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The boundary values of the time component of the gauge potential form externally specifiable data
characterizing a gauge theory. We point out some of their consequences such as reduced symmetries,
bulk currents for manifolds with disjoint boundaries and some nuances of how the charge algebra is

realized.
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I. INTRODUCTION

Boundary conditions on fields may be viewed as the
idealization and simplification of the dynamics of these
fields on the boundary of the spacetime region under
consideration. They are also necessary, from a mathemati-
cal point of view, to make the problem well defined with
the required self-adjointness properties for observables.
Therefore, not surprisingly, the impact of boundary
conditions on physical phenomena has been the subject
of many investigations. In quantum field theory, the most
extreme example of the importance of boundary condi-
tions might be topological field theories where the entire
dynamics is played out on the boundary [1]. Droplets
of fermions in the quantum Hall effect, for which the
effective theory is topological and the dynamics is reduced
to that of the edge currents, is a physical realization of
this [2]. A more standard, but still vivid, example of
boundaries and their impact on bulk phenomena is the
Casimir effect, which has been calculated for many
different geometries and experimentally verified for many
instances as well [3]. Among other examples of recent
research interest we mention the possibility of edge states
in gauge theories [4], bound states allowed by the general
von Neumann theory of self-adjoint extensions [5,6], the
role of boundary conditions and edge states for questions
of entanglement in gauge theories [7], etc.

Closely related to the issue of boundary conditions is the
asymptotic behavior of fields and its impact on realizations
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of symmetry. It was recognized long ago that Lorentz
transformations cannot be unitarily implemented on
charged sectors of quantum electrodynamics due to the
infrared behavior of the massless photon fields [8]. While
this does not have any immediate impact on everyday
laboratory applications of electrodynamics, since one can
use the charge zero sector for such considerations, this does
highlight nuances of how symmetry is realized in the
theory. More recently similar effects have been analyzed in
the context of gravitational fields. Infrared effects can also
have an impact on the realization of symmetries other than
Lorentz transformations as well. Obstructions to the unitary
realization of color transformations or charge rotations in
a non-Abelian gauge theory have been pointed out in [9].
Again, this may not have any immediate impact on
calculations in the realistic case of QCD, for which the
asymptotic states are expected to have zero color charge,
but this does show the subtleties of symmetries in a gauge
theory.

Another special feature is that, unlike theories of scalar
or spinor fields, in a gauge theory, there is a field, namely
the time component of the gauge potential A, whose sole
effect is via its boundary values, the physical consequences
of the bulk values of the field being wiped out by gauge
invariance, i.e., by the Gauss law imposed on physical states.
The complete elimination of A, as done, for example, in the
so-called Ay = 0 gauge, is too restrictive since the boundary
value of this field is actually gauge invariant, in the sense
of commuting with the constraints due to gauge symmetry.
In this paper, we analyze this situation for a non-Abelian
gauge theory pointing out some interesting features and
physical implications.

In the next section we set up the basic framework for
our discussion. The results are in Sec. III, divided into
three subsections covering manifolds with disjoint boun-
daries, magnetic monopoles and realizations of the charge
algebra.
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I1. BASIC FRAMEWORK

As mentioned in the introduction, we will be focusing on
the effects of nonzero boundary values for fields. To set the
stage, we start with a brief discussion of the canonical setup
for gauge theories. We are primarily interested in non-
Abelian gauge theories, ignoring matter for the present.
Thus the Lagrangian is that for the Yang-Mills theory and is
given by

LR - (FeF), (1)

1
L= Te(F, F") = 5 (FiFs,

T2
where the fields strength tensor is, as usual, given by

Fo; = (=iT)F; = OpA; — 0:Ao + [Ag, Ail,

Fij = (—iT*)F{; = 0;A; — 0;A; + [A;, Aj]. (2)
Here A and A; are Lie-algebra valued fields of the form
Ay = (—iT*)A§ and A; = (—iT“)A?, respectively; {7°}
form a basis for the Lie algebra [which will be SU(N)
for most of our discussion]; they may be taken as hermitian
matrices obeying the normalization Tr(T*T?) = 5.

As is well known, the canonical momentum for A; is
given by E; = F;, while the canonical momentum for A,
which we may denote by E|, is zero. This is to be viewed as
a constraint imposed on the phase space made of all four
fields and their momenta. The Hamiltonian is given by

H = /d3x(—Tr(E,-(90Ai + E060A0> - E)
1
= / &x [5 (ESE + BYBY) + E¢(D;Ag)* + E4O° |,

(3)

Since there is freedom of adding terms proportional to the
constraints in the Hamiltonian, we can view JyA, as an
arbitrary Lie-algebra valued function. Put another way,
there is nothing in the theory which determines JyAg;
we denote this quantity by ® in (3). If we eliminate the
constraint £, and its corresponding conjugate constraint in
the sense of Dirac’s theory of constraints, this is equivalent
to specifying JypA,. Another comment regarding the
E;D;A, term is also in order. It arises from the canonical
definition of the Hamiltonian and we have not done any
integration by parts. This is important since we want to
analyze boundary values and their effects. Secondly, the
energy-momentum tensor for the Yang-Mills Lagrangian is
given by

Tyzzés
H 59’“’

where S is the Yang-Mills action for an arbitrary metric g,
and after variation we set the g,, to be the Minkowski

1
= TH(F{F,) ~ 90 TP, (4)

metric. If we now identify the Hamiltonian as the integral of
T oo, then we do not have the E;D;A, term. Such differences
between the canonical definition and what is defined by
variation with respect to the metric can arise for fields
which transform nontrivially under the Lorentz group. (We
are referring to the Belinfante terms which are due to spin
effects.) The Hamiltonian we are using in (3) is the standard
canonical Hamiltonian.
We now define the operator

o) = [ exeiDuy == [ @xte(ED ). (5)

where u = (—iT*)u“ is a test function, with p being

R-valued functions. There are three types of test functions

to be considered.

(1) If u vanishes at spatial infinity, ie., if u* - 0 as
|X| = o0, O(u) becomes the Gauss law operator G(A).
The physical states are selected by the condition that
they are annihilated by G(A). (We use the letter A for
those functions g which vanish at infinity.) Thus
physical states obey

G(A)|phys) = /d3XTr(EiDiA)|PhYS>
_ / dxTr(~D,E)Alphys) =0.  (6)

(2) Now consider test functions y-»0 as |X| - oo, where
the symbol + stands for “does not necessarily go to.”
The first situation is the case when p does not vanish at
infinity but is a constant, independent of angles, as
|X| = co. We then define

Go = {set of gauge transformations g:
R3 — SU(N), such that g(x) — const,
not necessarily 1 as |X| - oo},

Gg = {set of gauge transformations g:
R3 — SU(N), such thatg (x) — 1

as |X| - oo}.

Thus G(A) generate the group G§°, while the Q(u)’s
generate the group Gy. The quotient G,/Gy° is the
global group G, which we take to be SU(N) for most
of our discussions.

(3) More generally, we can have the situation where the
test functions u — the angle-dependent limit; i.e., it is
a nonconstant function on the two-sphere at spatial
infinity. In this case, the operators Q(u) generate the
so-called Sky group [10].

The operators Q(u) obey the commutation algebra

[Q(u1), Q)] = =iO([p1, p2])- (7)
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This is easily verified using the canonical equal-time
commutation rules

[A%(3). B} ()] = 167569 (% - 7). (8)

For the case of ; being a constant at spatial infinity, and on
states obeying the Gauss law constraint (6), (7) reduces to
SU(N) Lie algebra.

We now briefly go back to the point made after (3) about
0pAg. The constraint Ey ~ 0 is one of the primary con-
straints in the theory. Its time evolution can generate a
secondary constraint. Consider the time evolution of E
smeared with a test function ©, with ®+0. The commu-
tator with the Hamiltonian is given by

{ / d3xTr(E0®),’H] — i0(®). )

This shows that the imposition of the constraint
JTr(Eg®)|y) =0 on the states would in turn require
the vanishing of Q(®) where ®-»0. In particular, this
would mean that the charge carried by such states [mea-
sured by Q(®) for constant ®] could be zero. Thus charged
states would be ruled out by fiat, if we impose E, ~ 0 with a
® which does not vanish at infinity. In eliminating the
canonical pair E;, O, the boundary value of ® = JyA,
should not be eliminated if we allow charged states. This is
consistent with the fact that the boundary values of A, and,
hence, its time derivative can be chosen freely. They are
externally chosen parameters which characterize the theory.

If ® in (9) does go to zero at infinity, then we have the
Gauss law operator on the right-hand side, which should
annihilate physical states. Therefore there is no difficulty or
inconsistency with requiring [ Tr(Ey®) ~ 0 for test func-
tions which vanish at spatial infinity.

The conclusion is that, in general, the theory does allow
for nonzero values for A7 (and its time derivative). This is
what we propose to analyze in subsequent sections.

So far we have argued that the mathematical framework
allows for a nonzero Ay at spatial infinity. We will now give
two physical contexts where this does arise, before pro-
ceeding with further analysis.

First note that Aydt is the same in both Lorentzian and
Euclidean cases as both A and dt acquire i’s in passage to
Euclidean signature. This means that some of the argu-
ments about Aydt can be directly applied to finite temper-
ature field theory where we have periodicity in Euclidean
time, with period g = 1/T.

Now the gluons transform according to the adjoint
representation AdG, which for QCD is Ad(SU(3)). The
fundamental group of AdG is I1;(Ad(SU(N))) = Zy, so
there are loops of gauge transformations §(x, r) which as ¢
varies from O to f = 1/T wind from 1 to 1 nontrivially.
[We may think of ¢ as (Euclidean) time, so that the loop is
traced out as time evolves.] In SU(N), the image of this

set of transformations goes from ¢(X,0) = 1to g(x, ) = z,
where z is an element of Zy; i.e., z € (1, > /N, /N,
.., @2N=D7i/NY 5 1 where 1 is the N x N identity matrix.
Such a curve in SU(N) cannot, in general, become a
constant in 7 as |X| — oo in g(X, ¢) since the end points of
the curve are fixed to be 1 and z # 1. Hence

lim dyg(X, 1) #0

identically. (10)
[¥[—o0

Thus, even if we start with A’ = 0, a gauge transformation

by such an element can lead to a nonzero Af =

g 19y -0 7 0. It is well known that such gauge trans-

formations are important in finite temperature field theory

with the Polyakov loop

L = Trexp (i Aﬂ drAy (X, t)) (11)

considered as an order parameter. There are also indications
from numerical work that the expectation value of L need
not be the identity at high temperatures, consistent with the
possibility that AJ® can be nonzero.

Our second example is a classic one, the Josephson
effect. The basic setup here is that one has a normal
conductor sandwiched between two superconductors. The
normal material constitutes a spacetime region with disjoint
boundaries. Thus the electrons in the normal material can
be described by electrodynamics for a region with boun-
daries. Generally we can have different phases for the
many-body wave function in the two superconducting
regions. The phases of the electron at the boundaries of
the normal material have to be matched to these. The
difference of phases leads to the Josephson current, with
the time derivative of the phase acting as the value of A
on the boundary. This is another case of a gauge theory in
a physical context with nonzero values of A, on the
boundaries.

III. PHYSICAL IMPLICATIONS OF
BOUNDARY DATA

We now consider some physical implications of non-
trivial boundary data. We will consider two examples: a
field theory defined on a manifold with disjoint boundaries,
and chemical potentials for non-Abelian charges in the
presence of magnetic monopoles.

A. Manifolds with disjoint boundaries

The simplest case would be to start with a non-Abelian
gauge theory, say, QCD, in 1 4 1 dimensions, with the real
line as the spatial manifold. In this case we have disjoint
boundaries corresponding to |X| - +oo. Let A7* denote the
two boundary values of Ag; i.e., Ay = AT® as |X| » +oo,
respectively. We can then decompose A as
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Ay = AL + A7,
A AZ

AF -0 as [X| >F oo. (12)

as |X| - too,

This is essentially a decomposition of A, via a resolution of
unity over the real line. The specific choice of A% is not
important; different choices with the same boundary values
differ by terms proportional to the Gauss law constraint.
In what follows, we will, for simplicity, consider the case with
GOA(T — 0 as |X| » +o0; i.e., the boundary values of A are
taken to be independent of time. For physical states |phys)
which obey the Gauss law, we have

0(Ag) = Q(Ag) + Q(A7).
[Q(A). Q(A7)][phys) = 0. (13)

Effectively we have two operators Q(A7) associated to
charges defined via fluxes on the two disjoint boundaries.
Since the Hamiltonian has a term Q(A,), once a choice of
AZ® has been made, the residual symmetry of the theory is
given by the common stability group of Q(A7 ). In general,
the stability groups for these two operators Q(Ag) can be
different. Transformations corresponding to the charge
algebra, with parameters 6, are generated by Q(6) =
J Tr(ED@). Analogous to how A, was decomposed, we
can write

0=0"+0",
0F — 6= as |X| > +oo,

0f -0 as |X| >F oo. (14)

This leads to two copies of the algebra of charges, corre-
sponding to Q(6) and Q(67).

As mentioned above, the boundary values and hence the
stability groups of Q(AFoo) can be different for different
disjoint components of the boundary. Two examples of this
for SU(3) would be the choices

AJ® = af®diag(1,1,-2), AF®
AJ® = aj*diag(1,1,-2),

= ag®diag(1,-2,1),
Ay® = by>diag(1l,-1,0).
(15)

One of the physical consequences of such unequal
choices on disjoint boundaries is that it can lead to a
current. This is similar to how a tunneling current arises in
the Josephson junction mentioned earlier. To demonstrate
how this can happen, we consider the theory with the
addition of fields which carry nonzero charges. For
simplicity, we take them to be Dirac fields, so that the
action written out in first order form is

|
S= / [E?A? 5 (E{E{ +B{B}) — E{(D;A)" + iy, Oow
— iy Oy + ifryoAgy — iy A | (16)

We can now write Ay = ¢g~'¢ for some group element g
which is constant on each connected piece of the boundary
at fixed . Using this we can rewrite the action (16) as

‘a 1 . .
§= / [5?Ai =5 (EXE! + BIBY) + ipyodow — iy iy
+ Wpyog~ gw — iwpyi(g7 Aig + g7 019w | (17)
where

A =gAig" = 0,997" (18)

with £¢ as its canonical conjugate, and B and D are
constructed using A. We can take A; and &; as the basic
phase space variables for the gauge field. For this choice of
variables, the g dependence is transferred entirely to the
matter terms. The dependence of the partition function or
the functional integral on the boundary values can be
obtained by varying g. With ¢~'6g = —it*56“, we find

3 = 05 + [ |-(D0su)* + (000"

t

f
5t = /V 11770#‘1//59“}

4

- / l/_/]/it“l//59“dSidt,
av

Jo = wrotw, Ji=wyity. (19)
We are considering the fields in a spatial volume V with the
time interval as [t;, #;]. The boundary OV can have disjoint
components. The last set of terms in (19) will vanish in the
classical case by current conservation. In the quantum
theory, the conservation law, which follows from variation
of the action, can be imposed as an operator equation inside
matrix elements or at the level of the integrand of the
functional integral. To see this in more detail, consider the
vacuum-to-vacuum transition amplitude for a set of fields
generically denoted as ¢:

Z = (0[0) = /[dfp}‘ya[fﬂf,ff]eisw"f’l’)q'o[(ﬂi,fi], (20)

where § is the action evaluated for field configurations
@(x.1) with (X, 1) = @y, p(X,1;) = ;. We integrate over
@y and ¢; as well with the wave functions as the weighting
factors. Consider the functional derivative with respect to
the bulk values of the fields, which keep ¢, and ¢, and the
spatial boundary value of (X, ) fixed. The vanishing of the
integral of a total derivative then leads to the identity
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0= /[dfﬂ]lyé[(/’f, ff] {%els} Yole;. 1]
=i / (dg) %5y, tf]efsgj%m g @

(If we have sources, there will be additional terms corre-
sponding to their transformation; this is standard procedure
for the derivation of Ward-Takahashi identities.) This
shows how the bulk equations of motion can be realized
in matrix elements. For the more general variation of the
vacuum-to-vacuum amplitude with no sources, we can then
write

oz
004

7 =7+ / 50
- /[d(p]q% [py + S0y, tf]ei<s+5s>‘yo [@; + 6¢;. 1]

= / [do)|¥5lps + S0p. 17]e™S Sty [g; + S, 1;].
(22)

The surface terms in 5S¢ on the two time slices at 7, and ¢;
can be absorbed into the change of the final and initial
wave functions, since the wave functions transform as
8Y(p, 1) = i[6Sgut)y ;P (@, 1). Thus, upon using (19) and
(21), we can simplify (22) as

oZ . * i a spa
/59a59a__l/[d(p]‘{lo{(pf’tf}eS[ZFa&ga] TO(@ivti)v
(23)

where F§ = fav(, J¢dS; is the flux of the current across

each connected component (indexed by «) of the spatial
boundary. These arguments go through in Euclidean
signature with Z being the partition function.

Now consider calculating the partition function (or the
vacuum-to-vacuum amplitude) Z using the action as given
in (16). The result will obviously depend on the boundary
values of A, or, equivalently, on g. So the variation of Z
with respect to g is, in general, not zero. The second way of
calculating involves using the action (17). In this case, the
dependence of Z on g is given by the expectation value of
the current fluxes as in (23). The compatibility of these two
ways of calculating Z tells us that if the functional integral
or partition function depends on the boundary values of A,
then there must be current fluxes across the boundaries.
Notice that, with disjoint boundaries, we can vary g
independently on the different connected components,
and so the individual fluxes cannot be zero.

Although we started with the 1 4 1-dimensional case,
this part of the discussion [starting with (16)] is general and
applies to theories in higher dimensional manifolds with
disjoint boundaries. To summarize, if we have different

values of A, on different disconnected pieces of the
boundary, there will be current fluxes in the bulk of spatial
volume. We also note that if the operators which commute
with the boundary data form a non-Abelian algebra, in the
quantum theory, they are associated with a multiplicity of
edge states. As these commutants can differ at the different
edges, these multiplicities also can differ.

We have already remarked on the similarity of what we
do here and the tunneling current in a Josephson junction.
A physical situation where our arguments for the non-
Abelian case would apply is for neutron stars. The general
expectation is that in the interior of a neutron star there are
concentric layers of hadronic matter in different phases
[11]. These include pure quark phase, quark slabs, etc.
The interfaces of such regions function as the disjoint
boundaries of our discussion above. It is difficult to make
more specific predictions at this stage, since the physics of
the hadronic phases in the neutron star is still not well
understood.

B. Magnetic monopoles

In the previous example, we considered A, to be a
constant on the boundary. But there can be topological
obstructions to this choice. The simplest example which
can illustrate this is the case of a background corresponding
to the ’t Hooft—Polyakov monopole. Recall that the Higgs
field @ in this case has the asymptotic behavior

Do = OF(R) = f57- (%), (24)

where the winding number of the map £ — (%) is the
monopole charge and f¢° is a constant. [z¢ are the Pauli
matrices, viewed as the generators of the Lie algebra
of SU(2).]

The Hamiltonian (3) has the term Q(A,) in addition to
the usual bulk terms. The boundary value of Ay must be
such that the Hamiltonian commutes with the Higgs field,
so that the value of the Higgs field at spatial infinity is not
changed by time evolution. This is needed for the chosen
field configuration to correspond to a sector with sponta-
neously broken symmetry (and a static monopole field).
Specifically, we must require that

[O(Ap), @50 = 0. (25)
If A§°(%) is the boundary value, i.e., Ag(X) 5o = AF (%),
the requirement (25) leads to

AP (%) = aF7 - §(2), (26)

where ag° is a constant. Thus we cannot choose A to be a
constant on the two-sphere at spatial infinity; it depends on
X as indicated. AP (X) may be viewed as the chemical
potential for non-Abelian charges in the presence of the
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monopole. The term in the Hamiltonian to be used to define
the partition function for a system with finite charge is thus

0(4,) = / PATH(E,D Ag) 27)

with A (£) as in (26). On quantum states, because of the
Gauss law, Q(A,) depends only on the equivalence class
[Ao]. Thus if A}’ € [Ao], then (A" = AY)5i-00 = O.

An additional feature or nuance associated to this can be
seen by considering the case of the grand unified SU(5)
theory [12], broken down, as usual, to the standard model
gauge group. In this case, the Higgs field @ belongs to the
representation 24 of SU(5); this may be viewed as a
traceless 5 x 5 matrix. In the nonmonopole sector, it breaks
SU(5) to H=[SU(3) x SU(2) x U(1)]/Zs; its asymp-
totic value on the two-sphere at spatial infinity is of the
form

3 3
O® = p>di L1L,L,—=,—=), 28
pang(L11-3-3) 9

where ¢* is a constant. The 5* matter multiplet is
(d§,ds,dS,e”,v,);. Thus, we see clearly that (28) leaves
color rotations of the three d“’s invariant, and similarly for
the SU(2) rotations on (e,v,). Defining T3 = 1diag
(0,0,1,—1,0), we can write the asymptotic value of the
field as

d)°°—¢°°ET3+diag<1,1,—%,—%,—%>} (29)
The reason for writing it this way is that we can regard the
SU(5) monopole as the "t Hooft—Polyakov monopole of an
SU(2) subgroup acting on, say, (d5, e~) broken down to a
U(1). Thus, for a generic monopole ansatz, the asymptotic
value of the Higgs field can be obtained by rotating (29)
over the sphere SZ at infinity. In the lowest monopole

sector, it is given by
1 1 3
‘1"1"5)]- (30)

For a general winding number solution, we can replace £ by
$(%) in (30) where $(£) is as in (24).

The SU(5) monopoles are non-Abelian. From the
structure of the spontaneous symmetry breaking, it would
seem that one can introduce color SU(3) rotations and
SU(2) x U(1) rotations as collective coordinates or moduli
whose quantization would convert the classical solution
into a suitable multiplet of H = [SU(3) x SU(2) x
U(1)]/Zs. However, it is known that this cannot be done
[13]. There is a topological obstruction, and typically, in
the monopole sector, the unbroken subgroup H' is smaller
than H and depends on the choice of the monopole

5
D®(X) = ¢ [ET-f—}-diag(l,l,

solution. For the asymptotic behavior given in (30), the
unbroken group is H' = U(2) x U(1) x U(1). The full
theory is discussed in [14,15].

Now consider a gas of gluons, W’s and other particles
carrying non-Abelian charges in the presence of a monop-
ole characterized by, say, (30). For a statistical distribution
of these particles with nonzero charge, we need the
chemical potential. However, as mentioned above, it must
commute with the Higgs field of the monopole. So AY, to
be used as the chemical potential, can be any element in the
Lie algebra of U(2) x U(1) x U(1).

The older work [13—15] shows the topological obstruc-
tion to color and SU(2) rotations of the monopole. The
conclusion of the present argument is that this breakdown
of color in the presence of such monopoles applies also to
forming statistical distributions of the charged particles on
this background.

Regarding the statistical distributions of particles, it may
also be interesting to note that some of the particles can
undergo a change of statistics. Notice that the Higgs field in
(30) is invariant under a simultaneous rotation of £; and T';.
This means that the angular momentum operator in this
background will be a combination L; 4+ S; + T;, where L;
and S; denote the orbital and spin angular momentum
operators, respectively. This is the well-known “spin from
isospin” in a monopole background [16]. For the present
context this means that the particles corresponding to
(d§, e”) will change statistics. Many of the gauge bosons
become massive at the scale of SU(5) breaking. The gauge
particles which remain massless at this stage will retain
their statistics since they transform as the adjoint repre-
sentation of the charge algebra and hence the contributions
from 7; will be integer valued.

C. The realization of the charge algebra

We will now make some comments on how the charge
operators act on the states, i.e., on the nature of the
representation of the charge algebra. These statements are
based on the Fabri-Picasso [17] theorem and are basically
the application of that result to the present context.

We note however that these theorems require the
existence of a mass gap separating vacuum and the excited
states [18]. There is no rigorous proof that there is such a
mass gap in non-Abelian gauge theories.

Consider the charge operators given in (5). The
Hamiltonian has a term Q(A,) and we have the commutation
rule [Q(u), H] = —iQ([u, Ag]). By the Gauss law, only the
boundary value of the commutator [u, Ay] is relevant when
this relation acts on physical states. Thus the commutant of
A{ in the Lie algebra defines the symmetry group of the
problem, which we will refer to as G4, for brevity.

The momentum operator P; is a crucial ingredient for the
Fabri-Picasso theorem, so it is useful to consider the
expression for it in our case. Explicitly,
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_ 3
P, = /d XE4FS, (1)
If &; is a constant vector, we can write

abi = [ exicons - [ @amia-g. ()

The last term will generate a gauge transformation with
parameter A - &, if we take A; to vanish at the spatial
boundary. It is then clear from the first term that P;
generates translations on all gauge-invariant quantities or
on operators acting on physical states. From the commu-
tation rule (8), we can easily check that

[Q(u). Pi] = 0. (33)

It should be emphasized that this relation holds even for
functions y which do not vanish on the spatial boundary or
spatial infinity. No integration by parts or discarding of
boundary terms is needed.

We also note that the charge operator Q(u), with a
constant value for y at the boundary, can be written in terms
of a density using the Gauss law. On physical states, we can
write

On)iphys) = §uEfdS fphys). (34
Integrating u¢(V - E* + fe*APE¢)|phys) =0 over all

space and taking u“ to be a constant equal to the value
on the boundary, we find

O(u)|phys) = — / Px(u fAYES) Iphys)
_ / &7 (x)|phys). (35)

We can now see the Fabri-Picasso theorem for this case as
follows:

(0179(x)Q(u)[0) = (0]e'**Jo(0)e™"*Q(u)[0) =0 (36)

using (33) and P;|0) = 0. This immediately gives

(010(x) Q()[0) = / x(017(0)0 (1) 0)

= const X /d3x

= const X 0. (37)

This result shows that either Q(y)|0) = 0 (corresponding to
the vanishing of the constant in this equation) or the state
Q(u)|0) does not exist as it is not normalizable.

So far, this discussion is similar to what happens with
spontaneous symmetry breaking. But for us, there is an

additional condition because the Hamiltonian contains a
term which is Q(Ag). Thus H|0) produces a term Q(A)|0)
and if this is not normalizable, the vacuum state will not be
in the domain of the Hamiltonian. So the only physically
sensible choice is Q(A()|0) = 0. Notice that this also tells
us that the vacuum energy is not shifted by the presence of
the term Q(Ap). Now consider those Q(u) which weakly
commute with Q(A,), with u # A,. These elements, along
with Q(A() generate the subgroup G, . For these Q(u),
there is no real restriction; either choice [Q(p)|0) =0 or
O(p)|0) # 0] is possible. Thus we can have a situation
where G, is fully realized as a symmetry or partially or
fully broken spontaneously to the U(1) group generated
by Q(Ay).

Now let us turn to the choices of u with [Q(u),
0(Ag)] = —iQ([u, Ag)) # 0. These would generate ele-
ments of the gauge group G which are not contained in
G,, and hence are not symmetries of the theory. Again,
there are two possibilities: either Q(u)|0) =0 (with
[u,Ay] # 0) or its action on |0) is not defined following
the argument given above. Coleman’s theorem [19] would
suggest that the case Q(u)|0) = 0 can lead to additional
symmetries and hence should be ruled out since all Q(u)
which commute with the Hamiltonian have been included
as generators of G, . But it is not clear that the premises of
Coleman’s theorem (which include Lorentz invariance and
the Reeh-Schlieder theorem) are obtained in our case.

To summarize, there is always an unbroken U(1)
subgroup generated by Q(Aj); one may have a larger
symmetry G, , which may be partially or fully sponta-
neously broken down to this U(1). (Since we are focusing
only on the Yang-Mills action, the explicit mechanism for
such a breaking is not manifest; we would have to include
additional charged fields to analyze this.) Transformations
corresponding to elements of the global group G which are
not in G4, are not symmetries of the theory.

Another point of interest is that the term Q(A,) in the
Hamiltonian can lead to energy corrections to the charged
states. Writing H = H, + Q(A,), notice that H, and
0O(A() commute with each other and can be simultaneously
diagonalized. A nonzero AJ can lead to splitting of
degenerate states for the charged particles like gluons,
charge being defined by Q(Ay). We also note that while
there are many issues associated with the implementation
of non-Abelian charge rotations on the charged sector in
general [9], in the present case, we are only dealing with an
Abelian group defined by Q(Ay).
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