MIXED RAY TRANSFORM ON SIMPLE 2-DIMENSIONAL RIEMANNIAN MANIFOLDS

MAARTEN V. DE HOOP, TEEMU SAKSALA, AND JIAN ZHAI

(Communicated by Michael Hitrik)

Abstract

We characterize the kernel of the mixed ray transform on simple 2-dimensional Riemannian manifolds, that is, on simple surfaces for tensors of any order.

1. Introduction

We provide a characterization of the kernel of the mixed ray transform on simple 2-dimensional Riemannian manifolds for tensors of any order. The key application pertains to elastic $q S$-wave tomography [3] in weakly anisotropic media.

We let (M, g) be a smooth, compact, connected 2-dimensional Riemannian manifold with smooth boundary ∂M. We assume that (M, g) is simple; that is, ∂M is strictly convex with respect to g and $\exp _{p}: \exp _{p}^{-1}(M) \rightarrow M$ is a diffeomorphism for every $p \in M$. We let $S M=\left\{(x, v) \in T M ;\|v\|_{g}=1\right\}$ be the unit sphere bundle. We use the notation ν for the outer unit normal vector field to ∂M. We write $\partial_{i n}(S M)=\left\{(x, v) \in S M ; x \in \partial M,\langle v, \nu\rangle_{g} \leq 0\right\}$ for the vector bundle of inward pointing unit vectors on ∂M. For $(x, v) \in S M, \gamma_{x, v}(t)$ is the geodesic starting from x in direction v, and $\tau(x, v)$ is the time when $\gamma_{x, v}$ exits M. Since (M, g) is simple $\tau(x, v)<\infty$ for all $(x, v) \in \partial_{\text {in }}(S M)$, and the exit time function τ is smooth in $\partial_{\text {in }}(S M)$ [15, Section 4.1].

We use the notation $S^{k} M, k \in \mathbf{N}$, for the space of smooth symmetric tensor fields on M. We also use the notation $S^{k} M \times S^{\ell} M, k, \ell \geq 1$, for the space of smooth tensor fields that are symmetric with respect to first k and last ℓ variables. The mixed ray transform $L_{k, \ell}$ of a tensor field $f \in S^{k} M \times S^{\ell} M$ is given by the formula

$$
\begin{array}{r}
L_{k, \ell} f(x, v)=\int_{0}^{\tau(x, v)} f_{i_{1}, \ldots, i_{k} j_{1}, \ldots, j_{\ell}}(\gamma(t)) \dot{\gamma}(t)^{i_{1}} \cdots \dot{\gamma}(t)^{i_{k}} \eta(t)^{j_{1}} \cdots \eta(t)^{j_{\ell}} \mathrm{d} t \tag{1.1}\\
(x, v) \in \partial_{i n}(S M), \quad \gamma=\gamma_{x, v}
\end{array}
$$

where we used the summation convention, while $\eta(t)$ is some unit length vector field on γ that is parallel and perpendicular to $\dot{\gamma}(t)$ and depends smoothly on

[^0]$(x, v) \in \partial_{i n}(S M)$. We note that the definition of the mixed ray transform is different in higher dimensions, due to the freedom in the choice of η (see [15, Section 7.2]). We consider the choice of $\eta(t)$ and the mapping properties of $L_{k, \ell}$ in dimension 2.

We define two linear operators, the images of which are contained in the kernel of $L_{k, \ell}$. For a $(k \times \ell)$-tensor, $f_{i_{1}, \ldots, i_{k} j_{1}, \ldots, j_{\ell}}$, we introduce the symmetrization operator as

$$
\begin{equation*}
\left(\operatorname{Sym}\left(i_{1}, \ldots, i_{k}\right) f\right)_{i_{1}, \ldots, i_{k} j_{1}, \ldots, j_{\ell}}:=\frac{1}{k!} \sum_{\sigma} f_{i_{\sigma(1)}, \ldots, i_{\sigma(k)} j_{1}, \ldots, j_{\ell}} \tag{1.2}
\end{equation*}
$$

where σ runs over all permutations of $(1,2, \ldots, k)$. This operator symmetrizes f with respect to the first k indices. We define the symmetrization operator $\operatorname{Sym}\left(j_{1}, \ldots, j_{\ell}\right)$ for the last ℓ indices analogously.

We introduce a first operator λ, the image of which is contained in the kernel of $L_{k, \ell}$. The operator $\lambda: S^{k-1} M \times S^{\ell-1} M \rightarrow S^{k} M \times S^{\ell} M$ is defined by

$$
\begin{equation*}
(\lambda w)_{i_{1}, \ldots, i_{k} j_{1}, \ldots, j_{\ell}}:=\operatorname{Sym}\left(i_{1}, \ldots, i_{k}\right) \operatorname{Sym}\left(j_{1}, \ldots, j_{\ell}\right)\left(g_{i_{1} j_{1}} w_{i_{2}, \ldots, i_{k} j_{2}, \ldots, j_{\ell}}\right) \tag{1.3}
\end{equation*}
$$

Using (1.2) and (1.3) it is straightforward to verify that

$$
\begin{equation*}
(\lambda w)_{i_{1}, \ldots, i_{k} j_{1}, \ldots, j_{\ell}} v^{i_{1}} \cdots v^{i_{k}}\left(v^{\perp}\right)^{j_{1}} \cdots\left(v^{\perp}\right)^{j_{\ell}}=0, \quad v \in T M \tag{1.4}
\end{equation*}
$$

where v^{\perp} is any vector orthogonal to v. Therefore (1.4) implies that

$$
\operatorname{Im}(\lambda) \subset \operatorname{ker}\left(L_{k, \ell}\right)
$$

We use the notation $u_{i_{1}, \ldots, i_{k} ; h}$ for the (h) component functions of the covariant derivative ∇u of the tensor field u. We define the second operator, d^{\prime} say, by the formula

$$
\begin{gather*}
d^{\prime}: S^{k-1} M \times S^{\ell} M \rightarrow S^{k} M \times S^{\ell} M \tag{1.5}\\
\left(d^{\prime} u\right)_{i_{1}, \ldots, i_{k} j_{1}, \ldots, j_{\ell}}:=\operatorname{Sym}\left(i_{1}, \ldots, i_{k}\right) u_{i_{2}, \ldots, i_{k} j_{1}, \ldots, j_{\ell} ; i_{1}}
\end{gather*}
$$

Then the following holds for any $u \in S^{k-1} M \times S^{\ell} M$:

$$
\begin{gathered}
\frac{d}{d t}\left(u_{i_{1}, \ldots, i_{k-1} j_{1}, \ldots, j_{\ell}}(\gamma(t)) \dot{\gamma}(t)^{i_{1}} \cdots \dot{\gamma}(t)^{i_{k-1}} \eta(t)^{j_{1}} \cdots \eta(t)^{j_{\ell}}\right) \\
=\left(d^{\prime} u\right)_{i_{1}, \ldots, i_{k} j_{1}, \ldots, j_{\ell}} \dot{\gamma}(t)^{i_{1}} \cdots \dot{\gamma}(t)^{i_{k}} \eta(t)^{j_{1}} \cdots \eta(t)^{j_{\ell}} .
\end{gathered}
$$

If $\left.u\right|_{\partial M}=0$ (in the sense that all component functions of u vanish at ∂M), then $L_{k, \ell}\left(d^{\prime} u\right)=0$ by the fundamental theorem of calculus. Thus

$$
\left\{d^{\prime} u: u \in S^{k-1} M \times S^{\ell} M,\left.u\right|_{\partial M}=0\right\} \subset \operatorname{ker}\left(L_{k, \ell}\right)
$$

Our main result shows that the kernel of $L_{k, \ell}$ is spanned by the images of these two linear operators.

Theorem 1.1. Let (M, g) be a simple 2-dimensional Riemannian manifold. Let $f \in S^{k} M \times S^{\ell} M, k, \ell \geq 1$. Then

$$
L_{k, \ell} f(x, v)=0, \quad(x, v) \in \partial_{i n}(S M)
$$

if and only if

$$
f=d^{\prime} u+\lambda w, \quad u \in S^{k-1} M \times S^{\ell} M,\left.u\right|_{\partial M}=0, \quad w \in S^{k-1} M \times S^{\ell-1} M
$$

The key observation needed to prove this theorem is that the mixed ray transform and the geodesic ray transform can be transformed to one another, for arbitrary $k, \ell \geq 1$, if (M, g) is a 2 -dimensional simple Riemannian manifold. A similar observation has already been obtained for the transverse ray transform by Sharafutdinov [15, Chapter 5]. The work by Paternain, Salo, and Uhlmann [10] proved the s-injectivity of the geodesic ray transform on simple manifolds in dimension 2. In Theorem 1.1, we characterize the kernel of $L_{k, \ell}$ using their results.

2. Relation with elastic $q S$-wave tomography

We describe a mixed ray transform arising from elastic wave tomography. We follow the presentation in [15, Chapter 7], wherein one can find more details. Let $\left(x^{1}, x^{2}\right)$ be any curvilinear coordinate system in \mathbb{R}^{2}, where the Euclidean metric is

$$
d s^{2}=g_{j k} d x^{j} d x^{k}
$$

The elastic wave equations

$$
\begin{equation*}
\rho \frac{\partial^{2} u_{j}}{\partial t^{2}}=\sigma_{j k ;}^{k}:=\sigma_{j k ; l} g^{k l} \tag{2.1}
\end{equation*}
$$

describe the waves traveling in a 2-dimensional elastic body $M \subset \mathbf{R}^{2}$. Here $u(x, t)=$ $\left(u^{1}, u^{2}\right)$ is the displacement vector. The strain tensor is given by

$$
\varepsilon_{j k}=\frac{1}{2}\left(u_{j ; k}+u_{k ; j}\right),
$$

while the stress tensor is

$$
\sigma_{j k}=C_{j k l m} \varepsilon^{l m}
$$

where $\mathbf{C}(x)=\left(C_{j k l m}\right)$ is the elastic tensor and $\rho(x)$ is the density of mass. Here $\varepsilon^{l m}$ is obtained by raising indices with respect to the metric $g_{j k}$. The elastic tensor has the following symmetry properties:

$$
\begin{equation*}
C_{j k l m}=C_{k j l m}=C_{l m j k} \tag{2.2}
\end{equation*}
$$

We assume that the elastic tensor is weakly anisotropic; that is, it can be represented as

$$
C_{j k l m}=\lambda g_{j k} g_{l m}+\mu\left(g_{j l} g_{k m}+g_{j m} g_{k l}\right)+\delta c_{j k l m}
$$

where λ and μ are positive functions called the Lamé parameters and $\mathbf{c}=\left(c_{j k l m}\right)$ is an anisotropic perturbation. Here, δ is a small positive real number. We note here that $\delta=0$ corresponds to an isotropic medium.

We construct geometric optics solutions to system (2.1) using the parameter $\omega=\omega_{0} / \delta$, where ω_{0} is a constant,

$$
u_{j}=e^{i \omega \iota} \sum_{m=0}^{\infty} \frac{u_{j}^{(m)}}{(i \omega)^{m}}, \quad \varepsilon_{j k}=e^{i \omega \iota} \sum_{m=-1}^{\infty} \frac{\varepsilon_{j k}^{(m)}}{(i \omega)^{m}}, \quad \sigma_{j k}=e^{i \omega \iota} \sum_{m=-1}^{\infty} \frac{\sigma_{j k}^{(m)}}{(i \omega)^{m}}
$$

and $\iota(x)$ is a real function.
We substitute the above solutions into equation (2.1), assume $u^{(-1)}=\varepsilon^{(-2)}=$ $\sigma^{(-2)}=0$, and equate the terms of the order -2 and -1 , respectively, in ω to obtain

$$
(\lambda+\mu)\left\langle u^{(0)}, \nabla \iota\right\rangle_{g} \nabla \iota+\left(\mu\|\nabla \iota\|_{g}^{2}-\rho\right) u^{(0)}=0
$$

If we take

$$
\begin{equation*}
\|\nabla \iota\|_{g}^{2}=\frac{\rho}{\mu} \tag{2.3}
\end{equation*}
$$

then

$$
\left\langle u^{(0)}, \nabla \iota\right\rangle_{g}=0
$$

The solutions $u_{j}^{(0)}$ represent shear waves (S-waves), and the displacement vector $u^{(0)}$ is orthogonal to $\nabla \iota$. We denote $n_{s}=\rho / \mu$ and $v_{s}=1 / n_{s}$. The characteristics of the eikonal equation (2.3) are geodesics of the Riemannian metric $n_{s}^{2} d s^{2}=n_{s}^{2} g_{j k} d x^{j} d x^{k}$.

We choose a geodesic γ of metric $n_{s}^{2} d s^{2}$ and apply the change of variables,

$$
u_{j}^{(0)}=A_{s} n_{s}^{-1} \zeta_{j}
$$

where

$$
A_{s}=\frac{C}{\sqrt{J \rho v_{s}}}, \quad J^{2}=n_{s}^{2} \operatorname{det}\left(g_{j k}\right), \quad C \text { is a constant. }
$$

Then it is shown in $[15$, Section 7.1.5] that ζ satisfies Rytov's law,

$$
\begin{equation*}
\left(\frac{D \zeta}{d \tau}\right)_{j}=-i \frac{1}{\rho v_{s}^{6}}\left(\delta_{j}^{q}-\dot{\gamma}_{j} \dot{\gamma}^{q}\right) \omega_{0} c_{q k l m} \dot{\gamma}^{k} \dot{\gamma}^{m} \zeta^{l} \tag{2.4}
\end{equation*}
$$

where $\frac{D}{d \tau}$ is the covariant derivative along γ. We note that $c_{q k l m} \dot{\gamma}^{k} \dot{\gamma}^{m}$ is quadratic in $\dot{\gamma}$ and symmetric in k, m, so the solution ζ of (2.4) depends only on the symmetrization

$$
f_{j k l m}=-i \frac{1}{4 \rho v_{s}^{6}}\left(c_{j l k m}+c_{j m k l}\right)
$$

We assume that for every unit speed geodesic $\gamma:[a, b] \rightarrow M$ (in Riemannian manifold $\left(M, n_{s}^{2} d s^{2}\right)$) with endpoints in ∂M, the value $\zeta(b)$ of a solution to equation (2.4) is known as $\zeta(b)=U(\gamma) \zeta(a)$, where $U(\gamma)$ is the solution operator of (2.4) and $\zeta(a)$ is the initial value. We formulate an inverse problem.

Inverse Problem 2.1. Determine tensor field f from $U(\gamma)$.
We linearize this problem as in [15, Chapter 5]. Take a unit vector field $\xi(t) \perp$ $\dot{\gamma}(t)$ (with respect to metric $n_{s}^{2} d s^{2}$), which is also parallel along γ. Then $e_{1}(t)=\xi(t)$ and $e_{2}(t)=\dot{\gamma}(t)$ form an orthonormal frame along γ. In this basis, equation (2.4) is

$$
\begin{equation*}
\dot{\zeta}_{1}=-i \frac{1}{\rho v_{s}^{6}} \omega_{0} c_{1 l 1 m} \dot{\gamma}^{l} \dot{\gamma}^{m} \zeta^{1}, \quad \dot{\zeta}_{2}=0 \tag{2.5}
\end{equation*}
$$

We denote $F(t)=-i \frac{1}{\rho v_{s}^{6}} \omega_{0} c_{1 l 1 m}(\gamma(t)) \dot{\gamma}^{l}(t) \dot{\gamma}^{m}(t)$. Since (2.5) is a separable firstorder ordinary differential equation, its solution is

$$
\zeta_{1}(b)=e^{\int_{a}^{b} F(t) d t} \zeta_{1}(a)
$$

We take the first-order Taylor expansion of the right-hand side of the equation above to obtain

$$
\zeta_{1}(b)-\zeta_{1}(a) \sim \int_{a}^{b} F(t) \zeta^{1}(a) d t
$$

Multiplying this equation by $\zeta^{1}(a)$, we get

$$
\begin{align*}
\left(\zeta_{1}(b)-\zeta_{1}(a)\right) \zeta^{1}(a) & \sim \int_{a}^{b} F(t) \zeta^{1}(a) \zeta^{1}(a) d t \tag{2.6}\\
& =\int_{a}^{b} \omega_{0} f_{11 l m}(\gamma(t)) \zeta^{1}(a) \zeta^{1}(a) \dot{\gamma}^{l}(t) \dot{\gamma}^{m}(t) d t
\end{align*}
$$

We denote the vector field $\eta(t)=\zeta^{i}(a) e_{i}(t), \zeta^{2}(a)=0$, and observe that it is parallel along γ and perpendicular to $\dot{\gamma}(t)$. We emphasize that $\eta(t)$ does not need to solve (2.5). The right-hand side of (2.6) then takes the form

$$
\int_{a}^{b} \omega_{0} f_{11 l m}(\gamma(t)) \eta^{1}(t) \eta^{1}(t) \dot{\gamma}^{l}(t) \dot{\gamma}^{m}(t) d t
$$

We arrive at the inverse problem.
Inverse Problem 2.2. Determine the tensor field f from

$$
L_{2,2}(f)=\int_{a}^{b} f_{j k l m}(\gamma(t)) \eta^{j}(t) \eta^{k}(t) \dot{\gamma}^{l}(t) \dot{\gamma}^{m}(t) d t
$$

for all γ and $\eta \perp \gamma$, where η is parallel along γ.
Remark 2.3. The tensor field f possesses the same symmetry properties (2.2) as C. Therefore $f \in S^{2} M \times S^{2} M$. Since

$$
L_{2,2}\left(f+d^{\prime} u+\lambda w\right)=L_{2,2}(f) \quad \text { for any } u \in S^{1} M \times S^{2} M, \quad w \in S^{1} M \times S^{1} M
$$

we can only recover the tensor f up to the kernel of $L_{2,2}$. Thus Inverse Problem 2.2 is a special case of Theorem 1.1.

3. Context and previous work

We note that if $\ell=0$ in (1.1), the operator $L_{k, 0}$ is the geodesic ray transform I_{k} for a symmetric k-tensor f. It is well known that $\operatorname{Sym}\left(i_{1}, \ldots, i_{k}\right) \nabla u$ is in the kernel of I_{k}, where u is a symmetric $(k-1)$-tensor with $\left.u\right|_{\partial \Omega}=0$. If $I_{k} f=0$ implies $f=\operatorname{Sym}\left(i_{1}, \ldots, i_{k}\right) \nabla u$, we say that I_{k} is s-injective.

When (M, g) is a 2-dimensional simple manifold, Paternain, Salo, and Uhlmann [10] proved the s-injectivity of I_{k} for arbitrary k. The standard way to prove sinjectivity of I_{0} and I_{1} is to use an energy identity known as the Pestov identity. If $k \geq 2$ this identity alone is not sufficient to prove the s-injectivity. The special case $k=2$ was proved earlier [16] using the proof for boundary rigidity [14].

In dimension 3 or higher, it was proved that I_{0} is injective $[7,8]$ and that I_{1} is s-injective [2]. The s-injectivity of I_{k} for $k \geq 2$ is still open for simple Riemannian manifolds. Under certain curvature conditions, the s-injectivity of $I_{k}, k \geq 2$, was proved in $[4,12,13,15]$. Without any curvature condition, I_{2} has a finite-dimensional kernel [18]. If g is in a certain open and dense subset of simple metrics in $C^{r}, r \gg 1$, containing analytic metrics, the s-injectivity was obtained by analytic microlocal analysis for $k=2$ [17]. Under a different assumption, namely, that M can be foliated by strictly convex hypersurfaces, the s-injectivity was established for $k=0$ [21] and $k=1,2$ [19].

The mixed ray transform $(\ell \neq 0, k \neq 0)$ has not been studied as extensively as the geodesic ray transform. In dimension 2 or higher, a result similar to Theorem 1.1 was obtained under a restrictive curvature condition [15].

When $k=0, L_{0, \ell}$ is called the transverse ray transform, also denoted by J_{ℓ}. For J_{ℓ}, the situations are quite different for dimension 2 and higher dimensions. In dimension 3 or higher, J_{ℓ} is injective for $\ell<\operatorname{dim} M$ under certain curvature conditions [15]. However, J_{ℓ} has a nontrivial kernel in dimension 2. This problem is related to polarization tomography, for which some results are given under different conditions [5, 9, 11].

In a recent paper [6] the authors studied the s-injectivity of attenuated geodesic ray transforms. In [6, Theorem 5] the authors proved that for a given $k \in \mathbf{N}$ the family $\left\{L_{k-\ell, \ell}: \ell \in\{0, \ldots, k\}\right\}$ of mixed ray transforms determines a symmetric tensor $f \in S^{k} M$ uniquely if (M, g) is a simple surface or if M is a unit disk of \mathbf{R}^{2} and g is a radial metric $c(r) e$ satisfying Herglotz' nontrapping condition

$$
\frac{d}{d r}\left(\frac{r}{c(r)}\right)>0
$$

4. Proof of Theorem 1.1

Since (M, g) is a 2 -dimensional simple Riemannian manifold, there exists a diffeomorphism ϕ from M onto a closed unit disc $\overline{\mathbb{D}}$ of \mathbf{R}^{2}. If g^{\prime} is the pullback of metric g under ϕ^{-1} on $\overline{\mathbb{D}}$, then g^{\prime} is conformally Euclidean, meaning that there exists a change of coordinates after which $g^{\prime}=h e$, where h is some positive function and e is the Euclidean metric; this was shown in [1, Theorem 4] and [20, Proposition 1.3]. Therefore, there exist global isothermal coordinates $\left(x_{1}, x_{2}\right)$ on M so that the metric g can be written as $e^{2 \alpha(x)}\left(\mathrm{d} x_{1}^{2}+\mathrm{d} x_{2}^{2}\right)$, where $\alpha(x)$ is a smooth real-valued function of x.

The global isothermal coordinate structure makes it possible to define a smooth rotation,

$$
\sigma: T M \rightarrow T M, \quad \sigma(v):=\left(v_{2},-v_{1}\right)
$$

where $v=\left(v_{1}, v_{2}\right)$ in these coordinates. This map satisfies

$$
\begin{equation*}
v \perp \sigma(v) \quad \text { and } \quad\|v\|_{g}=\|\sigma(v)\|_{g} \tag{4.1}
\end{equation*}
$$

Moreover, there exists a linear map

$$
\begin{align*}
& \Phi: S^{k} M \times S^{\ell} M \rightarrow C^{\infty}(S M) \tag{4.2}\\
& (\Phi f)(x, v):=f_{i_{1}, \ldots, i_{k} j_{1}, \ldots, j_{\ell}}(x) v^{i_{1}} \cdots v^{i_{k}} \sigma(v)^{j_{1}} \cdots \sigma(v)^{j_{\ell}}
\end{align*}
$$

Thus each tensor field $f \in S^{k} M \times S^{\ell} M$ is related to a smooth function on $S M$ via (4.2). We note that Φ is not one-to-one since $\Phi(\lambda w)=0$ for any $w \in S^{k-1} M \times$ $S^{\ell-1} M$, where λ is as in (1.3). We have the following:
Lemma 4.1. For any $f \in S^{k} M \times S^{\ell} M$ it holds that

$$
\begin{equation*}
L_{k, \ell} f(x, v)=\int_{0}^{\tau(x, v)}(\Phi f)\left(\gamma_{x, v}(t), \dot{\gamma}_{x, v}(t)\right) \mathrm{d} t, \quad(x, v) \in \partial_{i n}(S M) \tag{4.3}
\end{equation*}
$$

and

$$
L_{k, \ell}: S^{k} M \times S^{\ell} M \rightarrow C^{\infty}\left(\partial_{i n} S M\right)
$$

if we assume that

$$
\eta(0)=\sigma(v), \quad(x, v) \in \partial_{i n}(S M)
$$

Proof. Let $(x, v) \in \partial_{i n} S M$. We define $\eta=\sigma(v)$. Let $P_{t}(\eta)$ be the parallel transport of η from $T_{x} M$ to $T_{\gamma_{x, v}(t)} M, t \in[0, \tau(x, v)]$. By the property of parallel translation, $P_{t}: T_{x} M \rightarrow T_{\gamma_{x, v}(t)} M$ is an isometry, whence $\left\|P_{t} \eta\right\|_{g}=1$ and $\left\langle P_{t} \eta, \dot{\gamma}(t)\right\rangle_{g}=0$. Since M is 2-dimensional, the continuity of $P_{t} \eta$ in t with (4.1) implies that

$$
P_{t} \eta=\sigma\left(\dot{\gamma}_{x, v}(t)\right)
$$

Because the functions Φf and τ are smooth in $\partial_{i n}(S M)$, the function $L_{k, \ell}(f)$ is smooth in $\partial_{i n}(S M)$ due to (4.3).

Let $f \in S^{k} M \times S^{\ell} M$. Simplifying the notation, from here on we do not distinguish tensor f from function $\Phi(f)$. We notice first that

$$
\begin{array}{r}
f(x, v)=(-1)^{\ell-N\left(j_{1}, \ldots, j_{\ell}\right)} f_{i_{1}, \ldots, i_{k} j_{1}, \ldots, j_{\ell}}(x) v^{i_{1}} \cdots v^{i_{k}} v_{1}^{\ell-N\left(j_{1}, \ldots, j_{\ell}\right)} v_{2}^{N\left(j_{1}, \ldots, j_{\ell}\right)}, \tag{4.4}\\
(x, v) \in S M,
\end{array}
$$

where $N\left(j_{1}, \ldots, j_{\ell}\right)$ is the number of 1 's in $\left(j_{1}, \ldots, j_{\ell}\right)$. We let δ be the map that maps 1's in $\left(j_{1}, \ldots, j_{\ell}\right)$ to 2 's and vice versa. We denote by $\delta\left(j_{1}, \ldots, j_{\ell}\right)$ the ℓ-tuple obtained from applying δ to $\left(j_{1}, \ldots, j_{\ell}\right)$. Then we define a linear operator

$$
\begin{align*}
& A: S^{k} M \times S^{\ell} M \rightarrow S^{k} M \times S^{\ell} M \tag{4.5}\\
& (A f)_{i_{1}, \ldots, i_{k} j_{1}, \ldots, j_{\ell}}=(-1)^{\ell-N\left(j_{1}, \ldots, j_{\ell}\right)} f_{i_{1}, \ldots, i_{k} \delta\left(j_{1}, \ldots, j_{\ell}\right)}
\end{align*}
$$

We note that for any $k, \ell \geq 1$ we have

$$
\begin{aligned}
& A\left(r(x)\left(\left(\otimes^{h} d x^{1}\right) \otimes_{s}\left(\otimes^{k-h} d x^{2}\right)\right) \otimes\left(\left(\otimes^{a} d x^{1}\right) \otimes_{s}\left(\otimes^{\ell-a} d x^{2}\right)\right)\right) \\
& =r(x)\left(\left(\otimes^{h} d x^{1}\right) \otimes_{s}\left(\otimes^{k-h} d x^{2}\right)\right) \otimes\left(\left(\otimes^{a}\left(\star d x^{1}\right)\right) \otimes_{s}\left(\otimes^{\ell-a}\left(\star d x^{2}\right)\right)\right) \\
& =(-1)^{\ell-a} r(x)\left(\left(\otimes^{h} d x^{1}\right) \otimes_{s}\left(\otimes^{k-h} d x^{2}\right)\right) \otimes\left(\left(\otimes^{\ell-a} d x^{1}\right) \otimes_{s}\left(\otimes^{a} d x^{2}\right)\right), \quad r \in C^{\infty}(M)
\end{aligned}
$$

where \star is the Hodge star operator. Formula (4.5) implies that A is invertible with the inverse

$$
\begin{equation*}
A^{-1}=(-1)^{\ell} A \tag{4.6}
\end{equation*}
$$

We then point out that

$$
\begin{align*}
& (A f)_{i_{1}, \ldots, i_{k} j_{1}, \ldots, j_{\ell}}(x) v^{i_{1}} \cdots v^{i_{k}} v^{j_{1}} \cdots v^{j_{\ell}} \tag{4.7}\\
& =(\operatorname{Sym} A f)_{i_{1}, \ldots i_{k} j_{1}, \ldots, j_{\ell}}(x) v^{i_{1}} \cdots v^{i_{k}} v^{j_{1}} \cdots v^{j_{\ell}}
\end{align*}
$$

The notation Sym h stands for the full symmetrization of the tensor field h.
Using equations (4.4), (4.5), and (4.7), we find that

$$
\begin{equation*}
L_{k, \ell}(f)=I_{k+\ell}(\operatorname{Sym}(A f)) \tag{4.8}
\end{equation*}
$$

where $I_{k+\ell}$ is the geodesic ray transform on symmetric tensor field $h \in S^{k+\ell} M$, defined by the formula

$$
\begin{aligned}
& I_{k+\ell}(h)(x, v) \\
& \quad=\int_{0}^{\tau(x, v)} h_{i_{1}, \ldots, i_{k+\ell}}\left(\gamma_{x, v}(t)\right) \dot{\gamma}_{x, v}(t)^{i_{1}} \ldots \dot{\gamma}_{x, v}(t)^{i_{k+\ell}} \mathrm{d} t, \quad(x, v) \in \partial_{i n}(S M)
\end{aligned}
$$

By (4.8) and [10, Theorem 1.1] it holds that for any $h \in S^{k} M \times S^{\ell} M$,
(4.9) $\quad L_{k, \ell}(h)=0 \quad$ if and only if $\operatorname{Sym} A h=d^{s} v, \quad v \in S^{k+\ell-1} M,\left.\quad v\right|_{\partial M}=0$.

In the above, d^{s} stands for the inner derivative, that is, the symmetrization of the covariant derivative

$$
\begin{equation*}
d^{s} u=\operatorname{Sym}(\nabla u), \quad u \in S^{k+\ell-1} M \tag{4.10}
\end{equation*}
$$

If $L_{k, \ell}(f)=0$, then, with (4.6) and (4.9), we can write

$$
f=(-1)^{\ell} A(\operatorname{Sym}(A f)+(A f-\operatorname{Sym}(A f)))=(-1)^{\ell} A\left(d^{s} u\right)+f+(-1)^{\ell+1} A(\operatorname{Sym}(A f))
$$

We conclude that the claim of Theorem 1.1 holds if

$$
f+(-1)^{\ell+1} A(\operatorname{Sym}(A f))=\lambda w, \quad A\left(d^{s} u-d^{\prime} u\right)=\lambda w^{\prime}, \quad d^{\prime} A=A d^{\prime}
$$

for some $w, w^{\prime} \in S^{k-1} M \times S^{\ell-1} M$ and $u \in S^{k+\ell-1} M$. These equations will be proved in the following subsections.
4.1. Analysis of operator $A \operatorname{Sym} A$. In this subsection, we prove the following identity for any $f \in S^{k} M \times S^{\ell} M$:

$$
\begin{equation*}
f+(-1)^{\ell+1} A(\operatorname{Sym}(A f))=\lambda w \quad \text { for some } w \in S^{k-1} M \times S^{\ell-1} M \tag{4.11}
\end{equation*}
$$

We start with a lemma that characterizes the kernel of $A \operatorname{Sym} A$.
Lemma 4.2. For the linear maps

$$
A \operatorname{Sym} A: S^{k} M \times S^{\ell} M \rightarrow S^{k} M \times S^{\ell} M
$$

and

$$
\lambda: S^{k-1} M \times S^{\ell-1} M \rightarrow S^{k} M \times S^{\ell} M
$$

the following holds:

$$
\operatorname{ker}(A \operatorname{Sym} A)=\operatorname{Im}(\lambda)
$$

Proof. We use the notation \otimes_{s} for the symmetric product of tensors. We note that the choice of isothermal coordinates implies that

$$
\begin{array}{r}
\lambda(a \otimes b)=e^{2 \alpha(x)}\left(\left(d x^{1} \otimes_{s} a\right) \otimes\left(d x^{1} \otimes_{s} b\right)+\left(d x^{2} \otimes_{s} a\right) \otimes\left(d x^{2} \otimes_{s} b\right)\right) \tag{4.12}\\
a \otimes b \in S^{k-1} M \times S^{\ell-1} M
\end{array}
$$

Since A is a bijection, it suffices to prove that

$$
\begin{equation*}
\operatorname{Im}(\lambda)=\operatorname{ker}(\operatorname{Sym} A) \tag{4.13}
\end{equation*}
$$

We prove first that $\operatorname{Im}(\lambda) \subset \operatorname{ker}(\operatorname{Sym} A)$. In the view of the $C^{\infty}(M)$-linearity of λ and $\operatorname{Sym} A$, it suffices to prove that $\lambda w \in \operatorname{ker}(\operatorname{Sym} A)$ when w is a $C^{\infty}(M)$-basis tensor field of the form

$$
\left.w=\left(\left(\bigotimes^{h-1} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-h} d x^{2}\right)\right) \otimes\left(\bigotimes^{a-1} d x^{1}\right) \otimes_{s}\left(\bigotimes^{\ell-a} d x^{2}\right)\right),
$$

Then

$$
\begin{array}{r}
e^{-2 \alpha(x)} A \lambda w=(-1)^{\ell-a}\left(\left(\left(\bigotimes^{h} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-h} d x^{2}\right)\right) \otimes\left(\left(\bigotimes^{\ell-a} d x^{1}\right) \otimes_{s}\left(\bigotimes^{a} d x^{2}\right)\right)\right. \tag{4.14}\\
\left.-\left(\left(\bigotimes^{h-1} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-h+1} d x^{2}\right)\right) \otimes\left(\left(^{\ell-a+1} d x^{1}\right) \otimes_{s}\left(\bigotimes^{a-1} d x^{2}\right)\right)\right)
\end{array}
$$

Due to linearity of Sym and formula (4.16), which is given later in this proof, we have $\operatorname{Sym} A(\lambda w)=0$. Therefore, $\operatorname{Im}(\lambda) \subset \operatorname{ker}(\operatorname{Sym} A)$.

Now we prove that $\operatorname{ker}(\operatorname{Sym} A) \subset \operatorname{Im}(\lambda)$. We note that any $f \in S^{k} M \times S^{\ell} M$ can be written as $f=\sum_{m=1}^{M} u_{m}$, where

$$
\begin{align*}
& u_{m}=r_{m} b_{m}, \quad r_{m} \in C^{\infty}(M) \\
& b_{m}=\left(\left(\bigotimes^{h_{m}} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-h_{m}} d x^{2}\right)\right) \otimes\left(\left(\bigotimes^{\ell-a_{m}} d x^{1}\right) \otimes_{s}\left(\bigotimes^{a_{m}} d x^{2}\right)\right) \tag{4.15}\\
& h_{m} \in\{0, \ldots, k\}, \quad a_{m} \in\{0, \ldots, \ell\}
\end{align*}
$$

It is straightforward to show that for any $m, m^{\prime} \in\{1, \ldots, M\}$ it holds that

$$
\begin{equation*}
(\operatorname{Sym} A) b_{m}(x)=(\operatorname{Sym} A) b_{m^{\prime}}(x) \quad \text { if and only if } h_{m}+a_{m}=h_{m^{\prime}}+a_{m^{\prime}} \tag{4.16}
\end{equation*}
$$

Therefore, for a given $m \in\{1, \ldots, M\}$, the sum $H:=h_{m}+a_{m}$ is an important quantity associated with the tensor u_{m} from the point of view of the map $\operatorname{Sym} A$. However, for a given $H \in\{0, \ldots, k+\ell\}$ there are usually several $(h, a) \in\{0, \ldots, k\} \times$ $\{0, \ldots, \ell\}$ whose sum is H. Thus we define $h_{H} \in\{0, \ldots, k\}$ to be the smallest integer such that there exists $a_{H} \in\{0, \ldots, \ell\}$ that satisfies $h_{H}+a_{H}=H$. We note that for every H the pair $\left(h_{H}, a_{H}\right)$ is unique.

Then we can write

$$
\begin{gathered}
f=\sum_{H=0}^{k+\ell} f_{H}, f_{H}=\sum_{r=0}^{R(H)} b_{H, r} f_{H, r}, \quad b_{H, r} \in C^{\infty}(M) \\
f_{H, r}:=\left(\left(\bigotimes^{h_{H}+r} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-\left(h_{H}+r\right)} d x^{2}\right)\right) \otimes\left(\left(\bigotimes^{\ell-\left(a_{H}-r\right)} d x^{1}\right) \otimes_{s}\left(\bigotimes^{a_{H}-r} d x^{2}\right)\right)
\end{gathered}
$$

and the summing limit $R(H)$ depends on k, ℓ, and H. Moreover the $C^{\infty}(M)$ linearity of $\operatorname{Sym} A$ and (4.16) imply that $f \in \operatorname{ker}(\operatorname{Sym} A)$ if and only if $f_{H} \in$ $\operatorname{ker}(\operatorname{Sym} A)$ for every $H \in\{0, \ldots, k+\ell\}$.

In the following, we study the tensor f_{H} for a given $H \in\{0, \ldots, k+\ell\}$. For $r \in\{1, \ldots, R(H)\}$ we define $w_{r} \in S^{k-1} M \times S^{\ell-1} M$ by the formula

$$
w_{r}=\left(\left(\bigotimes^{h_{H}+r-1} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-\left(h_{H}+r\right)} d x^{2}\right)\right) \otimes\left(\left(\bigotimes^{\ell-\left(a_{H}-r\right)-1} d x^{1}\right) \otimes_{s}\left(\bigotimes^{a_{H}-r} d x^{2}\right)\right)
$$

Then (4.12) yields

$$
\lambda w_{r}=e^{2 \alpha(x)}\left(f_{H, r}+f_{H, r-1}\right)
$$

This implies the recursive formula

$$
f_{H, r}=\lambda\left(e^{-2 \alpha(x)} w_{r}\right)-f_{H, r-1}
$$

Thus for every $r \in\{0, \ldots, R(H)\}$ there exists $w_{r}^{\prime} \in S^{k-1} M \times S^{\ell-1} M$ such that

$$
\begin{equation*}
f_{H, r}=\lambda w_{r}^{\prime}+(-1)^{r} f_{H, 0} \tag{4.17}
\end{equation*}
$$

Therefore, there exists $w_{H} \in S^{k-1} M \times S^{\ell-1} M$ such that

$$
f_{H}=\sum_{r=0}^{R(H)} b_{H, r} f_{H, r}=\lambda w_{H}+\left(\sum_{r=0}^{R(H)}(-1)^{r} b_{H, r}\right) f_{H, 0}
$$

If $f_{H} \in \operatorname{ker}(\operatorname{Sym} A)$ it holds by the first part of this proof that

$$
\operatorname{Sym} A f_{H}=\left(\sum_{r=0}^{R(H)}(-1)^{r} b_{H, r}\right)\left(\operatorname{Sym} A f_{H, 0}\right)=0
$$

Since $\operatorname{Sym} A f_{H, 0} \neq 0$, it follows that $\sum_{r=0}^{R(H)}(-1)^{r} b_{H, r}=0$, whence $f_{H}=\lambda w_{H}$. This implies that $f=\lambda w$ for some $w \in S^{k-1} M \times S^{\ell-1} M$.

This completes the proof of Lemma 4.2.
By the proof of the previous lemma we can write any $f \in S^{k} M \times S^{\ell} M$ in the form

$$
\begin{equation*}
f=\lambda w+\sum_{H=0}^{k+\ell} r_{H} f_{H, 0}, \quad r_{H} \in C^{\infty}(M) \tag{4.18}
\end{equation*}
$$

for some $w \in S^{k-1} M \times S^{\ell-1} M$. Next, we prove that

$$
\begin{equation*}
A \operatorname{Sym} A f_{H, 0}=(-1)^{\ell} f_{H, 0}+\lambda w, \quad H \in\{0, \ldots, k+\ell\} \tag{4.19}
\end{equation*}
$$

We note that

$$
\begin{aligned}
\operatorname{Sym} A f_{H, 0}= & (-1)^{a_{H}}\left(\bigotimes^{H} d x^{1} \otimes_{s}\left(\bigotimes^{k+\ell-H} d x^{2}\right)\right) \\
= & \frac{(-1)^{a_{H}}}{(k+\ell)!} \sum_{r=0}^{R(H)} A_{r}\left(\left(\bigotimes^{h_{H}+r} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-\left(h_{H}+r\right)} d x^{2}\right)\right) \\
& \otimes\left(\left(\bigotimes^{a_{H}-r} d x^{1}\right) \otimes_{s}\left(\bigotimes^{\ell-\left(a_{H}-r\right)} d x^{2}\right)\right)
\end{aligned}
$$

where $\sum_{r=0}^{R(H)} A_{r}=(k+\ell)$!. Using (4.17), we obtain

$$
\begin{aligned}
A \operatorname{Sym} A f_{H, 0} & =(-1)^{a_{H}} \frac{1}{(k+\ell)!} \sum_{r=0}^{R(H)}(-1)^{\ell-\left(a_{H}-r\right)} A_{r} f_{H, r} \\
& =(-1)^{\ell} \frac{1}{(k+\ell)!}\left(\sum_{r=0}^{R(H)} A_{r}\right) f_{H, 0}+\lambda w \\
& =(-1)^{\ell} f_{H, 0}+\lambda w .
\end{aligned}
$$

Therefore, we have proved (4.19).
Equation (4.11) follows from Lemma 4.2 and (4.18)-(4.19).
4.2. Analysis of operator $A d^{s}$. We note that $S^{k+\ell} M \subset S^{k} M \times S^{\ell} M$. Therefore, we can extend the inner derivative d^{s} to an operator $d^{s}: S^{k-1} M \times S^{\ell} M \rightarrow S^{k} M \times$ $S^{\ell} M$ and evaluate $d^{s}-d^{\prime}$. In this subsection, we show that for any $u \in S^{k-1} M \times$ $S^{\ell} M$ the following equations hold:

$$
\begin{align*}
A\left(d^{s} u-d^{\prime} u\right) & =\lambda w \quad \text { for some } w \in S^{k-1} M \times S^{\ell-1} M \tag{4.20}\\
d^{\prime} A & =A d^{\prime} \tag{4.21}
\end{align*}
$$

Since $A d^{s}$ and $A d^{\prime}$ are linear it suffices to prove the claims for

$$
u=r(x)\left(\left(\bigotimes^{h-1} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-h} d x^{2}\right)\right) \otimes\left(\left(\bigotimes^{a} d x^{1}\right) \otimes_{s}\left(\bigotimes^{\ell-a} d x^{2}\right)\right), \quad r \in C^{\infty}(M)
$$

By (1.5) and (4.5) we have

$$
\begin{align*}
& A d^{\prime} u=(-1)^{\ell-a}\left(\left(\frac{\partial}{\partial x^{1}} r(x)-R_{1}\right)\left(\left(\bigotimes^{h} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-h} d x^{2}\right)\right) \otimes\left(\left(\bigotimes^{\ell-a} d x^{1}\right) \otimes_{s}\left(\bigotimes^{a} d x^{2}\right)\right)\right. \tag{4.22}\\
&\left.+\left(\frac{\partial}{\partial x^{2}} r(x)-R_{2}\right)\left(\left(\bigotimes^{h-1} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-h+1} d x^{2}\right)\right) \otimes\left(\left(\bigotimes^{\ell-a} d x^{1}\right) \otimes_{s}\left(\bigotimes^{a} d x^{2}\right)\right)\right)
\end{align*}
$$

where $R_{m}=\sum_{s=1}^{k+\ell-1} r_{i_{1}, \ldots, i_{s-1} p, i_{s+1}, \ldots, i_{k+\ell}} \Gamma_{m i_{s}}^{p}, m \in\{1,2\}, r_{i_{1}, \ldots, i_{s-1} p, i_{s+1}, \ldots, i_{k+\ell}} \in$ $\{0, r\}$ depending on $\left(i_{1}, \ldots, i_{k+\ell}\right)$ and $\Gamma_{m i_{s}}^{p}$ are the Christoffel symbols of metric g.

We write $H=h+a$ and denote $\widetilde{R}_{m}=\frac{\partial}{\partial x^{m}} r(x)-R_{m}$. Then we obtain from (4.5) and (4.10),

$$
\begin{aligned}
d^{s} u= & \frac{1}{(k+\ell)!}\left(\widetilde{R}_{1} \sum_{r=0}^{R(H)} A_{r}\left(\left(\bigotimes^{h_{H}+r} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-\left(h_{H}+r\right)} d x^{2}\right)\right)\right. \\
& \otimes\left(\left(\bigotimes^{a_{H}-r} d x^{1}\right) \otimes_{s}\left(\bigotimes^{\ell-\left(a_{H}-r\right)} d x^{2}\right)\right) \\
& +\widetilde{R}_{2} \sum_{r=0}^{R(H-1)} B_{r}\left(\left(\bigotimes^{h_{H-1}+r} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-\left(h_{H-1}+r\right)} d x^{2}\right)\right) \\
& \left.\otimes\left(\left(\bigotimes^{a_{H-1}-r} d x^{1}\right) \otimes_{s}\left(\bigotimes^{\ell-\left(a_{H-1}-r\right)} d x^{2}\right)\right)\right)
\end{aligned}
$$

where $\sum_{r=0}^{R(H)} A_{r}=\sum B_{r=0}^{R(H-1)}=(k+\ell)$!. This yields
$A d^{s} u=\widetilde{R}_{1} \frac{(-1)^{\ell-a_{H}}}{(k+\ell)!} \sum_{r=0}^{R(H)}\left((-1)^{r} A_{r} g_{H, r}\right)+\widetilde{R}_{2} \frac{(-1)^{\ell-a_{H-1}}}{(k+\ell)!} \sum_{r=0}^{R(H-1)}\left((-1)^{r} B_{r} g_{H-1, r}\right)$, where the shorthand notation $g_{H, r}, g_{H-1, r}$ stand for

$$
\begin{aligned}
& g_{H, r}:=\left(\left(\bigotimes^{h_{H}+r} d x^{1}\right) \otimes_{s}\left(\bigotimes_{h_{H-1}+r}^{k-\left(h_{H}+r\right)} d x^{2}\right)\right) \otimes\left(\left(\bigotimes^{\ell-\left(a_{H}-r\right)} d x^{1}\right) \otimes_{s}\left(\bigotimes^{a_{H}-r} d x^{2}\right)\right) \\
& g_{H-1, r}:=\left(\left(\bigotimes^{\ell-\left(h_{H-1}+r\right)} d x^{1}\right) \otimes_{s}\left(\bigotimes^{\ell-\left(a_{H-1}-r\right)} d x^{2}\right)\right) \otimes\left(\left(\bigotimes^{a_{H-1}-r} d x^{1}\right) \otimes_{s}\left(\bigotimes^{2} d x^{2}\right)\right)
\end{aligned}
$$

By an analogous argument as in the proof of Lemma 4.2 we obtain a recursive formula

$$
g_{H, r}=\lambda w_{H, r}+(-1)^{R(H)-r} g_{H, R(H)} \quad \text { for some } w_{H, r} \in S^{k-1} M \times S^{\ell-1} M
$$

Thus for some $w^{\prime}, w^{\prime \prime} \in S^{k-1} M \times S^{\ell-1} M$ it holds that

$$
\begin{aligned}
& A d^{\prime} u=(-1)^{\ell-a}\left(\widetilde{R}_{1} g_{H, h-h_{H}}+\widetilde{R}_{2} g_{H-1, h-1-h_{H-1}}\right) \\
& =(-1)^{\ell}\left((-1)^{R(H)-h+h_{H}-a} \widetilde{R}_{1} g_{H, R(H)}+(-1)^{R(H-1)-h+1+h_{H-1}-a} \widetilde{R}_{2} g_{H-1, R(H-1)}\right) \\
& \quad+\lambda w^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
A d^{s} u= & \widetilde{R}_{1} \frac{(-1)^{\ell-a_{H}}}{(k+\ell)!} \sum_{r=0}^{R(H)}(-1)^{r} A_{r}\left(\lambda w_{H, r}+(-1)^{R(H)-r} g_{H, R(H)}\right) \\
& +\widetilde{R}_{2} \frac{(-1)^{\ell-a_{H-1}}}{(k+\ell)!} \sum_{r=0}^{R(H-1)}(-1)^{r} B_{r}\left(\lambda w_{H-1, r}+(-1)^{R(H-1)-r} g_{H, R(H-1)}\right) \\
= & (-1)^{\ell}\left((-1)^{R(H)-a_{H}} \widetilde{R}_{1} g_{H, R(H)}+(-1)^{R(H-1)-a_{H-1}} \widetilde{R}_{2} g_{H-1, R(H-1)}\right)+\lambda w^{\prime \prime}
\end{aligned}
$$

Since we defined

$$
a+h=H=a_{H}+h_{H} \quad \text { and } \quad H-1=a_{H-1}+h_{H-1}
$$

the identities above imply that

$$
A\left(d^{s} u-d^{\prime} u\right)=\lambda w, \quad w \in S^{k-1} M \times S^{\ell-1} M
$$

Therefore we have proved (4.20).
Finally, we prove equation (4.21). We note that

$$
\begin{array}{r}
d^{\prime} A u=(-1)^{\ell-a}\left(\widetilde{R}_{1}\left(\left(\bigotimes^{h} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-h} d x^{2}\right)\right) \otimes\left(\left(\bigotimes^{\ell-a} d x^{1}\right) \otimes_{s}\left(\bigotimes^{a} d x^{2}\right)\right)\right. \\
\left.\quad+\widetilde{R}_{2}\left(\left(\bigotimes^{h-1} d x^{1}\right) \otimes_{s}\left(\bigotimes^{k-h+1} d x^{2}\right)\right) \otimes\left(\left(\bigotimes^{\ell-a} d x^{1}\right) \otimes_{s}\left(\bigotimes^{a} d x^{2}\right)\right)\right)
\end{array}
$$

Thus (4.21) holds since the previous equation coincides with (4.22).

References

[1] Lars V. Ahlfors, Conformality with respect to Riemannian metrics, Ann. Acad. Sci. Fenn. Ser. A. I. 1955 (1955), no. 206, 22 pp. MR0074855
[2] Yu. E. Anikonov and V. G. Romanov, On uniqueness of determination of a form of first degree by its integrals along geodesics, J. Inverse Ill-Posed Probl. 5 (1997), no. 6, 487-490 (1998), DOI 10.1515/jiip.1997.5.6.487. MR1623603
[3] C. H. Chapman and R. G. Pratt, Traveltime tomography in anisotropic media - I. Theory, Geophys. J. Internat. 109 (1992), no. 1, 1-19.
[4] Nurlan S. Dairbekov, Integral geometry problem for nontrapping manifolds, Inverse Problems 22 (2006), no. 2, 431-445, DOI 10.1088/0266-5611/22/2/003. MR2216407
[5] Sean Holman, Generic local uniqueness and stability in polarization tomography, J. Geom. Anal. 23 (2013), no. 1, 229-269, DOI 10.1007/s12220-011-9245-5. MR3010279
[6] Venkateswaran P Krishnan, Rohit Kumar Mishra, and François Monard, On s-injective and injective ray transforms of tensor fields on surfaces, Journal of Inverse and Ill-posed Problems (to appear), preprint arXiv:1807.10730 (2018).
[7] R. G. Mukhometov, On the problem of integral geometry (Russian), Math. problems of geophysics, Akad. Nauk SSSR, Sibirsk., Otdel., Vychisl., Tsentr, Novosibirsk 6 (1975).
[8] R. G. Muhometov, On a problem of reconstructing Riemannian metrics (Russian), Sibirsk. Mat. Zh. 22 (1981), no. 3, 119-135, 237. MR621466
[9] Roman Novikov and Vladimir Sharafutdinov, On the problem of polarization tomography. I, Inverse Problems 23 (2007), no. 3, 1229-1257, DOI 10.1088/0266-5611/23/3/023. MR2329942
[10] Gabriel P. Paternain, Mikko Salo, and Gunther Uhlmann, Tensor tomography on surfaces, Invent. Math. 193 (2013), no. 1, 229-247, DOI 10.1007/s00222-012-0432-1. MR3069117
[11] G. P. Paternain, M. Salo, G. Uhlmann, and H. Zhou, The geodesic x-ray transform with matrix weights, preprint, arXiv:1605.07894 2, 2016.
[12] L. Pestov, Well-posedness questions of the ray tomography problems (Russian), Siberian Science Press, Novosibirsk, 2003.
[13] L. N. Pestov and V. A. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative curvature (Russian), Sibirsk. Mat. Zh. 29 (1988), no. 3, 114-130, 221, DOI 10.1007/BF00969652; English transl., Siberian Math. J. 29 (1988), no. 3, 427-441 (1989). MR953028
[14] Leonid Pestov and Gunther Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Ann. of Math. (2) 161 (2005), no. 2, 1093-1110, DOI 10.4007/annals.2005.161.1093. MR2153407
[15] V. A. Sharafutdinov, Integral geometry of tensor fields, Inverse and Ill-posed Problems Series, VSP, Utrecht, 1994. MR1374572
[16] Vladimir Sharafutdinov, Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds, J. Geom. Anal. 17 (2007), no. 1, 147-187, DOI 10.1007/BF02922087. MR2302878
[17] Plamen Stefanov and Gunther Uhlmann, Boundary rigidity and stability for generic simple metrics, J. Amer. Math. Soc. 18 (2005), no. 4, 975-1003, DOI 10.1090/S0894-0347-05-004947. MR2163868
[18] Plamen Stefanov and Gunther Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J. 123 (2004), no. 3, 445-467, DOI 10.1215/S0012-7094-04-12332-2. MR2068966
[19] Plamen Stefanov, Gunther Uhlmann, and András Vasy, Inverting the local geodesic X-ray transform on tensors, J. Anal. Math. 136 (2018), no. 1, 151-208, DOI 10.1007/s11854-018-0058-3. MR3892472
[20] John Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math. 43 (1990), no. 2, 201-232, DOI 10.1002/cpa.3160430203. MR1038142
[21] Gunther Uhlmann and András Vasy, The inverse problem for the local geodesic ray transform, Invent. Math. 205 (2016), no. 1, 83-120, DOI 10.1007/s00222-015-0631-7. MR3514959

Simons Chair in Computational and Applied Mathematics and Earth Science, Rice University, Houston, Texas 77005

Email address: mdehoop@rice.edu
Department of Computational and Applied Mathematics, Rice University, Houston, Texas, 77005

Email address: teemu.saksala@rice.edu
Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China

[^0]: Received by the editors August 7, 2018, and, in revised form, February 2, 2019, February 21, 2019, and February 22, 2019.

 2010 Mathematics Subject Classification. Primary 44A12, 53A35, 53C22, 58C99, 58J90.
 The work of the first author was partially supported by the Simons Foundation under the MATH + X program, the National Science Foundation under grant DMS-1815143, and by members of the Geo-Mathematical Imaging Group at Rice University.

 The second author was supported by the Simons Foundation under the MATH + X program.
 The third author was supported by the Simons Foundation under the MATH + X program.

