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Casimir effect in (2 + 1)-dimensional Yang-Mills theory
as a probe of the magnetic mass
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We consider the Casimir effect in a gauge-invariant Hamiltonian formulation of non-Abelian gauge
theories in (2 + 1) dimensions, for an arbitrary gauge group. We show that the result is in good agreement
with recent lattice simulations. We also argue that the Casimir effect may be viewed as a good probe of
magnetic screening effects in (3 + 1)-dimensional gauge theories at high temperatures.
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I. INTRODUCTION

Yang-Mills gauge theories in two spatial dimensions can
be viewed as a guiding model for the more realistic, but also
more complicated, (3 4 1)-dimensional gauge theories.
The (2 4 1)-dimensional theories have nontrivial dynami-
cal content and propagating degrees of freedom making
them a better model than Yang-Mills theories in (1 + 1)
dimensions, yet they are still somewhat more amenable
to mathematical analysis compared to their (3 + 1)-
dimensional counterparts. The Euclidean 3-dimensional
theory, the Wick-rotated version of the (2 + 1)-dimensional
theory, can also be of direct relevance to the high temper-
ature limit of the (3 + 1)-dimensional theory [1]. In
particular, the mass which appears as a propagator mass
in (2 + 1) dimensions can be taken as the high temperature
value of the magnetic screening mass. With these moti-
vations, for many years, we have been pursuing a
Hamiltonian approach to the nonperturbative aspects of
Yang-Mills theories in (2 4 1) dimensions [2-4]. This
article will be in the nature of continued work along these
lines, focusing on the Casimir effect in Yang-Mills theories
in (2 + 1) dimensions. This was also inspired by the recent
lattice simulations of the Casimir effect for the SU(2)
gauge theory reported in [5]. We will argue that the Casimir
effect in the (2 4 1)-dimensional Yang-Mills theory can be
viewed as a probe of the magnetic mass in the pure QCD
plasma in (3 + 1) dimensions at high temperatures. This
will also furnish a calculation for a general gauge group
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which can, hopefully, be tested in lattice simulations in the
near future.

We begin with a brief recapitulation of the salient points
of our Hamiltonian analysis. We considered the Ay =0
gauge, with the spatial components of the gauge potentials
parametrized as

1
AZ == E(Al + lAz) == —aMM_l,
1 _
AZ - E(Al - lA2) - MT_IGMT (1)

Here we use complex coordinates z =x; —ix,, Z = x| + ix,
with 0 =1(9, +i0,), 0=1(0, —i0,), and M is an
element of the complexified group G%; ie., it is an
SL(N, C)-matrix if the gauge transformations take values
in SU(N). Gauge transformations act on M via
M — MY = gM, where g is an element of the group G,
say, e.g., SU(N). Wave functions are gauge-invariant
functionals of H = M'M, with the inner product given as

() = / du(H) exp[2esS,, (H)W1¥,  (2)

Here S,,, is the Wess-Zumino-Witten action (WZW),
given by

Syyme (H) :2i / Tr(OHOH™")

T

+é e Te(H-10,HH'0,HH-'0,H) (3)
v/

In Eq. (2), du(H) is the Haar measure for H which

takes values in SL(N,C)/SU(N). Also c, denotes the
value of the quadratic Casimir operator for the adjoint
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representation; it is equal to N for SU(N). The Hamiltonian
and other observables can be expressed as functions of the
current J of the WZW action, namely,

J= g(‘3HH—1 (4)
e

(We have included a prefactor involving the coupling e;
this is useful for later calculations.) The explicit formula
worked out in Refs. [2-4] is given as H = H,, + H,, where

N o 2 1 o )
Ho = ’"/ 155 +E/Z,W (z=w)257,(%) 61, (3)

+% / :0J%(x)0J% (x):

- Jc(v“}) S 1)
Hi =iefape /z,wﬂ(z_w) 8J,(W)8J,(2) (5)

where m = e’>c,/2n. Regularization issues have been
discussed in some detail in the cited references.

The basic strategy we used was to solve the Schrodinger
equation keeping all terms in 7, at the lowest order,
treating H; as a perturbation. In ordinary perturbation
theory (carried out using our Hamiltonian formulation), one
would expand H = exp(t,¢“) in powers of the Hermitian
field @“; in addition, since m = e’*c,/2x we would also
expand in powers of m. In our case, we keep the term
involving m even at the lowest order. So even if we expand
H in terms of ¢, our expansion would correspond to a
partially resummed version of what would be normal
perturbation expansion. Formally, we keep m and e as
independent parameters in keeping track of different orders
in solving the Schrodinger equation, only setting m =
e’c,/2r at the end. The lowest order computation of the
wave function in this scheme was given in [3] and gave the
string tension for a Wilson loop in the representation R as
og = e*cycp/4r, cg being the quadratic Casimir value for
the representation R. We have also considered corrections
to this formula, taking the expansion to the next higher
order (which still involves an infinity of correction terms)
and found that the corrections were small, of the order of
—0.03% to —2.8% [6]. The resulting values for the string
tension agree well with the lattice estimates [7,8].

Some of the other issues explored within this approach
include string breaking effects [9], effective action and Z
vortices [10], supersymmetric theories [11], and entangle-
ment effects [12]. Glueball masses have been discussed
in [13].

II. THE CASIMIR ENERGY FOR
PARALLEL WIRES

There is an important feature which emerged from our
analysis, which is very useful for the present purpose [14].
We can absorb the factor €245+ in (2) into the definition of

the wave function by writing ¥ = e~4Sw»®. The inner
product for the ®@’s will involve just the Haar measure
without the 245w factor. However, the Hamiltonian
acting on ® will now be given by H — e4Swa HeCaSuwan,
We can expand H as H =exp(t,0®) ~ 1 +1t,0" + -,
with the field ¢ being hermitian. As mentioned earlier,
this “small ¢” expansion is suitable for a (resummed)
perturbation theory. The Hamiltonian is then

where ¢, (k) = \/cakk/(2zm)@,(k). This is clearly the
Hamiltonian for a field of mass m with the corresponding
vacuum wave function

®, ~exp [_%/ P \/mqﬁa] (7)

The Hamiltonian (6) corresponds to the action
1 pa pa a a afa
S= [ a3l - (TN V) - g+ (9

These results show that the propagator for the gauge-
invariant component of the gluon field is the same as that of
a massive scalar field with mass equal to m = (e’c,/2x).
Further, the parametrization (1) of the gauge potentials
becomes, in the small g-expansion

1
A;l ~ E [—QH“ + €,,(9,(0“ + - '],

M = exp (—éta(m 4 i(p“)) (9)

In the case of a perfectly conducting plate, the boundary
condition is that the tangential component of the electric
field should be zero. In other words, we need

€,»jnl-F8j:0, (10)

where n; is the unit vector normal to the plate. This is also
the condition used in [5]. In terms of the parametrization in
(9), focusing just on the gauge-invariant part ¢, this means
that we need

"ieijejkakéba = -n;0;¢p* =0 (11)

Since the time-derivative does not affect the spatial boun-
dary conditions, this is equivalent to imposing Neumann
boundary conditions on the scalar field ¢“ or, equivalently,
on ¢. The end result is that, within this approximation of
keeping m, but expanding the field H to the lowest order in
@°, the Casimir energy will be given by that of a massive
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scalar field with Neumann boundary conditions on the
plates.

We now consider the standard arrangement of two
parallel plates (or rather wires since we are in two spatial
dimensions) which are of infinite extent in the x,-direction
and are normal to the x;-direction. The wires are separated
by a distance R. We take the range of x, to be L, with
L — oo eventually. The fields in the region between the
wires have the mode expansion

" dk . |2 X1\ ity
¢ —/?ﬂzcn’k\/;cos<7>e 2 (12)

This is consistent with the Neumann boundary conditions.
We note that the Casimir energy of massive scalar fields for
the parallel plate geometry with Dirichlet boundary con-
ditions is known [15]. The result for Neumann conditions is
essentially the same. Here we reproduce the result and
express it in a form more suitable for comparison with
lattice estimates. With the mode expansion (12), the action
(8) becomes

/ Z [ce . Ca

where Q7 = k* + (nz/R)? + m*. The diagonalization of
the Hamiltonian is trivial, yielding the unrenormalized
zero-point energy

L dk 5 12 5
g_EdlmG/ﬂZ\/(nﬂ/R) +k*+m
dll’nG/ / 3/2 s(k2+m?) Ze s(nz/R)?

n=0

Q%,kcz,kcz,k] +- (13)

(14)

Using the Poisson summation formula we get

E= / / 3/2 s(k2+m?)
R —anj/s
2{1+\/_+22 T } (15)

The first two terms in this expression are divergent and they
have to be subtracted. The first term is independent of the
distance R between the wires, corresponds to a self-energy
contribution, and gets subtracted when we consider the
energy shift £(R) — E(R — o), which is the relevant
renormalized quantity of interest. The second term is
proportional to the spatial volume RL and is part of a
uniform spatial density of vacuum energy which must also
be subtracted out in the renormalized expression for the
Casimir energy. The final renormalized expression is thus

L
£ = d G/ / 3 Se —s(k>4+m?)
2r(-5) 532

R 2R2
——= R 16
XZ@y (16)

n=1

Doing the k-integration and using the variable transforma-
tion s = (nR/m)e’, we find

LR .. m\32 —2nm cosh@
E:—lemG<ﬂ ) / 3/2cosh(39/2) R

L 3/2 x K3/2(2nmR)

n=1 n

Using the following expression for modified Bessel func-

tion K3/2,
1
fe-1<1 +—> (18)
27 z

we can rewrite the Casimir energy as

K3)(z) =

L
E=—-dimG———
167R?

5 [2mRLi, (e —2mRY 4 Lig(e2™R)]  (19)

where Lig(w) is the polylogarithm function

Li,(w) = Y= (20)

We may note that, in the m — 0 limit, the expression (19)
agrees with the well-known result for (dim G) massless
scalars in (2 + 1) dimensions,

L{(3)

& =—dimG
m=0 167 R2

(21)

There are other equivalent ways to arrive at result (19).

Using
o 82 dk ikoxo

we can carry out the summation over n (in (14)) to
obtain

(22)

Xo=

Pk k21
£ =-LR2dimG 2
(27)* we*” -1
LR 3 1
= "dimG | dap—-L (23)
4z VP2 m? 2RV Pt _ g

where @® = R?(k3 + k*> + m?) and in the second line we
used polar coordinates in the (k, kg)-plane and integrated
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over the angle and p = \/k} + k*>. A further substitution
PR = sinh g, and z = cosh g, reduces this to

L o
R3
471'R2(m ) [

Expansion of the integrand in powers of e~
result (19) in terms of the polylogarithms.

It is useful to write the energy (19), for our case, in terms
of the string tension corresponding to the fundamental
representation. This has been calculated in [3]. Ignoring the
small corrections discussed in [6], this is given by

dzg(Z2 ) - (24)

E=—-dimG
m o2mRz _ |

2mRz gives the

cac
op = 642—;. (25)

We may thus write mR = \/c,/xcgx, where x = R, /of.
The Casimir energy is thus given by

Loy  léx

|
+—Li (e‘z‘/ CA/”CFX)} . (26)
X

£ __dlmGF CA/”CFLiZ(e—A/mx)

X

This is the main result of this paper. It holds for an arbitrary
compact group; for the case of SU(N), we have ¢4 = N,
cr = (N*=1)/(2N). There will be corrections to this
formula due to the fact that we have neglected interactions
involving cubic and higher powers of ¢“ and due to the
corrections to the string tension in the expression for m in
terms of o5. Nevertheless, the fact that string tension given
in (25) to the lowest order in our expansion scheme is in
good agreement with lattice calculations [7] suggests that
the formula (26) can be a good estimate of the Casimir
energy.

We have the Neumann boundary condition on the field
¢ for perfectly conducting wires, as mentioned before. But
if we choose different boundary conditions, the result can
be different. Formula (26) holds for the field obeying
Neumann conditions at both wires or Dirichlet conditions
at both wires. The Dirichlet condition is equivalent to the
magnetic field B (which is —V2¢“ in our approximation)
vanishing at the wire. If we consider the Neumann con-
dition at one wire and the Dirichlet condition at the other,
the modes involved are of the form sin ((n + 3)7x; /R). The
Casimir energy is now given by

L. dk 1 2, )
SDN—EdlmG/E;\/<(n+E)ﬂ/R> + kS +m”.

(27)

The renormalized finite Casimir energy now works out
to be

FIG. 1. Comparison of Eyy = Epp from (26) (solid line) and
Epy from (28) (dashed line).

. L . _ . —om
5DN = — dlmGW [2mRL12(—€ sz) —+ Ll3(—€ 2 R)]
S __AmO [/ ()

Lop 167 X

+ %Lg (—e-zx/@\/—“”)] . (28)

Notice that, as expected, this corresponds to a repulsive
force because the arguments of the polylogarithms have
changed sign. The two energies £ from (26) (same as
Evn = Epp) and Epy from (28) are shown in Fig. 1 for the
case of SU(2).

III. LATTICE ESTIMATES AND THE
MAGNETIC MASS

The Casimir energy for the parallel wire geometry was
recently evaluated for the SU(2) gauge theory by lattice
simulation in [5], with the boundary condition of the
tangential component of the electric field vanishing at
the wires. (This would be the Neumann-Neumann case for
the field ¢“ in our parametrization of A¢.) Essentially, the
expectation value of the energy density was calculated,
with a suitable renormalization. The result was fitted to the
form

L—GF = —dimG %x_”g_Mme/\/E; (29)

The authors find that the best fit values of the parameters
are v=2.05 and M¢,, = 1.38,/6F. The authors also
commented on the fact that M, is significantly smaller
than the smallest value for glueball mass, which is
approximately 4.7, /cp. The smallness of the exponent is
not a surprise from our point of view, since the coefficient
of x in the exponential in (26) is 2+/c,/mcy = 2+/8/37 ~
1.84 for the case of SU(2). This is also, as expected,
significantly smaller than what is given by the glueball
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mass. While the numerical value differs from the value for
Mc,s/+/0F in [5], it should be noted that the form of the
function is different as well. The motivation to use (29) as a
fitting function for the Casimir energy was that it reduced to
the massless formula correctly, upon setting M,, = 0 and
v = 2. So it may be viewed as a two-parameter extension of
the formula for the massless case. Our formula (26) also
correctly reduces to the massless limit, and so one may
contemplate a modification of (26) with additional param-
eters to be used as a fitting function. One could consider,
e.g., changing the prefactor in (26); there is a reasonable
argument for this. Notice that the prefactor is a measure of
the number of degrees of freedom, as evidenced by the
dim G factor. Lattice simulations of QCD shows that the
number of degrees of freedom do not quite reach a value
corresponding to a gas of free gluons even at very high
temperatures, where we expect a deconfined gluon plasma.
(This has been known for a while; a recent review which
gives updated results is [16]; in particular, see Fig. 4 of this
reference.) In our calculation presumably such an effect
can arise from higher-order terms in ¢“ which have been
neglected.

Another observation is that our calculation based on the
previous Hamiltonian analysis shows, as explained in more
detail later, that there are strong theoretical reasons why the
expression for the Casimir energy should involve powers of
e~ "R where m is the mass as it appears in the propagator
for the gauge-invariant part of the gauge potential. So here
we will keep the value of m as the one given by the
Hamiltonian analysis, not treated as a parameter to be
obtained from fitting. However, based on what was said
earlier, we shall use a prefactor and try to fit the lattice
calculation to the formula

E dimG |1.84 1
——A Li —1.84x —Li —1.84x 30
fo = A | Lia(e ) 4 Lis(e )| (30

where A is to be treated as fitting parameter and we have
also put in the values of ¢, ¢y for SU(2). A comparison of
(29) and (30), with the best fit values v = 2.05, M,, =
1.38, /o for (29) and A = 0.9715 for (30), is shown in
Fig. 2. The range of x is taken to be 0.1 to 0.7 as done in [5].
The graph shows clearly that our formula does capture the
lattice calculation of the Casimir energy with good quanti-
tative accuracy.

It is worth emphasizing the significance of the gauge-
invariant Hamiltonian analysis we have used here. A priori,
it is not clear that the Casimir effect for the non-Abelian
theory can be reduced to that of a massive scalar field. Our
approach shows that this can indeed be done. Second, we
get a specific value for the propagator mass m, namely,
e’c,/(2r), as well as its relation to the string tension, since
we also have an independent prediction for o. Taking this
value, without determining it via fitting to lattice data, we
get good agreement. We have used an overall coefficient A

0.5 0.6 0.7

FIG. 2. Comparison of (29) (dashed line) and (30) (solid line).

as a parameter determined by fitting. But the best fit value is
0.9715, so that in retrospect, we see that even if we took A
to be 1, as it is in our lowest order calculation, the
agreement is still within a few percent.

The good agreement between the lattice results in [5] and
our analytical expression (26) for the Casimir energy provides
yet another strong indication (in addition to the string tension
agreement [7,8]) that our Hamiltonian analysis, in particular
the quadratic approximation, provides a good effective
description for (2 4 1)-dimensional Yang-Mills theory.

The mapping of the Casimir energy to that of a massive
scalar field has been discussed in [17]1 for compact Abelian
electrodynamics in three dimensions, where the monopoles
are responsible for the mass generation. Our approach
justifies a mapping to the massive scalar for the non-
Abelian Yang-Mills theory, and also yields predictions for
m and op.

A few more comments on the formula for the Casimir
energy are in order at this point. First of all, there is an
intuitive reasoning for the exponential dependence on x
which is as follows. The expectation value of the energy
involves the propagator since

o 0
~ | = AT x)AY(X. X! 1
<S> axo (9)66 < i (X, xO) i (X, x0)> + (3 )

—
X=X,

The propagator (A¢(X,xo)A¢(X,x;)) may be viewed in
terms of paths from X to one of the wires, from there to the
other wire, and then back to X. This involves a distance of
2R, and with a propagator mass of m, we expect a factor
e~2"R_This should hold for all boundary conditions for
large R. Multiple transits can lead to the formula with the
summation as in the polylogarithm. This argument, as well
as our explicit calculation, makes it clear that the mass in
the propagator is what controls the exponential factor. Of
course the precise functional dependence of the Casimir
energy on e 2"k depends on the boundary conditions, as
displayed e.g., in Eqgs. (26) and (28).

'We thank M. Chernodub for bringing these papers to our
attention.
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Second, we note that the propagator mass is also related
to the magnetic screening mass in one higher dimension. If
we consider the (3 + 1)-dimensional Yang-Mills theory at
very high temperatures, in the imaginary time formalism,
all modes except for the lowest Matsubara frequency
decouple and the theory is expected to reduce to a three-
dimensional one with e? = ¢>T, where g is the 4-d coupling
and 7 is the temperature. The mass which appears in the
propagator of the Euclidean 3-dimensional theory then
serves as the magnetic screening mass of the high temper-
ature (3 4 1)-dimensional theory. For this reason, we often
refer to the propagator mass in our calculation [which is m
in the quadratic approximation, as mentioned after Eq. (8)]
as the magnetic mass. We are only considering the pure
Yang-Mills case here. In a theory like QCD, we have
fermions as well; since they do not have a mode of zero
Matsubara frequency (due to the antiperiodicity condition)
they do not survive the dimensional reduction at high
temperatures. Thus the propagator mass of the Euclidean
3-dimensional theory will serve as the magnetic mass in the
approximation of neglecting corrections due to fermions.

As mentioned earlier, the functional dependence of the
Casimir energy on m will depend on the choice of boundary
conditions and, more generally, on the geometry of the
configuration used. Thus fitting the energy to a single
exponential for different setups can yield different values
for what might be considered a screening mass or the M ¢, as
in [5]. Any attempt to make a direct identification of this with
the magnetic mass can be ambiguous. The point is that the
use of the Hamiltonian (5) or (6) will involve only the single
parameter m, with different formulas for the different
configurations. If the formula appropriate to the setup is
used, all measurements should lead to a consistent value for
m; it is this value which can be identified with the magnetic
mass (modulo the fermionic contribution mentioned earlier).

As for the values of the magnetic mass, our Hamiltonian
calculation gives m = e’c,/2n = €?/n~0.32¢%, for
SU(2). There have been many other ways of estimating
the magnetic mass. These include various resummation and
gap equation approaches [18-21], lattice analyses in different
gauges [22] and a method of identifying the magnetic mass as
a common divisor for glueball masses [23]. The values
obtained are close to what we find, generally in the range 0.28
to 0.38 for m/e?, with the lattice values being somewhat
higher, close to 0.5. There is general consistency among the
values, none of them is close to the glueball masses. (All
numerical values with a short discussion are given in [4].)
Since there is some variation, one could also envisage the
mass as a fitting parameter, although our experience with the
string tension suggests that the Hamiltonian approach should
be closest to lattice simulations.

Finally, the main point which emerges from this dis-
cussion is that the Casimir effect in the (2 + 1)-dimensional
theory is a good probe of the magnetic mass for the (3 4 1)-
dimensional theory, in the limit of neglecting corrections
due to fermions, keeping in mind that the formula derived
from (6) for the chosen geometry should be used to
estimate the mass parameter. Therefore, lattice simulations
for groups other than SU(2) and comparison with our
formula (26), [or (28) for mixed boundary conditions] with
perhaps a prefactor A to be determined, will be worthwhile,
in terms of providing greater insights into this issue.
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