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The boundary values of the time component of the gauge potential form externally specifiable data
characterizing a gauge theory. We point out some of their consequences such as reduced symmetries,
bulk currents for manifolds with disjoint boundaries and some nuances of how the charge algebra is
realized.
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I. INTRODUCTION

Boundary conditions on fields may be viewed as the
idealization and simplification of the dynamics of these
fields on the boundary of the spacetime region under
consideration. They are also necessary, from a mathemati-
cal point of view, to make the problem well defined with
the required self-adjointness properties for observables.
Therefore, not surprisingly, the impact of boundary
conditions on physical phenomena has been the subject
of many investigations. In quantum field theory, the most
extreme example of the importance of boundary condi-
tions might be topological field theories where the entire
dynamics is played out on the boundary [1]. Droplets
of fermions in the quantum Hall effect, for which the
effective theory is topological and the dynamics is reduced
to that of the edge currents, is a physical realization of
this [2]. A more standard, but still vivid, example of
boundaries and their impact on bulk phenomena is the
Casimir effect, which has been calculated for many
different geometries and experimentally verified for many
instances as well [3]. Among other examples of recent
research interest we mention the possibility of edge states
in gauge theories [4], bound states allowed by the general
von Neumann theory of self-adjoint extensions [5,6], the
role of boundary conditions and edge states for questions
of entanglement in gauge theories [7], etc.

Closely related to the issue of boundary conditions is the
asymptotic behavior of fields and its impact on realizations

of symmetry. It was recognized long ago that Lorentz
transformations cannot be unitarily implemented on
charged sectors of quantum electrodynamics due to the
infrared behavior of the massless photon fields [8]. While
this does not have any immediate impact on everyday
laboratory applications of electrodynamics, since one can
use the charge zero sector for such considerations, this does
highlight nuances of how symmetry is realized in the
theory. More recently similar effects have been analyzed in
the context of gravitational fields. Infrared effects can also
have an impact on the realization of symmetries other than
Lorentz transformations as well. Obstructions to the unitary
realization of color transformations or charge rotations in
a non-Abelian gauge theory have been pointed out in [9].
Again, this may not have any immediate impact on
calculations in the realistic case of QCD, for which the
asymptotic states are expected to have zero color charge,
but this does show the subtleties of symmetries in a gauge
theory.
Another special feature is that, unlike theories of scalar

or spinor fields, in a gauge theory, there is a field, namely
the time component of the gauge potential A0, whose sole
effect is via its boundary values, the physical consequences
of the bulk values of the field being wiped out by gauge
invariance, i.e., by the Gauss law imposed on physical states.
The complete elimination of A0, as done, for example, in the
so-called A0 ¼ 0 gauge, is too restrictive since the boundary
value of this field is actually gauge invariant, in the sense
of commuting with the constraints due to gauge symmetry.
In this paper, we analyze this situation for a non-Abelian
gauge theory pointing out some interesting features and
physical implications.
In the next section we set up the basic framework for

our discussion. The results are in Sec. III, divided into
three subsections covering manifolds with disjoint boun-
daries, magnetic monopoles and realizations of the charge
algebra.
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II. BASIC FRAMEWORK

As mentioned in the introduction, we will be focusing on
the effects of nonzero boundary values for fields. To set the
stage, we start with a brief discussion of the canonical setup
for gauge theories. We are primarily interested in non-
Abelian gauge theories, ignoring matter for the present.
Thus the Lagrangian is that for the Yang-Mills theory and is
given by

L ¼ 1

4
TrðFμνFμνÞ ¼ 1

2
ðFa

0iF
a
0iÞ −

1

4
ðFa

ijF
a
ijÞ; ð1Þ

where the fields strength tensor is, as usual, given by

F0i ¼ ð−iTaÞFa
0i ¼ ∂0Ai − ∂iA0 þ ½A0; Ai�;

Fij ¼ ð−iTaÞFa
ij ¼ ∂iAj − ∂jAi þ ½Ai; Aj�: ð2Þ

Here A0 and Ai are Lie-algebra valued fields of the form
A0 ¼ ð−iTaÞAa

0 and Ai ¼ ð−iTaÞAa
i , respectively; fTag

form a basis for the Lie algebra [which will be SUðNÞ
for most of our discussion]; they may be taken as hermitian
matrices obeying the normalization TrðTaTbÞ ¼ δab.
As is well known, the canonical momentum for Ai is

given by Ei ¼ F0i, while the canonical momentum for A0,
which we may denote by E0, is zero. This is to be viewed as
a constraint imposed on the phase space made of all four
fields and their momenta. The Hamiltonian is given by

H ¼
Z

d3xð−TrðEi∂0Ai þ E0∂0A0Þ − LÞ

¼
Z

d3x
�
1

2
ðEa

i E
a
i þ Ba

i B
a
i Þ þ Ea

i ðDiA0Þa þ Ea
0Θa

�
:

ð3Þ

Since there is freedom of adding terms proportional to the
constraints in the Hamiltonian, we can view ∂0A0 as an
arbitrary Lie-algebra valued function. Put another way,
there is nothing in the theory which determines ∂0A0;
we denote this quantity by Θ in (3). If we eliminate the
constraint E0 and its corresponding conjugate constraint in
the sense of Dirac’s theory of constraints, this is equivalent
to specifying ∂0A0. Another comment regarding the
EiDiA0 term is also in order. It arises from the canonical
definition of the Hamiltonian and we have not done any
integration by parts. This is important since we want to
analyze boundary values and their effects. Secondly, the
energy-momentum tensor for the Yang-Mills Lagrangian is
given by

Tμν ¼ 2
δS
δgμν

¼ TrðFα
μFναÞ − gμν

1

4
TrðF2Þ; ð4Þ

where S is the Yang-Mills action for an arbitrary metric gμν
and after variation we set the gμν to be the Minkowski

metric. If we now identify the Hamiltonian as the integral of
T00, then we do not have the EiDiA0 term. Such differences
between the canonical definition and what is defined by
variation with respect to the metric can arise for fields
which transform nontrivially under the Lorentz group. (We
are referring to the Belinfante terms which are due to spin
effects.) The Hamiltonian we are using in (3) is the standard
canonical Hamiltonian.
We now define the operator

QðμÞ ¼
Z

d3xEa
i ðDiμÞa ¼ −

Z
d3xTrðEiDiμÞ; ð5Þ

where μ ¼ ð−iTaÞμa is a test function, with μa being
R-valued functions. There are three types of test functions
to be considered.
(1) If μ vanishes at spatial infinity, i.e., if μa → 0 as

jx⃗j → ∞, QðμÞ becomes the Gauss law operator GðΛÞ.
The physical states are selected by the condition that
they are annihilated by GðΛÞ. (We use the letter Λ for
those functions μ which vanish at infinity.) Thus
physical states obey

GðΛÞjphysi ¼
Z

d3xTrðEiDiΛÞjphysi

¼
Z

d3xTrð−DiEiÞΛjphysi ¼ 0: ð6Þ

(2) Now consider test functions μ⇸0 as jx⃗j → ∞, where
the symbol ⇸ stands for “does not necessarily go to.”
The first situation is the case when μ does not vanish at
infinity but is a constant, independent of angles, as
jx⃗j → ∞. We then define

G0 ¼ fset of gauge transformations g∶

R3 → SUðNÞ; such that gðxÞ → const;

not necessarily 1 as jx⃗j → ∞g;
G∞
0 ¼ fset of gauge transformations g∶

R3 → SUðNÞ; such thatg ðxÞ → 1

as jx⃗j → ∞g:

Thus GðΛÞ generate the group G∞
0 , while the QðμÞ’s

generate the group G0. The quotient G0=G∞
0 is the

global group G, which we take to be SUðNÞ for most
of our discussions.

(3) More generally, we can have the situation where the
test functions μ → the angle-dependent limit; i.e., it is
a nonconstant function on the two-sphere at spatial
infinity. In this case, the operators QðμÞ generate the
so-called Sky group [10].

The operators QðμÞ obey the commutation algebra

½Qðμ1Þ; Qðμ2Þ� ¼ −iQð½μ1; μ2�Þ: ð7Þ

BALACHANDRAN, NAIR, and VAIDYA PHYS. REV. D 100, 045001 (2019)

045001-2



This is easily verified using the canonical equal-time
commutation rules

½Aα
i ðx⃗Þ; Eβ

j ðy⃗Þ� ¼ iδαβδijδð3Þðx⃗ − y⃗Þ: ð8Þ

For the case of μ being a constant at spatial infinity, and on
states obeying the Gauss law constraint (6), (7) reduces to
SUðNÞ Lie algebra.
We now briefly go back to the point made after (3) about

∂0A0. The constraint E0 ≈ 0 is one of the primary con-
straints in the theory. Its time evolution can generate a
secondary constraint. Consider the time evolution of E0

smeared with a test function Θ, with Θ⇸0. The commu-
tator with the Hamiltonian is given by

�Z
d3xTrðE0ΘÞ;H

�
¼ iQðΘÞ: ð9Þ

This shows that the imposition of the constraintR
TrðE0ΘÞjψi ¼ 0 on the states would in turn require

the vanishing of QðΘÞ where Θ⇸0. In particular, this
would mean that the charge carried by such states [mea-
sured byQðΘÞ for constant Θ] could be zero. Thus charged
states would be ruled out by fiat, if we impose E0 ≈ 0with a
Θ which does not vanish at infinity. In eliminating the
canonical pair E0, Θ, the boundary value of Θ ¼ ∂0A0

should not be eliminated if we allow charged states. This is
consistent with the fact that the boundary values of A0 and,
hence, its time derivative can be chosen freely. They are
externally chosen parameters which characterize the theory.
If Θ in (9) does go to zero at infinity, then we have the

Gauss law operator on the right-hand side, which should
annihilate physical states. Therefore there is no difficulty or
inconsistency with requiring

R
TrðE0ΘÞ ≈ 0 for test func-

tions which vanish at spatial infinity.
The conclusion is that, in general, the theory does allow

for nonzero values for A∞
0 (and its time derivative). This is

what we propose to analyze in subsequent sections.
So far we have argued that the mathematical framework

allows for a nonzero A0 at spatial infinity. We will now give
two physical contexts where this does arise, before pro-
ceeding with further analysis.
First note that A0dt is the same in both Lorentzian and

Euclidean cases as both A0 and dt acquire i’s in passage to
Euclidean signature. This means that some of the argu-
ments about A0dt can be directly applied to finite temper-
ature field theory where we have periodicity in Euclidean
time, with period β ¼ 1=T.

Now the gluons transform according to the adjoint
representation AdG, which for QCD is AdðSUð3ÞÞ. The
fundamental group of AdG is Π1ðAdðSUðNÞÞÞ ¼ ZN , so
there are loops of gauge transformations g̃ðx⃗; tÞ which as t
varies from 0 to β ¼ 1=T wind from 1 to 1 nontrivially.
[We may think of t as (Euclidean) time, so that the loop is
traced out as time evolves.] In SUðNÞ, the image of this

set of transformations goes from gðx⃗; 0Þ ¼ 1 to gðx⃗; βÞ ¼ z,
where z is an element of ZN ; i.e., z ∈ ð1; e2πi=N; e4πi=N;
…; e2ðN−1Þπi=NÞ × 1, where 1 is the N × N identity matrix.
Such a curve in SUðNÞ cannot, in general, become a

constant in t as jx⃗j → ∞ in gðx⃗; tÞ since the end points of
the curve are fixed to be 1 and z ≠ 1. Hence

lim
jx⃗j→∞

∂0gðx⃗; tÞ ≠ 0 identically: ð10Þ

Thus, even if we start with A∞
0 ¼ 0, a gauge transformation

by such an element can lead to a nonzero A∞
0 ¼

g−1∂0g�jx⃗j→∞ ≠ 0. It is well known that such gauge trans-
formations are important in finite temperature field theory
with the Polyakov loop

L ¼ Tr exp
�
i
Z

β

0

dtA0ðx⃗; tÞ
�

ð11Þ

considered as an order parameter. There are also indications
from numerical work that the expectation value of L need
not be the identity at high temperatures, consistent with the
possibility that A∞

0 can be nonzero.
Our second example is a classic one, the Josephson

effect. The basic setup here is that one has a normal
conductor sandwiched between two superconductors. The
normal material constitutes a spacetime region with disjoint
boundaries. Thus the electrons in the normal material can
be described by electrodynamics for a region with boun-
daries. Generally we can have different phases for the
many-body wave function in the two superconducting
regions. The phases of the electron at the boundaries of
the normal material have to be matched to these. The
difference of phases leads to the Josephson current, with
the time derivative of the phase acting as the value of A0

on the boundary. This is another case of a gauge theory in
a physical context with nonzero values of A0 on the
boundaries.

III. PHYSICAL IMPLICATIONS OF
BOUNDARY DATA

We now consider some physical implications of non-
trivial boundary data. We will consider two examples: a
field theory defined on a manifold with disjoint boundaries,
and chemical potentials for non-Abelian charges in the
presence of magnetic monopoles.

A. Manifolds with disjoint boundaries

The simplest case would be to start with a non-Abelian
gauge theory, say, QCD, in 1þ 1 dimensions, with the real
line as the spatial manifold. In this case we have disjoint
boundaries corresponding to jx⃗j → �∞. LetA�∞

0 denote the
two boundary values of A0; i.e., A0 → A�∞

0 as jx⃗j → �∞,
respectively. We can then decompose A0 as
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A0 ¼ Aþ
0 þ A−

0 ;

A�
0 → A�∞

0 as jx⃗j → �∞;

A�
0 → 0 as jx⃗j →∓ ∞: ð12Þ

This is essentially a decomposition of A0 via a resolution of
unity over the real line. The specific choice of A�

0 is not
important; different choices with the same boundary values
differ by terms proportional to the Gauss law constraint.
Inwhat follows,wewill, for simplicity, consider the casewith
∂0A�

0 → 0 as jx⃗j → �∞; i.e., the boundary values of A0 are
taken to be independent of time. For physical states jphysi
which obey the Gauss law, we have

QðA0Þ ¼ QðAþ
0 Þ þQðA−

0 Þ;
½QðAþ

0 Þ; QðA−
0 Þ�jphysi ¼ 0: ð13Þ

Effectively we have two operators QðA�
0 Þ associated to

charges defined via fluxes on the two disjoint boundaries.
Since the Hamiltonian has a term QðA0Þ, once a choice of
A�∞
0 has been made, the residual symmetry of the theory is

given by the common stability group of QðA�
0 Þ. In general,

the stability groups for these two operators QðA�
0 Þ can be

different. Transformations corresponding to the charge
algebra, with parameters θ, are generated by QðθÞ ¼R
TrðEDθÞ. Analogous to how A0 was decomposed, we

can write

θ ¼ θþ þ θ−;

θ� → θ�∞ as jx⃗j → �∞;

θ� → 0 as jx⃗j →∓ ∞: ð14Þ

This leads to two copies of the algebra of charges, corre-
sponding to QðθþÞ and Qðθ−Þ.
As mentioned above, the boundary values and hence the

stability groups of QðA�
0 ∞Þ can be different for different

disjoint components of the boundary. Two examples of this
for SUð3Þ would be the choices

Aþ∞
0 ¼ aþ∞

0 diagð1; 1;−2Þ; A−∞
0 ¼ a−∞0 diagð1;−2; 1Þ;

Aþ∞
0 ¼ aþ∞

0 diagð1; 1;−2Þ; A−∞
0 ¼ b−∞0 diagð1;−1; 0Þ:

ð15Þ

One of the physical consequences of such unequal
choices on disjoint boundaries is that it can lead to a
current. This is similar to how a tunneling current arises in
the Josephson junction mentioned earlier. To demonstrate
how this can happen, we consider the theory with the
addition of fields which carry nonzero charges. For
simplicity, we take them to be Dirac fields, so that the
action written out in first order form is

S¼
Z �

Ea
i
_Aa
i −

1

2
ðEa

i E
a
i þBa

i B
a
i Þ−Ea

i ðDiA0Þaþ iψ̄γ0∂0ψ

− iψ̄γi∂iψþ iψ̄γ0A0ψ − iψ̄γiAiψ

�
: ð16Þ

We can now write A0 ¼ g−1 _g for some group element g
which is constant on each connected piece of the boundary
at fixed t. Using this we can rewrite the action (16) as

S ¼
Z �

Ea
i
_Aa
i −

1

2
ðEa

i E
a
i þ Ba

i B
a
i Þ þ iψ̄γ0∂0ψ − iψ̄γi∂iψ

þ iψ̄γ0g−1 _gψ − iψ̄γiðg−1Aigþ g−1∂igÞψ
�
; ð17Þ

where

Ai ¼ gAig−1 − ∂igg−1 ð18Þ

with Ea
i as its canonical conjugate, and B and D are

constructed using A. We can take Ai and Ei as the basic
phase space variables for the gauge field. For this choice of
variables, the g dependence is transferred entirely to the
matter terms. The dependence of the partition function or
the functional integral on the boundary values can be
obtained by varying g. With g−1δg ¼ −itaδθa, we find

δS ¼ δSsurf þ
Z �

−ðD0J0Þa þ ðDiJiÞa�δθa;

δSsurf ¼
Z
V
ψ̄γ0taψδθa

�
tf

ti

−
Z
∂V

ψ̄γitaψδθadSidt;

Ja0 ¼ ψ̄γ0taψ ; Jai ¼ ψ̄γitaψ : ð19Þ

We are considering the fields in a spatial volume V with the
time interval as ½tf; ti�. The boundary ∂V can have disjoint
components. The last set of terms in (19) will vanish in the
classical case by current conservation. In the quantum
theory, the conservation law, which follows from variation
of the action, can be imposed as an operator equation inside
matrix elements or at the level of the integrand of the
functional integral. To see this in more detail, consider the
vacuum-to-vacuum transition amplitude for a set of fields
generically denoted as φ:

Z≡ h0j0i ¼
Z

½dφ�Ψ�
0½φf; tf�eiSðφ;tf ;tiÞΨ0½φi; ti�; ð20Þ

where S is the action evaluated for field configurations
φðx⃗; tÞ with φðx⃗; tfÞ ¼ φf, φðx⃗; tiÞ ¼ φi. We integrate over
φf and φi as well with the wave functions as the weighting
factors. Consider the functional derivative with respect to
the bulk values of the fields, which keep φf and φi and the
spatial boundary value of φðx⃗; tÞ fixed. The vanishing of the
integral of a total derivative then leads to the identity

BALACHANDRAN, NAIR, and VAIDYA PHYS. REV. D 100, 045001 (2019)

045001-4



0 ¼
Z

½dφ�Ψ�
0½φf; tf�

�
δ

δφ
eiS

�
Ψ0½φi; ti�

¼ i
Z

½dφ�Ψ�
0½φf; tf�eiS

δS
δφ

Ψ0½φi; ti�: ð21Þ

(If we have sources, there will be additional terms corre-
sponding to their transformation; this is standard procedure
for the derivation of Ward-Takahashi identities.) This
shows how the bulk equations of motion can be realized
in matrix elements. For the more general variation of the
vacuum-to-vacuum amplitude with no sources, we can then
write

Z0 ¼ Z þ
Z

δθa
δZ
δθa

¼
Z

½dφ�Ψ�
0½φf þ δφf; tf�eiðSþδSÞΨ0½φi þ δφi; ti�

¼
Z

½dφ�Ψ�
0½φf þ δφf; tf�eiSeiδSsurfΨ0½φi þ δφi; ti�:

ð22Þ

The surface terms in δSsurf on the two time slices at tf and ti
can be absorbed into the change of the final and initial
wave functions, since the wave functions transform as
δΨðφ; tÞ ¼ i½δSsurf �at tΨðφ; tÞ. Thus, upon using (19) and
(21), we can simplify (22) as

Z
δθa

δZ
δθa

¼−i
Z

½dφ�Ψ�
0½φf; tf�eiS

�X
Fa
αδθ

a
α

�
Ψ0ðφi; tiÞ;

ð23Þ

where Fa
α ¼

R
∂Vα

Jai dSi is the flux of the current across
each connected component (indexed by α) of the spatial
boundary. These arguments go through in Euclidean
signature with Z being the partition function.

Now consider calculating the partition function (or the
vacuum-to-vacuum amplitude) Z using the action as given
in (16). The result will obviously depend on the boundary
values of A0, or, equivalently, on g. So the variation of Z
with respect to g is, in general, not zero. The second way of
calculating involves using the action (17). In this case, the
dependence of Z on g is given by the expectation value of
the current fluxes as in (23). The compatibility of these two
ways of calculating Z tells us that if the functional integral
or partition function depends on the boundary values of A0,
then there must be current fluxes across the boundaries.
Notice that, with disjoint boundaries, we can vary g
independently on the different connected components,
and so the individual fluxes cannot be zero.
Although we started with the 1þ 1-dimensional case,

this part of the discussion [starting with (16)] is general and
applies to theories in higher dimensional manifolds with
disjoint boundaries. To summarize, if we have different

values of A0 on different disconnected pieces of the
boundary, there will be current fluxes in the bulk of spatial
volume. We also note that if the operators which commute
with the boundary data form a non-Abelian algebra, in the
quantum theory, they are associated with a multiplicity of
edge states. As these commutants can differ at the different
edges, these multiplicities also can differ.
We have already remarked on the similarity of what we

do here and the tunneling current in a Josephson junction.
A physical situation where our arguments for the non-
Abelian case would apply is for neutron stars. The general
expectation is that in the interior of a neutron star there are
concentric layers of hadronic matter in different phases
[11]. These include pure quark phase, quark slabs, etc.
The interfaces of such regions function as the disjoint
boundaries of our discussion above. It is difficult to make
more specific predictions at this stage, since the physics of
the hadronic phases in the neutron star is still not well
understood.

B. Magnetic monopoles

In the previous example, we considered A0 to be a
constant on the boundary. But there can be topological
obstructions to this choice. The simplest example which
can illustrate this is the case of a background corresponding
to the ’t Hooft–Polyakov monopole. Recall that the Higgs
field Φ in this case has the asymptotic behavior

Φjx⃗j→∞ → Φ∞ðx̂Þ ¼ f∞0 τ⃗ · ϕ̂ðx̂Þ; ð24Þ

where the winding number of the map x̂ → ϕ̂ðx̂Þ is the
monopole charge and f∞0 is a constant. [τa are the Pauli
matrices, viewed as the generators of the Lie algebra
of SUð2Þ.]
The Hamiltonian (3) has the term QðA0Þ in addition to

the usual bulk terms. The boundary value of A0 must be
such that the Hamiltonian commutes with the Higgs field,
so that the value of the Higgs field at spatial infinity is not
changed by time evolution. This is needed for the chosen
field configuration to correspond to a sector with sponta-
neously broken symmetry (and a static monopole field).
Specifically, we must require that

½QðA0Þ;Φ�jx⃗j→∞ → 0: ð25Þ

If A∞
0 ðx̂Þ is the boundary value, i.e., A0ðx⃗Þjx⃗j→∞ → A∞

0 ðx̂Þ,
the requirement (25) leads to

A∞
0 ðx̂Þ ¼ a∞0 τ⃗ · ϕ̂ðx̂Þ; ð26Þ

where a∞0 is a constant. Thus we cannot choose A0 to be a
constant on the two-sphere at spatial infinity; it depends on
x⃗ as indicated. A∞

0 ðx̂Þ may be viewed as the chemical
potential for non-Abelian charges in the presence of the
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monopole. The term in the Hamiltonian to be used to define
the partition function for a system with finite charge is thus

QðA0Þ ¼
Z

d3xTrðEiDiA0Þ ð27Þ

with A∞
0 ðx̂Þ as in (26). On quantum states, because of the

Gauss law, QðA0Þ depends only on the equivalence class

½A0�. Thus if AðiÞ
0 ∈ ½A0�, then ðAð1Þ

0 − Að2Þ
0 Þjx⃗j→∞ → 0.

An additional feature or nuance associated to this can be
seen by considering the case of the grand unified SUð5Þ
theory [12], broken down, as usual, to the standard model
gauge group. In this case, the Higgs field Φ belongs to the
representation 24 of SUð5Þ; this may be viewed as a
traceless 5 × 5matrix. In the nonmonopole sector, it breaks
SUð5Þ to H ¼ ½SUð3Þ × SUð2Þ ×Uð1Þ�=Z6; its asymp-
totic value on the two-sphere at spatial infinity is of the
form

Φ∞ ¼ ϕ∞diag

�
1; 1; 1;−

3

2
;−

3

2

�
; ð28Þ

where ϕ∞ is a constant. The 5� matter multiplet is
ðdc1; dc2; dc3; e−; νeÞL. Thus, we see clearly that (28) leaves
color rotations of the three dc’s invariant, and similarly for
the SUð2Þ rotations on ðe−; νeÞ. Defining T3 ¼ 1

2
diag

ð0; 0; 1;−1; 0Þ, we can write the asymptotic value of the
field as

Φ∞ ¼ ϕ∞
�
5

2
T3 þ diag

�
1; 1;−

1

4
;−

1

4
;−

3

2

��
: ð29Þ

The reason for writing it this way is that we can regard the
SUð5Þ monopole as the ’t Hooft–Polyakov monopole of an
SUð2Þ subgroup acting on, say, ðdc3; e−Þ broken down to a
Uð1Þ. Thus, for a generic monopole ansatz, the asymptotic
value of the Higgs field can be obtained by rotating (29)
over the sphere S2∞ at infinity. In the lowest monopole
sector, it is given by

Φ∞ðx̂Þ ¼ ϕ∞
�
5

2
T · x̂þ diag

�
1; 1;−

1

4
;−

1

4
;−

3

2

��
: ð30Þ

For a general winding number solution, we can replace x̂ by
ϕ̂ðx̂Þ in (30) where ϕ̂ðx̂Þ is as in (24).

The SUð5Þ monopoles are non-Abelian. From the
structure of the spontaneous symmetry breaking, it would
seem that one can introduce color SUð3Þ rotations and
SUð2Þ × Uð1Þ rotations as collective coordinates or moduli
whose quantization would convert the classical solution
into a suitable multiplet of H ¼ ½SUð3Þ × SUð2Þ×
Uð1Þ�=Z6. However, it is known that this cannot be done
[13]. There is a topological obstruction, and typically, in
the monopole sector, the unbroken subgroup H0 is smaller
than H and depends on the choice of the monopole

solution. For the asymptotic behavior given in (30), the
unbroken group is H0 ¼ Uð2Þ ×Uð1Þ ×Uð1Þ. The full
theory is discussed in [14,15].
Now consider a gas of gluons, W’s and other particles

carrying non-Abelian charges in the presence of a monop-
ole characterized by, say, (30). For a statistical distribution
of these particles with nonzero charge, we need the
chemical potential. However, as mentioned above, it must
commute with the Higgs field of the monopole. So A∞

0 , to
be used as the chemical potential, can be any element in the
Lie algebra of Uð2Þ × Uð1Þ ×Uð1Þ.

The older work [13–15] shows the topological obstruc-
tion to color and SUð2Þ rotations of the monopole. The
conclusion of the present argument is that this breakdown
of color in the presence of such monopoles applies also to
forming statistical distributions of the charged particles on
this background.
Regarding the statistical distributions of particles, it may

also be interesting to note that some of the particles can
undergo a change of statistics. Notice that the Higgs field in
(30) is invariant under a simultaneous rotation of x̂i and Ti.
This means that the angular momentum operator in this
background will be a combination Li þ Si þ Ti, where Li
and Si denote the orbital and spin angular momentum
operators, respectively. This is the well-known “spin from
isospin” in a monopole background [16]. For the present
context this means that the particles corresponding to
ðdc3; e−Þ will change statistics. Many of the gauge bosons
become massive at the scale of SUð5Þ breaking. The gauge
particles which remain massless at this stage will retain
their statistics since they transform as the adjoint repre-
sentation of the charge algebra and hence the contributions
from Ti will be integer valued.

C. The realization of the charge algebra

We will now make some comments on how the charge
operators act on the states, i.e., on the nature of the
representation of the charge algebra. These statements are
based on the Fabri-Picasso [17] theorem and are basically
the application of that result to the present context.
We note however that these theorems require the

existence of a mass gap separating vacuum and the excited
states [18]. There is no rigorous proof that there is such a
mass gap in non-Abelian gauge theories.
Consider the charge operators given in (5). The

Hamiltonian has a termQðA0Þ and we have the commutation
rule ½QðμÞ;H� ¼ −iQð½μ; A0�Þ. By the Gauss law, only the
boundary value of the commutator ½μ; A0� is relevant when
this relation acts on physical states. Thus the commutant of
A∞
0 in the Lie algebra defines the symmetry group of the

problem, which we will refer to as GA0
for brevity.

The momentum operator Pi is a crucial ingredient for the
Fabri-Picasso theorem, so it is useful to consider the
expression for it in our case. Explicitly,
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Pi ¼
Z

d3xEa
jF

a
ij: ð31Þ

If ξi is a constant vector, we can write

ξiPi ¼
Z

d3xEa
i ðξ · ∂ÞAa

i −
Z

d3xEa
i DiðA · ξÞ: ð32Þ

The last term will generate a gauge transformation with
parameter A · ξ, if we take Ai to vanish at the spatial
boundary. It is then clear from the first term that Pi
generates translations on all gauge-invariant quantities or
on operators acting on physical states. From the commu-
tation rule (8), we can easily check that

½QðμÞ; Pi� ¼ 0: ð33Þ
It should be emphasized that this relation holds even for
functions μ which do not vanish on the spatial boundary or
spatial infinity. No integration by parts or discarding of
boundary terms is needed.
We also note that the charge operator QðμÞ, with a

constant value for μ at the boundary, can be written in terms
of a density using the Gauss law. On physical states, we can
write

QðμÞjphysi ¼
I

μaEa
i dSijphysi: ð34Þ

Integrating μað∇ · Ea þ fabcAb
i E

c
i Þjphysi ¼ 0 over all

space and taking μa to be a constant equal to the value
on the boundary, we find

QðμÞjphysi ¼ −
Z

d3xðμafabcAb
i E

c
i Þjphysi

≡
Z

d3xJ0ðxÞjphysi: ð35Þ

We can now see the Fabri-Picasso theorem for this case as
follows:

h0jJ0ðxÞQðμÞj0i ¼ h0jeiP·xJ0ð0Þe−iP·xQðμÞj0i ¼ 0 ð36Þ

using (33) and Pij0i ¼ 0. This immediately gives

h0jQðμÞQðμÞj0i ¼
Z

d3xh0jJ0ð0ÞQðμÞj0i

¼ const ×
Z

d3x

¼ const ×∞: ð37Þ

This result shows that eitherQðμÞj0i ¼ 0 (corresponding to
the vanishing of the constant in this equation) or the state
QðμÞj0i does not exist as it is not normalizable.
So far, this discussion is similar to what happens with

spontaneous symmetry breaking. But for us, there is an

additional condition because the Hamiltonian contains a
term which is QðA0Þ. Thus Hj0i produces a term QðA0Þj0i
and if this is not normalizable, the vacuum state will not be
in the domain of the Hamiltonian. So the only physically
sensible choice is QðA0Þj0i ¼ 0. Notice that this also tells
us that the vacuum energy is not shifted by the presence of
the term QðA0Þ. Now consider those QðμÞ which weakly
commute with QðA0Þ, with μ ≠ A0. These elements, along
with QðA0Þ generate the subgroup GA0

. For these QðμÞ,
there is no real restriction; either choice [QðμÞj0i ¼ 0 or
QðμÞj0i ≠ 0] is possible. Thus we can have a situation
where GA0

is fully realized as a symmetry or partially or
fully broken spontaneously to the Uð1Þ group generated
by QðA0Þ.

Now let us turn to the choices of μ with ½QðμÞ;
QðA0Þ� ¼ −iQð½μ; A0�Þ ≠ 0. These would generate ele-
ments of the gauge group G which are not contained in
GA0

and hence are not symmetries of the theory. Again,
there are two possibilities: either QðμÞj0i ¼ 0 (with
½μ; A∞

0 � ≠ 0) or its action on j0i is not defined following
the argument given above. Coleman’s theorem [19] would
suggest that the case QðμÞj0i ¼ 0 can lead to additional
symmetries and hence should be ruled out since all QðμÞ
which commute with the Hamiltonian have been included
as generators of GA0

. But it is not clear that the premises of
Coleman’s theorem (which include Lorentz invariance and
the Reeh-Schlieder theorem) are obtained in our case.
To summarize, there is always an unbroken Uð1Þ

subgroup generated by QðA0Þ; one may have a larger
symmetry GA0

, which may be partially or fully sponta-
neously broken down to this Uð1Þ. (Since we are focusing
only on the Yang-Mills action, the explicit mechanism for
such a breaking is not manifest; we would have to include
additional charged fields to analyze this.) Transformations
corresponding to elements of the global group G which are
not in GA0

are not symmetries of the theory.
Another point of interest is that the term QðA0Þ in the

Hamiltonian can lead to energy corrections to the charged
states. Writing H ¼ H0 þQðA0Þ, notice that H0 and
QðA0Þ commute with each other and can be simultaneously
diagonalized. A nonzero A∞

0 can lead to splitting of
degenerate states for the charged particles like gluons,
charge being defined by QðA0Þ. We also note that while
there are many issues associated with the implementation
of non-Abelian charge rotations on the charged sector in
general [9], in the present case, we are only dealing with an
Abelian group defined by QðA0Þ.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National
Science Foundation Grant No. PHY-1820721 and by
Professional Staff Congress-City University of New York
(PSC-CUNY) awards.

ASPECTS OF BOUNDARY CONDITIONS FOR NON-ABELIAN … PHYS. REV. D 100, 045001 (2019)

045001-7



[1] D. Birmingham, M. Blau, M. Rakowski, and G. Thompson,
Phys. Rep. 209, 129 (1991); A. S. Schwarz, arXiv:hep-th/
0011260.

[2] See e.g., M. Stone, Quantum Hall Effect (World Scientific,
Singapore, 1992), Chap. 5; D. Karabali and V. P. Nair,
J. Phys. A 39, 12735 (2006); for an early treatment of edge
states for the Chern-Simons theory, see E. Witten, Commun.
Math. Phys. 121, 351 (1989); for conformal edge currents
in Chern-Simons theories, see A. P. Balachandran, G.
Bimonte, K. S. Gupta, and A. Stern, Int. J. Mod. Phys. A
07, 4655 (1992); see also the paper by Balachandran et al. in
[7]; the Chern-Simons source as a conformal family and its
vertex operators are discussed in A. P. Balachandran, G.
Bimonte, K. S. Gupta, and A. Stern, Int. J. Mod. Phys. A 07,
5855 (1992).

[3] For general reviews on the Casimir effect, see K. A. Milton,
J. Phys. Conf. Ser. 161, 012001 (2009); The Casimir Effect:
Physical Manifestations of Zero-Point Energy (World
Scientific, Singapore, 2001); M. Bordag, U. Mohideen,
and V. M. Mostepanenko, Phys. Rep. 353, 1 (2001);
M. Bordag, G. L. Klimchitskaya, U. Mohideen, and
V. M. Mostepanenko, Advances in the Casimir Effect,
International Series of Monographs on Physics (Oxford
University Press, Oxford, 2009).

[4] A. P. Balachandran, G. Bimonte, K. S. Gupta, and A. Stern,
Int. J. Mod. Phys. A 07, 4655 (1992); 10, 1969 (1995);
N. Acharyya, A. P. Balachandran, V. E. Díez, P. N. B.
Subramanian, andS.Vaidya, Phys.Rev.D94, 085026 (2016).

[5] M. Asorey, A. Ibort, and G. Marmo, Int. J. Mod. Phys. A 20,
1001 (2005); M. Asorey and J. M. Munoz-Castañeda, J.
Phys. A 41, 304004 (2008); M. Asorey, D. Garcia-Alvarez,
and J. M. Munoz-Castañeda, J. Phys. A 39, 6127 (2006); 40,
6767 (2007); A. P. Balachandran, L. Chandar, E. Ercolessi,
T. R. Govindarajan, and R. Shankar, Int. J. Mod. Phys. A 09,
3417 (1994); M. Asorey and J. M. Munoz-Castañeda, Nucl.
Phys. B874, 852 (2013); M. Asorey, A. P. Balachandran, and
J. M. Perez-Pardo, Rev. Math. Phys. 28, 1650020 (2016).

[6] T. R. Govindarajan and R. Tibrewala, Phys. Rev. D 83,
124045 (2011); T. R. Govindarajan and V. P. Nair, Phys.
Rev. D 89, 025020 (2014); T. R. Govindarajan and R.
Tibrewala, Phys. Rev. D 92, 045040 (2015).

[7] D. N. Kabat, Nucl. Phys. B453, 281 (1995); A. P.
Balachandran, L. Chandar, and A. Momen, Int. J. Mod.
Phys. A 12, 625 (1997), and references therein; W.
Donnelly and A. C. Wall, Phys. Rev. Lett. 114, 111603
(2015); Phys. Rev. D 94, 104053 (2016); H. Casini and
M. Huerta, Phys. Rev. D 93, 105031 (2016); C. A. Agon,
M. Headrick, D. L. Jafferis, and S. Kasko, Phys. Rev. D 89,
025018 (2014); H. J. Schnitzer, arXiv:1611.03116; A.
Agarwal, D. Karabali, and V. P. Nair, Phys. Rev. D 96,
125008 (2017).

[8] J. Fröhlich, G. Morchio, and F. Strocchi, Ann. Phys. (N.Y.)
119, 241 (1979); Phys. Lett. 89B, 61 (1979); J. Fröhlich,
Commun. Math. Phys. 66, 223 (1979); D. Buchholz,
Commun. Math. Phys. 85, 49 (1982); Phys. Lett. B 174,
331 (1986).

[9] A. P. Balachandran, A. de Queiroz, and S. Vaidya, Int. J.
Mod. Phys. A 30, 1550064 (2015); A. P. Balachandran, S.
Vaidya, and A. R. de Queiroz, Mod. Phys. Lett. A 30,
1550080 (2015); A. P. Balachandran, Mod. Phys. Lett. A
31, 1650060 (2016); A. P. Balachandran and V. P. Nair,
Phys. Rev. D 98, 065007 (2018).

[10] A. P. Balachandran and S. Vaidya, Eur. Phys. J. Plus 128,
118 (2013).

[11] N. K. Glendenning, Compact Stars: Nuclear Physics, Par-
ticle Physics and General Relativity, 2nd ed. (Springer,
New York, 2000).

[12] See, e.g., G. Ross, Grand Unified Theories (Addison-
Wesley Publishing, New York, 1984).

[13] A. P. Balachandran, G. Marmo, N. Mukunda, J. S. Nilsson,
E. C. G. Sudarshan, and F. Zaccaria, Phys. Rev. Lett. 50,
1553 (1983); P. C. Nelson and A. Manohar, Phys. Rev. Lett.
50, 943 (1983).

[14] A. P. Balachandran, G. Marmo, N. Mukunda, J. S. Nilsson,
E. C. G. Sudarshan, and F. Zaccaria, Phys. Rev. D 29, 2919
(1984); 29, 2936 (1984).

[15] P. C. Nelson and S. R. Coleman, Nucl. Phys. B237, 1
(1984).

[16] R. Jackiw and C. Rebbi, Phys. Rev. Lett. 36, 1116 (1976).
[17] E. Fabri and L. E. Picasso, Phys. Rev. Lett. 16, 408 (1966).
[18] See, e.g., C. A. Orzalesi, Rev. Mod. Phys. 42, 381 (1970).
[19] S. Coleman, J. Math. Phys. (N.Y.) 7, 787 (1966).

BALACHANDRAN, NAIR, and VAIDYA PHYS. REV. D 100, 045001 (2019)

045001-8

https://doi.org/10.1016/0370-1573(91)90117-5
http://arXiv.org/abs/hep-th/0011260
http://arXiv.org/abs/hep-th/0011260
https://doi.org/10.1088/0305-4470/39/41/S05
https://doi.org/10.1007/BF01217730
https://doi.org/10.1007/BF01217730
https://doi.org/10.1142/S0217751X92002106
https://doi.org/10.1142/S0217751X92002106
https://doi.org/10.1142/S0217751X92002660
https://doi.org/10.1142/S0217751X92002660
https://doi.org/10.1088/1742-6596/161/1/012001
https://doi.org/10.1016/S0370-1573(01)00015-1
https://doi.org/10.1142/S0217751X92002106
https://doi.org/10.1142/S0217751X95000966
https://doi.org/10.1103/PhysRevD.94.085026
https://doi.org/10.1142/S0217751X05019798
https://doi.org/10.1142/S0217751X05019798
https://doi.org/10.1088/1751-8113/41/30/304004
https://doi.org/10.1088/1751-8113/41/30/304004
https://doi.org/10.1088/0305-4470/39/21/S03
https://doi.org/10.1088/1751-8113/40/25/S21
https://doi.org/10.1088/1751-8113/40/25/S21
https://doi.org/10.1142/S0217751X94001357
https://doi.org/10.1142/S0217751X94001357
https://doi.org/10.1016/j.nuclphysb.2013.06.014
https://doi.org/10.1016/j.nuclphysb.2013.06.014
https://doi.org/10.1142/S0129055X16500203
https://doi.org/10.1103/PhysRevD.83.124045
https://doi.org/10.1103/PhysRevD.83.124045
https://doi.org/10.1103/PhysRevD.89.025020
https://doi.org/10.1103/PhysRevD.89.025020
https://doi.org/10.1103/PhysRevD.92.045040
https://doi.org/10.1016/0550-3213(95)00443-V
https://doi.org/10.1142/S0217751X97000578
https://doi.org/10.1142/S0217751X97000578
https://doi.org/10.1103/PhysRevLett.114.111603
https://doi.org/10.1103/PhysRevLett.114.111603
https://doi.org/10.1103/PhysRevD.94.104053
https://doi.org/10.1103/PhysRevD.93.105031
https://doi.org/10.1103/PhysRevD.89.025018
https://doi.org/10.1103/PhysRevD.89.025018
http://arXiv.org/abs/1611.03116
https://doi.org/10.1103/PhysRevD.96.125008
https://doi.org/10.1103/PhysRevD.96.125008
https://doi.org/10.1016/0003-4916(79)90187-8
https://doi.org/10.1016/0003-4916(79)90187-8
https://doi.org/10.1016/0370-2693(79)90076-5
https://doi.org/10.1007/BF01197187
https://doi.org/10.1007/BF02029133
https://doi.org/10.1016/0370-2693(86)91110-X
https://doi.org/10.1016/0370-2693(86)91110-X
https://doi.org/10.1142/S0217751X15500645
https://doi.org/10.1142/S0217751X15500645
https://doi.org/10.1142/S0217732315500807
https://doi.org/10.1142/S0217732315500807
https://doi.org/10.1142/S0217732316500607
https://doi.org/10.1142/S0217732316500607
https://doi.org/10.1103/PhysRevD.98.065007
https://doi.org/10.1140/epjp/i2013-13118-9
https://doi.org/10.1140/epjp/i2013-13118-9
https://doi.org/10.1103/PhysRevLett.50.1553
https://doi.org/10.1103/PhysRevLett.50.1553
https://doi.org/10.1103/PhysRevLett.50.943
https://doi.org/10.1103/PhysRevLett.50.943
https://doi.org/10.1103/PhysRevD.29.2919
https://doi.org/10.1103/PhysRevD.29.2919
https://doi.org/10.1103/PhysRevD.29.2936
https://doi.org/10.1016/0550-3213(84)90013-0
https://doi.org/10.1016/0550-3213(84)90013-0
https://doi.org/10.1103/PhysRevLett.36.1116
https://doi.org/10.1103/PhysRevLett.16.408.2
https://doi.org/10.1103/RevModPhys.42.381
https://doi.org/10.1063/1.1931207

