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MIXED RAY TRANSFORM ON SIMPLE 2-DIMENSIONAL

RIEMANNIAN MANIFOLDS

MAARTEN V. DE HOOP, TEEMU SAKSALA, AND JIAN ZHAI

(Communicated by Michael Hitrik)

Abstract. We characterize the kernel of the mixed ray transform on simple
2-dimensional Riemannian manifolds, that is, on simple surfaces for tensors of
any order.

1. Introduction

We provide a characterization of the kernel of the mixed ray transform on simple
2-dimensional Riemannian manifolds for tensors of any order. The key application
pertains to elastic qS -wave tomography [3] in weakly anisotropic media.

We let (M, g) be a smooth, compact, connected 2-dimensional Riemannian man-
ifold with smooth boundary ∂M . We assume that (M, g) is simple; that is, ∂M is
strictly convex with respect to g and expp : exp−1

p (M) → M is a diffeomorphism
for every p ∈ M . We let SM = {(x, v) ∈ TM ; ‖v‖g = 1} be the unit sphere bundle.
We use the notation ν for the outer unit normal vector field to ∂M . We write
∂in(SM) = {(x, v) ∈ SM ;x ∈ ∂M, 〈v, ν〉g ≤ 0} for the vector bundle of inward
pointing unit vectors on ∂M . For (x, v) ∈ SM , γx,v(t) is the geodesic starting from
x in direction v, and τ (x, v) is the time when γx,v exits M . Since (M, g) is simple
τ (x, v) < ∞ for all (x, v) ∈ ∂in(SM), and the exit time function τ is smooth in
∂in(SM) [15, Section 4.1].

We use the notation SkM , k ∈ N, for the space of smooth symmetric tensor
fields on M . We also use the notation SkM × S�M, k, � ≥ 1, for the space of
smooth tensor fields that are symmetric with respect to first k and last � variables.
The mixed ray transform Lk,� of a tensor field f ∈ SkM × S�M is given by the
formula

(1.1) Lk,�f(x, v) =

∫ τ(x,v)

0

fi1,...,ikj1,...,j�(γ(t))γ̇(t)
i1 · · · γ̇(t)ikη(t)j1 · · · η(t)j�dt,

(x, v) ∈ ∂in(SM), γ = γx,v,

where we used the summation convention, while η(t) is some unit length vector
field on γ that is parallel and perpendicular to γ̇(t) and depends smoothly on
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2 M. V. DE HOOP, T. SAKSALA, AND J. ZHAI

(x, v) ∈ ∂in(SM). We note that the definition of the mixed ray transform is different
in higher dimensions, due to the freedom in the choice of η (see [15, Section 7.2]).
We consider the choice of η(t) and the mapping properties of Lk,� in dimension 2.

We define two linear operators, the images of which are contained in the kernel of
Lk,�. For a (k× �)-tensor, fi1,...,ikj1,...,j� , we introduce the symmetrization operator
as

(1.2) (Sym(i1, . . . , ik)f)i1,...,ikj1,...,j� :=
1

k!

∑
σ

fiσ(1),...,iσ(k)j1,...,j� ,

where σ runs over all permutations of (1, 2, . . . , k). This operator symmetrizes
f with respect to the first k indices. We define the symmetrization operator
Sym(j1, . . . , j�) for the last � indices analogously.

We introduce a first operator λ, the image of which is contained in the kernel of
Lk,�. The operator λ : Sk−1M × S�−1M → SkM × S�M is defined by

(1.3) (λw)i1,...,ikj1,...,j� := Sym(i1, . . . , ik) Sym(j1, . . . , j�)(gi1j1wi2,...,ikj2,...,j�).

Using (1.2) and (1.3) it is straightforward to verify that

(1.4) (λw)i1,...,ikj1,...,j�v
i1 · · · vik(v⊥)j1 · · · (v⊥)j� = 0, v ∈ TM,

where v⊥ is any vector orthogonal to v. Therefore (1.4) implies that

Im(λ) ⊂ ker(Lk,�).

We use the notation ui1,...,ik;h for the (h) component functions of the covariant
derivative ∇u of the tensor field u. We define the second operator, d′ say, by the
formula

d′ : Sk−1M × S�M → SkM × S�M,(1.5)

(d′u)i1,...,ikj1,...,j� := Sym(i1, . . . , ik)ui2,...,ikj1,...,j�;i1 .

Then the following holds for any u ∈ Sk−1M × S�M :

d

dt

(
ui1,...,ik−1j1,...,j�(γ(t))γ̇(t)

i1 · · · γ̇(t)ik−1η(t)j1 · · · η(t)j�
)

= (d′u)i1,...,ikj1,...,j� γ̇(t)
i1 · · · γ̇(t)ikη(t)j1 · · · η(t)j� .

If u|∂M = 0 (in the sense that all component functions of u vanish at ∂M), then
Lk,�(d

′u) = 0 by the fundamental theorem of calculus. Thus

{d′u : u ∈ Sk−1M × S�M, u|∂M = 0} ⊂ ker(Lk,�).

Our main result shows that the kernel of Lk,� is spanned by the images of these
two linear operators.

Theorem 1.1. Let (M, g) be a simple 2-dimensional Riemannian manifold. Let
f ∈ SkM × S�M , k, � ≥ 1. Then

Lk,�f(x, v) = 0, (x, v) ∈ ∂in(SM),

if and only if

f = d′u+ λw, u ∈ Sk−1M × S�M, u|∂M = 0, w ∈ Sk−1M × S�−1M.
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2D MIXED RAY TRANSFORM 3

The key observation needed to prove this theorem is that the mixed ray trans-
form and the geodesic ray transform can be transformed to one another, for arbi-
trary k, � ≥ 1, if (M, g) is a 2-dimensional simple Riemannian manifold. A similar
observation has already been obtained for the transverse ray transform by Shara-
futdinov [15, Chapter 5]. The work by Paternain, Salo, and Uhlmann [10] proved
the s-injectivity of the geodesic ray transform on simple manifolds in dimension 2.
In Theorem 1.1, we characterize the kernel of Lk,� using their results.

2. Relation with elastic qS -wave tomography

We describe a mixed ray transform arising from elastic wave tomography. We
follow the presentation in [15, Chapter 7], wherein one can find more details. Let
(x1, x2) be any curvilinear coordinate system in R

2, where the Euclidean metric is

ds2 = gjkdx
jdxk.

The elastic wave equations

(2.1) ρ
∂2uj

∂t2
= σ k

jk; := σjk;lg
kl

describe the waves traveling in a 2-dimensional elastic bodyM ⊂ R2. Here u(x, t) =
(u1, u2) is the displacement vector. The strain tensor is given by

εjk =
1

2
(uj;k + uk;j),

while the stress tensor is
σjk = Cjklmεlm,

where C(x) = (Cjklm) is the elastic tensor and ρ(x) is the density of mass. Here
εlm is obtained by raising indices with respect to the metric gjk. The elastic tensor
has the following symmetry properties:

(2.2) Cjklm = Ckjlm = Clmjk.

We assume that the elastic tensor is weakly anisotropic; that is, it can be repre-
sented as

Cjklm = λgjkglm + μ(gjlgkm + gjmgkl) + δcjklm,

where λ and μ are positive functions called the Lamé parameters and c = (cjklm)
is an anisotropic perturbation. Here, δ is a small positive real number. We note
here that δ = 0 corresponds to an isotropic medium.

We construct geometric optics solutions to system (2.1) using the parameter
ω = ω0/δ, where ω0 is a constant,

uj = eiωι
∞∑

m=0

u
(m)
j

(iω)m
, εjk = eiωι

∞∑
m=−1

ε
(m)
jk

(iω)m
, σjk = eiωι

∞∑
m=−1

σ
(m)
jk

(iω)m
,

and ι(x) is a real function.
We substitute the above solutions into equation (2.1), assume u(−1) = ε(−2) =

σ(−2) = 0, and equate the terms of the order −2 and −1, respectively, in ω to
obtain

(λ+ μ)〈u(0),∇ι〉g∇ι+ (μ‖∇ι‖2g − ρ)u(0) = 0.

If we take

(2.3) ‖∇ι‖2g =
ρ

μ
,
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4 M. V. DE HOOP, T. SAKSALA, AND J. ZHAI

then

〈u(0),∇ι〉g = 0.

The solutions u
(0)
j represent shear waves (S-waves), and the displacement vector u(0)

is orthogonal to ∇ι. We denote ns = ρ/μ and vs = 1/ns. The characteristics of the
eikonal equation (2.3) are geodesics of the Riemannian metric n2

sds
2 = n2

sgjkdx
jdxk.

We choose a geodesic γ of metric n2
sds

2 and apply the change of variables,

u
(0)
j = Asn

−1
s ζj ,

where

As =
C√
Jρvs

, J2 = n2
s det(gjk), C is a constant.

Then it is shown in [15, Section 7.1.5] that ζ satisfies Rytov’s law,

(2.4)

(
Dζ

dτ

)
j

= −i
1

ρv6s
(δqj − γ̇j γ̇

q)ω0cqklmγ̇kγ̇mζl,

where D
dτ is the covariant derivative along γ. We note that cqklmγ̇kγ̇m is qua-

dratic in γ̇ and symmetric in k,m, so the solution ζ of (2.4) depends only on the
symmetrization

fjklm = −i
1

4ρv6s
(cjlkm + cjmkl).

We assume that for every unit speed geodesic γ : [a, b] → M (in Riemannian
manifold (M,n2

sds
2)) with endpoints in ∂M , the value ζ(b) of a solution to equation

(2.4) is known as ζ(b) = U(γ)ζ(a), where U(γ) is the solution operator of (2.4) and
ζ(a) is the initial value. We formulate an inverse problem.

Inverse Problem 2.1. Determine tensor field f from U(γ).

We linearize this problem as in [15, Chapter 5]. Take a unit vector field ξ(t) ⊥
γ̇(t) (with respect to metric n2

sds
2), which is also parallel along γ. Then e1(t) = ξ(t)

and e2(t) = γ̇(t) form an orthonormal frame along γ. In this basis, equation (2.4)
is

(2.5) ζ̇1 = −i
1

ρv6s
ω0c1l1mγ̇lγ̇mζ1, ζ̇2 = 0.

We denote F (t) = −i 1
ρv6

s
ω0c1l1m(γ(t))γ̇l(t)γ̇m(t). Since (2.5) is a separable first-

order ordinary differential equation, its solution is

ζ1(b) = e
∫ b
a
F (t)dtζ1(a).

We take the first-order Taylor expansion of the right-hand side of the equation
above to obtain

ζ1(b)− ζ1(a) ∼
∫ b

a

F (t)ζ1(a)dt.

Multiplying this equation by ζ1(a), we get

(ζ1(b)− ζ1(a))ζ
1(a) ∼

∫ b

a

F (t)ζ1(a)ζ1(a)dt(2.6)

=

∫ b

a

ω0f11lm(γ(t))ζ1(a)ζ1(a)γ̇l(t)γ̇m(t)dt.
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2D MIXED RAY TRANSFORM 5

We denote the vector field η(t) = ζi(a)ei(t), ζ
2(a) = 0, and observe that it is

parallel along γ and perpendicular to γ̇(t). We emphasize that η(t) does not need
to solve (2.5). The right-hand side of (2.6) then takes the form∫ b

a

ω0f11lm(γ(t))η1(t)η1(t)γ̇l(t)γ̇m(t)dt.

We arrive at the inverse problem.

Inverse Problem 2.2. Determine the tensor field f from

L2,2(f) =

∫ b

a

fjklm(γ(t))ηj(t)ηk(t)γ̇l(t)γ̇m(t)dt

for all γ and η ⊥ γ, where η is parallel along γ.

Remark 2.3. The tensor field f possesses the same symmetry properties (2.2) as
C. Therefore f ∈ S2M × S2M . Since

L2,2(f + d′u+ λw) = L2,2(f) for any u ∈ S1M × S2M, w ∈ S1M × S1M,

we can only recover the tensor f up to the kernel of L2,2. Thus Inverse Problem
2.2 is a special case of Theorem 1.1.

3. Context and previous work

We note that if � = 0 in (1.1), the operator Lk,0 is the geodesic ray transform Ik
for a symmetric k-tensor f . It is well known that Sym(i1, . . . , ik)∇u is in the kernel
of Ik, where u is a symmetric (k − 1)-tensor with u|∂Ω = 0. If Ikf = 0 implies
f = Sym(i1, . . . , ik)∇u, we say that Ik is s-injective.

When (M, g) is a 2-dimensional simple manifold, Paternain, Salo, and Uhlmann
[10] proved the s-injectivity of Ik for arbitrary k. The standard way to prove s-
injectivity of I0 and I1 is to use an energy identity known as the Pestov identity.
If k ≥ 2 this identity alone is not sufficient to prove the s-injectivity. The special
case k = 2 was proved earlier [16] using the proof for boundary rigidity [14].

In dimension 3 or higher, it was proved that I0 is injective [7, 8] and that I1 is
s-injective [2]. The s-injectivity of Ik for k ≥ 2 is still open for simple Riemannian
manifolds. Under certain curvature conditions, the s-injectivity of Ik, k ≥ 2, was
proved in [4,12,13,15]. Without any curvature condition, I2 has a finite-dimensional
kernel [18]. If g is in a certain open and dense subset of simple metrics in Cr, r � 1,
containing analytic metrics, the s-injectivity was obtained by analytic microlocal
analysis for k = 2 [17]. Under a different assumption, namely, that M can be
foliated by strictly convex hypersurfaces, the s-injectivity was established for k = 0
[21] and k = 1, 2 [19].

The mixed ray transform (� �= 0, k �= 0) has not been studied as extensively as
the geodesic ray transform. In dimension 2 or higher, a result similar to Theorem 1.1
was obtained under a restrictive curvature condition [15].

When k = 0, L0,� is called the transverse ray transform, also denoted by J�.
For J�, the situations are quite different for dimension 2 and higher dimensions.
In dimension 3 or higher, J� is injective for � < dimM under certain curvature
conditions [15]. However, J� has a nontrivial kernel in dimension 2. This problem is
related to polarization tomography, for which some results are given under different
conditions [5, 9, 11].
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6 M. V. DE HOOP, T. SAKSALA, AND J. ZHAI

In a recent paper [6] the authors studied the s-injectivity of attenuated geodesic
ray transforms. In [6, Theorem 5] the authors proved that for a given k ∈ N the
family {Lk−�,� : � ∈ {0, . . . , k}} of mixed ray transforms determines a symmetric
tensor f ∈ SkM uniquely if (M, g) is a simple surface or if M is a unit disk of R2

and g is a radial metric c(r)e satisfying Herglotz’ nontrapping condition

d

dr

(
r

c(r)

)
> 0.

4. Proof of Theorem 1.1

Since (M, g) is a 2-dimensional simple Riemannian manifold, there exists a diffeo-
morphism φ from M onto a closed unit disc D of R2. If g′ is the pullback of metric
g under φ−1 on D, then g′ is conformally Euclidean, meaning that there exists a
change of coordinates after which g′ = he, where h is some positive function and
e is the Euclidean metric; this was shown in [1, Theorem 4] and [20, Proposition
1.3]. Therefore, there exist global isothermal coordinates (x1, x2) on M so that the
metric g can be written as e2α(x)(dx2

1 + dx2
2), where α(x) is a smooth real-valued

function of x.
The global isothermal coordinate structure makes it possible to define a smooth

rotation,
σ : TM → TM, σ(v) := (v2,−v1),

where v = (v1, v2) in these coordinates. This map satisfies

(4.1) v ⊥ σ(v) and ‖v‖g = ‖σ(v)‖g.
Moreover, there exists a linear map

Φ : SkM × S�M → C∞(SM),(4.2)

(Φf)(x, v) := fi1,...,ikj1,...,j�(x)v
i1 · · · vikσ(v)j1 · · ·σ(v)j� .

Thus each tensor field f ∈ SkM × S�M is related to a smooth function on SM via
(4.2). We note that Φ is not one-to-one since Φ(λw) = 0 for any w ∈ Sk−1M ×
S�−1M , where λ is as in (1.3). We have the following:

Lemma 4.1. For any f ∈ SkM × S�M it holds that

(4.3) Lk,�f(x, v) =

∫ τ(x,v)

0

(Φf)(γx,v(t), γ̇x,v(t))dt, (x, v) ∈ ∂in(SM),

and
Lk,� : S

kM × S�M → C∞(∂inSM)

if we assume that
η(0) = σ(v), (x, v) ∈ ∂in(SM).

Proof. Let (x, v) ∈ ∂inSM . We define η = σ(v). Let Pt(η) be the parallel transport
of η from TxM to Tγx,v(t)M , t ∈ [0, τ (x, v)]. By the property of parallel translation,
Pt : TxM → Tγx,v(t)M is an isometry, whence ‖Ptη‖g = 1 and 〈Ptη, γ̇(t)〉g = 0.
Since M is 2-dimensional, the continuity of Ptη in t with (4.1) implies that

Ptη = σ(γ̇x,v(t)).

Because the functions Φf and τ are smooth in ∂in(SM), the function Lk,�(f) is
smooth in ∂in(SM) due to (4.3). �
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2D MIXED RAY TRANSFORM 7

Let f ∈ SkM × S�M . Simplifying the notation, from here on we do not distin-
guish tensor f from function Φ(f). We notice first that

(4.4) f(x, v) = (−1)�−N(j1,...,j�)fi1,...,ikj1,...,j�(x)v
i1 · · · vikv�−N(j1,...,j�)

1 v
N(j1,...,j�)
2 ,

(x, v) ∈ SM,

where N(j1, . . . , j�) is the number of 1’s in (j1, . . . , j�). We let δ be the map that
maps 1’s in (j1, . . . , j�) to 2’s and vice versa. We denote by δ(j1, . . . , j�) the �-tuple
obtained from applying δ to (j1, . . . , j�). Then we define a linear operator

A : SkM × S�M → SkM × S�M,(4.5)

(Af)i1,...,ikj1,...,j� = (−1)�−N(j1,...,j�)fi1,...,ikδ(j1,...,j�).

We note that for any k, � ≥ 1 we have

A

(
r(x)

(
(⊗hdx1)⊗s (⊗k−hdx2)

)
⊗
(
(⊗adx1)⊗s (⊗�−adx2)

))
= r(x)

(
(⊗hdx1)⊗s (⊗k−hdx2)

)
⊗
(
(⊗a(�dx1))⊗s (⊗�−a(�dx2))

)
= (−1)�−ar(x)

(
(⊗hdx1)⊗s (⊗k−hdx2)

)
⊗
(
(⊗�−adx1)⊗s (⊗adx2)

)
, r ∈ C∞(M),

where � is the Hodge star operator. Formula (4.5) implies that A is invertible with
the inverse

(4.6) A−1 = (−1)�A.

We then point out that

(Af)i1,...,ikj1,...,j�(x)v
i1 · · · vikvj1 · · · vj�(4.7)

= (SymAf)i1,...ikj1,...,j�(x)v
i1 · · · vikvj1 · · · vj� .

The notation Symh stands for the full symmetrization of the tensor field h.
Using equations (4.4), (4.5), and (4.7), we find that

(4.8) Lk,�(f) = Ik+�(Sym(Af)),

where Ik+� is the geodesic ray transform on symmetric tensor field h ∈ Sk+�M ,
defined by the formula

Ik+�(h)(x, v)

=

∫ τ(x,v)

0

hi1,...,ik+�
(γx,v(t))γ̇x,v(t)

i1 · · · γ̇x,v(t)ik+�dt, (x, v) ∈ ∂in(SM).

By (4.8) and [10, Theorem 1.1] it holds that for any h ∈ SkM × S�M ,

(4.9) Lk,�(h) = 0 if and only if SymAh = dsv, v ∈ Sk+�−1M, v|∂M = 0.

In the above, ds stands for the inner derivative, that is, the symmetrization of the
covariant derivative

(4.10) dsu = Sym(∇u), u ∈ Sk+�−1M.

If Lk,�(f) = 0, then, with (4.6) and (4.9), we can write

f = (−1)�A(Sym(Af)+(Af−Sym(Af))) = (−1)�A(dsu)+f+(−1)�+1A(Sym(Af)).

We conclude that the claim of Theorem 1.1 holds if

f + (−1)�+1A(Sym(Af)) = λw, A(dsu− d′u) = λw′, d′A = Ad′
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8 M. V. DE HOOP, T. SAKSALA, AND J. ZHAI

for some w,w′ ∈ Sk−1M × S�−1M and u ∈ Sk+�−1M . These equations will be
proved in the following subsections.

4.1. Analysis of operator A SymA. In this subsection, we prove the following
identity for any f ∈ SkM × S�M :

(4.11) f + (−1)�+1A(Sym(Af)) = λw for some w ∈ Sk−1M × S�−1M.

We start with a lemma that characterizes the kernel of A SymA.

Lemma 4.2. For the linear maps

ASymA : SkM × S�M → SkM × S�M

and

λ : Sk−1M × S�−1M → SkM × S�M,

the following holds:

ker(ASymA) = Im(λ).

Proof. We use the notation ⊗s for the symmetric product of tensors. We note that
the choice of isothermal coordinates implies that

(4.12) λ(a⊗ b) = e2α(x)
(
(dx1 ⊗s a)⊗ (dx1 ⊗s b) + (dx2 ⊗s a)⊗ (dx2 ⊗s b)

)
,

a⊗ b ∈ Sk−1M × S�−1M.

Since A is a bijection, it suffices to prove that

(4.13) Im(λ) = ker(SymA).

We prove first that Im(λ) ⊂ ker(SymA). In the view of the C∞(M)-linearity of λ
and SymA, it suffices to prove that λw ∈ ker(SymA) when w is a C∞(M)-basis
tensor field of the form

w =
(
(
h−1⊗

dx1)⊗s (
k−h⊗

dx2)
)
⊗
(
(
a−1⊗

dx1)⊗s (
�−a⊗

dx2)
)
,

h ∈ {1, . . . , k}, a ∈ {1, . . . , �}.
Then

(4.14)

e−2α(x)Aλw = (−1)�−a

((
(

h⊗
dx1)⊗s (

k−h⊗
dx2)

)
⊗
(
(

�−a⊗
dx1)⊗s (

a⊗
dx2)

)

−
(
(

h−1⊗
dx1)⊗s (

k−h+1⊗
dx2)

)
⊗
(
(

�−a+1⊗
dx1)⊗s (

a−1⊗
dx2)

))
.

Due to linearity of Sym and formula (4.16), which is given later in this proof, we
have SymA(λw) = 0. Therefore, Im(λ) ⊂ ker(SymA).

Now we prove that ker(SymA) ⊂ Im(λ). We note that any f ∈ SkM × S�M

can be written as f =
∑M

m=1 um, where

um = rmbm, rm ∈ C∞(M),

bm =
(
(

hm⊗
dx1)⊗s (

k−hm⊗
dx2)

)
⊗
(
(

�−am⊗
dx1)⊗s (

am⊗
dx2)

)
,

hm ∈ {0, . . . , k}, am ∈ {0, . . . , �}.

(4.15)
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It is straightforward to show that for any m,m′ ∈ {1, . . . ,M} it holds that

(4.16) (SymA)bm(x) = (SymA)bm′(x) if and only if hm + am = hm′ + am′ .

Therefore, for a given m ∈ {1, . . . ,M}, the sum H := hm + am is an important
quantity associated with the tensor um from the point of view of the map SymA.
However, for a givenH ∈ {0, . . . , k+�} there are usually several (h, a) ∈ {0, . . . , k}×
{0, . . . , �} whose sum is H. Thus we define hH ∈ {0, . . . , k} to be the smallest
integer such that there exists aH ∈ {0, . . . , �} that satisfies hH + aH = H. We note
that for every H the pair (hH , aH) is unique.

Then we can write

f =
k+�∑
H=0

fH , fH =

R(H)∑
r=0

bH,rfH,r, bH,r ∈ C∞(M),

fH,r :=
(
(

hH+r⊗
dx1)⊗s (

k−(hH+r)⊗
dx2)

)
⊗
(
(

�−(aH−r)⊗
dx1)⊗s (

aH−r⊗
dx2)

)
,

and the summing limit R(H) depends on k, �, and H. Moreover the C∞(M)-
linearity of SymA and (4.16) imply that f ∈ ker(SymA) if and only if fH ∈
ker(SymA) for every H ∈ {0, . . . , k + �}.

In the following, we study the tensor fH for a given H ∈ {0, . . . , k + �}. For
r ∈ {1, . . . , R(H)} we define wr ∈ Sk−1M × S�−1M by the formula

wr =
(
(

hH+r−1⊗
dx1)⊗s (

k−(hH+r)⊗
dx2)

)
⊗
(
(

�−(aH−r)−1⊗
dx1)⊗s (

aH−r⊗
dx2)

)
.

Then (4.12) yields

λwr = e2α(x)(fH,r + fH,r−1).

This implies the recursive formula

fH,r = λ(e−2α(x)wr)− fH,r−1.

Thus for every r ∈ {0, . . . , R(H)} there exists w′
r ∈ Sk−1M × S�−1M such that

(4.17) fH,r = λw′
r + (−1)rfH,0.

Therefore, there exists wH ∈ Sk−1M × S�−1M such that

fH =

R(H)∑
r=0

bH,rfH,r = λwH +

(R(H)∑
r=0

(−1)rbH,r

)
fH,0.

If fH ∈ ker(SymA) it holds by the first part of this proof that

SymAfH =

(R(H)∑
r=0

(−1)rbH,r

)
(SymAfH,0) = 0.

Since SymAfH,0 �= 0, it follows that
∑R(H)

r=0 (−1)rbH,r = 0, whence fH = λwH .
This implies that f = λw for some w ∈ Sk−1M × S�−1M .

This completes the proof of Lemma 4.2. �

By the proof of the previous lemma we can write any f ∈ SkM × S�M in the
form

(4.18) f = λw +

k+�∑
H=0

rHfH,0, rH ∈ C∞(M),
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for some w ∈ Sk−1M × S�−1M . Next, we prove that

(4.19) A SymAfH,0 = (−1)�fH,0 + λw, H ∈ {0, . . . , k + �}.

We note that

SymAfH,0 = (−1)aH (

H⊗
dx1 ⊗s (

k+�−H⊗
dx2))

=
(−1)aH

(k + �)!

R(H)∑
r=0

Ar

(
(

hH+r⊗
dx1)⊗s (

k−(hH+r)⊗
dx2)

)

⊗
(
(

aH−r⊗
dx1)⊗s (

�−(aH−r)⊗
dx2)

)
,

where
∑R(H)

r=0 Ar = (k + �)!. Using (4.17), we obtain

A SymAfH,0 = (−1)aH
1

(k + �)!

R(H)∑
r=0

(−1)�−(aH−r)ArfH,r

= (−1)�
1

(k + �)!

(R(H)∑
r=0

Ar

)
fH,0 + λw

= (−1)�fH,0 + λw.

Therefore, we have proved (4.19).
Equation (4.11) follows from Lemma 4.2 and (4.18)–(4.19).

4.2. Analysis of operator Ads. We note that Sk+�M ⊂ SkM×S�M . Therefore,
we can extend the inner derivative ds to an operator ds : Sk−1M ×S�M → SkM ×
S�M and evaluate ds − d′. In this subsection, we show that for any u ∈ Sk−1M ×
S�M the following equations hold:

A(dsu− d′u) = λw for some w ∈ Sk−1M × S�−1M,(4.20)

d′A = Ad′.(4.21)

Since Ads and Ad′ are linear it suffices to prove the claims for

u = r(x)
(
(
h−1⊗

dx1)⊗s (
k−h⊗

dx2)
)
⊗
(
(

a⊗
dx1)⊗s (

�−a⊗
dx2)

)
, r ∈ C∞(M).

By (1.5) and (4.5) we have

Ad′u=(−1)�−a

((
∂

∂x1
r(x)−R1

)(
(

h⊗
dx1)⊗s(

k−h⊗
dx2)

)
⊗
(
(
�−a⊗

dx1)⊗s(
a⊗

dx2)
)

+

(
∂

∂x2
r(x)−R2

)(
(
h−1⊗

dx1)⊗s(
k−h+1⊗

dx2)
)
⊗
(
(
�−a⊗

dx1)⊗s(
a⊗

dx2)
))

,

(4.22)

where Rm =
∑k+�−1

s=1 ri1,...,is−1p,is+1,...,ik+�
Γp
mis

, m ∈ {1, 2}, ri1,...,is−1p,is+1,...,ik+�
∈

{0, r} depending on (i1, . . . , ik+�) and Γp
mis

are the Christoffel symbols of metric g.
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We write H = h + a and denote R̃m = ∂
∂xm r(x) − Rm. Then we obtain from

(4.5) and (4.10),

dsu =
1

(k + �)!

(
R̃1

R(H)∑
r=0

Ar

(
(

hH+r⊗
dx1)⊗s (

k−(hH+r)⊗
dx2)

)

⊗
(
(

aH−r⊗
dx1)⊗s (

�−(aH−r)⊗
dx2)

)
+ R̃2

R(H−1)∑
r=0

Br

(
(

hH−1+r⊗
dx1)⊗s (

k−(hH−1+r)⊗
dx2)

)

⊗
(
(

aH−1−r⊗
dx1)⊗s (

�−(aH−1−r)⊗
dx2)

))
,

where
∑R(H)

r=0 Ar =
∑

B
R(H−1)
r=0 = (k + �)!. This yields

Adsu = R̃1
(−1)�−aH

(k + �)!

R(H)∑
r=0

(
(−1)rAr gH,r

)
+R̃2

(−1)�−aH−1

(k + �)!

R(H−1)∑
r=0

(
(−1)rBr gH−1,r

)
,

where the shorthand notation gH,r, gH−1,r stand for

gH,r :=
(
(

hH+r⊗
dx1)⊗s (

k−(hH+r)⊗
dx2)

)
⊗
(
(

�−(aH−r)⊗
dx1)⊗s (

aH−r⊗
dx2)

)
,

gH−1,r :=
(
(

hH−1+r⊗
dx1)⊗s (

k−(hH−1+r)⊗
dx2)

)
⊗
(
(

�−(aH−1−r)⊗
dx1)⊗s (

aH−1−r⊗
dx2)

)
.

By an analogous argument as in the proof of Lemma 4.2 we obtain a recursive
formula

gH,r = λwH,r + (−1)R(H)−rgH,R(H) for some wH,r ∈ Sk−1M × S�−1M.

Thus for some w′, w′′ ∈ Sk−1M × S�−1M it holds that

Ad′u = (−1)�−a

(
R̃1gH,h−hH

+ R̃2gH−1,h−1−hH−1

)

= (−1)�
(
(−1)R(H)−h+hH−aR̃1gH,R(H)+(−1)R(H−1)−h+1+hH−1−aR̃2gH−1,R(H−1)

)
+ λw′,

and

Adsu = R̃1
(−1)�−aH

(k + �)!

R(H)∑
r=0

(−1)rAr(λwH,r + (−1)R(H)−rgH,R(H))

+ R̃2
(−1)�−aH−1

(k + �)!

R(H−1)∑
r=0

(−1)rBr(λwH−1,r + (−1)R(H−1)−rgH,R(H−1))

= (−1)�
(
(−1)R(H)−aH R̃1gH,R(H) + (−1)R(H−1)−aH−1R̃2gH−1,R(H−1)

)
+λw′′.

Since we defined

a+ h = H = aH + hH and H − 1 = aH−1 + hH−1,
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the identities above imply that

A(dsu− d′u) = λw, w ∈ Sk−1M × S�−1M.

Therefore we have proved (4.20).
Finally, we prove equation (4.21). We note that

d′Au = (−1)�−a

(
R̃1

(
(

h⊗
dx1)⊗s (

k−h⊗
dx2)

)
⊗
(
(

�−a⊗
dx1)⊗s (

a⊗
dx2)

)

+ R̃2

(
(

h−1⊗
dx1)⊗s (

k−h+1⊗
dx2)

)
⊗
(
(

�−a⊗
dx1)⊗s (

a⊗
dx2)

))
.

Thus (4.21) holds since the previous equation coincides with (4.22).
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