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Abstract—We consider the problem of distributed state esti-
mation of a linear time-invariant (LTI) system by a network
of sensors. We develop a distributed observer that guarantees
asymptotic reconstruction of the state for the most general class of
LTI systems, sensor network topologies and sensor measurement
structures. Our analysis builds upon the following key observa-
tion - a given node can reconstruct a portion of the state solely
by using its own measurements and constructing appropriate
Luenberger observers; hence it only needs to exchange informa-
tion with neighbors (via consensus dynamics) for estimating the
portion of the state that is not locally detectable. This intuitive
approach leads to a new class of distributed observers with
several appealing features. Furthermore, by imposing additional
constraints on the system dynamics and network topology, we
show that it is possible to construct a simpler version of the
proposed distributed observer that achieves the same objective
while admitting a fully distributed design phase. Our general
framework allows extensions to time-varying networks that result
from communication losses, and scenarios including faults or
attacks at the nodes.

I. INTRODUCTION

In many applications involving large-scale complex systems
(such as the power grid, transportation systems, industrial
plants, etc.), the state of the system is monitored by a group of
sensors spatially distributed over large sparse networks where
the communication between sensors is limited (see [1], [2]).
To model such a scenario, consider the discrete-time linear
time-invariant dynamical system'

x[k + 1] = Ax[k], (1)

where k € N is the discrete-time index, x[k] € R™ is the state
vector and A € R"*" is the system matrix. The state of the
system is monitored by a network of N sensors, each of which
receives a partial measurement of the state at every time-step.
Specifically, the ¢-th sensor has access to a measurement of
the state, given by

yilk] = Cix[k], 2

where y;[k] € R™ and C; € R™*". We use y[k|] =
[y{ [K] NG [kHT to represent the collective measure-

ment vector, and C = [CP{ C%]T to denote the col-
lection of the sensor observation matrices. These sensors are
represented as nodes of an underlying directed communication
graph which governs the information flow between the sensors.

Each node is capable of exchanging information with its
neighbors and performing computational tasks. The goal of
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! Although we consider noiseless dynamics for clarity of exposition (like
[3]-[10]), the techniques developed in this paper guarantee bounded mean
square estimation error in the presence of i.i.d. process and measurement
noise with bounded second moments.

each node is to estimate the entire system state x[k] based on
its respective (limited) state measurements and the information
obtained from neighbors. This is known as the distributed state
estimation problem.

In this paper, our objective is to design a distributed
algorithm that guarantees asymptotic reconstruction of the
entire state x[k] at each node. The problem we study is
formally stated in Section II-B. For much of the paper, we will
focus on developing theory for linear time-invariant systems
and time-invariant directed communication graphs. In Section
VII, however, we shall establish that our proposed framework
can be extended to account for certain types of time-varying
networks that may arise as a consequence of intermittent
communication link failures.

The paper is organized as follows. In Section II, we formally
describe the problem, discuss related work and summarize
our contributions. Some preliminary ideas and terminology
required for subsequent analysis are presented in Section
III. Section IV highlights the key ideas of our distributed
estimation scheme via a simple illustrative example. In Section
V, we solve the most general version of the problem whereas
in Section VI we provide a solution strategy for a simpler
variant of the original problem that enjoys several implemen-
tation benefits. We discuss the extension of our framework
to handle communication losses and malicious/faulty nodes
in Section VII and provide a simulation example in Section
VIII. Conclusions and avenues for future work are discussed
in Section IX.

II. SYSTEM MODEL
A. Notation

A directed graph is denoted by G = (V,&), where
V = {1,---,N} is the set of nodes and € C V x V
represents the edges. An edge from node j to node ¢, denoted
by (j,4), implies that node j can transmit information to
node i. The neighborhood of the i-th node is defined as
N; £ {i}U{j|(j,i) € £}. The notation |V is used to denote
the cardinality of a set V. Throughout the rest of this paper,
the terms ‘nodes’ and ‘sensors’ are used interchangeably, as
are the terms ‘network’ and ‘communication graph’.

The set of all eigenvalues of a matrix A is denoted by
sp(A) 2 {\ € C|det(A—\I) = 0}. The set of all marginally
stable and unstable eigenvalues of a matrix A is denoted
by Ay(A) £ {\ € sp(A)||\| > 1}. For a matrix A, we
use aa(A) and ga () to denote the algebraic and geometric
multiplicities, respectively, of an eigenvalue A € sp(A). An
eigenvalue \ is said to be simple if aa()\) = ga(A) = 1.
For a set {A,---,A,} of matrices, we use the notation
diag(Aq,---,A,) to refer to a block diagonal matrix with
the matrix A, as the i-th block-diagonal entry. For a set



S = {s1,---,8} € {l,---,N}, and a matrix C =

T T
[CT C%]". we define Cs = [C]) Cg;} . We
use the star notation to avoid writing matrices that are either
unimportant or that can be inferred from context. We use I,
to indicate an identity matrix of dimension 7 X r.

B. Problem Formulation

Consider the LTI system given by (1), the measurement
model specified by (2), and a predefined directed communi-
cation graph G = (V, &), where V represents the set of N
nodes (or sensors). Each node 7 maintains an estimate X;[k]
of the state x[k] of system (1), and updates such an estimate
based on information received from its neighbors and its local
measurements (if any). To formally define the problem under
study, we use the following terminology.

Definition 1 (Distributed Observer). A set of state estimate
update and information exchange rules is called a distributed
observer if limy,_, ||X;[k] — x[K]|| = 0,Vi € {1,---,N},
i.e., the state estimate maintained by each node asymptotically
converges to the true state of the plant. O
There are various technical challenges associated with con-
structing a distributed observer. First, if the pair (A, C;) is
not detectable for some (or all) i € {1,---, N}, then the
corresponding nodes cannot estimate the true state of the
plant based on their own local measurements, thereby dictating
the need to exchange information with other nodes. Second,
this exchange of information is restricted by the underlying
communication graph G. With these challenges in mind, we
address and solve the following problem in this paper.

Problem 1. Design a distributed observer for LTI systems of
the form (1), linear measurement models of the form (2), and
time-invariant directed communication graphs.

There are a variety of approaches to construct distributed
observers (as defined in Definition 1) that have been proposed
in the literature, which we will now review. After that, we
will summarize how our approach differs from the existing
approaches, before delving into the details of our construction.

C. Related Work

The papers [11]-[13] consider distributed estimation of
scalar stochastic dynamical systems over general graphs; in
these works, it is typically assumed that each node receives
scalar local observations, leading to local observability at
every node. The papers [14], [15] consider a version of
this problem where the underlying communication graph is
assumed to be complete. For more general stochastic systems,
the Kalman filtering based approach to solving the distributed
estimation problem has been explored by several researchers.
The approach proposed in [16]-[18] relies on a two-step
strategy - a Kalman filter based state estimate update rule, and
a data fusion step based on average-consensus. The stability
and performance issues of this method have been investigated
in [19], [20]. A drawback of this method (and the ones in
[12], [21], [22]), stems from the fact that they require a (the-
oretically) infinite number of data fusion iterations between

two consecutive time steps of the plant dynamics in order
to reach average consensus, thereby leading to a two-time-
scale algorithm. More recently, finite-time data fusion has been
studied in [23] and [24]. Although an improvement over the
infinite-time data fusion case, these methods still rely on a
two-time-scale strategy. Single-time-scale distributed filtering
techniques are proposed in [25]-[31]. These approaches in-
volve LMI-based feasibility conditions (the method in [30]
requires satisfaction of certain nonlinear matrix inequalities)
and in general do not shed light on the network conditions
required to satisfy such LMIs.

In [3], [4], and [9], sufficient conditions are presented
for a distributed observer to exist in undirected networks.
Specifically, in [3] and [4], the authors propose a scalar-gain
estimator that runs on a single-time-scale.” They introduce
the notion of “Network Tracking Capacity” (NTC), a measure
of the most unstable dynamics (in terms of the 2-norm of
the state matrix) that can be estimated with bounded mean-
squared error under their scheme. However, the tight coupling
between the network and the plant dynamics typically limits
the set of unstable eigenvalues that can be accommodated by
their method without violating the constraints imposed upon
the range of the scalar gain parameter. In [10], [32], the author
approaches the observer design problem from a geometric
perspective and provides separate necessary and sufficient
conditions for consensus-based distributed observer design. In
[5]-[8], the authors use single-time-scale algorithms, and work
under the broadest assumptions, namely that the pair (A, C) is
detectable, where A represents the system matrix, and C is the
collection of all the node observation matrices. In all of these
works, the authors rely on state augmentation® for casting
the distributed estimation problem as a problem of designing
a decentralized stabilizing controller for an LTI plant, using
the notion of fixed modes [33], [34]. Specifically, in [7],
the authors relate the distributed observer design problem
for directed networks to the detectability of certain strongly
connected clusters within the network, and provide a single
necessary and sufficient condition for their scheme.

D. Summary of Contributions

In this paper, we provide a new approach to designing
distributed observers for LTI dynamical systems. Specifically,
we use the following simple, yet key observation - for each
node, there may be certain portions of the state that the node
can reconstruct using only its local measurements. The node
thus does so. For the remaining portion of the state space, the
node relies on a consensus-based update rule. The key is that
those nodes that can reconstruct certain states on their own
act as “root nodes” (or “leaders”) in the consensus dynamics,
leading the rest of the nodes to asymptotically estimate those

2By a single-time-scale algorithm, we imply an algorithm where each node
operates at the same time-scale as the plant, and updates its estimate and
transmits information to neighbors only once in each time-step.

3In these works, some nodes maintain observers of dimension larger
than that of the state of the plant; hence, such observers are referred to
as augmented observers, and the state they estimate is referred to as an
augmented state.



states as well. These ideas, in a nutshell, constitute the essence
of our distributed estimation strategy.

We begin by considering the most general category of
systems and graphs (taken together) for which a distributed
observer can be constructed, and develop an estimation scheme
that enjoys the following appealing features simultaneously,
thereby differentiating our work from the existing literature
discussed in Section II-C: i) it provides theoretical guarantees
regarding the design of asymptotically stable estimators; (ii)
it results in a single-time-scale algorithm; (iii) it does not
require any state augmentation; (iv) it requires only state
estimates to be exchanged locally; and (v) it works under
the broadest conditions on the system and communication
graph. Subsequently, for a certain subclass of systems and
communication graphs, we provide a simpler fully distributed
estimation scheme (at both design- and run-time) for achieving
asymptotic state reconstruction. Finally, we show that our
proposed framework can be extended to guarantee asymptotic
state reconstruction in the presence of communication losses
that lead to time-varying networks.

Some of the results from Section V of the paper appeared
(without proofs) in [35]. This journal paper substantially
expands upon the conference paper by providing full proofs of
all results, a detailed analysis of classes of systems and graphs
that allow efficient distributed implementations (at both the
design- and run-time phases), an analysis of the robustness of
our general framework to communication losses, and examples
and simulations to complement the proposed theory.

III. PRELIMINARIES

Before we proceed with a formal analysis of the problem
of designing a distributed observer, we first identify the main
consideration that shall dictate our solution strategy, namely,
the relationship between the measurement structure of the
nodes and the underlying communication graph. To classify
sets of systems and graphs based on this relationship, we need
to first establish some notation. Accordingly, for each node 1,
we denote the detectable and undetectable eigenvalues* of A
by the sets O; and UQ;, respectively. We define o; = |O;].
Next, we introduce the notion of root nodes.

Definition 2 (Root nodes). For each \;j € Ay (A), the set of
nodes that can detect \; is denoted by S;, and called the set
of root nodes for ;. |

We also recall the definition of a source component of a

graph [7].

Definition 3 (Source Component). Given a directed graph
G = (V,E), a source component (Vs,Es) is defined as a
strongly connected component of G such that there are no
edges from V \ Vs to Vs. O

Let there be p source components of G, denoted by
{(Vi,Si)}ie{17__,7p}. The subsystem associated with the i-
th source component is given by the pair (A, Cy,). For

4Throughout the paper, for the sake of conciseness, we use the terminology
AN,
C.

‘node 4 can detect eigenvalue \;’ to imply that rank [ = n. Each

stable eigenvalue of A is by default considered to be detectable w.rt. the
measurements of each node.

LTI plant

Fig. 1. Example for illustrating Remark 1.

the subsequent development, it should be noted that by a
system (A, C), we refer to the matrix A in equation (1),
and the matrix C = [C] C%] " containing each of the
measurement matrices given by (2). Then, we classify systems
and graphs based on the following two conditions.

Condition 1. A system (A, C) and graph G are said to satisfy
Condition 1 if the sub-system associated with every source
component is detectable, i.e., the pair (A, Cy,) is detectable

Condition 2. A system (A,C) and graph G are said to
satisfy Condition 2 if for each unstable or marginally stable
eigenvalue of the plant, there exists at least one root node

within each source component, i.e., for all i € {1,--- p}
and all X\; € Ay(A), there exists | € V;, such that
rank {A - )\jI”} =n

C

Note that given a source component, Condition 2 does not
necessarily imply the existence of a single node within such
a component that can simultaneously detect all the unstable
and marginally stable eigenvalues of the system via its own
measurements.

Remark 1. It is trivial to see that if a system (A,C) and
graph G satisfy Condition 2, they also satisfy Condition 1.
To see that the converse is not true in general, consider the
3-node network G in Figure 1, and the following model:

A:[Q 0},01:[1 0],C2 =0 1]703:{1 0] 3)

0 2 0 1
From Figure 1, we see that the network has two source
components, namely, the strong component formed by nodes
1 and 2 (S1), and the isolated node 3 (Ss). Clearly, each of

the pairs (A, C3) and (A, gl )
2

system is detectable from each of the two source components.
It follows that this system and graph satisfy Condition 1.
However, neither node 1 nor node 2 can detect the eigenvalue
A = 2 based on just their own measurements, i.e., there does
not exist a root node for A = 2 within source component S1.
Thus, this system and graph do not satisfy Condition 2. [

In [7], the authors identified that a distributed observer
cannot be constructed (regardless of the state update or
exchange rules) if the system (A,C) and graph G do not
satisfy Condition 1. They then designed a distributed observer
for the class of systems and graphs satisfying Condition 1
by constructing augmented state observers (i.e., observers of

are detectable. Thus, the
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Fig. 2. The graph on the left is the actual network. The graph on the right
is a DAG constructed from the original graph.

y1[k]

dimension larger than that of the system) drawing upon con-
nections to decentralized control theory. Here, we present an
alternate and more direct design approach, and in the process,
establish that it is possible to design a distributed observer
without state augmentation for this (most general) class of
systems and graphs.’ Before we delve into the specifics of the
distributed observer design for systems and graphs satisfying
Condition 1, we present a simple motivating example which
serves to build intuition for the more complicated scenarios.®

IV. ILLUSTRATIVE EXAMPLE

Consider a scalar unstable plant with dynamics given by
x[k + 1] = 1.5z[k]. The plant is monitored by a network
of nodes, as depicted by Figure 2. Node 1 has a measure-
ment given by y;[k] = z[k], whereas nodes 2 and 3 have
no measurements. Given this plant and network model, we
wish to design a distributed observer. The commonly adopted
approach in the literature is to develop a consensus-based
state estimate update rule for each node in the network [3]-
[7]. Here, we make the following observation: since node
1 can detect the eigenvalue A = 1.5 of the plant based
on its own measurements, it can run a Luenberger observer
for estimating x[k], without requiring information from its
neighbors. Specifically, the following Luenberger observer
allows node 1 to estimate and predict the state:

1lk + 1] = 1.581[k] + L5(n[k] — &1[K]) = L5yi[k]. @)

Here, #1[k] is the estimate of x[k] maintained by node 1 at
time-step k. Now suppose nodes 2 and 3 update their respec-
tive estimates of x[k] as follows: &;[k+1] = 1.5&1[k],¢ = 2, 3.
Since limy_, o |#1[k] — 2[k]| = O based on the Luenberger
observer dynamics given by (4), it is easy to see that the
estimates of nodes 2 and 3 also converge to the true state x[k].
This simple example illustrates the following key observations.
(1) It is not necessary for every node in the network to run
consensus dynamics for estimating the state. More generally,
a node needs to run consensus for estimating only the portion

SThe exact structure of our distributed observer presented in Section V-E
illustrates that the dimension of the internal state/estimate %;[k] maintained
by a given node i is equal to the dimension of the state x[k].

6 At this point, it is worth mentioning that although the distributed observer
that we shall design for systems and graphs satisfying Condition 1 will also
work for systems and graphs satisfying Condition 2, we will later propose an
alternate scheme with various implementation benefits for the latter class of
systems and graphs.

of the state vector that is not locally detectable. The rest of the
state can be estimated via appropriately designed Luenberger
observers. (ii) An inspection of the observable subspace of
each node guides the decision of participating (or not partici-
pating) in consensus for the example we considered. For more
general system and measurement matrices, we shall rely on
appropriate similarity transformations which shall reveal what
a node can or cannot observe. (iii) Although node 1 is in a
position to receive information from node 2, it chooses not
to listen to any of its neighbors. This pattern of information
flow results in a special Directed Acyclic Graph (DAG) of the
original network, rooted at node 1. In the DAG constructed in
the illustrative example, node 1 can be viewed as the source of
information for the state x[k], and the DAG structure can be
viewed as the medium for transmitting information from the
source to the rest of the network, without corrupting the source
itself (this is achieved in this example by ignoring the edge
from node 2 to node 1). Under this approach, note that every
node maintains an observer of dimension 1, which is equal to
the dimension of the state (i.e., there is no state augmentation).
Based on these observations, we are now ready to extend
the ideas conveyed by this simple example for tackling more
general systems and networks.’

V. ESTIMATION SCHEME FOR SYSTEMS AND GRAPHS
SATISFYING CONDITION 1

In this section, we develop a distributed observer for systems
and graphs satisfying Condition 1. For presenting the key
ideas while reducing notational complexity, we shall make the
following assumption.

Assumption 1. The graph G is strongly connected, i.e., there
exists a directed path from any node i to any other node j,
where 1,7 € V.

Later, we shall argue that the development can be easily
extended to any general directed network. For now, it suffices
to say that any directed graph can be decomposed into strong
components, some of which are source components (strong
components with no incoming edges from the rest of the
network); the strategy that we develop here for a strongly con-
nected graph will be employed within each source component.

Remark 2. Since we are focusing on systems and graphs
satisfying Condition 1, it follows that under Assumption I,
the pair (A, C) is detectable (as a strongly connected graph
is one single source component). |

Remark 3. Note that under Condition 1 with a strongly
connected graph, one might consider the possibility of ag-
gregating all the sensor measurements at a central node and
constructing a centralized Luenberger observer, leveraging the
fact that (A, C) is detectable. However, for large networks, the
routing of measurement information to and from such a central
node via multiple hops would induce delays. A distributed

"Notice that the original network in this illustrative example has only one
source component comprised of the nodes 1 and 2, and node 1 is a root
node for A = 1.5 (node 1 can detect A = 1.5). Thus, the system and graph
illustrated in this example satisfy Condition 2, and hence also Condition 1.



approach (such as the one considered in this paper) alleviates
such a difficulty. Additionally, as we discuss in Section VII,
the general framework developed in this paper allows for
extensions to communication losses and node failures, which
are typical benefits expected of a distributed algorithm. |

We are now in a position to detail the steps to be followed
for designing a distributed observer for systems and graphs
satisfying Condition 1. We start by providing a generalization
of the Kalman observable canonical form to a setting with
multiple sensors.

A. Multi-Sensor Observable Canonical Decomposition

Given a system matrix A and a set of N sensors where
the i-th sensor has an observation matrix given by C;, we
introduce the notion of a multi-sensor observable canonical
decomposition in this section. The basic philosophy underlying
such a decomposition is as follows: given a list of indexed
sensors, perform an observable canonical decomposition with
respect to the first sensor. Then, identify the observable
portion of the state space with respect to sensor 2 within the
unobservable subspace of sensor I, and repeat the process
until the last sensor is reached. Thus, one needs to perform
N observable canonical decompositions, one for each sensor,
with the last decomposition revealing the portions of the state
space that can and cannot be observed using the cumulative
measurements of all the sensors. The details of the multi-
sensor observable canonical decomposition are captured by
the proof of the following result (given in Appendix A).

Proposition 1. Given a system matrix A, and a set of N
sensor observation matrices C1,Co,--- ,Cy, define C £
[ClT Cm T Then, there exists a similarity transforma-
tion matrix T which transforms the pair (A,C) to (A, C),
such that

A, 0
Ay A 0
A= : : . : ,
An_r | Awv—n2 [Awv-nw-1) 0
ANt Ay -+ Aywn-1) |Annv | O
A Ay - Aoy An | Ay 5)
'(?1 Cn ‘ 0
_ C, Cai Cy | 0
C=| . | = . . .
LCw Cyi Cn2 ---Cyw-1) Cwan |0

Furthermore, the following properties hold: (i) the pair
(Ay;, Cy;) is observable Vi € {1,2,--- | N}, and (ii) the ma-
trix Ay describes the dynamics of the unobservable subspace
of the pair (A, C).

Figure 3 illustrates the steps of the multi-sensor observable
canonical decomposition for a sensor network with 3 nodes.
The first step involves an observable canonical decomposition
of the pair (A, C;) via the matrix T;. Next, Ty reveals the
portion of the unobservable subspace of (A, C;) that can be
observed using the observation matrix Cs. Finally, T3 reveals

the portion of the unobservable subspace of (A, [81]) that
2

can be observed using the observation matrix Cs. For this

example, we have 7 = T;T>T3. In the following section,
we discuss how the multi-sensor observable canonical decom-
position is applicable to the problem of designing a distributed
observer for systems and graphs satisfying Condition 1.

Remark 4. Note that while describing the multi-sensor ob-
servable canonical decomposition, we did not specify any
rule for indexing the sensors. This is precisely because the
technique we propose solves Problem 1 regardless of the way
the sensors are indexed, as long as the system and graph
satisfy Condition 1. However, the question of appropriately
ordering the sensors (or including redundancy) will become
important when dealing with stochastic systems or with sensor
failures. We discuss these issues later in the paper. O

B. Observer Design

Using the matrix 7 identified in Proposition 1, we perform
the coordinate transformation x[k] = 7z[k] to obtain

z[k + 1] = Az[k],
-~ ‘ (6)
yl[k]:CLZ[kL v/56{17 aN}7
where A = T'AT and C; = C;7 = [Ci Cii | 0]

are given by (5). The vector z[k] assumes the following
structure (commensurate with the structure of A in (5)):

T
2 W] @
Here, 7zy[k] is precisely the unobservable portion of the state
z[k], with respect to the pair (A, C). We call zU)[k] € R%
the j-th sub-state, and z;,[k| the unobservable sub-state. Notice
that based on the multi-sensor observable canonical decompo-
sition, there is a one-to-one correspondence between a node
7 and its associated sub-state z(j)[k]. Accordingly, node j is
viewed as the source of information of its corresponding sub-
state z(7) k], and is tasked with the responsibility of estimating
this sub-state. We call node j the source node for sub-state j.
For each of the IV sub-states, we thus have a unique source
node (based on the initial labeling of the nodes). However,
there is no unique source of information for the unobservable
sub-state z[k], as this portion of the state does not correspond
to the observable subspace of any of the nodes in the network.
Each node will thus maintain an estimate of zy[k], which it
updates as a linear function of its own estimates of each of
the N sub-states zV)[k],Vj € {1,2,--- ,N}.

2lk] = [z0[k)"

Remark 5. It should be noted that a given sub-state z9) k] in
equation (7) might be of zero dimension (i.e., the sub-state can
be empty). For instance, this can happen if its corresponding
source of information, namely node j, has no measurements,
ie., lfCJ =0. J

First, based on equations (5), (6) and (7), we observe that the
dynamics of the ¢-th sub-state are governed by the equations

i—1
2Ok +1] = Auz D[k + > Ayz[k],
=1
o (8)
j=1
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Fig. 3. Tllustration of the Multi-Sensor Observable Canonical Decomposition for a detectable pair (A, C).

The reader is referred to the proof of Proposition 1 in
Appendix A for a mathematical description of the matrices
appearing in (8). Note that the unobservable sub-state z;[k]
is governed by the dynamics

= Ayzylk] + Y0, Az, )

where the matrices A; describe the coupling that exists
between the unobservable sub-state zy[k] and each of the
N sub-states z)[k]. Define ZEJ)[k] as the estimate of the
j-th sub-state maintained by the ¢-th node. The estimation
policy adopted by the i-th node is as follows - it uses a
Luenberger-style update rule for updating its associated sub-
state estimate 2(1) [k], and a consensus based scheme for
updating its estimates of all other sub-states z(J )[k}, where
j € {l,---,N} \ {i}. Based on the dynamlcs (8), the
Luenberger observer at node ¢ is constructed as

+ZA A(J)

+ L <yi[1f] - ( k] + Z C,sz[k]) )

where L; € R%*" is a gain matrix which needs to be
designed. For estimation of the j-th sub-state, where j €
{1,---, N}\{i}, the i-th node again mimics the first equation
in (8), but this time relies on consensus dynamics of the form

Zu[k+ 1]

20k +1] = Azl [k
(10)

~ (i
iiZy

j—1
a0+ 1] = Ay Y wla K+ Ak, (1)
=1

lEN;

consensus term coupling term

where wfl is the weight the i-th node associates with the /-th
node, for the estimation of the j-th sub-state. The weights are
non-negative and satisfy

Zle/\/i wgl =1, vN}\{Z}
In equation (11), the first term is a standard consensus term,
while the second term has been introduced specifically to
account for the coupling that exists between a given sub-state
j and sub-states 1 to j —1 (as given by (8)). Let z;,[k] denote
the estimate of the unobservable sub-state z;,[k] maintained by
the ¢-th node. Mimicking equation (9), each node ¢ uses the
following rule to update Z;;[k]:

gk + 1] = Ayza[k] + SN, A2l [K].

Vel 12)

(13)

In summary, equations (10), (11) and (13) together form the
observer for the state z[k] = 7 ~!x[k] maintained by each
node 1.

C. Error Dynamics at the i-th Node

Define e\ [k] £ 219 [k] — 20 [k] as the error in estimation
of the j-th sub-state by the i-th node. Using equations (8) and
(10), we obtain the error in the Luenberger observer dynamics
at the 7-th node as

(Ayj — L;Cij) el [K].

| (14)
Similarly, noting that Aj; = Aj; >, .\ w) (based on
equation (12)), and using equations (8) and (11), we obtain
the following consensus error dynamics at node i, Vj €

ek +1] = Ay Yy n whel [k + 30

Define ey [k] £ ziy[k] — zy[k] as the error in estimation
of the unobservable sub-state zy[k] by the i-th node. Using
(9) and (13), we obtain the following error dynamics for the
unobservable sub-state at node ¢:

ek +1] = (Ay — LiCip) el [k + 17}

Ak (15)

ek +1] = Ayeu[k] + YN, Ajel”[k]. (16)

D. Analysis of the Estimation Scheme for Systems and Graphs
Satisfying Condition 1

In this section, we present our main result, formally stated
as follows.

Theorem 1. Consider a system (A, C) and graph G satisfying
Condition 1. Let Assumption 1 hold true. Then, for each node
i € {1,2,---,N}, there exists a choice of observer gain
matrix L;, and consensus weights w),, j € {1,2,--- , N}\{i},
I € N, such that the update rules given by equations (10),
(11), and (13) form a distributed observer. O

Proof: Consider the composite error in estimation of sub-
state j by all of the nodes in V), defined as

B[k 2 (17)



We will prove that E(j)[k] converges to zero asymptotically
Vj € {1,---,N} (recall that there are precisely N nodes in
the network, each responsible for estimating a certain sub-
state). We prove by induction on j. Consider the base case
7 =1, i.e., the estimation of the first sub-state. Let the index
set {1,ky, ko, - ,kn_1} represent a topological ordering®
consistent with a spanning tree rooted at node 1 (the source
node for sub-state 1). Note that based on Assumption 1, it is
always possible to find such a spanning tree. Next, consider
the composite error vector

ef[K]
(1)
SR U B e
o[k

- T _
where E(V[k] £ [e,ﬁ? [k]T~--e,§11371[k]T} . Note that E()[]
is simply a permutation of the rows of E() [k]. Based on the
error dynamics equations given by (14) and (15), we obtain

b +1] ] _ { (A ~LCy) 0 ] i lk]
E(l)[k +1] Wi ® A Wi, © Ay E(l)[k] '
EM[k+1] M. EM[k]

where the entries of the weight matrix W' = (W3, W3]
are populated by the appropriate weights defined by equation
(15) (note that W' € RW=D*N and W1, is the first column
of W1). Notice that sp(M;) = sp(A1; —L;C11)Usp(Wi,®
A11). By construction, the pair (Aj1,Cq1) is observable.
Thus, it is always possible to find a gain matrix L; such that
(A1;—L;Cyq) is Schur stable. Next, we impose the constraint
that for the estimation of sub-state 1, non-zero consensus
weights are assigned to only the branches of the spanning
tree consistent with the ordering {1, kq, ko, -+ ,kn_1}, i€,
a node listens to only its parent in such a tree. In this way,
W1, becomes lower triangular with eigenvalues equal to zero,
without violating the stochasticity condition imposed on W'
by equation (12). We conclude that by an appropriate choice
of consensus weights, we can achieve Ay (Wi, ® Ajy) = ()
(even if Ay(A11) # 0). Here, we use the result that if
A € R™™™ and B € R"™*™, then the eigenvalues of the
Kronecker product A ® B € R™"*™"™ are the mn numbers
Ai(AN;B), (i=1,--- ,n;5=1,---,m) [37].

It follows that M; can be made Schur stable, and hence
limy,_,00 EM[k] = 0, implying limy,_,oc EM[k] = 0 (one is
just a permutation of the other). Thus, the base case is proven.
Next, suppose that E(j)[k] converges to zero asymptotically
vje{l,--- ,p—1}, where 1 <p—1< N —1. Consider the

8Such an ordering results when a standard Breadth-First Search (BFS) [36]
algorithm is applied to the graph G, with node 1 as the root node of the tree.
Specifically, the order represents the order in which the nodes are added to the
spanning tree when the BFS algorithm is implemented, i.e., node k1 would
be added first, followed by node k2 and so on. This ordering naturally leads
to a lower triangular adjacency matrix for the constructed spanning tree.

following composite error vector for the p-th sub-state:

ef?[k]
_ RO ek
BOW = [ oK E(m[[k]] } : (19)
el . [kl

where the index set {p,mi,mo, -+ ,my_1} represents a
topological ordering of the nodes of V to obtain a spanning
tree rooted at node p (the source node for sub-state p),

~ T T
and EP[k] £ [eggz k] - egggvil k] } . From the error
dynamics equations given by (14) and (15), we obtain
E® [k + 1] = M,E®[k] + 0" H,ECPI[K], (20)
where
— (APP - LPCPP) 0
Mp B [ ng @ APP WZQ)Q ® APP 7 (2])
le = dlag (Apl - LpCph IN—I ® Apl) ) (22)
e;[K]
_ O}
Be[g) = | emlH (23)
egfl)N—l [k]

By following the same train of logic as the base case, one
concludes that M, can be made Schur stable by appropriate
choices of the observer gain matrix L,, and consensus weight
matrix W? = [W5,  W%,] (note that WP € RIV-DxN
and W%, is the first column of WP?). Specifically, non-zero
weights are assigned in WP only on the branches of the tree
rooted at node p, consistent with the topological ordering. No-
tice that E(P) [E] is simply a permutation of the rows of E()[£]
(permuted to match the order of indices in E(")[k]). Further,
based on our induction hypothesis, E()[k] converges to zero
asymptotically (since 1 <! < p — 1). Thus, by Input to State
Stability (ISS), we conclude that E®)[k], and hence E®)[k],
converges to zero asymptotically. We have thus proven that the
composite estimation error for every sub-state asymptotically
approaches zero, i.e., limy_, oo egj)[k‘] =0,Vi,je{l,---N}.

Finally, consider the error in estimation of the unobservable
sub-state zy[k] (given by equation (16)). As the system and
graph under consideration satisfy Condition 1 and Assumption
1, it must be that the pair (A, C) is detectable. Thus, based on
Proposition 1, the matrix Ay, in (16) must be stable. Invoking
ISS, we have that limy_, . ey[k] = 0,Vi € {1,--- ,N}.
Thus, every node in the network can asymptotically estimate
z[k], and hence x[k], as x[k] = Tz[k]. [ |

E. A Compact Representation of the Proposed Observer

In this section, we combine the update equations (10),
(11) and (13) to obtain a compact representation of our
distributed observer. To do so, we need to first introduce some
notation. Accordingly, let B; = [O AR PYRER 0] be the matrix
that extracts the j-th sub-state from the transformed state
vector z[k], i.e., z)[k] = B;z[k]. Similarly, let By, be such
that Zu[k] = Buz[k] Define B £ diag(Bh ce ,BN,Bu).



Next, notice that the transformed system matrix A in equa-
tion (5) can be written as A = A; + Ay, where Ay =
diag(A11, -+ ,ANnN, Ay), and A; is a block lower-triangular
matrix given by A — A,. Let wy (where | € N; \ {i})
be the vector of weights node ¢ associates with a neighbor
[ for the estimation of the transformed state z[k]. Based
on our estimation scheme, note that at any given time-
step k, node 7 does not use the estimates received from its
neighbors at time-step k for estimating z()[k] and zy[k],
and hence these weight vectors assume the following form:
w0, wit e wl 0] V€ NG {6}
Also, notice that the element wfl is not present in the vector
if the j-th sub-state is empty (i.e., of dimension 0). Similarly,
let w;; be a vector with a ‘1’ in the elements corresponding
to the i-th sub-state and the unobservable sub-state zy[k],
and zeroes at all other positions. Finally, defining H; =
[o7...L;,"..07] T using equations (10), (11), and (13), and
noting that z[k] = 7 ~!x[k], we obtain the following overall
state estimate update rule at node i:

Wi = [willv"'

Xk + 1) = TAT "% [k] + THi(y:lk] — Cxlk)) + Y Gaxlk],
N A LEN;
“consensus term”

innovation term

(24
where %;[k]| denotes the estimate of the state x[k] maintained
by node i, and G;; = TAB (wy @ T71) .

Remark 6. From the structure of our overall estimator at
node i, as represented by equation (24), it is easy to see that
the estimator maintained at each node has dimension equal
to n (ie., equal to that of the state). Thus, our approach
alleviates the need to construct augmented observers such as
those considered in [7], [8]. O

Remark 7. Note that all the transformation and gain matrices
appearing in (24) can be computed offline during a centralized
design phase. Thus, although the observer design and the
subsequent analysis were done in the z[k] coordinate system,
no inversion from z|k| to x|k| is necessary while implementing
(24) during run-time, i.e., the nodes directly exchange their
estimates of the actual state x[k], and not z[k]. 0O

FE. Summary of the Estimation Scheme for Systems and Graphs
Satisfying Condition 1

The proposed distributed observer scheme for systems and
graphs satisfying Condition 1 (under the assumption that the
graph G is strongly connected) can be broadly decomposed
into two main phases, namely the design phase and the
distributed estimation phase. For clarity, we briefly enumerate
the steps associated with each of these phases.

Design Phase:

o Each node of the graph is assigned a unique integer
between 1 to N. Based on this numbering, the multi-
sensor observable canonical decomposition (as outlined
in the proof of Proposition 1) is performed, yielding the
state z[k] = T~ 'x[k].

e« Based on this transformation, each node is associated
with a sub-state of z[k] that it is responsible for esti-
mating. Recall that there are precisely /N sub-states, one

corresponding to each node in the network; some of these
sub-states might be empty.

o For the estimation of a given sub-state, we construct a
spanning tree rooted at the specific node which acts as
the source of information for that sub-state. The resulting
spanning tree guides the construction of the consensus
weight matrix to be used for the estimation of that
particular sub-state. We construct one spanning tree for
the estimation of each non-empty sub-state.

« Based on the constructed consensus weight matrices, and
the Luenberger observer gains L;, the matrices 7.4, 7 !,
TH; and Gy; in (24) are computed for each node i € V.

Estimation Phase (Run-time):

o Each node employs a Luenberger observer for con-
structing an estimate of its corresponding sub-state, and
runs consensus dynamics for estimating the sub-states
corresponding to the remaining nodes in the network.
Summarily, a node implements (24) for estimating x[k].

Remark 8. While the observer design procedure we have
outlined (involving the multi-sensor decomposition, design
of local observer gains, construction of spanning trees and
selection of consensus weights) can be readily implemented in
a centralized manner, it may also be possible to perform these
steps in a distributed fashion. This would require the nodes to
assign themselves unique identifiers (or labels) and execute the
multi-sensor decomposition in a round-robin fashion, followed
by a distributed construction of spanning trees. However, at
present, the multi-sensor decomposition appears to be the
most expensive portion of such an implementation (in terms of
coordination and communication). In Section VI, we show that
for systems and graphs that possess the additional structure
described by Condition 2, we can avoid such a decomposition
and obtain a scheme that permits an efficient distributed
implementation (in both the design and run-time phases) at
the potential cost of increasing the dimension of the observer.
O
Having established our approach for all systems and stro-
ngly connected graphs satisfying Condition 1, we now briefly
describe the extension of our strategy to arbitrary directed
networks.

G. Extension to General Directed Networks

Our distributed observer design can be extended to general
networks (satisfying Condition 1 but not necessarily Assump-
tion 1) by first decomposing G into its strong components,
and identifying each of the source components. Next, within
a given source component, one simply follows the observer
design procedure outlined in Section V-B for a strongly
connected graph, to obtain an estimator of the form (24) for
each node within the source component. Define S = | J}_, V;
to be the set of all nodes that belong to the source components
of G. Let each node in ¢ € V \ S employ a pure consensus
strategy of the form

)A(Z[k + 1] =A Z wij)A(j[k’],
JEN;

(25)



where X;[k] represents an estimate of the state maintained by
the i-th node. The weights w;; are non-negative and satisfy

> wy =1, VieV\S.
JEN;

(26)

The design of consensus weights for the nodes in V \ § is
based on the observation that the set '\ S can be spanned by
a disjoint union of trees rooted in S. By assigning consensus
weights to only the branches of these trees (without violating
the stochasticity condition imposed by equation (26)), one
obtains stable estimation error dynamics for each of the nodes
in V\ S (the details are similar to the proof of Theorem 1).
The above strategy readily leads to the following result.

Theorem 2. Consider a system (A, C) and graph G satisfying
Condition 1. Let each node in S run an observer of the form
(24), and each node in V\S run the consensus dynamics given
by (25). Then, there exists a choice of consensus weights and
observer gain matrices that results in a distributed observer.
|
As discussed in Remark 8, our distributed observer de-
sign starts with the multi-sensor observable decomposition
described in Proposition 1, which transforms the system into a
form that identifies the sub-states that each node is responsible
for estimating. This decomposition requires knowledge of
the measurement matrices of each node, and thus is most
amenable to a centralized implementation (a centralized design
phase is commonly assumed in the existing literature on
distributed observers, e.g., [4]-[10]). In the next section, we
show that for systems and networks satisfying Condition 2,
the design of the observer itself can be readily done in a
distributed manner. However, before we conclude this section,
it is instructive to note the following.

Remark 9. (The effect of noise): For scenarios where the
system and measurements are daffected by noise, a desirable
objective is to formulate a distributed estimation strategy that
guarantees bounded mean square estimation error. As we
mention in Section II-C, most of the literature that attempts to
address this question does so by either resorting to two-time-
scale algorithms or LMI-based frameworks. The only papers
we are aware of that guarantee bounded mean square error
under the most general conditions on the system and network
are [7] and [8] (like our present approach, the analysis in
these papers is also conducted for a noiseless model). While
the method we developed in Section V provides the same
guarantees of stability against i.i.d. noise with bounded second
moments as those works,” our approach offers the additional
advantage of requiring no state augmentation. However, the
scheme that we have proposed will not, in general, be optimal
in terms of minimizing the mean square estimation error, due
to the fact that each sub-state is directly estimated by a single
node in our multi-sensor observable decomposition, and due
to the tree structure that we construct for the rest of the
nodes in the network. Extending our approach to incorporate
redundancy in order to further minimize the mean square

9Such guarantees are also provided by the method we develop in Section
VI for systems and graphs satisfying Condition 2.

estimation error is an important avenue for future work. In
the next section, we describe a slightly modified scheme for
systems that satisfy Condition 2 given earlier in the paper,
which allows us to assign multiple nodes to simultaneously
be responsible for estimating the same states, and facilitates
the incorporation of redundancy that can, among other things,
allow resilience to node failures and attacks. O

VI. ESTIMATION SCHEME FOR SYSTEMS AND GRAPHS
SATISFYING CONDITION 2

Recall that for systems and graphs satisfying Condition 2,
for each eigenvalue of the plant, there is at least one node in
each source component that can detect that eigenvalue. As we
will show, this fact allows each node in the network to identify
the sub-states it is responsible for estimating, without having
to exchange any information with neighbors.

To this end, let 7 be a non-singular transformation matrix
which transforms A into its Jordan canonical form J, i.e.,
A = TJIT'. With z[k] = T 'x[k], the dynamics (1) are
transformed into the form

z[k + 1] = Jz[k],

_ 27

Vie{l,---,N}
where J = 7T 'AT and C; = C,;7.'° Notice that this
transformation relies only on the knowledge of the system
matrix A (which is assumed to be known by all of the
nodes). Hence, all nodes can perform this transformation in
parallel (e.g., by using an agreed-upon convention for ordering
the eigenvalues and corresponding eigenvectors). We denote
the eigenvalues of J (which are the same as those of A)
by Ai,---,A,, where <y represents the number of distinct
eigenvalues of A. Let J = diag(J1,--- ,J,), where we group
all of the Jordan blocks associated with \; € sp(J) into the
block diagonal matrix J; € R’ (A3)xa3(X;) The portion of the
state z[k] associated with the eigenvalue \; is termed as the
sub-state z(7)[k] € R* (), Let 25] )[k] represent the estimate
of z9)[k] maintained by node i. Note that if each node in
the network can accurately estimate z[k], then they can also
estimate x[k] using the relation x[k] = Tz[k]. In view of this,
we now develop a scheme for estimating z[k].

A. Distributed Observer Design

1) Design of Local Luenberger Observers: Let O; represent
the set of detectable eigenvalues of node ¢. For estimating
the sub-states corresponding to the eigenvalues in O;, node
1 constructs a simple Luenberger observer using its own
measurements. To this end, permute the states z[k] in (27)
to obtain

zo, [k + 1] :| _ |:jOL 0 } 2o, [k]
ZYo; [k + 1] 0 Juo,| |zuo, [k‘} ’
Z;[k+1] B ji7 2;[K] (28)
yilk] = [CQ Cuoi] z;[k].

Ci

10Note that the matrices 7 and C; in (27) are in general different from
those in (5); we adopt this abuse of notation to avoid cluttering the exposition
with additional symbols.



The permuted state z;[k] will be represented by z[k] = P;z;[k],
where IP; is an appropriate permutation matrix. In the above
equations, Jo, consists of all Jordan blocks corresponding to
the detectable eigenvalues of node ¢, and ju@i denotes the
collection of Jordan blocks corresponding to the undetectable
eigenvalues of node 4. Similarly, Cp, contains the columns of
C, corresponding to the matrix Jo,, with an analogous defini-
tion for Cye,. The sub-states corresponding to the detectable
and undetectable eigenvalues of node ¢ are grouped into the
composite vectors ze, [k] € R% and zy o, [k] respectively.

Based on (28), notice that the output y;[k| is affected by
elements of zy,0, [k] (through Cye,) and thus we will estimate
those elements as well in order to recover zp, [k]. To this end,
let T; be a non-singular matrix which performs an observable
canonical decomposition of the pair (Jy0,, Cyo,) in (28).
Consider the following transformation matrix:

I,, O
Ti= 1% TJ . 29)
Define the coordinate transformation z;[k] = T;v;[k] (this

transformation is specific to node 7). Based on this transfor-
mation, and equations (28) and (29), the dynamics at node

can be reformulated as
zZo, [k + 1] joi ‘ 0 zZo, []C]
wo, [k +1] = Go, 0 wo,[k] ’
Wu@1 [k]

WuUo; [k + 1] 0 * Guo
vilk+1] T;ljﬁT’ vilk]
yilkl= [ Co, | Ho, 0 ]vi[k],
C;T;
where
15 = Go, 0
T ' Jyo,Ti=| %%
i Uuo, |: * GL{OZ:|7 (31)
Cuo,Ti = [Ho, 0]
Define
= diag(jo”Ga)_/ F, & [COZ HOJ , (32)
and s;[k] £ [z0,”[K] WoiT[k‘]]T. Based on the dynamics

(30), the local Luenberger observer maintained by node @ for
estimating ze, [k] has the form

8i[k + 1] = Ji8:[k] + Li(y:i[k] — Fi8i[k]), (33)

where IL; is a gain matrix which needs to be designed for
node ¢ and §;[k] is the estimate of s;[k] maintained by node
i. Using (33), zo,[k] can then be updated as zp,[k + 1] =
[Ioi O} Silk +1].

Based on the (local) transformation (30) and the (local)
observer (33), we obtain the following result.

Lemma 1. For a system (A,C) and graph G satisfying
Condition 2, let every node © € V run a Luenberger observer
of the form (33). Then, there exists a choice of observer gain
IL;, which can be designed locally, such that for each \; € O,
limy, o0 |24 [K] — 2@ [K]|| = 0. 0

Proof: The proof follows straightforwardly by noting that
(J:,F;) defined in (32) is detectable (since Jp, and Gp, do
not share any eigenvalues, and each of the pairs (Jo,, Co,)
and (Gp,,Hp,) are detectable, by construction). [ |

Having established that each node ¢ € V can asymptotically
recover zp, [k] in (28) purely locally, we now devise a method
that allows each node to estimate the sub-states corresponding
to the locally undetectable eigenvalues.

2) Consensus dynamics: Consider an eigenvalue \; € UO;
(recall UQO; represents the set of undetectable eigenvalues of
node ¢). For such an eigenvalue, node ¢ has to rely on the
information received from its neighbors in order to estimate
zU)[k]. To this end, we propose the following consensus
strategy to be followed by every node i € V'\ S; for updating
their respective estimates of z%) [k]:

2k +1] = 3; Y e, wha [k, (34)

where wgl is the weight the i-th node associates with the [-th
node for the estimation of the j-th sub-state (recall that S;
denotes the set of root nodes that can detect \;). Each weight
is non-negative and satisfies

ZZEM wzjl =1, V)\J eUO;.

Let UO; = {\p,,- - ’/\”w}’ where v; = [UO;| = v — oy
(recall o; = |O;|, and ~ is the number of distinct eigenvalues
of A). Define B; = [0~--Ioj O] as the matrix which
extracts the j-th sub-state from the state vector z[k], i.e.,
we have zU)[k] = B;z[k]. Also, let wy = [w]! ---wZﬂT
denote the vector of consensus weights the i-th node assigns
to the I-th node (I € N;) for the estimation of the sub-states
corresponding to each of its undetectable eigenvalues. Then,
noting the definition of Jy40, and using the consensus equation
given by (34), we obtain

(35)

zyo, [k + 1] = Juo,Bi Y1, Wi @ 2[k], (36)
where B, = diag(B,,,,--- ,B,,). Noting that x[k] = Tz[k],
T
and 2[k] = Piz[k] (recall z,[k] = [z0, (K] mi0,1]7] ),
and using equations (33) and (36), we obtain the governing
equations of the distributed observer maintained at node ¢ as

Silk + 1] = I:8i [k] + Li(yi[k] — F484[k]), (37a)
Zo, [k + 1] = [Io,; 0] S; [k‘ + 1], (37b)
2o,k +1] = Juo,B:i > wa @ (T '%[k]), | (37c)
leN;
. _ | 2o, [k +1]
Xk+1)=TP; [iuoi [k + 1]} . (37d)

Note that since 7 depends only on the system matrix A which
is assumed to be time-invariant, the term 7 ! appearing in
(37¢) needs to be computed only once.

B. Analysis of the Estimation Scheme for Systems and Graphs
Satisfying Condition 2

The following is the main result of this section.

Theorem 3. Consider a system (A, C) and graph G satisfying
Condition 2. Then, for each node i € {1,2,--- N}, there
exists a choice of observer gain matrix L;, and consensus

weights wgl, VA; € UO;, L € N, such that the update rules
given by (37) form a distributed observer. O



Proof: Let a system (A, C) and graph G satisfy Condition
2. Consider \; € Ay(A). Let §; = {my,---,m,;} be the
set of root nodes for eigenvalue \;, where 7; = |S;|. Define
el (k] & 2 [k] — 2Y)[k] as the error in estimation of the
j-th sub-state by the m;-th node. The errors in estimation of
z9)[k] for the nodes that can detect \; are stacked into the
composite error vector Eg) [k], defined as

el k]
BJH S| (38)
oin, [K]
Similarly, we stack the estimation errors of z)[k] for the
nodes that cannot detect A; into the composite error vector
Ez(jc)o [k], defined as

eih), 1]

G I (39)
el [k]
where V\ §; = {m. .., -+ ,mn} represents a topological
ordering of the non-root nodes consistent with a set of directed
trees rooted at S;, which span V \ S;. Such a set of trees
exists based on Condition 2. Noting from (27) that zU )[k‘ +
1] = J;29[k], and using equation (34), for \; € UO;, the
estimation error for the j-th sub-state by the i-th node is

eE‘j)[lf +11 =35 X en, wfle§j>[k]. (40)

From (40), it follows that the relation between Eg)[k] and
Ez(jc)o [k] can be expressed via the equation

Eyjolk]
= (Wi, 3;) EQbli] + (W, @ 3;) B K],

EZ(/II()DU‘+ 1= ([ Wi, Wi, ] ®J;)

(41)

where the weight matrix W7 = [ W}, W9, | contains
weights based on equation (40) (note that Wi ¢ RW=7)xN
and WY, represents the first 7; columns of W4, where 7; =
|S;]). Using the same design philosophy for the consensus
weights as in Condition 1, we assign non-zero consensus
weights only along the branches of the spanning forest rooted
at S;. In this way, W7, can be made lower triangular with
zero eigenvalues (without violating the stochasticity condition
imposed by equation (35)). We conclude that by an appro-
priate choice of weights as described above, we can achieve
Ay(Wi, ®J;) =0 (even though \; € Ay (A)).

Based on Lemma 1, each node 7 € V can locally design
its observer gain L; to stabilize the local Luenberger observer
error dynamics. Specifically, the error dynamics corresponding
to the estimation of z()[k] for each root node in S; is
guaranteed to asymptotically converge based on Lemma 1,
i.e., the composite error Eg)[k] asymptotically converges to
zero. Using ISS, we infer from (41) that limy_ Ez(j()o [k] = 0.
The same argument holds VA; € Ay (A). Thus, we conclude
that every node can asymptotically estimate the sub-states
of z[k] corresponding to both its detectable and undetectable
eigenvalues, i.e., it can estimate the entire transformed state
z[k] asymptotically. As x[k] = Tz[k], each node can asymp-
totically estimate the true state x[k] as well. |

Remark 10. Based on the distributed observer given by (37),
note that the dimension of the observer is equal to the sum
of the dimensions of the vectors §;[k] and zyp,[k], and can
be higher than the dimension of the state x[k| (as §;[k] can
have a dimension higher than 7o, [k]). This augmentation is
a consequence of the fact that at present, although we are
able to estimate the portion Wo, k] of the vector zy o, k] via
the local Luenberger observer maintained at node 1t (given
by (33)), we use this information only for updating zo, k],
and rely on consensus for estimating the entire vector 7y o, k]
(via equation (37c)). This redundancy in information may be
potentially overcome using a more complicated scheme where
one uses consensus for estimating only the portion of the state
corresponding to the vector wy o, k| in equation (30); to avoid
cluttering the exposition, we omit further investigation of this
issue in the present paper. However, for certain special cases of
Condition 2 where the system matrix has more structure, it may
be possible to construct distributed observers without state
augmentation, using the approach proposed for Condition 2.
For example, if the system has distinct eigenvalues, then the
matrix Cyo, in (28) will be zero Vi € V, thereby precluding
the need for state augmentation. O

C. Summary of the Estimation Scheme for Systems and
Graphs Satisfying Condition 2

Similar to the strategy adopted for systems and graphs
satisfying Condition 1, the distributed observer design for
systems and graphs satisfying Condition 2 also constitutes an
initialization (or design) phase which needs to be implemented
just once, followed up by an estimation phase. However, the
extra structure provided by Condition 2 allows each of these
phases to be implemented in a distributed manner. The main
steps of the overall scheme are summarized as follows:

Design Phase:

o All nodes simultaneously perform a common co-ordinate
transformation, which brings the state matrix A into its
Jordan canonical form. Using this form, each node iden-
tifies its locally detectable and undetectable eigenvalues.

o For each \; € Ay(A), the nodes run a distributed
algorithm (we shall discuss such an algorithm shortly)
to construct trees with roots in S;, which span V \ S;
These trees guide the design of the consensus weight
matrices to be used for each unstable and marginally
stable eigenvalue of the system.

Estimation Phase:

o Each node uses a Luenberger observer for estimating the
sub-states corresponding to the detectable eigenvalues,
and runs consensus dynamics for estimating the sub-states
corresponding to the undetectable eigenvalues. These
dynamics are captured by (37).

Construction of Spanning Trees for Consensus Weight De-
sign: To construct directed trees rooted at nodes in S;, which
span V '\ S;, for each A\; € Ay(A), (these trees in turn guide
the construction of the consensus weight matrices) one can
use standard distributed tree construction algorithms (such as
Breadth-First Search (BFS)) [38]. The essential idea behind
such algorithms is that each desired root node broadcasts a



message indicating that it is a root, which is then passed
through the network. When a node first receives such a
message from a neighbor, it adopts that neighbor as its parent
in the tree and rebroadcasts the message. At the conclusion
of the algorithm, all nodes are aware of their parent in their
tree (as long as there is a path from the root node(s) to all
other nodes). For our purpose, such a distributed algorithm
can be implemented by the nodes for each \; € Ay (A), with
S; representing the roots of the tree. In this way, for each
Aj € Ay(A), anode in V\ §; will identify its parent node in
one of the directed trees rooted at S;, and as discussed in the
proof of Theorem 3, will assign a non-zero consensus weight
to only this parent node for the estimation of z(/)[k].

Note that the simpler distributed observer scheme developed
for systems and graphs satisfying Condition 2 may not always
be applicable to systems and graphs satisfying Condition 1. To
see this, consider the system and graph given by equation (3)
and Figure 1, which satisfies Condition 1 but not Condition
2. As pointed out in Remark 1, the only root node that can
detect the unstable eigenvalue A = 2 belongs to the source
component comprised of the isolated node 3. To implement the
scheme developed for systems and graphs satisfying Condition
2, one needs to construct a tree rooted at node 3 which spans
nodes 1 and 2. This is clearly not possible for this particular
network; hence the method developed for Condition 2 is not
applicable to this system and graph. In this case, the general
distributed observer framework developed for systems and
graphs satisfying Condition 1 would still apply, however.

VII. ROBUSTNESS TO COMMUNICATION LOSSES AND
SENSOR FAILURES

The general framework for distributed observer design that
we have described thus far (the idea of using Luenberger
observers for estimating the locally detectable states and con-
sensus dynamics for the remaining states) allows for various
extensions. Here, we discuss how our approach can deal with
communication losses and node failures or attacks.

A. Extension to Communication Losses

We first discuss how the estimation scheme developed for
systems and graphs satisfying Condition 1 can be extended
to account for time-varying communication graphs that are
a consequence of communication link failures. A similar
analysis can be performed for Condition 2 and hence the
details of that analysis are omitted for brevity. We consider
a scenario where the network varies with time due to failure
or recovery of subsets of edges of the baseline graph G. We
denote this class of switching signals by 2. Under the class of
switching signals (2, the time-varying communication graph is
denoted by G, (1) = (V, &, k), where o(k) is a finite index
set representing the different switching modes, and &,y € €
(recall that £ represents the set of edges of the baseline graph
G). For the rest of the analysis in this section, we assume that
the baseline communication graph G is strongly-connected,
i.e., G is strongly-connected in the absence of link failures.

We make two minor modifications to our original estimation
strategy (refer to Section V-F) to account for communication

losses. First, during the design phase, for estimation of a
given sub-state, we construct a spanning directed acyclic graph
(DAG) (instead of a spanning tree) rooted at the corresponding
source node to allow for the possibility of having redundant
communication links. Accordingly, in the DAG constructed
for estimation of sub-state j (where j € {1,---, N}), let the
set of parent nodes for node ¢ be denoted by 731-(] ). Second,
for estimating the j-th sub-state, where j € {1,--- , N}\ {i},
the ¢-th node does the following: if at a certain time-step it
receives information from only a proper subset of its parent
set 771»(] ), then it still employs equation (11), redistributing the
weights among such a subset so as to preserve the stochasticity
constraint imposed by (12). For the more critical scenario
where node 7 gets disconnected from all its parents in the set
Piu ) at a given time-step k, it updates 27(;] ) [k] using previous
values of its own estimates in the following way:

2+ 1) = Ay K]+ S Ak (42)

A direct consequence of the update rule (42) is that the
matrix Aj;, which may be unstable, appears in the block
diagonal position corresponding to node ¢ in the lower block
triangular error dynamics matrix M; given by (21). Notice
also that for a given node i, the observer update equations (10)
and (13) are unaffected by changes in the network structure. To
proceed with our analysis, we make the following assumption
on the class of switching signals (2.

Assumption 2. The class of switching signals ) has the
following property: there exists a positive integer T' such that
in every time interval of the form [kT, (k+1)T), where k € N,
for each sub-state j € {1,--- , N}, for every node i € V\{j},
there exists an integer | € [KT,(k 4 1)T') such that G,

contains an edge from at least one node in Pi(J ) to node i."!

In words, Assumption 2 simply implies that within each
interval [kT, (k4 1)T), for each sub-state j, every non-source
node V\ {j} is guaranteed to receive information from at least
one of its parents in P;’ ) at least once over the entire interval.
With this in mind, we now state the main result of this section.

Theorem 4. Consider a system (A,C) and a strongly-

connected baseline communication graph G satisfying Con-

dition 1. Suppose the class of switching signals € satisfies

Assumption 2. Then, equations (10), (11) with time-varying

weights, (13) and (42) form a distributed observer. O
The proof is provided in Appendix B.

Remark 11. The conditions in Theorem 4 allude to the preser-
vation of certain information flow patterns over contiguous,
non-overlapping bounded time intervals and in the process
inform the judicious placement of redundant communications
links for augmenting network robustness against communi-
cation failures. If such conditions are met, then the strategy
described in this section can be used to deal with intermittent
communication losses without the need for a redesign of the
estimation scheme on the fly. However, such a redesign cannot
be avoided if one of the sensors involved in the multi-sensor

Note that within a given interval of the form [kT, (k+1)T), for a specific
sub-state j, [ might be different for the different non-source nodes in V\ {j}.



observable canonical decomposition described in Section V-A
fails. This is a limitation of the scheme proposed for systems
and graphs satisfying Condition 1 that can potentially be
mitigated by extending some of the ideas in our recent work
[39] that we briefly discuss in Section VII-B. It should be noted
that the aforementioned limitation is likely to be a shortcoming
of the existing distributed observer constructions [4]-[10] as
well, since they typically involve a centralized design phase
and do not account for node or link failures. |

Remark 12. While the foregoing discussion focused on
transient communication failures, permanent communication
failures can also be accommodated within our framework in
the following way. Suppose a non-source node i for a certain
sub-state gets disconnected from all its parent nodes in the
baseline graph G at a certain time-step. If G is undirected and
remains connected after such faults, then node i can broad-
cast the fault status back to the corresponding source node,
thereby initiating the construction of a new tree that retains
information flow from the source to node i. Such trees can
easily be constructed in a distributed manner using standard
techniques [38] similar to the one outlined earlier in Section
VI-C. The non-source nodes can then re-adjust their consensus
weights based on the new tree and employ (11) as earlier. Note
that the above strategy would also apply to permanent sensor
failures provided such sensors are not involved in the multi-
sensor observable canonical decomposition."” O

B. Extension to Node Attacks

Dealing with node failures (or more generally, malicious
node behavior) requires additional careful analysis and incor-
poration of redundancy in the network and sensors so as to
meet a two-fold objective - the collective measurements of
the non-compromised nodes must ensure global detectability
of the state, and the network must contain a sufficient amount
of redundancy to prevent the failed (or malicious) nodes from
acting as bottlenecks between the correctly functioning nodes.
Furthermore, even with such redundancy, one has to carefully
design the estimation algorithm to leverage the redundancy so
as to guarantee asymptotic state reconstruction by the non-
faulty nodes. In addition to these challenges, one needs to
account for the fact that under malicious attacks, a node might
receive corrupt information from compromised neighboring
nodes. This, in general, is a non-trivial task. A preliminary
investigation of the node attack scenario (which subsumes
node failures) has been conducted in our recent work [39]
where we provide sufficient conditions on the network that
guarantee asymptotic state reconstruction for systems with
distinct real eigenvalues (a special case of Condition 2) de-
spite a certain number of malicious nodes in the network.'3

12Clearly, for an undirected baseline graph that is initially k-connected, k —
1 permanent communication faults can be accounted for in the aforementioned
manner. In fact, K — 1 permanent sensor failures could also be handled if such
sensors are not involved in the multi-sensor observable decomposition.

13In addition to admitting a fully distributed implementation as mentioned
earlier, robustness to node attacks is another key advantage afforded by
our approach for systems and graphs satisfying Condition 2. This is in
contrast with existing work on distributed observers, which, to the best of
our knowledge, requires a centralized design phase and does not provide any
theoretical guarantees against node faults or attacks.

LTI plant

---nodel
-~ node2
node3

---nodel
- - node2
node3

---nodel
- - node2

Fig. 5. (Top left) Error dynamics for the first state. (Top right) Error dynamics
for the second state. (Bottom left) Error dynamics for the third state.

Specifically, we show that under the provided conditions on
the network topology, we can extend the approach that we have
developed in this paper to construct robust DAGs, along with
a slightly modified consensus update rule, in order to provide
security guarantees for the normal nodes. This illustrates the
benefits of the framework for distributed estimation that we
have provided in this paper; extensions of these ideas to tackle
malicious behavior under more general system dynamics is an
area of ongoing research.

Remark 13. In the context of distributed estimation in the
presence of component failures, the effect of missing node
measurements captured via Bernoulli random variables has
been studied in [40] and [28], and random communication link
failures (with varying assumptions on the stochastic properties
of such failures) have been investigated in [26], [40] and [30].
The techniques developed in this paper deviate from those
above by (i) providing a promising framework that is resilient
to arbitrary node attacks (as opposed to the existing literature
that does not tackle such scenarios); and (ii) providing graph-
theoretic conditions for dealing with link and node failures. [

VIII. EXAMPLE

In this section, we present an example to illustrate the
scheme developed for Condition 1. To this end, consider the
network shown in Figure 4, and the associated system and
measurement matrices given by

1
A=|2
=5

0 0 3
2 0[.Cr=[4 4 1],sz[ié 1; ﬂ‘cazﬁ (43)
0 2




Note that the system is not detectable from any individual

node. It can be verified that the pair (A, Cl} ), associated

Cs

with the source component comprised of nodes 1 and 2, is
observable. Hence, the scheme developed for Condition 1
is applicable to this setting. To implement the multi-sensor
observable canonical decomposition, we start by bringing
the pair (A, Cy) to the observable canonical form. This is

' _ 47 0 . Ci, .
achieved using T; = [‘113_0%27%215]' Since (A, {CJ) °

observable, in this specific case, we have Ags = Ay and
Aoy = 0 (here we use notations consistent with the ones
described in the proof of Proposition 1 in Appendix A). Thus,
we have Ty = I3 and 7 = T Ty = T4. Using 7, we perform
the multi-sensor observable canonical decomposition to obtain

—10.9412 —22.6471:0
6.8235  13.9412

(44)

a
Il
™
ow
[=2]
N
f=3

e}

_[99 187i—0.2425
27 1140 2641 —0.4851] "

Based on the above decomposition, and the theory developed
for Condition 1, it is easy to see that the transformed state
z[k] = T ~1x[k] will contain two sub-states and the unobserv-
able sub-state will be of zero-dimension. The local Luenberger
observer gains are chosen as L; = [—4.6404 2.5174]T
and Ly = [-1.641 —3.282]. Noting that node 1 is re-
sponsible for estimating sub-state 1, and node 2 for sub-
state 2, the consensus weight vectors used by the two nodes

T T T
arce wip = []. 0 ,Wia = [0 ].] s, Wo1 = [1 0] N
and wao = [0 1]". Section V-E provides a description of
these weight vectors. Using these design parameters, nodes
1 and 2 maintain the following estimators of the form
(24) %1k + 1] = Nx1[k] + TH; (y1[k] — C1%1[k]) + G11%1 k] + GraXa[k],
o[k + 1] = N, [k] + TH, (yo[k] — Coka[k]) + Garki[k] + GosXalk],

0 00 —0.94 0 0
N=|129 0 O|,TH;= | 1.58 | ,THy = | 0.40  0.80

-518 0 0 0.39 —1.59 -3.18

£

where

1 0 0
0.71 1.88 0.47
0.18 0.47 0.12

Gll = GZI =

[0 0 0 }

Gy =Gy = |0 012 047,

0 —047 188

Since node 3 does not belong to any source component, it
simply runs a pure consensus strategy given by X[k + 1] =
Ax,[k]. Note that all nodes maintain observers of dimension
3. For simulations, x[0] = [0.5 —0.5 1]T, and the initial
estimates of all three nodes are set to 0. Figure 5 shows the
evolution of the estimation errors (in these plots, the notation
e,E] ) is used to denote the error in estimation of state 7 by node
1) and validates the scheme developed for Condition 1.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of distributed
state estimation of a LTI system by a network of nodes. We
introduced a new class of distributed observers (of the form
(24)), for the most general class of LTI systems, directed
communication graphs and linear sensor measurement struc-
tures. This was achieved by extending the Kalman observable
canonical decomposition to a setting with multiple sensors,
i.e., by introducing the notion of a multi-sensor observable
canonical decomposition. We also demonstrated that for cer-
tain subclasses of system dynamics and networks, one can

design a distributed observer via a simpler estimation scheme
which enjoys the benefit of a fully distributed design phase.
Finally, we discussed how our proposed framework can be
extended to account for communication failures and node
attacks or faults. The main underlying theme of our work
is built upon the following intuition: portions of the state
space can be reconstructed by a node using its own local
measurements, and hence it needs to run consensus for only
the portion of the state space that is not locally detectable.
As future work, it would be interesting to explore whether
low-complexity distributed algorithms for observer design
(such as the one we presented for Condition 2) can be obtained
for systems and graphs satisfying Condition 1. Furthermore,
while we focused on noiseless dynamics in this paper for ease
of exposition, for stochastic systems, one needs to determine
optimal consensus protocols for fusing sensor data. Another
important problem is the design of distributed functional
observers motivated by the following observation: for large
systems, it may be computationally demanding for every node
to estimate the entire state vector; in practice, the nodes may
only care about estimating certain linear functions of the state.
A preliminary investigation along such lines has been pursued
in our recent work [41]. While the discussion in Section VII
focused on robustness to node failures and communication
losses, robustness to model uncertainties is also an important
consideration in the context of distributed estimation. The H,
filtering framework is a natural candidate for analyzing such
uncertainties and has been well explored in [25], [26], [28],
[29] for dealing with various categories of model perturbations
(time-varying models, nonlinear stochastic models etc.). Ex-
tensions of our framework for dealing with such perturbations
is reserved as future work. Finally, analyzing how the proposed
framework fares against network induced issues such as delays
and communication asynchronicities would also be interesting.
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APPENDIX A
PROOF OF PROPOSITION 1

Proof: We outline the sequence of transformations that

need to be carried out.

Step 1 : Transformation at Sensor 1

Consider the coordinate transformation x[k] = Tizi[k].
Here, T is the non-singular matrix that performs an observ-
able canonical decomposition of the pair (A, Cy), yielding

A11 0

o] = [ 2]

21 [k+1] A,=T'AT,
yl[k!] = [Cll 0] Zl[k].
N——

C;=C;T,

zM[k)
24, [k] }

z1 [k]

(45)

Let z(V[k] € R°'. From (45), we obtain

2Dk 4+ 1) = Az W[k,

46
yl[k] = Cuz(l)[k]. ( )

Step 2 : Transformation at Sensor 2
We know the following:

yg[k] = CQX[k] = CQlel[k]
zW[k]
2 K]

£[Ca Couwy] “7)

|

Let T, be a non-singular transformation matrix that per-
forms an observable canonical decomposition of the pair
(A4, Ca14). We now wish to identify the portion of the
unobservable subspace of sensor 1 that is observable with
respect to sensor 2. With this objective in mind, consider the
coordinate transformation z[k] = Tszs[k], where the non-
singular transformation matrix Ty is defined as

I, O

Ty = {0 T2:| . (48)



This yields the following dynamics:

zZW[k + 1) A 0 z(D[k]
[ 2k + 1] :| = | poia Axp 0 |: z)[k] :|1
2k +1] 2 A | | eI
- = - - -l 49)
2[k+1] Ax=T; AT, 22[k]
yalk] = [ Ca1 | Ca2 0 |zfk],
Cy=C,T, T,
where
— = Ao 0
T ATy = |2
2 Saun2 [ *  Agyl’ 50)

CoyTo=[Cy 0 ].

Let z?)[k] € R?2. Let Ay, be the matrix formed by the first
09 rows of T2_1A1X. From (49), we have

Z(2) [k‘ + 1] = A22z(2) [k‘] + Aglz(l)[k,’],

ya[k] = C222P k] + Ca12V[K]. D

Following the same design procedure, we continue the se-
quence of transformations, one for each sensor, until we reach
the N-th sensor.

Step N : Transformation at Sensor N

Let Ty be a matrix that performs an observable canoni-
cal decomposition of the pair (A (y_1y, Cn(nv—1)u). Next,
consider the coordinate transformation zx_1[k] = Tnznk],
where the transformation matrix T is defined as follows:

L, 0
1, 0

Ty = 0 .. : (52)
0 L, O

0 Ty

Using this transformation matrix, it is easy to identify that the
resulting dynamics are governed by the following equations:
ZN[]C + 1] = ANZN[]CL

yn[k] = Cnzylk],

where Ay equals A in equation (5) and C attains the form:
CN = [ CN1 CN2 "'CN(Nfl) CNN ‘ 0 ] . Thus, by
defining 7 £ [}, T, we obtain the desired result. u

(53)

APPENDIX B
PROOF OF THEOREM 4

Proof: Following the proof technique of Theorem 1, we
induct on the sub-state number and use the same notation as
in the former proof. Accordingly, note that the dynamics of
the composite estimation error vector for the first sub-state,
namely E(V)[k], is governed by the following switched linear
system model: EM [k + 1] = M, [kJEM[k]. Note that the
entries of E(V)[k] match a topological ordering consistent with
a spanning DAG rooted at node 1 in the baseline graph G.
Here, M, [k] is a time-varying matrix induced by the class of
switching signals €2 and is of the structure given by (21). Since
2 satisfies Assumption 2, each non-source node i € V \ {1}
is guaranteed to receive information from at least one of its
parents in 731-(1) in at least one switching mode over every time
interval of the form [kT, (k + 1)T'), where k € N. Based on
our estimation scheme, for that corresponding switching mode,
the block diagonal entry corresponding to node ¢ in the matrix
M, [k] will be zero. With this observation in mind, consider
the following dynamics: EM[(k + 1)T] = M (k)EM kT,
where M (k) = My [(k + 1)T — 1]--- M [kT + 1]M, [kT].

From our prior discussion, it easily follows that M (k) is
a lower block triangular matrix with zeroes on the block-
diagonal corresponding to the non-source nodes in V \ {1}
and the entry (A7 — L1011)T corresponding to node 1. As
the pair (A11,Cy1) is observable by construction, it follows
using standard arguments that M (k) is always a Schur stable
matrix. Since M (k) belongs to a finite set of matrices (owing
to a finite number of switching modes), we can directly use
[42, Proposition 2.9] to establish that limy_,., EM[kT] = 0
and hence limy_,.. EW[k] = 0. Next, suppose that EU)[£]
converges to zero asymptotically Vj € {1,--- ,p — 1}, where
1 <p—1< N —1. The composite estimation error dynamics
for sub-state p over an interval of length 7" is given by
E®[(k+ 1)T] = M, (k)E® [KT] + F,(k)v®, 54)
where M, (k) is defined in the same way as M (k), and

v [ET]
VK] = 7 Hy B[k,

v = |: :
v [(k+1)T —1]

Fpo(k) = [(Mp[(k + )T — 1] --- M, [kT + 1]) M,[(k+1)T —1] In,,].

It follows from our induction hypothesis that limy,_, ., v(?)[E]
= 0. Since M, (k) is Schur stable for the class of switching
signals satisfying Assumption 2 (in the same way as M; (k)
is Schur stable), it follows from ISS and [42, Proposition
2.9] that limj_,.c E®[k] = 0. Since the update rule (13)
for the unobservable component of the state is unaffected by
changes in the network structure, the rest of the proof proceeds
similarly as the proof of Theorem 1. [ ]
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