
the data.

The travel time difference function, given in (2), is closer related to applications in
exploration seismology with the purpose of locating microseismic events Grechka et
al. [5]. In this paper, the authors assume that the travel time to the receivers and location
of the master event is known. Notice that our result do not recover the locations of the
events in Cartesian coordinates.

It was proven in [2] that if the metric is conformally Euclidean (isotropic medium),
then a given compact set of sources and the corresponding set of wave speeds are
determined up to an conformal isometry by the travel times.

2 Proof of theMain Theorem

In this section, we prove Theorem 1.3. Whenever it is not necessary to distinguish
manifolds M1 and M2 from one other, we drop the subindices. In these cases, we work
with the data (3).
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2.1 Outline of the Proof of theMain Theorem

The proof consists of three steps. First, we use the data (3) to construct a mapping D
from points of M to continuous functions on ∂M × ∂M . We show that this mapping
is a topological embedding. Then, we use the diffeomorphism φ : ∂M1 → ∂M2 and
(5) to construct a homeomorphism 	 : M1 → M2 as in Theorem 1.3 (see (13) for the
definition). In second part, we show that this mapping is a diffeomorphism. We prove
the existence of such local coordinate maps that are determined by (3). In the third
part, we first prove that the data (3) determine the images of geodesic segments that
come to the boundary ∂M . Finally, we use this information to prove the uniqueness
of Riemannian structure.

The outline of the proof of the main theorem is similar to the proof of the main
theorem of [12]. The proof presented in this paper contains two key differences to the
earlier result. The first one is the construction of the boundary coordinate system, in
the beginning of Sect. 2.3. The determination of the boundary defining function (see
(16) and (19)), only from the data (3), has not been presented in the literature before.
The second difference, that is considered in the beginning of Sect. 2.4, is related to the
construction of metric tensor from the data (3). In order to use the similar techniques
as in [12], to prove that the metrics g1 and 	∗g2 coincide, we need to prove that the
data (3) determine the full Taylor expansion of the metric tensor on ∂M in boundary
normal coordinates. This makes it possible to extend M1 to a closed manifold N given
with two smooth metric tensors G and ˜G that coincide in F := N \ M int

1 , and also
satisfy G|M1 = g1 and ˜G|M1 = 	∗g2. Since we don’t assume ∂M to be strictly
convex, we need also to show that the travel time difference functions, measured on
F , of metrics G and ˜G coincide.

2.2 Topology

We start first extending the data to the boundary. If p, w ∈ ∂M then by the triangle
inequality it holds that

dg(p, w) = sup
q∈M int

Dq(p, w). (7)

Thus, data (3) determine dg : ∂M × ∂M → R and the extended data

(∂M, {Dp : p ∈ M}). (8)

Our first Lemma is

Lemma 2.1 Let (Mi , gi ), i = 1, 2 be compact, connected n-dimensional Riemannian
manifolds with smooth boundaries ∂Mi . If the travel time difference data of (M1, g1)
and (M2, g2) coincide, then

{Dp(φ
−1(·), φ−1(·)) : p ∈ M1} = {Dq : q ∈ M2}. (9)
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Proof From (5) and (7), it follows that

d1(φ
−1(p), φ−1(q)) = d2(p, q), p, q ∈ ∂M2. (10)

Here, di is the distance function of gi for i ∈ {1, 2}. Therefore, (9) holds. 
�
We study the properties of the mapping

D : M → C(∂M × ∂M), D(p) = Dp,

where the target space is equipped with the L∞-norm.

Lemma 2.2 The mapping D is a topological embedding.

Proof Using triangle inequality, it is straightforward to see that D is 2–Lipschitz.
Next we prove that D is one-to-one. To show this, assume that x, y ∈ M are such

that Dx = Dy . We first show that this implies that the set {zx } of closest boundary
points of x coincides with the set {zy} of closest boundary points of y. Let w ∈ ∂M
and define

fx,w : ∂M → R, fx,w(z) := Dx (z, w). (11)

Then {zx } is the set of minimizers of function fx,w. Since fx,w = fy,w, we have
proven that {zx } = {zy}. We will also use the function fx,w later when we construct a
boundary defining function.

Let z0 ∈ {zx } and denote sx = dg(x, z0) and sy = dg(y, z0). Without loss of
generality, we can assume that sx ≤ sy . Let ν be the inward-pointing unit normal
vector field to ∂M . Then γz0,ν is the distance minimizing geodesic from ∂M to x and
y. Moreover

x = γz0,ν(sx ), y = γz0,ν(sy) and dg(x, y) = sy − sx . (12)

If z ∈ ∂M \ {z0} is close to z0, the distance minimizing geodesic γx from z to x is not
the same geodesic as γz0,ν , that is, the angle β of the curves γx and γz0,ν at the point
x is strictly between 0 and π . Let γy be a distance minimizing geodesic from y to z.
We note that Dx (z, z0) = Dy(z, z0) and (12) yields

L(γy) = dg(y, z) = dg(y, x) + dg(x, z) = L(γzx ,ν |[sx ,sy ]) + L(γx ).

Thus, the union μ of the curves γzx ,ν([sx , sy]) and γx is a distance minimizing curve
from z to y, and hence it is a geodesic. However, as the angle β, defined above, is
strictly between 0 and π , the curve μ is not smooth at x , and hence it is not possible
that μ is a geodesic unless x = y. Thus, x and y have to be equal.

Since M is compact and we just proved that D is continuous and one–to–one, we
have that mapping D is closed. Thus, the claim is proven. 
�
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Since the mapping φ, given by Definition 1.2, is a diffeomorphism the mapping

� : C(∂M1 × ∂M1) → C(∂M2 × ∂M2), �(F) = F(φ−1(·), φ−1(·))

is an isometry. LetDi , i ∈ {1, 2} be asD on (Mi , gi ). Now we are ready to define the
mapping

	 : M1 → M2, 	 = D−1
2 ◦ � ◦ D1. (13)

Proposition 2.3 Let (Mi , gi ), i = 1, 2 be compact, connected n-dimensional Rie-
mannian manifolds with smooth boundaries ∂Mi . If the travel time difference data of
(M1, g1) and (M2, g2) coincide, then the mapping 	 given by (13) is a homeomor-
phism such that the restriction of 	 on ∂M1 coincides with φ.

Proof By (9) andLemma2.2 it holds that themap	 is awell-definedhomeomorphism.
If p ∈ ∂M1, then by (10) for any z, w ∈ ∂M2, we have

(D2(φ(p))(z, w) = d2(φ(p), z) − d2(φ(p), w) = d1(p, φ
−1(z)) − d1(p, φ

−1(w))

= ((� ◦ D1)(p))(z, w).

Applying D−1
2 to the both sides of the equation above implies 	(p) = φ(p). 
�

2.3 Smooth Structure

In this part, we show that the mapping 	 given in (13) is a diffeomorphism. We
consider separately the boundary and the interior cases.

We start with the boundary case. Let σ∂M be the collection of all boundary cut
points,

σ∂M := {γz,ν(τ∂M (z)) ∈ M : z ∈ ∂M},
τ∂M (z) := sup{t > 0 : dg(∂M, γz,ν(t)) = t}.

By [16, Sect. III.4.] it holds that

σ∂M = {p ∈ M : #{z ∈ ∂M : dg(p, z) = dg(p, ∂M)} ≥ 2}. (14)

Choose w ∈ ∂M . Then by (14) and the Lemma 2.2 the data (8) determine the set

M \ σ∂M = {p ∈ M : The map f p,w has precisely one minimizer.}int, (15)

where f p,w is as in (11).

Lemma 2.4 Let (Mi , gi ), i = 1, 2 be compact, connected n-dimensional Riemannian
manifolds with smooth boundaries ∂Mi . If the travel time difference data of (M1, g1)
and (M2, g2) coincide, then

M2 \ σ∂M2 = 	(M1 \ σ∂M1).
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Proof By the definition of the mapping 	, we have for any p ∈ M1 and w ∈ ∂M1
that

f 1p,w(z) = f 2	(p),φ(w)(φ(z)), z ∈ ∂M1,

where f 1p,w and f 2	(p),φ(w) are defined as f p,w in (11). Therefore, the claim follows
from (15). 
�

Next we construct a boundary defining function on M \ σ∂M . Let p ∈ M \ σ∂M

and denote by Z(p) the closest boundary point of p. Thus, the map x �→ Z(x) ∈ ∂M
is smooth on M \ σ∂M . Define a function

f p(z) := dg(z, Z(p)) − Dp(z, Z(p)), z ∈ ∂M . (16)

Notice that this function is determined by the data (8), and by triangular inequality the
function f p is non-negative. If p ∈ ∂M then f p is a zero function. If p ∈ M int \ σ∂M

then

f p(z) > 0, z ∈ (∂M \ Z(p)). (17)

If this is not true then there exists ∂M � z �= Z(p) such that

dg(p, z) = dg(p, Z(p)) + dg(Z(p), z).

Which implies that there exists a distance minimizing curve from p to z, that goes
through Z(p), but is not C1-smooth at Z(p) (Fig. 1). By [1] this is not possible. Thus,
(17) holds. Therefore, we have proven the following

∂M = {p ∈ M \ σ∂M : f p ≡ 0}. (18)

Lemma 2.5 Let (M, g) be a smooth, complete, and connected Riemannian manifold
with smooth boundary for which the visibility condition 1.1 holds. Let p ∈ ∂M and
(p, η) ∈ SpM be as in Definition 1.1. We denote

(w, ξ) = (γp,η(�(p, η)), γ̇p,η(�(p, η))) ∈ ∂SM .

There exists a neighborhood W ⊂ SM of (p, η) such that for any (x, v) ∈ W the
distance function dg(x, ·) is smooth at γx,v(t) if 0 < t ≤ �(x, v). A point γx,v(t) ∈
M int if 0 < t < �(x, v) and the geodesic γx,v is transverse to ∂M at γx,v(�(x, v)) and
at x, if x ∈ ∂M.

Moreover there exists neighborhoods U , V ⊂ M of p and w respectfully such that
the distance functions dg(x, ·) and dg(y, ·) are smooth for any (x, y) ∈ (U × V ).

Proof Since (p, η) and (w, ξ) are transverse to ∂M and γp,η(0, �(p, η)) ⊂ M int it
follows from the continuity of the exponential map of (M, g) and the implicit function
theorem that there exists an open neighborhood W1 ⊂ (SM \ S∂M) of (p, η) such
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Fig. 1 The function f p is
non-negative, since the
piecewice smooth curve from p
to z that goes via Z(p) is not
C1-smooth at Z(p)

∂M
Z(p)

p

∂M

z

that the exit time function � restricted to this set is smooth and for any (x, v) ∈ W1 and
t ∈ (0, �(x, v)) it holds that γx,v(t) ∈ M int. Moreover the geodesic γx,v is transverse
to ∂M at γx,v(�(x, v)) and at x , if x ∈ ∂M .

Let (N ,G) be an extension of (M, g) for which (4) holds. Since w is not a cut
point to p along γp,η there exists a neighborhood W2 ⊂ SN of (p, η), such that
for any (x, v) ∈ W2 the distance function dG(x, ·) of (N ,G) is smooth at γx,v(t) if
0 < t < τG(x, v). Due to Definition 1.1, we have that

�(p, η) = dg(p, w) = dG(p, w) < τG(p, η).

Therefore, the continuity of functions τG and � imply that there exists a neighborhood
W ⊂ W1 ∩ W2 of (p, η), such that for any (x, v) ∈ W , we have

�(x, v) < τG(x, v).

Since any geodesic of (M, g) is a geodesic of (N ,G), we have

dg(x, γx,v(t)) = dG(x, γx,v(t)), if 0 < t ≤ �(x, v).

Therefore, function dg(x, ·) is smooth at γx,v(t) if 0 < t ≤ �(x, v).
Since w is not a conjugate point to p along γp,η the exponential map of (N ,G) at

p is an open map close to �(p, η)η ⊂ TpM . This implies the existence of the set V
as in the claim of this lemma. The proof for the existence of set U is similar. 
�

Suppose that (M, g) satisfies the visibility condition 1.1. Let p ∈ ∂M . By Lemma
2.5 there exists w ∈ ∂M and r > 0 such that the distance functions dg(x, ·) and
dg(y, ·) are smooth for any (x, y) ∈ B(p, r) × B(w, r) and B(p, r) ∩ B(w, r) = ∅.
Let r∂M > 0 be the minimum of r and the boundary injectivity radius. Choose

z0 ∈ (∂M ∩ (B(w, r)) and δ ∈ (0, r∂M ),
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such that z0 is not the closest boundary point for any q ∈ B(p, δ), Z(q) ∈ B(p, r)
and the distance minimizing geodesic from z0 to p is not normal to ∂M at p. Then

Ez0 : B(p, δ) → [0,∞), Ez0(q) := fq(z0) = dg(z0, Z(q)) − Dq(z0, Z(q))(19)

is well-defined and smooth. Moreover, by (17), we have that Ez0(q) = 0 if and only
if q ∈ B(p, δ)∩ ∂M . Thus, Ez0 is a boundary defining function. Denote (t, Z) for the
boundary normal coordinates in B(p, δ), where t(q) = dg(∂M, q) and Z(q) is the
closest boundary point to q ∈ B(p, δ). Then the map

Wz0 : B(p, δ) → [0,∞) × ∂M, Wz0(q) := (Ez0(q), Z(q)), (20)

is smooth.
We show that the Jacobian of this map with respect to boundary normal coordi-

nates is invertible at p. By the inverse function theorem this yields the existence of a
neighborhood V ⊂ M of p such that the restriction of Wz0 to V is a coordinate map.
The Jacobian of Wz0 at p is

(

∂
∂t Ez0

∂
∂t Z

∂
∂Z Ez0

∂
∂Z Z

)

=
(

∂
∂t Ez0 0̄T
∂

∂Z Ez0 I dn−1.

)

Notice

∂

∂t
Ez0(t, Z)

∣

∣

∣

∣

(t,Z)=(0,p)
= 1 − gp(γ̇z0,p(dg(p, z0)), ν) > 0.

The last inequality holds since the distance minimizing geodesic γz0,p from z0 to p is
not normal to the boundary at p. Thus, the Jacobian of Wz0 at p is invertible.

We use coordinates similar toWz0 to show that	 : M1 → M2 is a diffeomorphism
near the boundary of M1. In order to do so, we first prove the following

Lemma 2.6 Let (Mi , gi ), i = 1, 2 be compact n-dimensional Riemannian mani-
folds with smooth boundaries ∂Mi . If the travel time difference data of (M1, g1) and
(M2, g2) coincide, then

g1|∂M1 = φ∗(g2|∂M2). (21)

Proof Since (5) implies (10) the proof of this Lemma follows from the proof of [23,
Proposition 3.3]. 
�

We find.

Lemma 2.7 Let (Mi , gi ), i = 1, 2 be compact, connected n-dimensional Riemannian
manifolds with smooth boundaries ∂Mi , whose travel time difference data coincide.
Assume that (M1, g1) satisfy the visibility condition 1.1. Let p ∈ ∂M1. There exists a
neighborhood U of p in M1 and z0 ∈ ∂M1 such that on U and 	(U ) the mappings
W 1

z0(q1) = (E1
z0(q1), Z

1(q1)) and W 2
φ(z0)

(q2) = (E2
φ(z0)

(q2), Z2(q2)), respectively,
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defined as in (19) and (20), are smooth local boundary coordinate maps. Moreover,
with respect to these coordinates, the local representation of 	 is

W 1
z0(U ) � (s, z) �→ (s, φ(z)) ∈ W 2

φ(z0)(	(U )). (22)

Proof By Lemma 2.4, we have for any q ∈ (M1 \ σ∂M1) that the point z ∈ ∂M1 is
the closest boundary to q if and only if φ(z) ∈ ∂M2 is the closest boundary point to
	(q) ∈ (M2 \ σ∂M2). Thus,

φ(Z1(q)) = Z2(	(q)).

Therefore, using (10), we have that for all q ∈ (M1 \ σ∂M1), z ∈ ∂M1

f 1q (z) := d1(z, Z
1(q)) − Dq(z, Z

1(q))

= d2(φ(z), Z2(	(q)) − D	(q)(φ(z), Z2(	(q)) =: f 2	(q)(φ(z)). (23)

We choose w ∈ ∂M1 neighborhoods U and V for p and w respectively as in
Lemma 2.5 for (M1, g1). Then function (x, z) �→ d1(x, z) is smooth in (U ∩ ∂M1) ×
(V ∩ ∂M1). Choose (x, y) ∈ (U ∩ ∂M1) × (V ∩ ∂M1). Let γ be the unique distance
minimizing geodesic from x to y that is transversal to ∂M1 at x and y and satifies
γ ((0, d1(p, w))) ⊂ M int

1 . If c is any distance minimizing curve of M2 from φ(x) to
φ(y) it holds by (10) that c((0, d2(φ(x), φ(y)))) ⊂ M int

2 . Therefore, c is a geodesic
of g2. Since d2(φ(x), ·)|∂M2 is smooth at φ(y), c is the unique distance minimizing
geodesic of (M2, g2) connecting φ(x) to φ(y). By (10) and (21) it follows that

Dφ

(

grad′
1 d1(·, y)

∣

∣

∣

∣

x

)

= grad′
2 d2(·, φ(y))

∣

∣

∣

∣

φ(x)
and

Dφ

(

grad′
1 d1(·, x)

∣

∣

∣

∣

y

)

= grad′
2 d2(·, φ(x))

∣

∣

∣

∣

φ(y)
. (24)

Here grad′
i , i ∈ {1, 2} stands for the boundary gradient. Therefore, curve c is transversal

to ∂M2 at φ(x) and φ(y).
Due to (24) for any (x, y) ∈ φ(U ) × φ(V ) the initial direction of the distance

minimizing geodesic γx,y , from x to y, depends smoothly on (x, y). Therefore, there
exists t0 > 0 such that the set

W := {(γx,y(t), γ̇x,y(t) : t ∈ [0, t0), (x, y) ∈ φ(U ) × φ(V )} ⊂ SM2

is a neighborhood of (φ(p), γ̇φ(p),φ(w)(0)).
By the Implicit function theorem the exit time function �2 of (M2, g2) is smooth

in a neighborhood Wv ⊂ W for any v ∈ W . Since v ∈ W is given by the unique
(t, x, y) ∈ [0, t0) × φ(U ) × φ(V ) and γx,y : [t, �2(v)] → M2 is the unique distance
minimizing geodesic from π(v) it holds that

�2(v) = d2(π(v), y). (25)
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Finally, we note that the function (t, x, y) → π(v(t, x, y)) is smooth, and then (25)
implies the smoothness of the distance function d2 in π(W ) × φ(V ) ⊂ M2 × ∂M2.

Therefore, we have proven that there exists rmin > 0 smaller than the minimum of
the boundary cut distances of g1 and g2, such that functions

(q, z) �→ d1(q, Z1(q)), d1(q, z), d1(z, Z
1(q)), (q, z) ∈ B1(p, rmin)

×(B1(w, rmin) ∩ ∂M1)

and

(q ′, z′) �→ d2(q
′, Z2(q ′)), d2(q

′, z′), d2(z
′, Z2(q)), (q ′, z′) ∈ B2(φ(p), rmin)

×(B2(φ(w), rmin) ∩ ∂M2)

are smooth. Since 	 is a homeomorphism the existence of set U and z0 ∈ ∂M1 as in
the claim of this Lemma follow.

If q ∈ U , we obtain by (23) the following equation

E1
z0(q) = E2

φ(z0)(	(q)).

Therefore, we have proven that the map given in (22) and the mapping

W 2
φ(z0) ◦ 	 ◦ (W 1

z0)
−1 : W 1

z0(U ) → W 2
φ(z0)(	(U ))

coincide. 
�
Next we consider the coordinates away from ∂M . Let p ∈ M int and choose any

closest boundary point z p ∈ ∂M to p. By [9, Lemma 2.15] there exist neighborhoods
U ⊂ M int of p and W ⊂ ∂M of z p such that the distance function dg : U × W → R

is smooth. Moreover for every (q, w) ∈ U × W the distance dg(q, w) is realized
by the unique distance minimizing geodesic, contained in M int if the end point w is
excluded. We use a shorthand notation v ∈ SpM for the velocity γ̇z p,ν(dg(p, z p)).
A similar argument as in [12, Lemma 2.6] yields to an existence of a neighborhood
V ⊂ W of z p such that the set

V = {(zi )ni=1 ∈ V n : dim span((F(zi ) − v)ni=1) = n}

is open and dense in V n := V × V × · · · × V . Here F(q) := − (expp)
−1(q)

‖(expp)−1(q)‖g , q ∈ V .

Notice that this claim follows from [12, Lemma 2.6.] since F(q) = − (expp)
−1(q ′)

‖(expp)−1(q ′)‖g
for some q ′ ∈ M if and only if there exists 0 < t < τG(p,−F(q)) such that
q ′ = γp,−F(p)(t). Here τG is the cut distance function of (N ,G), where closed
Riemannian manifold (N ,G) is some extension of (M, g).

Moreover for every (zi )ni=1 ∈ V there exists an open neighborhood U ′ ⊂ U of p
such that

H : U ′ → R
n, H(q) := (dg(q, zi ) − dg(q, z p))

n
i=1
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is a smooth coordinate mapping. This holds, since for any (zi )ni=1 ∈ V the Jacobian
of H at p is invertible.

Lemma 2.8 Let (Mi , gi ), i = 1, 2 be compact, connected n-dimensional Riemannian
manifolds with smooth boundaries ∂Mi . Suppose that the travel time difference data
of (M1, g1) and (M2, g2) coincide. Let p ∈ M int

1 . Let z p be any closest boundary point
to p. There exists a neighborhood U of p in M int

1 and a neighborhood W ⊂ ∂M1 of
z p such that the distance functions d1 : U × W of (M1, g1) and d2 : 	(U ) × φ(W )

of (M2, g2) are smooth.
Moreover there exists points z1, . . . , zn ∈ W and a neighborhood V ⊂ U of p

such that

H1 : V → R
n, H1(x) = (d1(x, zi ) − d1(x, z p))

n
i=1

and

H2 : 	(V ) → R
n, H2(q) = (d2(q, φ(zi )) − d2(q, φ(z p)))

n
i=1,

are smooth coordinate maps. We also have

H1(V ) = H2(	(V )) and H2 ◦ 	 ◦ H−1
1 = I dRn . (26)

Proof Since 	 is a homeomorphism, the first part of the claim follows from similar
construction as done before this Lemma. The proof of the latter part is a modification
of the proof of [12, Theorem 2.7]. 
�

Proposition 2.9 Let (Mi , gi ), i = 1, 2 be compact, connected n-dimensional Rie-
mannian manifolds with smooth boundaries ∂Mi whose travel time difference data
coincide. If (M1, g1) satisfy the visibility condition 1.1, then mapping 	 : M1 → M2,
given in (13), is a diffeomorphism.

Proof The claim follows from Proposition 2.3 and Lemmas 2.7–2.8. 
�

2.4 Riemannian Structure

Aswe have proven that the map	 is diffeomorphism, we can define a pull backmetric
g̃ := 	∗g2 on M1. From now on, we only consider manifold M := M1 with smooth
boundary equipped with Riemannian metrics g := g1 and g̃. We need to show that
g = g̃. First, we notice that by the definitions of the diffeomorphism 	 and metric g̃
on M , we have by the data (8) that

Dp(z, w) = dg(p, z) − dg(p, w) = dg̃(p, z) − dg̃(p, w), p ∈ M, z, w ∈ ∂M .

(27)
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Lemma 2.10 Let p ∈ ∂M and (x1, . . . , xn) be a boundary normal coordinate system
of g near p and α ∈ N

n any multi-index. Write g = (gi j )ni, j=1 and g̃ = (g̃i j )ni, j=1.
Then for all i, j ∈ {1, . . . , n} it holds that

∂αgi j |∂M = ∂α g̃i j |∂M , ∂α :=
n

∏

k=1

(

∂

∂xk

)αk

. (28)

Proof We prove that the local lens relations (�g, σg) and (�g̃, σg̃) of g and g̃, respec-
tively, coincide at some open set D ⊂ T ∂M . After this the claim follows from the
proof of [18, Theorem 1]. For the definitions of local lens relations, see [18].

Choose q ∈ ∂M and neighborhoodsU , V ⊂ M of p and q be as in Lemma 2.5 for
metric g. Let γ be the unique geodesic of g connecting p to q. Due to (10) and Lemma
2.5 it holds that dg̃ is smooth on (U ∩ ∂M) × (V ∩ ∂M). Therefore, (21) implies that
for every (x, y) ∈ (U ∩ ∂M) × (V ∩ ∂M), we have that

grad′
g dg(·, y)

∣

∣

∣

∣

x
= grad′̃

g dg̃(·, y)
∣

∣

∣

∣

x
and grad′

g dg(·, x)
∣

∣

∣

∣

y
= grad′̃

g dg̃(·, x)
∣

∣

∣

∣

y
.

(29)

Denote γ̇ (0) =: η and γ̇ (dg(p, q)) =: v. Then (29) imply that ˙̃γ (0) = η and
˙̃γ (dg(p, q)) = v, where γ̃ is the unique distance minimizing geodesic of g̃ from p to
q. By Lemma 2.5 it holds that η and v are transversal to ∂M .

Therefore, after possibly shrinking U and V , we have by [18, formula (10)] and
formulas (21) and (29) that the local lens relations (�g, σg) and (�g, σg̃) coincide in
the set

D := {grad′
g dg(·, y)

∣

∣

∣

∣

x
, grad′

g dg(·, x)
∣

∣

∣

∣

y
∈T ∂M : (x, y)∈(U ∩ ∂M) × (V ∩ ∂M)}.

The set D is open since it is an image of an open map, given by the composition of
the diffeomorphism

Wη � (x, v) �→ γx,v(�(x, v)), γ̇x,v(�(x, v)) ∈ Wv

and the orthogonal projection from ∂SM to T ∂M . In the above Wη ⊂ ∂SM is some
open neighborhood of (p, η) andWv ⊂ ∂SM is some open neighborhood of (q, v). 
�

Let (N ,G) be a smooth closed Riemannian manifold that is a smooth extension
of (M, g). We write F := N \ M int, as before. By Lemma 2.10 The Riemannian
manifold (N , ˜G) is a smooth extension of (M, g̃) if ˜G is a Riemannian metric defined
as

˜G|F = G|F , ˜G|M int = g̃. (30)
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Lemma 2.11 Let N , F,G and ˜G be as above. Then

dG(p, z) − dG(p, w) = d
˜G(p, z) − d

˜G(p, w) p ∈ N , z, w ∈ F . (31)

The functions dG , d
˜G are the geodesic distances of G and ˜G, respectively.

Proof This proof is an adaptation of the proof of [8, Proposition 7.3]. If p ∈ M , we
first give a proof for

dG(p, z) − dG(p, w) = d
˜G(p, z) − d

˜G(p, w), z, w ∈ F . (32)

If (32) holds for every p ∈ M then (32) holds also for the case p ∈ F . The latter proof
is given in [12, Proposition 1.2]. Therefore, Eq. (31) holds.

Let p ∈ M . Consider first the function h p(z) := dg(p, z)− dg̃(p, z), z ∈ ∂M . Let
w ∈ ∂M . By (27) it holds that

h p(z) = dg̃(p, w) − dg(p, w).

Thus, h p is a constant function.
We will prove that

dG(p, z) = inf

{

dg(p, y0) +
( N

∑

j=1

dF (y j−1, x j ) + dg(x j , y j )

)

+ dF (xN , z)

}

,

(33)

where dF is the distance function of the Riemannian manifold (F,G|F ) and
{y0, . . . , yN , x1, . . . , xN } ⊂ ∂M . We note that similar formula holds for d

˜G , when dg
is replaced with dg̃ . If (33) holds then, it follows from Eq. (10) that

dG(p, z) − d
˜G(p, z) = constant with respect to z.

This implies (32), in the case when p ∈ M .
Finally, we prove (33). Let ε > 0. Since ∂M is a smooth co-dimension 1 submani-

fold of N , it follows from the definition of the Riemannian distance function dG , that
there exists a piecewise smooth curve c from p to q, that crosses the boundary finitely
many times, and whose length is ε-close to dG(p, z). Then

dg(p, y0) +
( N

∑

j=1

dF (y j−1, x j ) + dg(x j , y j )

)

+ dF (xN , z) ≤ LG(c) ≤ dG(p, z) + ε,

where {y0, . . . , yN , x1, . . . , xN } ⊂ ∂M are the points where c hits the boundary.
Taking ε to 0 implies (33). 
�
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In view of the previous lemma, it follows from [12, Sect. 2.4] that metric tensors g
and g̃ coincide. We will sketch here the main ideas for this proof.

First, we prove that the geodesics of metricsG and ˜G agree up to reparametrization.
Let τG : SN → R be the cut distance function of metric tensor G (see (4)). By [12,
Lemma 2.9] the following equality holds for any (z, v) ∈ SF int

γ G
z,−v((0, τG(z,−v))

= {p ∈ N : Dp(·, z) is smooth at z and gradGDp(·, z) at z is v}
=: δ(z, v). (34)

Where γ G
z,−v is the geodesic of G with initial conditions (z,−v). Since G = ˜G on

F int, the formulas (31) and (34) imply

γ G
z,−v((0, τG(z,−v)) = γ

˜G
z,−v((0, τ˜G(z,−v)), (z, v) ∈ SF int, (35)

where τ
˜G is the cut distance function of ˜G. Therefore, for any (z, v) ∈ SF int there

exists a diffeomorphism αz,v : (0, τG(z,−v)) → (0, τ
˜G(z,−v)) such that

γ G
z,−v(t) = γ

˜G
z,−v(αz,v(t)), t ∈ (0, τG(z,−v)), (z, v) ∈ SF int. (36)

Let p ∈ M int. We denote the exponential map of G at p by expp. Then the set,

�p := {rv ∈ TpN : r > 0, v = exp−1
p (z), p ∈ δ(z, v), (z, v) ∈ SF int}int ,

is not empty and, moreover—if we denote the exponential map of ˜G at p by ẽxpp—in
view of (36), we have

�p = {rv ∈ TpN : r > 0, v = ẽxp−1
p (z), p ∈ δ(z, v), (z, v) ∈ SF int}int . (37)

Let (U , x) be a local coordindate chart of M int. We denote the Christoffel symbols
of G and ˜G as � and ˜�, respectively. By (36), (37) and [12, Proposition 2.13] there
exists a smooth 1-form β on U such that

�k
i j (x) − ˜�k

i j (x) = δki β j (x) + δkjβi (x),

where δkj is the Kronecker delta. This and [12, Lemma 2.14] imply that the geodesics

of metric tensors G and ˜G agree up to reparametrization. See also [14] for an earlier
result. We arrive at

Lemma 2.12 Suppose that N , F,G and ˜G are as above. Then G = ˜G in all of N .
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Proof Since geodesics of metric tensors G and ˜G agree up to reparametrization the
main result of [19] shows that the function

I0((x, v)) =
(

det(G(x))

det(˜G(x))

) 2
n+1

˜G(x, v), (x, v) ∈ T N , (38)

where ˜G(x, v) = ˜G jk(x)v jvk , is constant on the geodesic flow of G. Note that the
function F(x) := det(G(x))

det(˜G(x))
is coordinate invariant.

Let ϕt : SN → SN , t ∈ R be the geodesic flow of G and π : T N → N the
projection onto the base point. Since G = ˜G on F int, we have

G(ϕ0(z, v)) = ‖v‖2G = I0(ϕ0(z, v)), (z, v) ∈ T F int.

Therefore, for any t ∈ R and for any (z, v) ∈ T F int \ {0} the following holds

G(ϕt (z, v)) = ‖v‖2G = I0(ϕt (z, v)) = F(π(ϕt (z, v))˜G(ϕt (z, v)).

This implies the claim. For more details, see [12, Lemma 2.15]. 
�
We conclude that the proof of Theorem 1.3 follows from Propositions 2.3, 2.9 and

Lemma 2.12.
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