Session 2: Security, Privacy and Isolation

HotMobile *19, February 27-28, 2019, Santa Cruz, CA, USA

A Hypervisor-Based Privacy Agent for Mobile and loT Systems

Neil Klingensmith

University of Wisconsin

naklingensmi@wisc.edu

ABSTRACT

We present a design for a mobile and IoT data privacy agent that
lives in software on end devices. Our privacy agent learns and en-
forces a user’s privacy policy across all devices that he manages.
Implemented as a hypervisor onboard the end device, our privacy
agent sits between the device’s hardware and its application soft-
ware. It can inspect, modify, block, and inject I/O traffic between the
device’s main CPU and its peripherals. The key advantage of our
architecture is that, unlike network middleboxes, the hypervisor
can track all I/O transactions in unencrypted form. This makes our
privacy agent potentially much more effective than those that only
monitor network traffic because it can track and modify plaintext
data. Our privacy agent also gives users the ability to impose a
uniform privacy policy across all devices that they manage, which
minimizes the burden and possibility of error that arise when setting
privacy policy on individual devices. Since the notion of per-user
(as opposed to per-app) privacy policy is relatively new, there has
not been much opportunity for researchers to think about how to
define and implement policy on that scale. We propose a method
for learning a user’s privacy policy one time and automatically
implementing it in a context-aware fashion on multiple devices.

CCS CONCEPTS

« Security and privacy — Embedded systems security; Mobile
platform security; « Computer systems organization — Embed-
ded software.

KEYWORDS
Privacy; Mobile Systems; IoT; Hypervisors; Real-time

ACM Reference Format:

Neil Klingensmith, Younghyun Kim, and Suman Banerjee. 2019. A Hypervisor-
Based Privacy Agent for Mobile and IoT Systems. In The 20th International
Workshop on Mobile Computing Systems and Applications (HotMobile ’19),
February 27-28, 2019, Santa Cruz, CA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3301293.3302356

1 INTRODUCTION

Data from IoT devices is particularly vulnerable to intrusion because
it cannot be curated by users in the same way as a social media feed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMobile ’19, February 27-28, 2019, Santa Cruz, CA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6273-3/19/02...$15.00
https://doi.org/10.1145/3301293.3302356

Younghyun Kim
University of Wisconsin
Electrical and Computer Engineering Electrical and Computer Engineering
younghyun kim@wisc.edu

21

Suman Banerjee
University of Wisconsin
Computer Science
suman@cs.wisc.edu

Furthermore, because IoT devices often operate autonomously, we
may forget that they are transacting in troves of our personal data,
much of which is of a far more intimate nature than the cat pictures
and status updates we share on social networks. This problem is
compounded by the fact that users are increasingly interacting
with multiple mobile and IoT devices. When, as many predict, we
are routinely interacting with hundreds of autonomous devices,
the problem of managing the privacy settings for each will be
intractable.

In this work, we examine the possibility of deploying a verifiably
independent privacy agent onboard IoT and mobile devices. It would
implement a user’s personal privacy policy across all IoT devices
that the user manages. This privacy agent, under exclusive control
of the user, can act as an intermediary between the device software
and its cloud services platform. Our agent can inspect the flows
and prune or modify potentially sensitive information before it can
be released to the putatively untrusted cloud.

For users, the benefit of having a privacy agent is that they can
assert control over the way their data is used. Instead of having to
blanketly agree to the service providers’ privacy policy for every
IoT and mobile app, users would have the option of setting their
own privacy policy for their devices.

We propose building a privacy agent that is implemented as a
hypervisor onboard mobile and IoT devices. It lives between the
system’s hardware and its stock app, inspecting, modifying, and
dropping data that is transmitted between the app and its peripheral
hardware devices. Because these peripheral buses typically transmit
data in unencrypted form, our privacy agent has access to data
collected in plain text. Since it can see raw data, our privacy agent
has the opportunity to implement targeted privacy policies that
would not be possible with a network middlebox, which generally
would only have access to encrypted data.

If a user has several devices outfitted with our hypervisor-based
privacy agent, he can set his privacy policy once and allow all
devices to implement it in a context-aware fashion. This would
significantly alleviate the difficulty of deploying and managing
many IoT devices, particularly if they are all different. However,
without the user setting specific policy for each device individually,
the system must infer those settings from a high-level description
of how devices should behave in general. To our knowledge, this
problem of inferring specific policy from a short description has not
been investigated before. We discuss some ways of implementing
this later in the paper.

For any intermediate privacy agent, there is a tradeoff between
ease of deployment and effectiveness that is affected by how closely
coupled it is to the IoT device itself. Existing work on the topic of
intermediate IoT privacy policy has tended toward the more loosely
coupled end of the spectrum because it has been the only approach
with a reasonable hope of widespread adoption.

https://doi.org/10.1145/3301293.3302356
https://doi.org/10.1145/3301293.3302356

Session 2: Security, Privacy and Isolation

Cinch [1] is another system that used a hypervisor to intercept
I/0 traffic for security, not privacy. Cinch intercepts traffic on the
USB bus and redirects it through a virtual network port so standard
networking security measures can be used to validate I/O traffic.
Cinch is mostly about validating I/O traffic to prevent attacks to
the relatively vulnerable USB driver stack. It does not consider the
possibility of selectively anonymizing I/O data which requires (1)
that we make different assumptions about the data and (2) that we
dedicate significant computational resources to anonymization.

Security vs. Privacy. In security, we generally assume that there
are good guys—the users—and bad guys who are trying to disrupt
service or steal (computational resources, data, bandwidth, etc.)
from the users. In privacy, the delineation is not so clear. The as-
sumption of privacy is that users supply data to service providers,
usually of their own volition and in exchange for access to some
service. But the service provider may be overly zealous in collecting
information about users. In privacy, there are not bad guys—there
are only information gluttons. Unlike security, the goal of privacy
protections should not be to cut off the flow of information from
users to service providers but to limit the flow in a way that accept-
able to both user and service provider.

The reason that this seemingly subtle difference matters is that
in privacy measures, if we do not like the way a service behaves,
we cannot necessarily just shut it down as we would in a security
countermeasure. Usually we need to find a solution to allow the
service to continue to operate in some capacity. In this work we
present a practical mechanism for selective data anonymization
which allows the service to continue operating, but it gives users
control over what and how much data they share about themselves.

One important technical challenge is to intercept and modify a
datastream nonintrusively and with low latency.

2 ARCHITECTURE

Our approach is to run IoT end device software inside a specialized
hypervisor. The hypervisor will run on the end IoT device itself.
It will emulate the bare-metal hardware interface provided by the
specific end device so that the software will not know that it is run-
ning inside a hypervisor. A diagram is shown in Figure 1. Hermes
is an IoT-optimized hypervisor that could be used for this purpose.
The IoT privacy agent is either a guest that runs inside the
hypervisor or an external cloud-based service. When it receives
I/O traffic from the hardware, the hypervisor passes the raw data
directly to the privacy agent for anonymization according to the
user’s privacy policy. If the agent is implemented in the cloud, the
hypervisor would stream the I/O traffic over a UDP connection,
allowing for more sophisticated anonymization software at the
expense of latency!. The privacy agent can anonymize the data in
four general ways before returning it to the hypervisor to be passed
to the IoT app:
(1) Passthrough: communication between app and peripheral
proceeds normally without intervention from the hypervisor.
The hypervisor may record salient data to decide if it is
necessary to take a different action.

!We have demonstrated this technique in the lab for video traffic with a few tens of
milliseconds of additonal latency and a low frame loss rate. We will not present the
results of these experiments here.

22

HotMobile *19, February 27-28, 2019, Santa Cruz, CA, USA

(2) Drop: hypervisor drops the communication between app
and peripheral. For example, the hypervisor blacks out the
image from a video camera.

Modify: Hypervisor allows data exchange between periph-
eral and app, but modifies it in transit. For example, the user’s
location as reported by a GPS receiver may be modified to
make the app think that the user is in a different location.
Inject: hypervisor creates fake traffic that appears to be
coming from the peripherals to the app. For example, the
hypervisor on a smart watch may create fake I/O events that
appear to be coming from the accelerometer to spoof the
activity tracker.

The privacy agent can observe all I/O traffic exchanged between
the IoT device software and its peripherals. As traffic flows back
and forth to the peripherals, data can be inspected or modified by
the privacy agent’s peripheral data processing module. The privacy
agent’s mode decision engine selects modes for the data parsing
module to operate in: passthrough, modify, drop, or inject. The
privacy agent’s user interface module provides a mechanism to
allow the users to define policies that will be implemented by the
mode decision engine and peripheral data processing module.

Others have proposed implementing privacy mediators inside
network middleboxes that would inspect (and potentially modify)
network traffic as it traveled between IoT devices and their respec-
tive cloud services [2, 3]. Our approach has two key advantages.
First, it will not break if network traffic is encrypted (which it al-
most surely will be). Second, the hypervisor can control not just
the IoT device’s interface to the cloud but also its interface to its
own hardware. This means that if the user wishes, he could black
out a video stream before it can even be processed by the IoT de-
vice software or anonymize an audio stream to remove personally
identifying information [7].

Because Hermes, unlike IoT device software, is open-source,
users can evaluate for themselves whether they think it is secure
enough to entrust with their data. But if the IoT device manufacturer
cannot be trusted to safeguard the user’s data, how can we be certain
that it does not modify the hypervisor or bypass its data processing
functionality?

One option is to use trusted platform modules (TPMs), which
can perform software integrity attestation. A remote machine that
lives either on an edge device or in the cloud could interrogate the
Hermes-enabled IoT device, using a TPM to validate that the hyper-
visor is intact. Another option is to have users program their own
devices with the hypervisor, similar to rooting an Android phone.
This would remove the possibility of IoT device manufacturers
disabling the hypervisor.

2.1 Hermes

Hermes [6] is a hypervisor for MMU-less microcontrollers that
enables high-performance bare metal applications to coexist with
RTOSes and other less time-critical software on a single CPU. Her-
mes is a single monolithic interrupt service routine that intercepts
all CPU exceptions before they can be processed by the operating
system. Since it is a relatively small piece of code, it should be pos-
sible to verify that it is secure. On boot, the Hermes initialization
code sets up the CPU’s exception table to point to the Hermes ISR.

Session 2: Security, Privacy and Isolation

IoT Device App Privacy Agent Guest

Peripheral Mode User
Data Decision | |Interface
A Anonymizationd { Engine | [Module

:

Hermes Hypervisor

{ { {

| GPS | | Nwk Interface |

| Video Camera |

Figure 1: A diagram of the Hermes hypervisor, including our
privacy agent, implemented as a guest running in parallel
with the IoT device app. The dotted line shows that path tra-
versed by I/O traffic from the hardware to the device’s app.

It then launches the guest operating systems in the ARM CPU’s
unprivileged execution mode. In benchmark tests, we have found
that I/O responsiveness is far more deterministic under Hermes
than under FreeRTOS, the most popular open-source real-time OS.
Depending on the type of I/O event, guests running inside Hermes
may experience higher I/O latency than apps running on the bare
metal (without an operating system or hypervisor), but the increase
is comparable to server and workstation virtualization platforms
like VMWare and Xen.

2.2 Dynamic Taint Analysis

We propose using dynamic taint analysis similar to Panorama and
TaintDroid [4, 9] to track how data flows from I/O peripherals to
network connections or storage on IoT devices. Using the hyper-
visor’s ability to inject data into the stock IoT or mobile app, we
can insert a taint source at the hardware level and track the tainted
data to a destination of interest.

Taint propagation, the process by which we track tainted data
as it moves through memory buffers, relies on the hypervisor’s
ability to trap when a tainted memory region is accessed. Memory
protection units (MPUs), available on higher-end ARM Cortex-M
CPUs, would allow us to generate an exception when the IoT or
mobile app accesses a tainted buffer.

MPUs are like extremely simple versions of memory manage-
ment units. Their only function is to generate a memory protection
exception when a process accesses a memory region that it does
not own. Region permissions can be configured by the hypervi-
sor to cause an exception any time the stock IoT or mobile app
accesses a tainted buffer. The exception could then be handled by
the hypervisor to record the access.

Using dynamic instruction analysis, the hypervisor would be able
to generate a taint graph that shows how tainted data propagates
from source to sink. This would be an additional tool that could be
used to determine whether an app’s behavior is consistent with the
user’s privacy policy.

2.3 Deploying a Virtualized Privacy Agent

Since the Hermes privacy agent lives in the IoT device’s main
memory, it must be built by someone who is technically proficient

23

HotMobile *19, February 27-28, 2019, Santa Cruz, CA, USA

(b) Binary With

(a) Stock Binary Hermes Privacy Agent

Stock Vector Table Hermes Vector Table
Stock Program Stock Program
Instructions Instructions
Stock RO Data Stock RO Data

Stock Vector Table

Hermes Program
Instructions

Hermes RO Data

Figure 2: A diagram of the IoT device’s software binary, be-
fore and after adding the Hermes hypervisor.

enough to reflash an IoT device. For average users, installation be
as easy as rooting a phone if the device has appropriate firmware
loading capabilities. The process of building the rooted firmware
image is the more technically challenging piece, and that is what
we discuss here.

Because of the way that the ARM Cortex-M CPU handles some
privilege violations, the IoT software’s kernel may need to be
patched to be compatible with Hermes. In the ARM Cortex-M core,
some privileged instructions, when executed in user mode, will not
cause an exception and will instead complete as a NOP instruction.
For example, the mrs and msr instructions? are classified as priv-
ileged instructions, but when they are executed in unprivileged
mode, they fail silently: the register write is not committed, and the
processor continues normal execution.

The problem is that if a guest OS tries to modify the processor
state with one of these privileged instructions, that state modi-
fication cannot be registered by Hermes since it does not cause
an exception. The privileged instruction will complete like a nop
instruction without modifying the CPU state. Critical CPU state
changes like disabling interrupts will not work as intended.

This can cause some important changes to the CPU state to
go unregistered (see reference [6] for details). As a workaround,
we must patch the OS kernel, adding undefined instructions di-
rectly following the privileged instructions in order to be sure the
hypervisor has an opportunity to trap the privileged instructions
and emulate them. When the hypervisor encounters an undefined
instruction exception, it will search backward in the instruction
stream for an mrs or msr instruction and emulate it. If we run an
unpatched kernel inside the hypervisor, it will crash because the
intended CPU state modifications will not happen as intended.

To do this, we would need to disassemble the stock binary and
insert undefined instructions following the problematic ones. This
would also require some branch targets and read-only data refer-
ences to be relocated.

On the ease-of-deployment spectrum, our solution tends toward
the more tightly-coupled end, making it more difficult to deploy
than a middlebox approach. To ensure wide-scale adoption, it would
be best for our privacy agent to be flashed into firmware by the

mrs and msr are most frequently used to enable/disable interrupts and modify stack
pointers in an RTOS.

Session 2: Security, Privacy and Isolation

device manufacturer, either during factory programming or a field
update.

However, like rooting an Android phone, it would be possible
for users to reflash their own IoT and mobile devices. We envision
the process of user programming the Hermes-based privacy agent
to work as follows:

(1) Read the contents of the IoT device’s main program memory
into a binary file. This contains the device software’s inter-
rupt vector table, program instructions, and read-only data
(Figure 2 (a)).

(2) Copy the stock vector table to a different location in the
binary image. Replace it with the Hermes vector table®. Ap-
pend the Hermes program instructions and read-only data
to the binary file (Figure 2 (b)).

(3) Modify the program’s instruction stream, inserting undefined
instructions after privileged instructions to be emulated.

(4) Reflash new binary image to the IoT device.

Steps 1 and 4 may require specialized hardware to access the
device’s program memory. Other authors [5] have shown that it is
possible to directly read and write an IoT device’s main memory
with no special hardware on some devices. Naturally, the process
of reading and writing memory would be highly device-specific.
Steps 2 and 3 could be carried out automatically by a script.

2.4 Driver Implementation

We have built three preliminary implementations of our privacy
agent, one in the Linux kernel, one in FreeRTOS (an embedded
OS for microcontrollers), and one in Hermes. Our goal was to
understand how driver and hardware interfacing will affect the
scalability of our proposed system. In all implementations we built
a simple data path in which the mode decision engine and data
anonymization blocks are stubs that just pass data through to the
device app. Our demo app is an IoT video camera in all cases.

In the Linux kernel we found the process of modifying the USB
video driver to be very time consuming and tedious, largely because
the driver code lacks comments and documentation. Also, Linux’s
USB video driver is tightly coupled to video4linux, a logically sep-
arate kernel module that presents a video interface to userspace
apps. We think that adding privacy agent functionality for other
device types would be similarly complex and probably not scalable.
Also, implementing the privacy agent in the OS requires the end
device to run Linux, which may not be the case for all devices.

The issues in the FreeRTOS implementation were similar to
those in Linux with the additional requirement that we needed
the complete source code (application plus OS) in order to add our
privacy agent. This is because microcontroller software is compiled
into a single binary, so we cannot modify the OS while keeping the
userland code in place.

The implementation in Hermes was much more seamless, mainly
because we did not need to modify any existing drivers. Hermes
sends video data to the privacy agent VM in raw form. The privacy
agent can modify the data as needed and send it to the IoT device
app without worrying about the particulars of how the device app

3The application’s original (stock) vector table is needed to initialize it as a guest inside
the Hermes hypervisor.

24

HotMobile *19, February 27-28, 2019, Santa Cruz, CA, USA

Frame Loss | Frame Jitter

Rate (0)
FreeRTOS, Low I/O Load | 0 fps 7.03 ms
FreeRTOS, High I/O Load | 4.2 fps 47.91 ms
Hermes Low 1/0 Load 0 fps 4.85 ms
Hermes High I/0 Load 0 fps 4.86 ms

Table 1: Performance comparison of Hermes and FreeRTOS
in the video app. Low frame loss rate and jitter is better.

T 6
SR]
E g 4 Queue full
§ é’) | Killed and restarted
5 E2 . 1
S = ping flood
gm/m r 1
g 0

0 50 100 150 200 250 300

Time (s)

Figure 3: Number of frames dropped by FreeRTOS per sec-
ond as a function of time while camera was running in the
presence of a ping flood.

manages internal data structures. The processor’s data sheet, typi-
cally freely available, specifies the peripheral’s data format, which
is what the IoT device app expects to receive from the peripheral.
As long as the privacy agent VM generates data in the appropriate
format, things will work correctly. Also, since Hermes is a virtu-
alization environment, it presents the same interface to the IoT
device runtime software as the hardware. This allows us to add the
privacy agent as a separate module while leaving the IoT device
software untouched.

24.1 Evaluation. In the FreeRTOS and Hermes implementations,
we measured frame jitter and loss rate under varying I/O load
conditions. Both were benchmarked on an Atmel SAME70 Xplained
development board with an ARM Cortex-M7 CPU. The board has a
VGA image sensor interface that can accept images in 16-bit RGB
color format at a rate of about 10 frames per second. We present an
evaluation both as a proof of concept for our privacy agent and as a
demonstration that it can be used without diminishing performance
(in most cases).

In both cases, we saw no frame losses under low I/O load. Fig-
ure 3 shows the number of frames dropped every second during
a 276-second test of the FreeRTOS-based privacy agent. Note in
the figure that a queue overflow in the RTOS caused a high rate
of frame drops under high I/O load. This will not happen in the
Hermes implementation because it can be configured to prioritize
certain kinds of I/O traffic over others. Under high I/O load, Her-
mes lost no frames, and the jitter did not increase because
the hypervisor prioritizes userland video frame processing over
lower-priority networking interrupts. Table 1 shows a performance
comparison between Hermes and FreeRTOS for the video app un-
der low and high I/O load conditions. Figure 4 shows histograms
of the inter-frame timing for the same test cases.

Session 2: Security, Privacy and Isolation

HotMobile *19, February 27-28, 2019, Santa Cruz, CA, USA

3kFreeRTOS,Low I/O Load 3kFreeRTOS, High I/0 Load 3K Hermes, Low I/O Load 3k Hermes, High I/0 Load
3
= Dropped frames
E Zk Zk cause high Zk 2K
B 1k 1k ;I;fcri'rfl;ame 1k 1k
2 y
Z 0700 150 200 250 %100 150 200 250 0100 130 200 250 0 100 150 200 250

Frame Spacing (ms)

Figure 4: Histograms of inter-frame spacing for our privacy agent, implemented in different runtime environments. We call
the standard deviation of these histograms the jitter in Table 1.

Environmental
Context From Mode Decision Engine
Peripherals)
Sensor | ——> Data Action
Sensor 2 ——> —> For Sensor |
Sensor 3 > 7y « Pass
Y * Drop
Profile DB S * Modify
e Inject

Figure 5: A diagram of the mode decision engine, which uses
the privacy policy to decide what action to take with data
collected from peripheral devices.

2.5 Privacy Policies

To make our system seamless, we need a way for users to quickly
express their privacy policy, similar to [8]. The user’s policy should
be implemented across all the IoT devices under their control. A
privacy policy should begin with a short (one paragraph or less)
human-readable explanation of how a user wants his data managed.
It should apply generally to all devices under a user’s control. In
the course of daily device use, the system may occasionally ask the
user questions to clarify the policy. Answers will be stored locally
and shared with the user’s other devices. A neural network in the
mode decision engine will make decisions about how data should
be anonymized based on the user’s responses to privacy policy
questions. Its inputs will be (1) data collected from local peripheral
devices and (2) the user’s responses to targeted questions about
data consumption.

2.5.1 Expressing a Privacy Policy. During setup, users are asked
to choose a privacy profile that describes, in broad terms, their
preferences regarding how the privacy agent will handle their data.
Example profiles are:

o Laissez Faire: generally permit apps to do as they please
with the user’s data. Only flag data usage that may be in
violation of an app’s privacy policy, and alert the user in
those cases.

e Camera-shy: track video and scrutinize its content. Option-
ally black out or blur the faces in video frames containing
certain people.

o Secret agent: don’t disclose user’s identity (name, email,
etc.) or GPS location to cloud services.

25

The user-selected profile serves as a starting point for the privacy
agent. Running on the mobile device, it will take data collected from
peripherals and pass it through the profile mode decision engine,
which will decide how to handle it (see Figure 5). The mode deci-
sion engine will generate one of the four actions outlined above:
passthrough, drop, modify, or inject. When the mode decision en-
gine’s neural network produces a low-confidence classification, it
will query the user to clarify what the privacy policy should be
in that situation. User queries will help the mode decision engine
refine a personalized privacy policy from the coarse profile.

2.5.2 Implementing Privacy Policies. Some data will have a clear
action associated with it: for example, in the camera-shy policy,
frames with no faces or people should be passed through without
modification. But some will fall in a gray area, like video frames
with faces that the policy engine has not seen before. During the
course of their device use, users will be asked targeted questions
about whether to permit certain kinds of data collection by their
mobile and IoT devices in order to clarify the user’s policy. Answers
to these questions will be stored in the profile database to inform
future data handling decisions. The profile database’s input-output
pairs can be used to train the mode decision engine’s classification
algorithm. When the database is updated, the updates are pushed
to the privacy agents on all devices under the user’s control. The
mode decision engines on each end device can then be retrained
using the new database.

3 APPLICATIONS

Security Camera. suppose a user buys a security camera with
cloud-based analytics that can identify suspicious activity within
the home. The platform vendor (Nest, Belkin, etc.) advertises that
the device comes equipped with the Hermes privacy agent, allowing
the user to set his own data privacy policy for the device. This is
the first Hermes-enabled IoT device that this user has installed, so
he will need to configure his privacy policy for the Hermes privacy
agent.

After installation, the user connects the device to the home WiFi
network. He then visits a third-party website that validates the
presence and integrity of the Hermes privacy agent using the a
trusted platform module onboard the camera. This website also
asks him to set his privacy policy profile, as outlined in Section
2.5.1. The user chooses both Secret Agent and Camera Shy profiles,
and the privacy agent setup is complete.

Session 2: Security, Privacy and Isolation

The Hermes peripheral data parsing modules (Figure 1) mon-
itor video frames as they pass from the camera hardware to the
IoT device firmware. The data parsing module passes each frame
through the mode decision engine, which interprets the user’s pri-
vacy policy and decides what action to take (passthrough, drop,
modify, or inject). Suppose that most frames contain nothing of
interest, so the mode decision engine passes them unmodified to
the IoT app, which sends them on to the device manufacturer’s
cloud-based analytics engine.

Then, the user wanders in front of the camera. The mode decision
engine detects his face and notices that it is not in its profile database.
It passes the frame up to the IoT app, but it also sends the user an
email asking whether or not he wishes frames with his face to be
passed, blurred, or blocked in the future. The user requests to have
all frames with his face blocked in the future. From then on, the
mode decision engine sends black frames to the IoT app software
when it detects the user’s face in the frame.

Smart Watch. suppose the user subsequently buys a Hermes
privacy agent-enabled smart watch. He will again go through the
device-specific setup process and the third-party Hermes integrity
validation. This time, though, he will not need to configure his
privacy profile—the existing profile database will be pushed from
the camera to the watch after the integrity validation completes,
and he can continue using his new smart watch without any further
setup.

As the privacy agent captures I/O transactions and processes
them through the mode decision engine, it notices that the user’s
coordinates are being continuously uploaded to the smart watch
vendor’s cloud-based server. It identifies this activity as a violation
of the secret agent privacy profile, which does not permit transmis-
sion of the user’s personally-identifying information. The privacy
agent begins blocking all I/O transactions to and from the smart
watch’s GPS receiver and sends an email to the user to inform him
that the GPS is being blocked, giving him the option to unblock it
if he chooses.

When he receives this second email about GPS data collection by
his smart watch, the user decides that the features enabled by GPS
tracking are valuable enough to allow it. He enables GPS coordinate
collection by the smart watch via the privacy agent’s user interface.
This decision is sent to the smart watch, which updates its profile
database and pushes the updates to the other Hermes privacy agent-
enabled devices in the user’s home, including the security camera.
Once the devices have received their updated profile databases,
they retrain their mode decision engines with the new information.

4 CONCLUSION

In this work, we proposed building a mobile and IoT data privacy
agent within an embedded hypervisor. The agent would sit between
the device’s data collection peripherals and the stock IoT software,
modifying or pruning data in order to implement the user’s indi-
vidual privacy policy. Instead of asking users to set privacy policies
individually for each IoT device, the privacy agent could learn the
user’s privacy preferences contextually by observing how the user
interacts with devices and asking targeted questions about those
interactions. A learned privacy policy would be used to configure
new devices. This would make IoT device deployment much easier

26

HotMobile *19, February 27-28, 2019, Santa Cruz, CA, USA

by reducing the burden of configuring detailed privacy policies for
every device. It would also give the user considerably more control
in dictating his own privacy policy because the privacy agent would
have the power to disable or modify data streams that the user is
not comfortable sharing with the service provider.

The techniques we discussed in this work provide a platform
to deploy data anonymization software on mobile and IoT de-
vices without cooperation from device manufacturers or service
providers. Data anonymization algorithms themselves are relatively
new, and their capabilities and limitations are not well understood.
In order for our techniques to be useful (and trustworthy), it will
be important to think more about information theoretic limits of
anonymization algorithms and how those limitations would affect
the data transacted by our privacy agent.

5 ACKNOWLEDGMENTS

We would like to acknowledge the anonymous reviewers and our
shepherd Dr. Eric Rozner for his detailed comments and guid-
ance. The authors were supported in part by the US National Sci-
ence Foundation through grants CNS-1719336, CNS-1647152, CNS-
1629833, and CNS-1343363.

REFERENCES

[1] Sebastian Angel, Riad S. Wahby, Max Howald, Joshua B. Leners, Michael Spilo,
Zhen Sun, Andrew J. Blumberg, and Michael Walfish. 2016. Defending against
Malicious Peripherals with Cinch. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 397-414. https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/angel

[2] Andy Crabtree, Tom Lodge, James Colley, Chris Greenhalgh, Kevin Glover, Hamed

Haddadi, Yousef Amar, Richard Mortier, Qi Li, John Moore, Liang Wang, Poonam

Yadav, Jianxin Zhao, Anthony Brown, Lachlan Urquhart, and Derek McAuley.

2018. Building accountability into the Internet of Things: the IoT Databox

model. Journal of Reliable Intelligent Environments 4, 1 (01 Apr 2018), 39-55.

https://doi.org/10.1007/s40860-018-0054-5

Nigel Davies, Nina Taft, Mahadev Satyanarayanan, Sarah Clinch, and Brandon

Amos. 2016. Privacy Mediators: Helping IoT Cross the Chasm. In Proceedings

of the 17th International Workshop on Mobile Computing Systems and Applica-

tions (HotMobile '16). ACM, New York, NY, USA, 39-44. https://doi.org/10.1145/

2873587.2873600

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,

Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-flow

Tracking System for Realtime Privacy Monitoring on Smartphones. In Proceedings

of the 9th USENIX Conference on Operating Systems Design and Implementation

(OSDI'10). USENIX Association, Berkeley, CA, USA, 393-407. http://dl.acm.org/

citation.cfm?id=1924943.1924971

[5] Grant Hernandez, Orlando Arias, Daniel Buentello, and Yier Jin. 2014. Smart
nest thermostat: A smart spy in your home. Black Hat USA (2014).

[6] Neil Klingensmith and Suman Banerjee. 2018. Hermes: A Real Time Hypervisor
for Mobile and IoT Systems. In Proceedings of the 19th International Workshop on
Mobile Computing Systems & Applications (HotMobile '18). ACM, New York, NY,
USA, 101-106. https://doi.org/10.1145/3177102.3177103

[7] Anantharaghavan Sridhar, Neil Klingensmith, and Suman Banerjee. 2016. dB-
Hound: Privacy Sensitive Acoustic Perception in Home Settings: Poster Ab-
stract. In Proceedings of the 14th ACM Conference on Embedded Network Sen-
sor Systems CD-ROM (SenSys ’16). ACM, New York, NY, USA, 370-371. https:
//doi.org/10.1145/2994551.2996711

[8] Primal Wijesekera, Joel Reardon, Irwin Reyes, Lynn Tsai, Jung-Wei Chen, Nathan
Good, David Wagner, Konstantin Beznosov, and Serge Egelman. 2018. Contextual-
izing Privacy Decisions for Better Prediction (and Protection). In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, New
York, NY, USA, Article 268, 13 pages. https://doi.org/10.1145/3173574.3173842

[9] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
2007. Panorama: Capturing System-wide Information Flow for Malware De-
tection and Analysis. In Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS "07). ACM, New York, NY, USA, 116-127.
https://doi.org/10.1145/1315245.1315261

&

4

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/angel
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/angel
https://doi.org/10.1007/s40860-018-0054-5
https://doi.org/10.1145/2873587.2873600
https://doi.org/10.1145/2873587.2873600
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971
https://doi.org/10.1145/3177102.3177103
https://doi.org/10.1145/2994551.2996711
https://doi.org/10.1145/2994551.2996711
https://doi.org/10.1145/3173574.3173842
https://doi.org/10.1145/1315245.1315261

	Abstract
	1 Introduction
	2 Architecture
	2.1 Hermes
	2.2 Dynamic Taint Analysis
	2.3 Deploying a Virtualized Privacy Agent
	2.4 Driver Implementation
	2.5 Privacy Policies

	3 Applications
	4 Conclusion
	5 Acknowledgments
	References

