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Abstract

Consider an isotropic elastic medium Ω ⊂ R3 whose Lamé parameters are piecewise smooth. In
the elastic wave initial value inverse problem, we are given the solution operator for the elastic wave
equation, but only outside Ω and only for initial data supported outside Ω. Using the recently introduced
scattering control series in the acoustic case, we prove that piecewise smooth Lamé parameters are
uniquely determined by this map under certain geometric conditions. We also show the extent that
multiple scattering in the interior may be suppressed and eliminated with access to only this partial
solution map, which is akin to the dynamic Dirichlet-to-Neumann map.

1 Introduction

The wave inverse problem asks for the unknown coefficient(s), representing wave speeds, of a wave equation
inside a domain of interest Ω, given knowledge about the equation’s solutions (typically on ∂Ω). Tradition-
ally, the coefficients are smooth, and the data is the Dirichlet-to-Neumann (DN) map, or its inverse. The
main questions are uniqueness and stability: can the coefficients be recovered from the Dirichlet-to-Neumann
map, and is this reconstruction stable relative to perturbations in the data? In the case of a scalar wave
equation with smooth coefficients, a number of results by Belishev, Stefanov, Vasy, and Uhlmann [2, 26, 17]
have answered the question in the affirmative. For the piecewise smooth case, a novel scattering control
method was developed in [7] in order to show in [6] that uniqueness holds as well for piecewise smooth wave
speeds with conormal singularities, under very mild geometric conditions. We term that particular method
as blind scattering control since it assumes absolutely no knowledge of the wavespeed in the interior region,
and uses only measurements exterior to Ω. Our goal is to extend these results to the isotropic elastic system.
This presents new difficulties due to the lack of the sharp form of the unique continuation result of Tataru
since we have to deal with two different wave speeds.

In the elastic setting, or for that matter, any hyperbolic equation with multiple wave speeds, the story is
far from complete. Consider the isotropic elastic wave equation in a bounded domain Ω. The wave operator
for elastodynamics is given as Q = ρ∂2

t − L with

L = ∇ · (λdiv⊗ Id + 2µ∇̂),

ρ is the density, λ and µ are the Lamé parameters, and ∇̂ is the symmetric gradient used to define the
strain tensor for an elastic system via ∇̂u = (∇u + (∇u)T )/2 for a vector valued function u. Operator Q
acts on a vector-valued distribution u(x, t) = (u1, u2, u3), the displacement of the elastic object. For the
isotropic, elastic setting with smooth parameters, the uniqueness question was settled by Rachele in [15]
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and Hansen and Uhlmann [11]. First, Rachele proved that one can recover the jet of λ, µ, and ρ at ∂Ω
explicitly. In [15, 14], she showed that one can recover the p and s wave speeds in Ω provided the hyperbolic
DN map is known on the whole boundary and assuming strict geometry that preclude caustics. Hansen and
Uhlmann studied the problem with a residual stress, allowing conjugate points and caustics, and showed
that one can recover both lens relations and derived the consequences of that. These are all results for
the global problem where the DN map is known on the whole boundary. Stefanov, Vasy, and Uhlmann
[26, 20] have extended these results to the local inverse problem using the Uhlmann-Vasy methods on the
local geodesic ray transform [26] and using a pseudolinearization first developed in [17]. They are able to do
a local recovery of both wave speeds that depend on three parameters λ, µ, ρ. There are also related inverse
problems in thermoacoustic tomography where one tries to recover a source (initial condition) rather than a
PDE parameter [25, 13, 1, 18, 19].

No such results are known for when the elastic parameters have interfaces (conormal singularities). Even
the blind scattering control method, which is very similar to boundary control and was used to prove unique-
ness in [6] for the acoustic setting, does not readily apply here. The reason is very simple: although unique
continuation results hold for the elastic setting, they are far weaker, being based on the slowest wave speed,
and so the boundary control method is not known to work since it is not possible, or at least not known,
how to decouple the elasticity system completely even though it is easy to do that microlocally. A Lamé
type of system having the same principal part which can be decoupled fully was studied by Belishev in [4]
and the boundary control method (see [3, 5, 2]) was used for unique recovery. Such an approach only worked
because the system was able to fully decouple so that the scalar boundary control methods would apply
to the decoupled constituents. Therefore, it fails for the piecewise smooth setting where the coupling of
different modes at the interfaces is unavoidable, and so it does not simplify matters here to study Belishev’s
Lamé type system with piecewise smooth parameters. Instead, we focus on a geometric uniqueness problem
analogous to [20] and employ a layer stripping argument to utilize the results in [26, 20] in the smooth case.

The main result of this paper is that under certain geometric assumptions, we show unique determina-
tion of Lamé parameters that contain singularities via microlocal analysis, scattering control, and a layer
stripping argument akin to [20]. Most proofs are microlocal to avoid using unique continuation results, but
we require an important geometric assumption, which is a convex foliation condition (see §3.1) for each wave
speed cP/S . As mentioned in [20], for a particular wave speed, this condition relates to the existence of a
function with strictly convex level sets, which in particular holds for simply connected compact manifolds
with strictly convex boundaries such that the geodesic flow has no focal points (lengths of non-trivial Jacobi
fields vanishing at a point do not have critical points), in particular if the curvature of the manifold is
negative (or just non-positive). Also, as explained in [21], if Ω is a ball and the speeds increase when the
distance to the center decreases (typical for geophysical applications), the foliation condition is satisfied.

The other key ingredient is that even though a lens map does not make sense with internal multiples
present, one may use a scattering control-like process introduced in [7] (not blind scattering control which
requires sharp unique continuation theorems) to recover lens data for singly reflected rays. This construction
will also be entirely microlocal and circumvents the need for unique continuation results. We denote by
uh the solution to the homogeneous elastic equation on R3 with initial time Cauchy data h. All of our
function spaces are of the form X(·;C3) since we have vector valued functions in the elastic setting, but
throughout the paper, we will not write the vector valued part C3 to make the notation less burdensome.
Let Ω

c
be the complement of Ω and we define the outside measurement operator F : H1

c (Ω
c
) ⊕ L2

c(Ω
c
) →

C0(Rt;H1(Ω
c
)) ∩ C1(Rt;L2(Ω

c
)) as

F : h0 → uh0
(t)|Ωc .

Due to a technicality, we use slightly different sets for our measurement region than Ω
c

in the main body,
but the idea is the same. The operator F only measures waves outside Ω after undergoing scattering within
Ω, and it is associated to a particular elastic operator Q with a set of parameters. Given a second set of
elastic parameters λ̃, µ̃ we obtain analogous operators Q̃ and F̃ . Denote the associated P/S wave speeds
cP/S and c̃P/S . From here on, we use P/S to refer to either subscript or wave speed. In addition, to avoid the
technical difficulties of dealing with corners or higher codimension singularities of cP/S , we always assume
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that the singular support of cP/S , c̃P/S lies in a closed, not necessarily connected hypersurface in Ω; we will
deal with corners and edges in a separate paper. We will prove the following result.

Theorem 1.1. Assume F = F̃ , and that cP/S , c̃P/S satisfy a certain geometric foliation condition. Then
cP = c̃P and cS = c̃S inside Ω.

Via a layer stripping approach, we will obtain local travel time data and lens relations at the current layer
from F 1. To do this, we will employ an analogue of the microlocal scattering control construction appearing
in [7, section 5] to create specific P or S waves at the current, deepest layer to extract local travel time data
and lens relations without having the internal multiples interfere with recovery of this data. Without such
techniques, one would not be able to distinguish waves that contain this subsurface travel time data from
internal multiples created from the conormal singularities of the Lamé parameters.

Since we use a scattering control parametrix in the above proof coupled with knowledge of the Lamé
parameters on part of the interior, it becomes natural to address an old question, albeit quite different than
the one posed above, on how much multiple scattering may one control and eliminate in the elastic setting
having access only to the outside measurement operator and no knowledge of the Lamé parameters in the
interior. That is, how much of blind scattering control addressed in the acoustic setting in [7] applies in
the elastic setting? A partial answer for the elastic setting is in [27], where they assume knowledge of first
arrival times corresponding to purely transmitted P waves, S waves, and certain mode converted waves. This
is a strong assumption since a single wave packet entering Ω produces numerous scattered waves that one
measures at the surface and one cannot a priori associate travel times with a particular primary reflected
wave versus a secondary reflected wave. We wish to dispense with such an assumption and in Appendix B,
we show how with blind scattering control, one may control all the internal multiples within the S-domain
of influence of the initial source, and certain additional multiples beyond this region. Essentially, any mul-
tiples that may be recreated with a tail behind the initial source may also be controlled and eliminated. It
should be emphasized that this result is quite disparate from the main result of the paper since we do a
time reversal procedure of all the scattered data one obtains outside Ω, while in the main theorem, one does
a parametrix construction using very specific, reflected P/S-waves to eliminate particular waves in the interior.

2 The data map

We will use this section to give the basic definitions and setup for the main theorem.

2.1 Geometric setup

Let Ω be a bounded region in R3 with smooth boundary. It represents a linearly elastic, inhomogeneous,
isotropic object. We assume the Lamé parameters λ(x) and µ(x) satisfy the strong convexity condition,
namely that µ > 0 and 3λ + 2µ > 0 on Ω. Also, assume the parameters λ, µ lie inside L∞(Ω) and that
λ, µ are piecewise smooth functions that are singular only on a set of disjoint, closed, connected, smooth
hypersurfaces Γi of Ω, called interfaces. We also set Γ =

⋃
Γi to be the collection of all the interfaces.

The two wave speeds are cP =
√

(λ+ 2µ)/ρ and cS =
√
µ/ρ, where ρ is the density. In particular, this

ensures that cP > cS on Ω. As in [7], we will probe Ω with Cauchy data (an initial pulse) concentrated
close to Ω with a particular polarization, in some Lipschitz domain Θ ⊃ Ω. While we are interested in what
occurs inside Ω, the initial pulse region Θ will actually play a larger role in the analysis.

Since we take measurements outside Ω, let us extend the Lamé parameters to all of Rn so that they are
smooth outside Ω and our wavefields are now well-defined there as well. We will denote by

gP/S = c−2
P/Sdx

2

the two different metrics associated to the rays. As in [7], we can define the distance functions dP/S(·, ·)
corresponding to the respective metrics by taking the infimum over all lengths of the piecewise smooth paths
between a pair of points. Here and throughout the paper, a P/S subscript indicates either P or S subscripts.

1The fact that the interfaces are not dense makes this possible theoretically in the sense that there will exist an open set of
rays at the current layer that do not cross any interfaces after a finite time when they are close to being tangent to the layer.
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Now, define the P -depth d∗Θ(x) of a point x inside Θ:

d∗Θ(x) =

{
+dP (x, ∂Θ), x ∈ Θ,

−dP (x, ∂Θ), x /∈ Θ.
.

We use the (rough) metric gP since finite speed of propagation for elastic waves is based on the faster
P -wavespeed. We will add to the initial pulse a Cauchy data control (a tail) supported outside Θ, whose role
is to remove multiple reflections up to a certain depth, controlled by a time parameter T ∈ (0, 1

2diamPΩ).

This will require us to consider controls supported in a sufficiently large Lipschitz neighborhood Υ ( R3 of Θ
that satisfies dS(∂Υ,Θ) > 2T and is otherwise arbitrary. It will be useful to define Θ? = {x ∈ Υ | d∗Θ(x) < 0}.

2.2 Elastic waves

Recall the wave operator for elastodynamics Q discussed in the introduction given as Q = ρ∂2
t − L with

L = ∇ · (λdiv⊗ Id + 2µ∇̂).

Let us also recall the characteristic set Q defined in [15] and [11]. It consists of two mutually disjoint sets
ΣP ,ΣS ⊂ T ∗R3 where ΣP/S are the characteristic sets for the scalar wave operators c−2

P/S∂
2
t −∆.

Let C̃ be the space of Cauchy data of interest:

C̃ = H1
0 (Υ;C3)⊕ L2(Υ;C3)

although we will suppress the ‘C3’ notation when it is clear from the context. We equip the space with the
elastic energy inner product

〈(f0, f1), (g0, g1)〉 =

∫

Ω

(
f1 · ḡ1 + λ(x)div(f0)div(ḡ0) + 2µ(x)∇̂f0 : ∇̂ḡ0

)
dx.

Within C̃, define the subspaces of Cauchy data supported inside and outside Θt:

H = H1
0 (Θ)⊕ L2(Θ), H̃? = H1

0 (Θ?)⊕ L2(Θ?).

Define the energy of Cauchy data h = (h0, h1) ∈ C̃ in a subset W ⊂ R3:

EW (h) :=

∫

W

(
λ(x)|div(h0)|2 + µ(x)|∇̂h0|2 + |h1|2

)
dx.

We need another definition, related to the harmonic extensions used in [7].

Definition 2.1. We say that (f, g) ∈ H1(R3)⊕ L2(R3) is stationary on a domain U if Lf = g = 0 on U .

Next, define F to be the solution operator for the elastic wave initial value problem:

F : H1(Rn)⊕ L2(R3)→ C(R, H1(R3)) F (h0, h1) = u s.t.





Qu = 0,

u�t=0 = h0,

∂tu�t=0 = h1.

(2.1)

Let Rs propagate Cauchy data at time t = 0 to Cauchy data at t = s:

Rs = (F, ∂tF )
∣∣∣
t=s

: H1(R3)⊕ L2(R3)→ H1(R3)⊕ L2(R3). (2.2)

Now combine Rs, with a time-reversal operator ν : C̃→ C̃, defining for a given T

R = ν ◦R2T , ν : (f0, f1) 7→ (f0,−f1).

In our problem, only waves interacting with (Ω, µ, λ) in the time interval [0, 2T ] are of interest. Consequently,
let us ignore Cauchy data not interacting with Θ, as follows.
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Let G = H̃? ∩
(
R2T (H1

0 (R3 \ Θ) ⊕ L2(R3 \ Θ))
)

be the space of Cauchy data in C̃ whose wave fields

vanish on Θ at t = 0 and t = 2T . Let C be its orthogonal complement inside C̃, and H? its orthogonal
complement inside H̃?. With this definition, R2T maps C to itself isometrically.

In Appendix B we show how much scattering one may control in the elastic setting without any knowledge
of the parameters inside Ω based on unique continuation theorems that are much weaker due to the presence of
multiple wave speeds. Despite not having full unique continuation, one is still able to construct parametrices
for the elastic equation that are approximate solutions to the elastic equation. With such parametrices, we
will use the principles from scattering control to obtain “subsurface” travel time data by eliminating certain
scattered constituents microlocally. This is precisely the task we pursue in the remainder of the paper. First,
we develop our main technical tool, which is the parametrix for elastic wave solutions.

3 Unique recovery of piecewise smooth P- and S -wave speeds: A
geometric point of view

We consider the problem of showing that both the P and S wavespeeds are determined by the outside-
measurement-operator under certain geometric conditions that give us access to all the requisite rays.

3.1 Foliation condition

First, since our proof of the main theorem will require recovery of all the parameters in a layer stripping
argument, we make a simplifying assumption and assume the density

ρ = 1

throughout the paper. We will explain in section 6 how one might dispense with such an assumption.
Let us recall all the definitions from [6], adapted to the elastic setting. We start by extending the convex

foliation condition to our piecewise smooth setting, keeping in mind that Γi,Γ are the interfaces defined in
section 2.2.

Definition 3.1. ρ : Ω → [0, τ0] is a (piecewise) convex foliation for (Ω, cP/S) (meaning for both cP and cS
simultaneously) if the following conditions hold:

• ∂Ω = ρ−1(0) and ρ−1(τ0) has measure zero;

• ρ is smooth and dρ 6= 0 on ρ−1((0, τ0)) \ Γ.

• each level set ρ−1(t) is geodesically convex with respect to cp and cs when viewed from ρ−1((t, T )), for
t ∈ [0, τ0);

• the interfaces of cP/S are level sets of ρi, that is Γi ⊂ ρ−1(ti) for some ti;

• ρ is upper semicontinuous.

We say that (cP , cS) satisfies the convex foliation condition if there exists a convex foliation for (Ω, cP/S).

Having interfaces being part of the foliation allows for some unusual configurations. In addition, the
leaves of the foliation may have intricate, non-trivial topologies and the geometry can be complicated as
well, allowing conjugate points (see below Figure 1).

ρ−1(0) = ∂Ω

ρ−1(1)

ρ−1(2)

ρ−1(3)

ρ−1(4)ρ−1(5) Γ

Γ

Figure 1: An example of a piecewise convex foliation. Thick lines indicate the interfaces Γ; thin lines trace
selected level sets of the foliation function ρ, which is allowed (but not required) to be singular at Γ.
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From now on we assume

Assumption 1. (Ω, cP/S) satisfy the convex foliation condition.

Our main theorem is

Theorem 3.2. Under the convex foliation condition, if F = F̃ , then cP/S = c̃P/S.

We note that the case where cP and cS have separate foliations does not add much more generality to
the theorem (see Remark 3.3).

Remark 3.3. We are assuming that the level sets of one function ρ produces a convex foliation for both the
cP and cS wave speed. One may wonder whether this is strictly necessary since we recover the wave speeds
one at a time in the proof. Upon close examination of the main proof, it will be vital that the interfaces
coincide with the leaves of the foliation so that we get the correct scattering behavior that ensures enough
branches of a particular ray return outside Ω, which is the measurement region. Thus, we may allow cP and
cS to have different foliations, but the foliations must still coincide at and near each interface. Dealing with
interfaces is the main novelty of the paper so allowing different foliations away from the interfaces does not
present much novelty to our results.

We note that convex foliation gives us crucial information on the reflected and transmitted waves emitted
when an incident wave hits an interface. Indeed, define

Ωτ = ρ−1
(
(τ, τ0]

)
,

Ω?τ = ρ−1
(
(0, τ)

)
,

Στ = ρ−1(τ). (3.1)

Also, let Σ±τ denote the two sides of the interface, where (−) refers to the outside of Ωτ (facing decreasing
τ) and (+) the inside. We also fix such notation for the remainder of the paper. We have the corresponding
sets of P/S hyperbolic points H±P/S ⊂ T ∗Γ± (see [11, section 4] for the relevant definitions). The convexity

guarantees that H+
P ⊂ H

−
P with an analogous statement for the S hyperbolic set. Thus, a P wave hitting Στ

from below must produce a transmitted P wave. In fact, it must produce a transmitted S wave as well since
cP > cS . The same holds for an S wave hitting Γ from below, but a mode conversion in the transmitted
wave does not necessarily occur since mode conversions only occurs up to a critical angle. Thus, there is no
total internal reflection from below the interfaces.

First, we need several definitions taken from [6] extended to the elastic setting.

Definition 3.4. A foliation downward (resp. upward) covector (x, ξ) is one pointing in direction of increasing
(resp. decreasing) ρ. Define T ∗±Ω to be the associated open sets:

T ∗±Ω = {(x, ξ) ∈ T ∗Ω | ±〈ξ, dρ〉 > 0}.

Hence, we can speak of covectors (x, ξ) pointing upward/downward with respect to the foliation.

Definition 3.5. A (unit-speed) broken geodesic in (Ω, cP/S) is a continuous, piecewise smooth path γ : R ⊃
I → Ω such that each smooth piece is a unit-speed geodesic with respect to either gP or gS on Ω \ Γ,
intersecting the interfaces Γ at discrete set of points ti ∈ I. Furthermore, at each ti the intersection is
transversal and Snell’s law for reflection and refraction of elastic waves is satisfied. A broken bicharacteristic
is a path in T ∗Ω of the form (γ, γ′[), the flat operation taken with respect to gP or gS as appropriate. Note
that a broken geodesic defined this way may contain both P and S geodesic segments.

A transmitted broken geodesic (a concatenation of smooth P and S geodesics) is a unit-speed broken
geodesic experiencing only refractions; that is, the inner products of γ′(t−i ) and γ′(t+i ) with the normal to Γ
have identical signs at each ti. A transmitted broken bicharacteristic is then defined analogously.

Definition 3.6. Let (x, ξ) ∈ T ∗+Ω \ 0, and τ = ρ(x). If there exists a purely transmitted bicharacteristic
γ (with either only P or only S branches) and limt→0+ γ(t) = (x, ξ), we define the subsurface travel time
lP/S,τ (x, ξ) as the unique l > 0 for which γ(l) ∈ T ∗−Ω∩T ∗Στ , and the (subsurface) lens relation LP/S,τ (x, ξ) =
γ(l).

If DP/S is the set of (x, ξ) for which such γ exists, extend LP/S to (DP/S \ 0) \ T ∗Ω|Γ by continuity. On
the interfaces T ∗Ω|Γ, define LP/S by continuity from below.
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Definition 3.7. Let Ωr ⊆ Ω be the set of regular points, where x is regular if it is regular with respect to
both cP and cS , as defined in [6, Definition 3.2].

Essentially, x ∈ Ωr means that there is a purely transmitted broken P and S geodesic that starts normal
to ∂Ω and passes through x. We do not go into detail on the definition of Ωr since due to the convex foliation
assumption, it is a dense set in Ω, which is all that we use in our proofs:

Lemma 3.8. If Ω is compact, then Ωr is dense in Ω under the convex foliation assumption.

The proof is by applying Lemma 3.3 in [6] to both P and S speeds.

Since the proof of the main theorem is microlocal, we must first construct a parametrix for the elastic
operator when the Lamé parameters are piecewise smooth.

4 Elastic-wave parametrix with scattering

In this section, we construct the elastic wave parametrix in the presence of singularities in the Lamé pa-
rameters. Most constructions are taken directly from [7] used in the acoustic setting and [14] in the elastic
setting. Other references to construct such parametrices are [10] in an acoustic setting and [8] for a general
systems setting.

Let us first recall the interfaces Γi, with Γ =
⋃

Γi. These hypersurfaces separate R3 \ Γ into disjoint
components {Ωj}. We assume each smooth piece of λ and µ extends smoothly to R3. In order to distinguish
the sides of each hypersurface Γi, consider an exploded space Z in which the connected components of R3 \Γ
are separate. It may be defined in terms of its closure, as a disjoint union

Z̄ =
⊔

j

Ωj , Z =
⋃

j

Ωj ⊂ Z.

In this way, ∂Z contains two copies of each Γi, one for each adjoining Ωj .
When restricting to a particular Ωj , we may do a microlocal decomposition into the forward and backward

propagators as in the acoustic case [15, 14]. This is because away from the interfaces, −L is a positive elliptic
operator with a pseudodifferential square root. See [23] for a microlocal construction of this square root.
Hence, the construction in [7, appendix A] applies, so for Cauchy data (f0, f1) (time t = 0 say), the Cauchy
to solution map may then be decomposed as

F (f0, f1) ≡ F+g+ + F−g−,

[
g+

h−

]
≡ C

[
f0

f1

]

where C is a microlocally invertible matrix ΨDO. The Cauchy data (g+, g−) may be interpreted as a single
distribution g on a doubled space Z = Z+ t Z−. The corresponding layers are then Ω±,j .

Combining the elastic parametrix construction in Rachele [15] with the scalar wave parametrix in the
presence of singularities in the sound speed [7], we may construct a parametrix for RT in regions where no
glancing occurs at an interface. We will describe it as a sum of graph FIOs on Z from sequences of reflec-
tions, transmissions, and P/S mode conversions, along with operators propagating data from one boundary
to another, or propagating the initial data to boundary data.

4.1 Cauchy propagators

To begin, extend each restriction µj = µ
∣∣
Ωj

, λj = λ
∣∣
Ωj

to a smooth function on R3. Each η ∈ T ∗Ω±,j is

associated with a unique P/S-bicharacteristic γ
P/S
η (t) in T ∗R3 passing through η at t = 0, which may escape

and possibly re-enter Ω±,j , as t→ ±∞.
To prevent re-entry of wavefronts, we introduce a pseudodifferential cutoff for P/S rays, φP/S(t, x, ξ),

omitting some details for brevity. Let t
P/S
e± , t

P/S
r± denote the first positive and negative escape and reentry

times for the P/S-ray. We let φP/S(t, γ
P/S
η (t)) be identically one on [t

P/S
e− , t

P/S
e+ ] and supported in (t

P/S
r− , t

P/S
r+ ).
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One then modifies φP/S on a small neighborhood of R × T ∗∂Ω±,j (the glancing P/S rays) to ensure it is
smooth.

We then recall the construction of the Cauchy propagators E±j (with ± corresponding to “forward” and
“backward” propagators) described in detail in [15]:

(E±j h)l =
∑

P/S

3∑

m=1

(2π)−3

[∫
e
iϕ±
P/SelmP/S,±ĥm,±(ξ)dξ

]
(4.1)

with phase functions ϕP/S(t, x, ξ) and vector-valued amplitudes elmP/S,±(t, x, ξ).

Finally, let JC→S be the restriction of φ ◦ E±j defined by

φ ◦ E±j :=
∑

P/S

3∑

m=1

(2π)−3φP/S(t, x,Dx)

[∫
e
iϕ±
P/SelmP/S,±ĥm,±(ξ)dξ

]

to R× Ω±,j ; this is the desired reflectionless propagator.
We also require a variant, denoted JC→S+, of JC→S in which waves travel only forward in time. For

this, replace φP/S with some φ
P/S
+ supported in (t

P/S
e− , t

P/S
r+ ) and equal to 1 on [0, te+]. Restricting JC→S+

to the boundary, we obtain the Cauchy-to-boundary map JC→∂ = JC→S+|R×∂Z. One may also construct
the boundary-to-solution map, denoted J∂→S, analogous to the above using the construction in [14] for the
smooth Lamé parameter case.

As in [7, Appendix], J∂→S, JC→S+ ∈ I−1/4(Z → R × Z), and JC→∂ ∈ I0(Z → R × ∂Z). Also,
J∂→S, JC→S+ are parametrices for the elastic equation when applied to u such that WF(u) lies in an open
set V ⊂ T ∗Z whose P/S-bicharacteristics are sufficiently far from glancing. The near-glancing covector set,
denoted W, is T ∗Z \ V .

4.2 P/S-Mode projectors

Since we are in the elastic setting, it will be useful to define microlocal projections ΠP/S that microlocally
project an elastic wavefield u to the respective P and S characteristic sets. Locally and for small times, from
(4.1), u has a representation

u =
∑

P/S

3∑

m=1

(2π)−3

[∫
eiϕP/SelmP/S ĥm(ξ)dξ

]

and so we define

ΠPu =
3∑

m=1

(2π)−3

∫
eiϕP elmP ĥm(ξ)dξ.

ΠS is defined analogously. These definitions can be made global, although it is technically not necessary in
our case since our analysis is done near the characteristic set of the elastic operator.

4.3 Boundary propagators

Outgoing solutions from boundary data f ∈ D′(R×Z) may be obtained by microlocally converting boundary
data to Cauchy data, then applying JC→S as explained in [7]. We give a cursory overview of the construction,
which translates easily to the elastic setting. The boundary-to-Cauchy conversion can be achieved by apply-
ing a microlocal inverse of JC→∂ , conjugated by the time-reflecting map Ss : t→ s− t for an appropriate s.
Let x = (x′, x3) be boundary normal coordinates near ∂Ω±,j . Near any covector β = (t, x′; τ, ξ′) ∈ T ∗∂Ω±,j
in the hyperbolic region |τ | > c

P/S
j |ξ′|, there exists a unique P/S-bicharacteristic γ passing through β and
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lying inside Ω±,j in some time interval [s, t), s < t.2 Then J∂→S may be defined by SsJC→SJ
−1
C→∂Ss mi-

crolocally near β. The inverse can be seen to exist microlocally away from glancing by “diagonalizing” the
Cauchy propagators as done in [23] and applying the same construction of the scalar wave setting in [7].

On the elliptic region |τ | < c
P/S
j |ξ′| define J∂→S as a parametrix for the elliptic boundary problem. This

may be constructed even in the systems setting as shown in [24]. Applying a microlocal partition of unity,

we obtain a global definition of J∂→S away from a neighborhood of both P/S glancing regions |τ | = c
P/S
j |ξ′|.

It can be proven that J∂→S ∈ I−1/4(R×∂Z→ R×Z). Its restriction to the boundary r∂ ◦J∂→S consists of a
pseudodifferential operator equal to the identity onW and an elliptic graph FIO J∂→∂ ∈ I0(R×∂Z→ R×∂Z)
describing waves traveling from one boundary to another.

4.4 Reflection and transmission

It is well known that trasmitted and reflected waves arise from requiring a weak solution and its normal
traction to be C0 at interfaces. Given incoming boundary data f ∈ E ′(R × ∂Z;C3) (an image of JC→∂ or
J∂→∂) microsupported near β, we seek data fR, fT satisfying the interface constraints

f + fR ≡ ιfT ,
(λindiv(vJ∂→Svf + J∂→SfR))Id + 2µin∇s(vJ∂→Svf + J∂→SfR)) · η|R×∂Z

≡ ι(λoutdiv(J∂→SfT )Id+ 2µout∇sJ∂→SfT ) · η|R×∂Z
Here, v is time-reversal, so vJ∂→Sv is the outgoing solution that generated f . The map ι : ∂Z→ ∂Z reverses
the copies of each boundary component within ∂Z, and η denotes the unit normal vector to the interface
in question. The subscripts in and out merely denote which side of the interface one is considering in the
Lamé parameters.

The second equation above simplifies to a pseudodifferential equation

N1f +NRfR ≡ NT fT
with operators N1, NR, NT ∈ Ψ1(R×∂Z;C3) that may be explicitly computed. The system may be microlo-
cally inverted to recover fR = MRf, fT = MT f in terms of pseudodifferential reflection and transmission
operators MR, ιMT ∈ Ψ0(R× ∂Z;C3). In order to compute these operators, we will use the traction formu-
lation of the interface conditions, which will allow us to use symplectic properties in order to compute and
study MR and MT .

Calculating reflection and transmission PsiDO’s

Here, we present the traction representation of the elastic PDE in order to simplify many of the computations,
by using the symplectic properties to find inverses. A more general detailed construction may be found in
[23, section 3].

Let us do our analysis locally near an interface Γ with boundary normal coordinates such that Γ is given
by x3 = 0. If we use the traction formulation, and the unit normal ν = [0 0 1]>, the traction components
are

tj = C∇su · ej ,
where ej are the Euclidean basis vectors, C is the elastic tensor, and the PDE reads

∂2
t u = div




t1

t2

t2


 = ∂x1

t1 + ∂x2
t2 + ∂x3

t3.

Since we are only interested in a principal symbol calculation (this is enough since obtaining the lower
order terms is quite standard in the literature) we sometimes replace tangential derivatives, ∂t, ∂x1

, ∂x2
by

−iτ,−iξ1,−iξ2 respectively to ease the notation. Then the PDE can be put into the form

∂x3

[
u
t3

]
= A(x,D′x, Dt)

[
u
t3

]
=

[
a11 a12

a21 aT11

] [
u
t3

]
. (4.2)

2That is, its projection to T ∗∂Ω±,j when it hits ∂T ∗Ω±,j is β, but we abuse notation.
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Here, we have principal symbols

a11 =
1

i




0 0 ξ1
0 0 ξ2
αξ1 αξ2 0


 , a12 =



µ−1 0 0

0 µ−1 0
0 0 (λ+ 2µ)−1


 ,

a21 =



β1ξ

2
1 + µξ2

2 − τ2 ξ1ξ2β2 0
ξ1ξ2β2 µξ2

1 + β1ξ
2
2 − τ2 0

0 0 −τ2




where

α =
λ

λ+ 2µ
, β1 = 4µ

λ+ µ

λ+ 2µ
, β2 = µ

3λ+ 2µ

λ+ 2µ
.

If u(j), j = 1, 2 represents u on each side of the interface, then the interface conditions become simply

u(1) = u(2) on Γ

t
(1)
3 = t

(2)
3 on Γ.

Let us denote U = [u t3]>. As shown in [23, section 3][11], there is an elliptic matrix pseudodifferential
operator in Ψ0 denoted S(x,D′, Dt) with microlocal inverse S− that diagonalizes A:

A(x,D′, Dt) = S(x,D′, Dt)diag(C+
p , C

+
s , C

−
p , C

−
s )S−(x,D′, Dt)

where C±p are scalar operators in Ψ1 corresponding to the incoming and outgoing P waves, and C±s is a
diagonal 2× 2 pseudodifferential operator corresponding to the incoming and outgoing s waves.

We can denote the columns of S by SP/S,± in correspondence with the diagonal matrix, so that the modes
are exactly Vµ := (S−µaUa)6

a=1 where S−µa is a parametrix for Sµa, µ will correspond to a (P/S,±) pair and the

subscript µa refers to a matrix entry. Denote by S(1), S(2) the matrix S on either side of the interface. We
will refer to the plus (+) as the in-modes, or modes for which the amplitude is known, that is, the incoming
hyperbolic and the growing elliptic modes, which are the first 3 columns of S. The minus (−) will then be
the outgoing modes and are the last 3 columns. This indexing of (±) here is unrelated to the ± indexing we
used earlier to describe the opposite sides of an interface.

With this notation, the interface conditions read

S(1)V (1) = S(2)V (2) on Γ.

The first three components of V (1), say v
(1)
I , represent the incident P/S-modes, and the interface conditions

become satisfied by choosing

V (1) =

[
v

(1)
I

R(x′, D′, Dt)v
(1)
I

]
, V (2) =

[
T (x′, D′, Dt)v

(1)
I

0

]

for some “reflection” and “transmission” operators R, T ∈ Ψ0(Rt × Γ;C3).
Thus, we obtain [

v
(1)
I

Rv
(1)
I

]
= (S(1))−1S(2)

[
Tv

(1)
I

0

]
=: Q

[
Tv

(1)
I

0

]
.

So writing Q =

[
Q11 Q12

Q21 Q22

]
we obtain the two equations

I = Q11T and R = Q21T

If we can show that Q11 is microlocally invertible, we would obtain T = Q−1
11 and R = Q21Q

−1
11 . We will show

in Appendix A that R and T (and hence MR,MT introduced before) are actually elliptic except on the joint
P and S elliptic set on both sides of the interface. Note that MR,MT only differ by R, T by applications of
elliptic operators, so ellipticity is not affected. Specifically, one has MR = S(1)R(S(1))−1 microlocally and
likewise for MT using S(2).
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Significance and list of operators

Since we have so many symbols and operators, let us summarize them for quick reference.

Operator Name Summary

JC→S
Cauchy to solution
operator

Propagator mapping Cauchy data to the corresponding solution of the
homogeneous elastic wave equation.

JC→S+
forward Cauchy to
solution operator

Similar to JC→S, but only propagates waves forward in time.

JC→∂
Cauchy to boundary
map

Restriction of JC→S to the boundary, which includes each side of an
interface.

JC→∂+
forward Cauchy to
boundary map

As JC→∂ , but with only waves that travel forward in time.

J∂→S
boundary to solution
map

Maps boundary data (associated with specific side of an interface) to a
wave solution in the interior, traveling forward in time.

ΠP/S P/S projectors
Microlocal projectors of an elastic wavefield u onto the P/S-characteristic
set.

J∂→∂
boundary to boundary
map

Restriction of J∂→S to the boundary (which includes interfaces). Hence, it
propagates boundary data to the next boundary that the waves intersect.

MR/T
reflection and
transmission operators

Zeroth-order PsiDO’s at the boundary that act as the
reflection/transmission coefficients of the scattered wave from an incident
field at an interface.

The construction of the parametrix is now taken directly from [7, Appendix].

4.5 Parametrix

First it will be convenient to define M = MR + ιMT . With all the necessary components defined, we
now set

F̃ = JC→S + J∂→S

∞∑

k=0

(J∂→∂M)kJC→∂ (4.3)

R̃2T = r2T ◦ F̃ , (4.4)

where r2T is restriction to t = 2T . Again omitting the proof, it can be shown that F̃ ≡ F and R̃2T ≡ R2T

away from glancing rays. In the elastic case it means away from both P and S glancing rays; that is, for
initial data h0 such that every broken bicharacteristic originating in WF(h0) is sufficiently far from glancing.
Recalling that M = MR +MT , we may write R̃2T as a sum of graph FIO indexed by sequences of reflections
and transmissions:

R̃2T =
∑

s∈{R,T}k
R̃s, R̃() = r2TJC→S (4.5)

R̃(s1,...,sk) = r2TJ∂→SMskJ∂→∂ · · ·Ms2J∂→∂Ms1JC→∂ . (4.6)

The solution operator F̃ likewise decomposes into analogous components F̃a.
Now that we have a parametrix, we will use it in the next section to obtain certain “subsurface” travel

time and lens relations.
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5 Proof of Theorem 3.2

In this section, we will prove our main result on the uniqueness of elastic wave speeds under the foliation
condition.

A key ingredient in the proof of uniqueness will be the following theorem proved by Stefanov, Uhlmann,
and Vasy in [26].

Theorem 5.1. Choose a fixed metric g0 on Ω. Let n = dim(Ω) ≥ 3; let c, c̃ > 0 be smooth, and suppose ∂Ω
is convex with respect to both g = c−2g0 and g̃ = c̃−2g0 near a fixed p ∈ ∂Ω. If dg(p1, p2) = dg̃(p1, p2) for
p1, p2 on ∂Ω near p, then c = c̃ in Ω near p.

We write down a trivial corollary due to continuity of the distance function.

Corollary 5.2. Consider the same setup as in the above theorem. If dg(p1, p2) = dg̃(p1, p2) for a dense set
of points p1, p2 on some neighborhood of P in ∂Ω, then c = c̃ in Ω near P .

We need this since due to the multiple scattering in our setting, we will only be able to recover boundary
travel times on a dense set of points and not a full neighborhood.

Summary of the proof of Theorem 3.2

The proof of the main theorem is technical but the main argument is quite intuitive and geometric. Thus, we
provide a summary of the proof that emphasizes the key ideas. Inductively, suppose that we have recovered
the Lamé parameters above Στ , τ > 0, that is, inside Ωcτ , and let z ∈ Στ . Say we want to use Theorem 5.1
to recover cP near z (a similar argument works for cS). Viewing Στ as the boundary of the domain Ωτ , we
would need to recover the local boundary distance function dP |Στ×Στ near z to apply the above theorem.
Let x ∈ ΣP near z where ΣP is the P -characteristic set defined earlier, (x, ξ) ∈ S∗ΣτΩτ pointing downward,
and lP,τ (x, ξ) the corresponding boundary travel time that we would like to recover.

Let γ be a purely transmitted P -bicharacteristic, entering Ω at some time t < 0 and passing through
(x, ξ) at time t = 0. For convenience, let us view γ as lying in T ∗(R3 × Rt). With appropriate Cauchy data
h0 supported outside Ω, we can generate a microlocal P -wave whose wavefront set is initially along γ. Let
us denote this wave solution by uh0 . By propagation of singularities, uh0 will have each point along γ in
its wavefront set and two points in particular: γ(0), which projects to (x, ξ) ∈ T ∗R3, and γ(lP,τ (x, ξ)). The
problem is that due to the interface and the multiple scattering of P/S-waves in the interior that will also lie
in WF(uh0

), we cannot uniquely recover γ(lP (x, ξ)) in this wavefront set. Hence, in addition to h0, we must
microlocally construct additional Cauchy data that eliminates this type of multiple scattering. The h0 we
construct will in fact be slightly more complicated since we do not want the mode converted transmissions
resulting from the initial P -wave (see Figures 2 and 3). After this additional “tail” is constructed, we will
be able to uniquely identify γ(lP,τ (x, ξ)) in the wavefront set.

We now turn to the multiple lemmas and propositions involved in proving the main theorem.

Let S ⊂ T ∗Ω be the set of ξ such that every bad bicharacteristic through ξ is (+)-escapable (all definitions
are in Appendix C). The set S will be dense within an appropriate set, allowing us to work wholly inside
S (see Lemma 5.9). We will state a series of propositions and lemmas to prove the main theorem, some of
which we prove in Appendix C. We first state the following crucial proposition that is at the heart of proving
our main theorem and whose proof requires the microlocal analysis of scattering control.

Proposition 5.3. Let (x, ξ) ∈ S, τ = ρ(x), and let v be a distribution whose wavefront set is exactly
(x,R+ξ). Then there exists Cauchy data h∞ supported outside Ω and a large enough time T > 0 such that
WF(RTh∞) = WF(v) and WF(RT+sh∞) = WF(Rsv) inside Ωτ for all s ≥ 0. Moreover, we may arrange
that WF(uh∞) ⊂ ΣP within Ωτ for times t close enough to T . The same may be done with WF(uh∞) ⊂ ΣS
instead.

Remark 5.4. The time T is very concrete. It is essentially a scalar multiple of the S-distance from x to ∂Θ.
The reason is that we need access to all S wave constituents starting near x that produce branches that
eventually return to the surface ∂Θ. The details will be made clear in the proof.
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∂Ω

∂Ωτ
Ωτ

λ, µ known

λ, µ unknown

Γ





h0

ξ

︷ ︸︸ ︷

P PS S

Ω

lP (x, ξ)

x

Figure 2: With knowledge of the elastic parameters above x, it is possible to construct initial data h0 that
produces a single P or S ray at almost every covector (x, ξ), here a P ray. However, due to the presence of
multiple reflected rays, it is not immediately possible to recover the length lP,τ (x, ξ).

∂Ω

∂Ωτ
Ωτ

λ, µ known

λ, µ unknown

Γ





h0

ξ

︷ ︸︸ ︷

h∞︷ ︸︸ ︷

lP (x, ξ)

︷ ︸︸ ︷
Ktail

x

Figure 3: By appropriately augmenting the initial data h0 with extra initial data Ktail, producing total
initial data h∞, multiple reflections can be suppressed, and lP,τ (x, ξ) can be recovered from examination of
the solution’s wavefront set.
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Remark 5.5. The second part of the theorem means that not only can we generate Cauchy data to produce
a certain singularity at a given depth, but we may even construct it to be a P or an S wave. This is essential
for the uniqueness result since we must be able to recover subsurface lens relations for the P and S speeds
separately.

(Proof sketch) Let γ be a purely transmitted P -bicharacteristic starting at ∂Θ (when projected to the
base space) for t = 0 and γ(T ) = (x, ξ). Let h0 be any Cauchy data supported in Θ \ Ω with wavefront set
containing R+γ(0) so that inside Θ̄T , WF(RTh0) = WF(v) by finite speed of propagation (see Figure 2).
The key now is to construct a tail that eliminates the multiple scattering and justify that such an h0 above
can be constructed. See Appendix C for the remainder of the proof.

The next two lemmas are the main technical complications in the elastic setting. When we later show
uniqueness via layer stripping, we will be able to layer strip past an interface if the wavespeeds of both
Lamé systems infinitesimally match up just past the interface, even when we do not have direct access past
such an interface. To do this, we rely on obtaining the principal symbols of reflection coefficients to recover
the infinitesimal jumps in wave speeds past the interfaces. In terms of notation, any symbol with a tilde
above it represents the corresponding symbol for the second set of Lamé parameters, and the superscript
prin denotes the principal symbol of a pseudodifferential operator.

Lemma 5.6. Suppose that Στ ⊂ Γ and cP/S = c̃P/S outside Ωτ . Assume F = F̃ . Then

Mprin
R = M̃prin

R on T ∗Σ−τ .

Remark 5.7. The proof actually shows that one may recover the full symbol, but it is unnecessary in our
analysis.

Proof. This is essentially an inductive argument, whereby we recover the coefficients at each successive
interface using appropriate sources. Let Στ1 denote the first interface, and suppose cP/S = c̃P/S outside Ωτ1 .

Since ρ = 1, both elastic operators Q, Q̃ (see §2.2 for notation) agree on Ω?
τ1 . Combining this with F = F̃ ,

propagation of singularities, and the convex foliation assumption to ensure no trapped rays, then uh ≡ ũh in
Ω?τ1 for h ∈ C.3 By taking a limit to Σ−τ1 , we get MRJC→∂h = M̃RJC→∂h. By considering h to be a P wave
and then picking h to be an S wave, we obtain the desired claim since we only need MR in the hyperbolic
regions where JC→∂ is elliptic and so we may generate microlocal P and S waves at the first interface. The
argument is a direct analogue to the one in [14, section 2.3].

To proceed inductively, suppose MR is recovered for the first k interfaces Στ1 , . . . ,Στk−1
. Let Στk be

the kth interface and let (y, η) ∈ ∂+S∗Ωτk be a fixed covector. We assume cP/S = c̃P/S in Ω?τk and so we
may assume the transmission coefficients are recovered for these interfaces as well. We let (x0, ξ0) ∈ T ∗Θ?

lie on the same P -transmitted ray as (y, η) which exists due to the convex foliation. We will repeat this
construction for the S-transmitted ray too. Let h be Cauchy data supported in Θ∗ whose wavefront set in
S∗R3 is exactly (x0, ξ0). The constituent of Fh|∂Θ associated to the first primary reflection from Στk is

MR(J∂→∂MT )k−1J∂→∂JC→∂h.

Due to the convex foliation assumption, our assumptions on the wave speeds, and that Fh = F̃h, we again
have uh ≡ uh̃ on Ω?τ by propagation of singularities. Hence, the associated constituent for F̃h must be equal
to this one at Στ since we are not looking at what happens inside Ωτ , as we are only considering a reflection.
Since Mprin

T are the same for both operators on Στj , j = 1, . . . , k− 1, by our assumption on the wavespeeds,
then the same argument as before where we let h generate s waves associated to a purely transmitted s-ray
through (y, η) shows Mprin

R (y, η′, τ) = M̃prin
R (y, η′, τ) by applying the inverse of Mprin

T and of Jprin
∂→∂ . Here,

(y, η′) is the projection of (y, η) to T ∗Στk . We are using the fact that, since the Lamé parameters match on
Ω?τk , the operators J∂→∂ are equal as well for operators in this region. Also, these operators are elliptic near
the hyperbolic point sets we are considering. �

3In fact, we can use unique continuation to obtain the same result since we are allowed to measure outside Θ for an unlimited
amount of time. Nevertheless, this is overkill for what we need here, which is a microlocal equivalence.
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Lemma 5.8. Suppose that Στ ⊂ Γ, cP/S = c̃P/S outside Ωτ , and denote Σ±τ for the two sides of Στ . Suppose

that Mprin
R = M̃prin

R on T ∗(Rt × Σ−τ ) for at least two linearly independent covectors. Then cP/S = c̃P/S on
Σ+
τ .

The above lemma is essentially saying that the principal symbols of reflection coefficients are enough to
recover the jumps in both wave speeds at an interface. This should not come as a surprise since the reflection
coefficient would vanish identically if the speeds were actually continuous across the interface. Thus, two
waves with identical reflections, must also have transmissions that correspond to the same covectors. Since
the proof of the lemma is quite technical, we save it for the appendix (see Appendix A).

Both of these crucial lemmas are basically all that is necessary to recover subsurface travel times and lens
relations for a particular covector. We will show the following: Let Γ ⊂ Στ be relatively open and let T > 0.
Then the lens relations (LP,τ , lP,τ ) and (LS,τ , lS,τ ) are determined uniquely on the open sets of (x, v) with
x ∈ Γ so that the unit speed geodesic issued from (x, v) at time 0 in the metric c−2

P dx2, respectively c−2
S dx2,

is transversal at x and hits Στ again, transversely, at a point in Γ at a time not exceeding T and without
hitting any other interfaces. Since we assume that the interfaces are not dense, one may always ensure with
T or Γ small enough that such rays do not hit another interface before returning to Στ .

Also, to recover the lens relation for a particular covector, we will need to use the microlocal scattering
control in the form of Proposition 5.3. This requires covectors belonging to S and we must ensure there are
enough of them. The following lemma uses convex foliation to ensure that we have enough of them.

Lemma 5.9. Let x ∈ Στ for some τ . Then there is a neighborhood Bx ⊂ Στ such that Bx ∩ ∂+S∗Ωτ ∩ S is
dense in Bx ∩ ∂+S∗Ωτ .

Proof. The proof follows from the convex foliation condition and repeated application of Lemma C.7 and its
proof.

Take a particular covector (x, ν) ∈ ∂+S∗Ωτ pointing upwards and let γP/S,νx be the associated smooth
bicharacteristic starting at (x, ν). Considering γP,νx first, it will either glance or hit the next interface Στ1 at
time t1, say, transversely. If the latter, the convex foliation guarantees that both the P and S transmitted
branches continuing γP,νx will also be transverse to Στ1 and move “upward” (decreasing ρ). Also, there will
be exactly two opposite branches at γP,νx(t1) that are transverse to Στ1 and move upward in backward time.
If it glances, then by Lemma C.5, an arbitrary perturbation of ν avoids this. We can apply this analysis to
each successive P branch discussed and iterate; since the time Ts in the definition of escapability is finite,
there will be only finitely many branchings and so there will be a dense set of ν ∈ ∂+S∗xΩτ such that all the
P -branches of γP,νx escape. The continued S branches will be analyzed next.

Let us now consider γS,νx and use the same notation t1 and Στ1 as in the previous case. The analysis
for γS,νx will apply just as well for the s branches discussed in the previous paragraph. If γS,νx(t1) does not
glance, the convex foliation guarantees an S transmitted branch that continues γP,νx , is transverse to Στ1 ,
and moves “upward” (decreasing ρ). The issue is that the transmitted P branch might be glancing where
we have hit a critical angle. However, this glancing set is a dimension lower than the hyperbolic points and
so we may perturb this P -branch to be transversal to Στ1 and move upward. We may then continue this
branch backward with an S ray that starts on ∂+S∗Ωτ , is a slight perturbation of γS,νx , and has a different
base point.

Hence, we now have both a transmitted P and S branch moving upwards by convex foliation, and an
opposite P and S branch moving upwards backward in time. We then apply the analysis in the last paragraph
and iterate the above for each successive interface. Hence, either (x, ν) or an open set of perturbations of it
will be escapable.

Using Lemma C.5, the above analysis shows there is a neighborhood Bx ⊂ Στ of x such that a dense
set of ∂+S∗BxΩτ are escapable. Indeed, any covector that is not escapable can be perturbed by the above
procedure.

In the following series of proofs, we rely on the previous lemma to keep using Proposition 5.3 without
explicitly saying so.

Lemma 5.10. Let (x, ξ) ∈ ∂T ∗Ω ∩ S∗+Ω as described above and assume the convex foliation condition. If

F = F̃ and λ = λ̃, µ = µ̃ outside Ωτ , then cP/S and c̃P/S have identical subsurface lens relations w.r.t. Στ
in a neighborhood of (x, ξ) within T ∗ΣτΩ.
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Proof. Without loss of generality, under the convex foliation condition we may assume that x is a regular
point since otherwise, one may use a continuity/density argument described in [6]. We will divide the proof
into two cases, which have slightly different proofs.

The point x is not on an interface: We let v ∈ E ′(Ω) be such that WF(v) = (x,Rξ) and let h be as in
Proposition 5.3 supported outside Ω. We let u = F (R−ah) and ũ = F̃ (R−ah) with an appropriately chosen
a based on the support of h (see [6] for details). Now, u = ũ outside Ω and by unique continuation, u = ũ
outside Ωτ since the Lamé parameters coincide there. In fact all we need is that u ≡ ũ in Ω?τ which follows
by microlocal analysis. Indeed, any ray in this set has a branch that escapes Ω by the foliation condition.
Thus, by propagation of singularities, u = ũ inside Ω?τ modulo smoothing.

Let T denote the time the transmitted geodesic from ∂Ω reaches ξ. By Proposition 5.3, we can ensure
WF(u) restricted to Rt × Ωτ is generated purely from the P -ray associated to ξ. We only consider those ξ
whose associated P -geodesic does not encounter any interface before reaching ∂Ωτ . This is always possible
by the convex foliation condition and taking ξ that are near tangent to ∂Ωτ . Since the Lamé parameters
are smooth near x, then for a ξ nearly tangential to ∂Ωτ , the first singularity of u in T ∗+Στ occurs at time
T + lP,τ (x, ξ) and covector LP,τ (x, ξ). This must be true for ũ as well since u = ũ outside Ωτ . Hence,

lP,τ (x, ξ) = l̃P,τ (x, ξ) and LP,τ (x, ξ) = L̃P,τ (x, ξ). We then repeat the above argument using Proposition 5.3
to generate a pure s-wave, singular precisely at (x, ξ) when restricted to Ωτ at the appropriate time. This
works since we can always restrict to rays which do not hit any interfaces before returning to Στ by the
convex foliation.

The point x is at an interface: First, without loss of generality, we may assume that Στ actually
coincides with the interface near x. Indeed, any point z ∈ Στ near x that is not at an interface implies that
the Lamé parameters are smooth there. Hence we may apply the above result for the smooth case combined
with Theorem 5.1 to show that the wavespeeds coincide near such points. Progressing in this fashion shows
that both wave speeds in fact coincide near x up to the interface that contains x, and so the wavefields
coincide there as well. Hence, we may assume that Στ is the interface.

Using Lemma 5.8, we conclude that if u is a pure P -wave for some time in Ωτ , then ũ is as well, both
associated to (x, ξ), even though inside Ωτ they could theoretically be quite different.

We then examine the construction of h in Proposition 5.3 more closely.4 The P/S-directly transmitted
component of RTh is DT+

k,P/Sh from definition C.4. We make the decomposition h = h0 + Ktail. We take

any wavefield v, supported in Ωτ initially and whose wavefront set is exactly γPξx and inside ΣP , where γPξx
is a P -bicharacteristic whose initial covector is (x, ξ) ∈ T ∗Ωτ . With ρΓ denoting restriction to Γ, we may
view ρΣτ v as boundary data. The construction of h0 and Ktail in Proposition 5.3 ensures

RT+th|Ωτ ≡ DT+
k,ph0|Ωτ ≡ v|Ωτ .

That is, the directly transmitted constituent of h inside Ωτ (the “underside” of Στ ) is precisely a P -wave
associated to (x, ξ). The point is that the same initial data h will also produce a pure P -wave with respect
to c̃P on the underside of Στ by Lemma 5.8 since that lemma implies that M̃T ≡MT at T ∗Στ near x.

Thus, since the transmission matrices of u and ũ coincide microlocally near (x, ξ), then

ρΣτ v ≡ ρΣτu|Ωτ ≡ DT+
k,Ph = D̃T

+

k,Ph ≡ ρΣτ ũ|Ωτ .

We note that inside Ωτ , J̃∂→SρΣτ v is indeed a pure P -wave associated to (x, ξ), so J̃∂→SρΣτ ũ will be as
well with speed c̃P . By our assumptions, WF(u|Σ−τ ) = WF(ũ|Σ−τ ). By Proposition 5.3, if we consider the
t-component of this wavefront set, then the first t past T in this wavefront set will be precisely lP,τ (x, ξ) by
our construction. By equality of the wavefields and since ũ was also a pure P -wave at time T in Ωτ , then
lP,τ (x, ξ) = l̃P,τ (x, ξ). A similar argument lets us conclude lS,τ (x, ξ) = l̃S,τ (x, ξ) as well. �

We can combine the above lemma with Theorem 5.1 to obtain the key corollary. First, let dτP/S denote

the P/S-distance function restricted to Ωτ × Ωτ .

4The following argument is necessary to ensure that we match a P travel time associated to Q with the corresponding one
associated to Q̃ rather than an s travel time associated to Q̃.
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Corollary 5.11. With the assumptions in the above lemma, dτP/S
∣∣
Στ×Στ

= d̃τP/S
∣∣
Στ×Στ

in some neighborhood
of x, and cP/S = c̃P/S in some neighborhood of x.

Theorem 5.12. Under the convex foliation condition, if F = F̃ , then cP/S = c̃P/S.

Proof. The proof is by contradiction. Suppose cP 6= c̃P or cS 6= c̃S , and let f = |cP − c̃P |2 + |cS − c̃S |2. Now
consider S := Ωr ∩ suppf , and take τ = minS ρ: so cP = c̃P and cS = c̃S above Ωτ , but by compactness
there is a point x ∈ Στ ∩ S. The condition that ρ−1(T ) has measure zero rules out the trivial case τ = τ0.

Let us now consider a small neighborhood of x, denoted Bx, and we consider the Στ -boundary distance
function dτP/S restricted to such neighborhoods. Since the interfaces are not dense, and we assume convex
foliation, we may choose Bx small enough so that all P and S rays corresponding to rays staying completely
inside Bx do not reach an interface; i.e. even the mode converted rays do not reach an interface. This insure
that a P -wave that hits Bx, transmits a P and S wave, the P -wave returns to Στ first before any other ray.

We now consider two cases, depending on whether x is on an interface of cP/S or not.

Smooth case: x /∈ Γ. As in [26] we use the fact that cP/S and c̃P/S are equal above Ωτ to show they locally
have the same lens relation on Στ . We can then apply Corollary 5.11 to show that in fact cP/S = c̃P/S near
x, contradicting x ∈ suppf . The additional wrinkle is that we must ensure that c̃P/S is also smooth near x.

Suppose on the contrary that c̃P/S were not smooth at x. Since cP/S = c̃P/S on Ω?τ , if x ∈ Γ̃, then Γ̃
must be tangent to the leaf Στ . Now let γ be any bicharacteristic through a covector (x, ξ) not tangential
to the leaf Στ , and choose initial data h by Proposition 5.3 satisfying WF(RTh) = (x,R+ξ). Then ũh(T ) is
singular on the reflected bicharacteristic to γ at x. But this is impossible, since uh(T ) = ũh(T ) on Ω?τ , and
the reflected bicharacteristic is contained in Ω?

τ for t slightly greater than T , since Γ̃ is tangent to Στ .
From the argument above, we conclude cP/S , c̃P/S are smooth in a sufficiently small ε-ball Bε(x). Next,

there exists a smaller neighborhood Bε′(x) ⊂ Bε(x) in which every two points have a minimal-length path
between them that is contained in Bε(x), and in particular does not intersect Γ ∪ Γ̄. This is true by
the boundedness of cP/S and c̃P/S . Namely, picking global bounds 0 < m < cP/S , c̃P/S < M and taking
ε′ = εm/(m+ 2M + 1), one can verify dP/S(y, ∂Bε(x)) > 2diamP Bε′(x).

Finally, we apply Lemma 5.10, concluding that cP/S and c̃P/S have identical lens relations for covectors
(x, ξ) ∈ ∂T ∗Ωτ ∩ T ∗−Ω whose bicharacteristics do not intersect any interfaces before returning to Στ . Note
that the lemma is applied multiple times to recover the lens relation for each wave speed. This is true, in
particular, for the geodesics connecting points in U = Bε′(x) ∩Στ . Hence, dτP/S = d̃τP/S on U × U . Applying

local boundary rigidity (Theorem 5.1 and its corollary), we conclude cP = c̃P and cS = c̃S on some neigh-
borhood of x, contradicting x ∈ ess supp f .

Interface case: x ∈ Γ. This follows from the above case using Lemma 5.8 and Lemma 5.10. Indeed, it is
those two lemmas that allow us to recover the lens relation on the underside of the interface Στ for both cP
and cS . Similarly to the smooth case, the ball Bε(x) is constructed to be disjoint from any other interface
except for Στ so that rays between points in Στ , starting on the underside of Στ in Bε(x) stay completely
in Bε(x) before returning to Στ .

6 Discussion

In the proof of the theorem, we needed to assume the density ρ = 1 in order that we could recover all Lamé
parameters during the layer stripping, giving us access to the full wave solution in the known layers. In
[16], Rachele shows how one may use “lower order polarization” data to recover the density ρ as well under
certain conditions. However, this was in the smooth setting and the result was global since it utilized a global
inversion result of an X-ray transform of tensor fields. Since that paper, Stefanov, Uhlmann, and Vasy in
[22] have shown that one may also obtain local inversion results of the X-ray transform on tensors. Hence,
it may be possible to combine Rachele’s argument to obtain local, lower order polarization data containing
information on the density from the outside measurement operator combined with the result in [22] on the
local ray transform on tensors to recover the density ρ during our layer stripping procedure. We will pursue
this strategy in another work.
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A Computation of reflection and transmission PsiDO’s

Let us recall the traction formulation of the elastic equation, and for simplicity, we assume a flat interface
{x3 = 0}. The non-flat case will not require much more work, and we provide details on this later.

Set the unit normal to interface Γi by ν =




0
0
1


. Then the traction components are

tj = C∇su · ej

and the PDE reads

∂2
t u = div




t1

t2

t2


 = ∂x1

t1 + ∂x2
t2 + ∂x3

t3

⇔ ∂x3
t3 = −iξ1t1 − iξ2t2 − τ2u

in the fourier regime. Then the PDE can be put into the form

∂x3

[
u
t3

]
= A(t, x′, Dt, D

′
x)

[
u
t3

]
=

[
a11 a12

a21 aT11

] [
u
t3

]
. (A.1)

Here, we have principal symbols

a11 =
1

i




0 0 ξ1
0 0 ξ2
αξ1 αξ2 0


 a12 =



µ−1 0 0

0 µ−1 0
0 0 (λ+ 2µ)−1




a21 =



β1ξ

2
1 + µξ2

2 − τ2 ξ1ξ2β2 0
ξ1ξ2β2 µξ2

1 + β1ξ
2
2 − τ2 0

0 0 −τ2


 a22 = aT11

where

α =
λ

λ+ 2µ
β1 = 4µ

λ+ µ

λ+ 2µ
β2 = µ

3λ+ 2µ

λ+ 2µ
.

Also, the eigenvectors of A are easy to find. Indeed one may define a 3 × 3 matrix t̃3 = t̃3(ξ3) so that

t3 = t̃3u.

Indeed, one merely takes

t̃3 = i



µξ3 0 µξ1
0 µξ3 µξ2
λξ1 λξ2 (λ+ 2µ)ξ3


 .

Indeed, let v be an eigenvector of the principal symbol p so that

pv = (τ2 − c2P/S |ξ|
2)v

⇔ (τ2Id + iξ1t̃1 + iξ2t̃2 + iξ3t̃3)v = (τ2 − c2P/S |ξ|
2)v

⇔ (τ2Id + iξ1t̃1 + iξ2t̃2 ± iξ3,P/S t̃3)v = 0 if we set ξ3 = ±ξ3,P/S
±iξ3,P/S t̃3v = −(τ2Id + iξ1t̃1 + iξ2t̃2)v = a21v + a22t̃3(v).

Thus,

[
v

t̃3(v)

]
is an eigenvector of A with eigenvalues ±iξ3,P/S .

It will be useful to denote these normal momenta components by

aP/S =
√
|ξ′|2 − c−2

P/Sτ
2
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where we later use a superscript to distinguish which side of the interface we are considering. Hence, we
may form the 6× 6 matrix of eigenvectors

S =



| | | | | |

sP,+ ssH,+ ssV,+ sP,− ssH,− ssV,−
| | | | | |




and corresponding eigenvalue diagonal matrix Λ = diag(iξ3,P , iξ3,S , iξ3,S ,−iξ3,P ,−iξ3,S ,−iξ3,S). By con-
struction, one has

AS = SΛ.

Then form

K =

[
03 I3
I3 03

]
.

Then we find KA = (KA)T by the symmetries of A. Hence

STKA = ST (KA)T = (KAS)T = (KSΛ)T = ΛSTK

⇒ STKA = ΛSTK

⇒ STKSΛ = STKAS = ΛSTKS

So STKS commutes with a invertible diagonal matrix and hence must be diagonal. The first 3 columns will
be a positive eigenvalue while the last 3 will be negative. Hence, if we rescale the columns of S and define

J =

[
I3 03

03 −I3

]
then JSTKS will be the identity. Hence, under the rescaling we obtain

S−1 = JSTK

Then labelling V± as 3× 3 matrices of eigenvectors, we have

S =

[
V+ V−

t̃3V+ t̃3(V−)

]
.

Hence,

S−1 =

[
t̃3(V+)T V T+
−t̃3(V−)T −V T−

]
.

More explicitly, one has

V± =



ξ1 ±ξ1aS −ξ2
ξ2 ±ξ2aS ξ1
∓aP |ξ′|2 0




And

t̃3V± = i



∓2µξ1aP −2µξ1χ ±µaSξ2
∓2µξ2aP −2µξ2χ ∓µaSξ1

2µχ ∓2µ|ξ′|2aS 0




where χ = 1
2τ

2/µ− |ξ′|2. Hence, we have

S =




ξ1 ξ1aS −ξ2 ξ1 −ξ1aS −ξ2
ξ2 ξ2aS ξ1 ξ2 −ξ2aS ξ1
−aP |ξ′|2 0 aP |ξ′|2 0
−2µξ1aP −2µξ1χ µaSξ2 2µξ1aP −2µξ1χ −µaSξ2
−2µξ2aP −2µξ2χ −µaSξ1 2µξ2aP −2µξ2χ µaSξ1

2µχ −2µ|ξ′|2aS 0 2µχ 2µ|ξ′|2aS 0




And

STK =




−2µξ1aP −2µξ2aP 2µχ ξ1 ξ2 −aP
−2µξ1χ −2µξ2χ −2µ|ξ′|2aS ξ1aS ξ2aS |ξ′|2
µaSξ2 −µaSξ1 0 −ξ2 ξ1 0

2µξ1aP 2µξ2aP 2µχ ξ1 ξ2 aP
−2µξ1χ −2µξ2χ 2µ|ξ′|2aS −ξ1aS −ξ2aS |ξ′|2
−µaSξ2 µaSξ1 0 −ξ2 ξ1 0
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A quick calculation shows

STKS = diag(−2τ2aP ,−2τ2|ξ′|2aS ,−2τ2aS , 2τ
2aP , 2τ

2|ξ′|2aS , 2τ2aS) = D.

Thus, S−1 = D−1STK.
Next is useful to define

Ẽ =



ξ1 ξ2 0
0 0 1
−ξ2 ξ1 0


 , Ẽ−1 =

1

|ξ′|2



ξ1 0 −ξ2
ξ2 0 ξ1
0 |ξ′|2 0


 .

And set E =

[
Ẽ 0

0 Ẽ

]
. Then

ES =




|ξ′|2 |ξ′|2aS 0 |ξ′|2 −|ξ′|2aS 0
−aP |ξ′|2 0 aP |ξ′|2 0

0 0 |ξ′|2 0 0 |ξ′|2
−2µ|ξ′|2aP −2µ|ξ′|2χ 0 2µ|ξ′|2ap −2µ|ξ′|2χ 0

2µχ −2µ|ξ′|2aS 0 2µχ 2µ|ξ′|2aS 0
0 0 −µ|ξ′|2aS 0 0 µ|ξ′|2aS




Then
(ES)−1 = S−1E−1 = D−1STKE−1

and

|ξ′|2STKE−1 =




−2µ|ξ′|2aP 2µ|ξ′|2χ 0 |ξ′|2 −aP |ξ′|2 0
−2µ|ξ′|2χ −2µ|ξ′|4aS 0 |ξ′|2aS |ξ′|4 0

0 0 −µ|ξ′|2aS 0 0 |ξ′|2
2µ|ξ′|2aP 2µ|ξ′|2χ 0 |ξ′|2 aP |ξ′|2 0
−2µ|ξ′|2χ 2µ|ξ′|4aS 0 −|ξ′|2aS |ξ′|4 0

0 0 µ|ξ′|2aS 0 0 |ξ′|2



.

Note that if we are away from normal incidence so that |ξ′|2 6= 0, we may use this as an elliptic factor to
make S and E order 0 as long as we make A order 1. Then, we may remove all instances of |ξ′| appearing in
the above formulas and replace the appearance of τ with τ̂ = τ/|ξ′|. Denoting the interface as Γ, we denote
U (i) = S(i)V (i) as microlocal solutions to the PDE with interface conditions given by

S(1)V (1) = S(2)V (2) on Γ

Now the components of V (1) represent an incident “downgoing” wave and the reflected “upgoing” wave

V (1) =

[
v

(1)
I

Rv
(1)
I

]
, V (2) =

[
Tv

(1)
I

0

]

Thus, we obtain [
v

(1)
I

Rv
(1)
I

]
= (S(1))−1S(2)

[
Tv

(1)
I

0

]
:= Q

[
Tv

(1)
I

0

]
.

So writing Q =

[
Q11 Q12

Q21 Q22

]
, where each entry is a 3× 3 block matrix, we obtain the two equations

I = Q11T and R = Q21T

So if we have Q11 being microlocally invertible, we would obtain T = Q−1
11 and R = Q21Q

−1
11 . Notice that

(S(1))−1S(2) = D−1((S(1))TKE−1)(ES(2)) so it will suffice to show that [((S(1))TKE−1)(ES(2))]11 (the first
3× 3 subblock) is invertible.

By looking at the structure of ES and STKE−1, namely that each of the four sublocks have a block
structure consisting of a 2 × 2 matrix, and a 1 × 1 matrix, and the 1 × 1 pieces are trivial, it will suffice
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to analyze the remaining 2 × 2 constituents. Then the first 2 × 2 minor of this matrix is given by the
multiplication of

[
−2µ1a

(1)
P 2µ1χ

(1) 1 −a(1)
P

−2µ1χ
(1) −2µ1a

(1)
S a

(1)
S 1

]



1 a
(2)
S

−a(2)
P 1

−2µ2a
(2)
P −2µ2χ

(2)

2µ2χ
(2) −2µ2a

(2)
S


 =

[
t11 t12

t21 t22

]
.

So

t11 = −2µ1a
(1)
P − 2µ1χ

(1)a
(2)
P − 2µ2a

(2)
P − 2µ2χ

(2)a
(1)
P

= −2µ1a
(1)
P − τ̂

2a
(2)
P + 2µ1a

(2)
P − 2µ2a

(2)
P − τ̂

2a
(1)
P + 2µ2a

(1)
P

= −τ̂2(a
(1)
P + a

(2)
P )− 2a

(1)
P (µ1 − µ2) + 2a

(2)
P (µ1 − µ2)

= −τ̂2(a
(1)
P + a

(2)
P )− 2(a

(1)
P − a

(2)
P )(µ1 − µ2).

Next

t21 = −2µ1χ
(1) + 2µ1a

(1)
S a

(2)
P − 2µ2a

(2)
P a

(1)
S + 2µ2χ

(2)

= −τ̂2 + 2µ1 + 2µ1a
(1)
S a

(2)
P − 2µ2a

(2)
P a

(1)
S + τ̂2 − 2µ2

= 2(µ1 − µ2) + 2a
(1)
S a

(2)
P (µ1 − µ2)

= (2 + 2a
(1)
S a

(2)
P )(µ1 − µ2).

Next

t12 = −2µ1a
(1)
P a

(2)
S + 2µ1χ

(1) − 2µ2χ
(2) + 2µ2a

(1)
P a

(2)
S

= −2µ1a
(1)
P a

(2)
S + τ̂2 − 2µ1 − τ̂2 + 2µ2 + 2µ2a

(1)
P a

(2)
S

= −2(µ1 − µ2)− 2a
(1)
P a

(2)
S (µ1 − µ2)

= −(2 + 2a
(1)
P a

(2)
S )(µ1 − µ2).

Then

t22 = −2µ1χ
(1)a

(2)
S − 2µ1a

(1)
S − 2µ2χ

(2)a
(1)
S − 2µ2a

(2)
S

= −τ̂2a
(2)
S + 2µ1a

(2)
S − 2µ1a

(1)
S − τ̂

2a
(1)
S + 2µ2a

(1)
S − 2µ2a

(2)
S

= −τ̂2(a
(1)
S + a

(2)
S ) + 2a

(2)
S (µ1 − µ2)− 2a

(1)
S (µ1 − µ2)

= −τ̂2(a
(1)
S + a

(2)
S )− 2(a

(1)
S − a

(2)
S )(µ1 − µ2).

It is worth noting here that t21 and t12 vanish when the parameters are equal, while the other two terms
do not. This just means there is transmission of the P and S waves with no mode conversions, as to be
expected when there are no interfaces.
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So

det = t11t22 − t21t12

t11t22 = τ̂4(a
(1)
S + a

(2)
S )(a

(1)
P + a

(2)
P )

+ 2τ̂2(a
(1)
S + a

(2)
S )(a

(1)
P − a

(2)
P )(µ1 − µ2) + 2τ̂(a

(1)
P + a

(2)
P )(a

(1)
S − a

(2)
S )(µ1 − µ2)

+ 4(a
(1)
S − a

(2)
S )(a

(1)
P − a

(2)
P )(µ1 − µ2)2

= τ̂4(a
(1)
S + a

(2)
S )(a

(1)
P + a

(2)
P )

+ 4τ̂2(a
(1)
P a

(1)
S − a

(2)
P a

(2)
S )(µ1 − µ2)

+ 4(a
(1)
S − a

(2)
S )(a

(1)
P − a

(2)
P )(µ1 − µ2)2

= τ̂4(a
(1)
S a

(2)
P + a

(2)
S a

(1)
P ) + τ̂4(a

(1)
S a

(1)
P + a

(2)
S a

(2)
P )

+ (τ̂2 + 2(µ1 − µ2))2a
(1)
P a

(1)
S + (τ̂2 − 2(µ1 − µ2))2a

(2)
P a

(2)
S

−τ̂4a
(1)
P a

(1)
S − 4a

(1)
P a

(1)
S (µ1 − µ2)2 − τ̂4a

(2)
P a

(2)
S − 4a

(2)
P a

(2)
S (µ1 − µ2)2

+ 4(a
(1)
S − a

(2)
S )(a

(1)
P − a

(2)
P )(µ1 − µ2)2

= τ̂4(a
(1)
S a

(2)
P + a

(2)
S a

(1)
P )

+ (τ̂2 + 2(µ1 − µ2))2a
(1)
P a

(1)
S + (τ̂2 − 2(µ1 − µ2))2a

(2)
P a

(2)
S

−4a
(1)
P a

(1)
S (µ1 − µ2)2 − 4a

(2)
P a

(2)
S (µ1 − µ2)2

+ 4(a
(1)
S − a

(2)
S )(a

(1)
P − a

(2)
P )(µ1 − µ2)2

= τ̂4(a
(1)
S a

(2)
P + a

(2)
S a

(1)
P )

+ (τ̂2 + 2(µ1 − µ2))2a
(1)
P a

(1)
S + (τ̂2 − 2(µ1 − µ2))2a

(2)
P a

(2)
S

−4a
(1)
P a

(1)
S (µ1 − µ2)2 − 4a

(2)
P a

(2)
S (µ1 − µ2)2

+4(a
(1)
P a

(1)
S + a

(2)
P a

(2)
S )(µ1 − µ2)2−4(a

(1)
S a

(2)
P + a

(2)
S a

(1)
P )(µ1 − µ2)2

= τ̂4(a
(1)
S a

(2)
P + a

(2)
S a

(1)
P )

+ (τ̂2 + 2(µ1 − µ2))2a
(1)
P a

(1)
S + (τ̂2 − 2(µ1 − µ2))2a

(2)
P a

(2)
S

−4(a
(1)
S a

(2)
P + a

(2)
S a

(1)
P )(µ1 − µ2)2

Next, we have

−t21t12 = (2 + 2a
(1)
P a

(2)
S )(2 + 2a

(2)
P a

(1)
S )(µ1 − µ2)2

= 4(1 + a
(1)
P a

(2)
P a

(1)
S a

(2)
S )(µ1 − µ2)2+4(a

(1)
S a

(2)
P + a

(2)
S a

(1)
P )(µ1 − µ2)2

Thus, after cancelling the relevant terms, we obtain a nonzero determinant as long as a
(j)
P and a

(j)
S are not

all complex:

det = τ̂4(a
(1)
S a

(2)
P + a

(2)
S a

(1)
P )

+ (τ̂2 + 2(µ1 − µ2))2a
(1)
P a

(1)
S + (τ̂2 − 2(µ1 − µ2))2a

(2)
P a

(2)
S

+ 4(1 + a
(1)
P a

(2)
P a

(1)
S a

(2)
S )(µ1 − µ2)2.

Next, notice that t13, t23, t31, t32 = 0. We may also calculate

t33 = −µ(2)a
(2)
S − µ

(1)a
(1)
S 6= 0

away from glancing and this concludes our proof that T is microlocally invertible in the relevant region.
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Proof of Lemma 5.8

We can now do the tedious computation required to prove Lemma 5.8, which states that one may recover
the infinitesimal jumps in wave speeds from the reflection coefficients.

Proof of Lemma 5.8. We would like to compute R = Q21T as well, or at the least check that it is invertible.
As before, it suffices to check [((S(1))TKE−1)(ES(2))]21 is invertible. Then the first 2 × 2 minor of this
matrix is given by the multiplication of

[
2µ1a

(1)
P 2µ1χ

(1) 1 a
(1)
P

−2µ1χ
(1) 2µ1a

(1)
S −a(1)

S 1

]



1 a
(2)
S

−a(2)
P 1

−2µ2a
(2)
P −2µ2χ

(2)

2µ2χ
(2) −2µ2a

(2)
S


 =

[
z11 z12

z21 z22

]
.

First, we have

z11 = 2µ1a
(1)
P − 2µ1χ

(1)a
(2)
P − 2µ2a

(2)
P + 2µ2a

(1)
P χ(2)

= 2µ1a
(1)
P − a

(2)
P (τ̂2 − 2µ1)− 2µ2a

(2)
P + a

(1)
P (τ̂2 − 2µ2)

= τ̂2(a
(1)
P − a

(2)
P ) + 2a

(1)
P (µ1 − µ2) + 2a

(2)
P (µ1 − µ2)

= τ̂2(a
(1)
P − a

(2)
P ) + 2(a

(1)
P + a

(2)
P )(µ1 − µ2).

Next, we have

z21 = −2µ1χ
(1) − 2µ1a

(2)
P a

(1)
S + 2µ2a

(2)
P a

(1)
S + 2µ2χ

(2)

= −(τ̂2 − 2µ1)− 2a
(2)
P a

(1)
S (µ1 − µ2) + (τ̂2 − 2µ2)

= 2(µ1 − µ2)− 2a
(2)
P a

(1)
S (µ1 − µ2)

= (2− 2a
(2)
P a

(1)
S )(µ1 − µ2).

Continuing,

z12 = 2µ1a
(1)
P a

(2)
S + 2µ1χ

(1) − 2µ2χ
(2) − 2µ2a

(1)
P a

(2)
S

= 2a
(1)
P a

(2)
S (µ1 − µ2)− 2µ1 + 2µ2

= (−2 + 2a
(1)
P a

(2)
S )(µ1 − µ2).

Lastly,

z22 = −2µ1a
(2)
S χ(1) + 2µ1a

(1)
S + 2µ2a

(1)
S χ(2) − 2µ2a

(2)
S

= −a(2)
S (τ̂2 − 2µ1) + 2µ1a

(1)
S + a

(1)
S (τ̂2 − 2µ2)− 2µ2a

(2)
S

= τ̂2(a
(1)
S − a

(2)
S ) + 2a

(2)
S (µ1 − µ2) + 2a

(1)
S (µ1 − µ2)

= τ̂2(a
(1)
S − a

(2)
S ) + 2(a

(1)
S + a

(2)
S )(µ1 − µ2).

We also have
z33 = −µ(2)a

(2)
S + µ(1)a

(1)
S

It will be convenient to denote R =



r11 r12 r13

r21 r22 r23

r31 r32 r33


 the individual entries. Next, notice that r13, r23, r31, r32 =

0 since the corresponding entries for T and Q21 are as well. Using the calculation for T , we may calculate

r33 =
µ(1)a

(1)
S − µ(2)a

(2)
S

µ(1)a
(1)
S + µ(2)a

(2)
S

.
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We may then compute (r33−1)/(r33 +1) = (µ(2)a
(2)
S )/(µ(1)a

(1)
S ), so since µ(1) and a

(1)
S is already determined,

we recover µ(2)a
(2)
S =

√
µ(2)|ξ′|2 − τ2. Since the tangential momenta ξ′, τ are already determined, we recover

µ(2)(x0) and thereby a
(2)
S (x0, τ0, ξ0).

All we have left to determine is a
(2)
P which would give us λ(2)(x0). For this, we use the first 2 × 2 minor

of T and Q21, and after a tedious computation, since everything is known except λ(2), we get the recovery
by similar arguments as above.

We assumed throughout these calculations that |ξ′| lies away from zero. However, at 0, the calculations
are much simpler and follow the same arguments.

B Blind Scattering Control

In this section, we obtain results on how much scattering may be controlled and eliminated using only the
outside measurement operator. This will determine how much of the main results of [7] may actually be
extended to the elastic setting. We will show that in general, without more information, one does not have
control in regions outside of where one has elastic unique continuation theorems. We emphasize that the
results here are of a very different nature than in the main paper. In the main text, we layer strip and so
we assume knowledge of the wave speeds in a certain portion of the medium. Here, we have no a priori
knowledge of the Lamé parameters inside the medium, and we aim to determine what type of probing may
be done into the medium using time reversal methods.

Subsets

We will need certain subsets of Θ determined by the boundary distance function. For each t, define the open
sets

Θt = {x ∈ Υ | d∗Θ(x) > t}, Θ?
t = {x ∈ Υ | d∗Θ(x) < t}.

There is some M for which Θt is Lipschitz for each t ≤ M , and we assume for this section that Θt is
Lipschitz for the parameters t we consider. We use the superscript ? to indicate sets and function spaces
lying outside, rather than inside, some region. Sets Ωt, Ω?t may be defined in the same way. We also have
Θ∗ = Θ∗0.

Projections Inside and Outside Θt

The final ingredients needed for the iterative scheme are restrictions of Cauchy data inside and outside Θ.
While a hard cutoff is natural, it is not a bounded operator in energy space: a jump at ∂Θ will have infinite
energy. The natural replacement are Hilbert space projections. More generally, we consider projections
inside and outside Θ. Let π? be the orthogonal projections of C onto H?; let π̄ = Id − π?. For u ∈ C,
note that π?u = u on Θ while outside Θ it is smooth since it solves an elliptic equation with smooth Lamé
parameters.

Almost direct transmission

Suppose we have Cauchy data h0 ∈ H. We can probe Ω with h0 and observe Rh0 outside Ω. In particular,
the reflected data π?R can be measured, and from these data, we would like to procure information about
cP/S inside Ω. However, multiple scattering caused by waves travelling into and out of Ω make π?Rh0 difficult
to interpret.

In this section, we construct a control in H? that eliminates multiple scattering in the wave field of h0

up to a certain depth dependant on T inside Θ. More specifically, consider the almost direct transmission
of h0:

Definition B.1. The almost direct transmission, denoted hDT, of h0 ∈ H at time T is π̄TRTh0, where π̄T
is defined the same way as π̄ but replacing Θ with ΘT .
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We note since it will end up being impossible to actually recover the direct transmission using outside
data, we do not give a more natural definition of πT , but merely use a convenient one to illustrate a particular
point in the next lemma.

By finite speed of propagation, hDT is equal to RTh0 inside ΘT ; outside ΘT , its first component satisfies
the elliptic Laplace equation, while the second component is extended by zero.

Scattering Control Series

We want Cauchy data of the form
h∞ = Ktail + h0

with Ktail supported outside of Θ such that Ktail cancels multiples produced by h0 and allows us to recover
the directly transmitted constituent of RTh∞ (even though we will show this to be impossible in the elastic
setting without more information). More specifically, Ktail will be in H? and it is the control discussed in
the previous subsection.

Next, let us write down the scattering control equation first introduced in [7]. With h0 and h∞ as above,
we say h∞ is a solution to the scattering control equation if the following holds

(I − π?Rπ?R)h∞ = h0. (B.1)

Using only finite speed of propagation, we can obtain a necessary condition for Ktail in order to control
multiple scattering.

Lemma B.2. Let h0 ∈ H and T ∈ (0, 1
2 diampΘ). Then isolating the deepest part of the wavefield associated

to h0 implies Ktail ∈ H? satisfies the scattering control equation:

R−T π̄R2Th∞ = hDT =⇒ (I − π?Rπ?R)h∞ = h0. (B.2)

Proof. The proof is actually identical to the one in [7], but we provide the argument here just for completeness.
Assume R−T π̄R2Th∞ = hDT . Observe that due to the disjoint support of Ktail and h0 one has π̄h∞ = h0.
Hence

(I − π?Rπ?R)h∞ = (I − π?R(I − π̄)R)h∞

= h∞ − π?R2h∞ + π?Rπ̄Rh∞
= h∞ − π?R−2TR2Th∞ + π?νR2T νπ̄R2Th∞
= h∞ − π?h∞ + π?R−2T (RThDT )

= h0 + π?R−ThDT .

Hence, we merely need the second term on the right to vanish. Notice hDT is supported inside ΘT so by
finite speed of propagation, R−ThDT has support inside Θ since T is based on the fast P -wavespeed. Hence,
π?R−ThDT = 0. �

This was the “easy” direction. The converse of the above lemma is far from clear and will turn out
false. Indeed, the converse would say that if Ktail satisfies a certain equation outside Θ, then we can retrieve
information about u(t) = Fh∞ inside Θ or at least inside Θ?

T , revealing the elimination of certain scattering
within Θ? by time T . This would require a unique continuation theorem, but for the elastic equation, a
unique continuation theorem can only give information within the s-domain of influence of h∞. Such a
theorem would say absolutely nothing inside the remaining portion of the P -domain of influence of h∞.
Thus, we deem the task of obtaining such a result in this exact framework impossible with known elastic
unique continuation results. Nevertheless, we still have a lemma that will help characterize RTh∞ even in
the elastic setting, which also provides a general description of which multiply scattered wave constituents
may be eliminated.

Lemma B.3. With the same setup as in the previous lemma, assume

(I − π?Rπ?R)h∞ = h0.
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Then in the energy inner product, one has

R−T π̄R2Th∞ ⊥ Im(RTπ
?) + Im(R−Tπ

?).

Denote C := Im(RTπ?) + Im(νRTπ?) the controllable subspace, ΠC its orthogonal projection with respect to
the energy inner product, and ΠC⊥ the orthogonal projection onto its orthogonal complement (the uncontrol-
lable subspace). Then

R−T π̄R2Th∞ = ΠC⊥RTh0. (B.3)

Conversely, if h∞ satisfies (B.3), then h∞ satisfies the scattering control equation.

Remark B.4. The above lemma shows that the scattering control equation produces a tail that eliminates any
constituent of the wavefield at time t = T that may be recreated by RTπ

?. That is, the wavefield produced
by an internal source can be split (microlocally) into a directly transmitted component (experiencing no
reflections), singly-reflected components, and multiply-reflected components. Any such multiples that may
be artificially created using Cauchy data supported outside Θ (which is precisely the image of RTπ

?) are
precisely what get eliminated. Of course, Cauchy data supported in Θ? can never recreate the directly
transmitted portion of h0 simply due to finite speed of propagation; hence the directly transmitted piece
may never be eliminated, as was obvious a priori. Likewise, the single reflections cannot be recreated by
Cauchy data in H? and so those do not get eliminated either.

Proof. The proof will take advantage of RT being a unitary operator with respect to the energy inner product.
Next, note that the scattering control equation is equivalent to π?R−2T π̄R2Th∞ = 0 as shown in [7]. Take
any Cauchy data k ∈ C. One has

〈R−T π̄R2Th∞, RTπ
?k〉 = 〈R−2T π̄R2Th∞, π

?k〉
= 〈π?R−2T π̄R2Th∞, π

?k〉+ 〈π̄R−2T π̄R2Th∞, π
?k〉

= 0,

where the first quantity is 0 by the scattering control equation (π?R−2T π̄R2Th∞ = 0) and the second
quantity is 0 because π? and π̄ are orthogonal projectors. For νRTπ

?, one instead has

〈R−T π̄R2Th∞, νRTπ
?k〉 = 〈R−T νR−T π̄R2Th∞, π

?k〉
= 〈νRTR−T π̄R2Th∞, π

?k〉 = 〈νπ̄R2Th∞, π
?k〉 = 0.

Let ΠC and ΠC⊥ be the orthogonal projections onto C := Im(RTπ?) + Im(νRTπ?) and its orthogonal
complement, respectively.. By continuity, the above proof shows

R−T π̄R2Th∞ = ΠC⊥R−T π̄R2Th∞.

On the other hand, one has

R−T π̄R2Th∞ = −R−Tπ?R2Th∞ +RTh∞
= −νRTπ?Rh∞ +RTπ

?Ktail +RTh0

Notice that ΠC⊥ applied to the first two terms vanishes. Thus, we have

R−T π̄R2Th∞ = ΠC⊥RTh0

as desired.
For the last part, suppose that R−T π̄R2Th∞ = ΠC⊥RTh0. Then R−T π̄R2Th∞ ⊥ Im(RTπ

?). Since RT
is unitary in the energy inner product, this implies

R−2T π̄R2Th∞ ⊥ Im(π?).

Thus, R−2T π̄R2Th∞ paired with any Cauchy data supported in Θ? is 0. Thus, it must be that

π?R−2T π̄R2Th∞ = 0

⇔ (I − π?Rπ?R)h∞ = 0.
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Elastic Unique Continuation

We have the unique continuation principle for smooth parameters λ, µ, described in [12] and proved by
Belishev in [4].

Theorem B.5. Suppose that (∂2
t −L)u = 0 in R×R3 and u = 0 in a neighborhood of (t0, t1)×{x0}. Then,

u = 0 for all (t, x) inside the double cone

{
(t, x) : dS(x, x0) +

∣∣∣∣t−
t0 + t1

2

∣∣∣∣ ≤
t1 − t0

2

}
.

Just as in the scalar wave setting, it is believed that the unique continuation principle holds for Lamé
parameters with certain conormal singularities as well. This can be proven using the method of Eller-
Isakov-Nakamura-Tataru for isotropic elasticity [9] and the modifications for a discontinuous sound speed as
developed in reference [19]. Thus, for the purposes of this work, we merely assume that the Lamé parameters
satisfy the above unique continuation principle, without requiring smoothness.

Assumption. λ, µ satisfy the above unique continuation principle.

We then have the following corollary whose proof is identical to [12, Lemma 3.5]:

Corollary B.6. Assume u is a solution to the elastic equation in free space, T > 0 and u = 0 on [−T, T ]×Ω?.
Then by the unique continuation principle, u(t, x) = 0 for all (t, x) such that dS(x, ∂Ω) + |t| ≤ T .

We may now prove a corollary that essentially states that

R−T π̄R2Th∞
∣∣∣
{dS(x,∂Θ)<T}

≈ 0,

that is, all waves in the time T s-domain of influence of the initial data is controlled.

Corollary B.7. Assume h0, h∞ and T are as in Lemma B.2 and h∞ satisfies the scattering control equation.
For the elastic equation, all waves inside the slow domain of influence {ds(x, ∂Θ) < T} are controlled:

j2R−T π̄R2Th∞|{dS(x,∂Θ)<T} = 0,

Lj1R−T π̄R2Th∞|{dS(x,∂Θ)<T} = 0,

where j1/2 are projections to the first or second components of the Cauchy data respectively. That is,
R−T π̄R2Th∞ is stationary on the slow domain of influence.

Remark B.8. We note that the elliptic equation is the stationary elastic equation, where the parameters do
have singularities. If one wanted to avoid this, then instead of using projections π?, one could instead use
smooth cutoffs, and obtain actual vanishing for the first component at the cost of an epsilon-type loss in
the s-domain of influence set. Since the second part of the paper is more fundamental, we do not give more
details on this.

Proof. Indeed, suppose h∞ satisfies
(I − π?Rπ?R)h∞ = h0.

Let v = FR−2T π̄R2Th∞, and let v(t) = (v(t), ∂tv(t)) ∈ C. Then v(2T ) = π̄R2Th∞ implies the second
component of v(2T ) is zero on Θ? while the first component is smooth. That is, v(2T ) is stationary on Θ?.
Also,

v(0) = R−2T π̄R2Th∞ = h∞ −R−2Tπ
?R2Th∞ = (I −Rπ?R)h∞

which is stationary on Θ? using our assumption. Thus, as in [7, proof of theorem 2.2], if we replace v by
w = ∂tw, then w = 0 on Θ? and w also satisfies the elastic equation (it is a distributional solution). By
unique continuation, w vanishes for (t, x) such that dS(x, ∂Θ) + |T − t| ≤ T . In particular, the second
component of v(T ) = 0 in {x ∈ Θ : dS(x, ∂Θ) ≤ T} corresponding to the slow domain of influence, while
the first component solves an elliptic equation by definition of w. �
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It is now clear that understanding Im(RTπ
?) tells us exactly which scattered waves get eliminated through

scattering control. Notice that the acoustic analog of the above corollary says that one has full control over
the time T domain of influence of h0 as was already proven in [7]. Since we do not have full unique contin-
uation in the elastic setting, we instead rely on microlocal analysis to solve a geometric problem.

C Proof of proposition 5.3

Before proving this proposition, it will be useful to have a notion of the microlocal counterpart to the almost
direct transmission (see Definition B.1) from the previous appendix.

Microlocal almost direct transmission

As in [7, section 3], we are interested in isolating the microlocal almost direct transmission since this will be
the main tool necessary to prove the main theorem in the presence of multiple scattering. Intuitively, it is
the microlocal restriction of the solution at time T (say) to singularities in T ∗Θ whose P -distance from the
surface ∂T ∗Θ is at least T . Formally, first let (T ∗M)t be the set of covectors of depth greater than t in a
manifold M :

(T ∗M)t = {ξ ∈ T ∗M |d∗T∗M (ξ) > t}

where d∗T∗M (ξ) is defined as in [7, section 3] using dP .
Instead, we consider smooth cutoffs, and for choose nested open sets Θ′,Θ′′ between Ω and Θ:

Ω ⊂ Θ′ ⊂ Θ′ ⊂ Θ′′ ⊂ Θ′′ ⊂ Θ.

A microlocal almost direct transmission of h0 at time T is a distribution hMDT satisfying

hMDT ≡ RTh0 on (T ∗Θ)T WF(hMDT) ⊂ (T ∗Θ′′)T .

The key to prove this proposition is to isolate hMDT. For this, we need access outside of Ω to all scattered
rays related to hMDT (bad bicharacteristics defined below), which certainly includes all possible S-rays as
well.

Definition C.1. (a) Let γ : [0, t∗]→ T ∗R3 be a purely transmitted, broken, P or S ray that starts outside
Ω and hits k interfaces at discrete times t1, . . . , tk > 0 say. At each such point, γ will have one or two
reflecting branches and one possible mode converted branch according to Snell’s law. Such branches
that are reflections are called bad reflecting rays associated to γ. A transmitted branch that is a mode
conversion associated to γ will be called a bad transmission. A wave associated with such a ray will
be called a bad wave and we may refer to either branch as a bad ray or bad branch. For the proof
of the proposition, such bad reflecting waves are precisely the ones that will create waves (upon their
next interaction with an interface) that need to be eliminated. We must also ensure that these bad
mode-conversion transmissions are eliminated as well.

(b) Bicharacteristics γ1, γ2 are connected if their concatenation γ1 ∪ γ2 is a broken bicharacteristic. Note
that mode conversions are allowed (e.g., a P ray may be connected to an S ray) if their tangential mo-
menta match. A bicharacteristic γ1 terminating at an interface may have one or two (totally reflected
with P/S mode conversions), or two, three, or four (reflected and transmitted) connecting bicharacter-
istics there. If γ1 has a transmitted bicharacteristic, there exists an opposite bicharacteristic γ sharing
γ1’s connecting bicharacteristics. There can be up to two opposite bicharacteristics (one for P and one
for S). Note that γ1 or γ2 (or both) may be glancing at an interface (see [7] for definitions). If it is
not, we say that it is non-glancing.

(c) Fix a large time Ts > 0 (see below). A bicharacteristic γ : (t−, t+) → T ∗(R3 \ Γ) is (±)-escapable if
either:
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i. it has escaped : γ is defined at T ± Ts and γ(T ± Ts) /∈ T ∗Θ,

• or recursively, after only finitely many recursions, either

ii. all of its connecting bicharacteristics at t± are (±)-escapable and are non-glancing at the interface;

iii. All of its reflecting bicharacteristics (both P and S if they exist) are (±) escapable and non-
glancing and both P ,S opposite bicharacteristics are (∓) escapable and non-glancing.

Let us explain the choice of Ts further. The idea is that we want a large enough time so that any returning
bicharacteristic, even a concatenation of pure slow rays, will return to Θ? by time Ts. This will ensure that
there is enough time for all wave constituents of a particular uh associated to returning bicharacteristics
eventually return to Θ? by time Ts. This avoids the problems encountered in the lack of control in the
previous appendix. We also note that Ts is not used to discriminate between certain rays and we can even
allow it to vary for different rays since we are allowed infinite time to take exterior measurements of the
wavefield. Rather, it just makes the notation less cumbersome to have a fixed time beyond which other rays
are irrelevant and will not affect the construction of the “tail”

The idea is that (+) escapable singularities are ones we do not worry about since they escape and do
not enter the directly transmitted region. Once there are connecting rays that are not (+) escapable, then
those need to be eliminated. Thus, the third condition guarantees that corresponding to these non-escapable
rays, there are corresponding opposite (−) escapable rays that we use to send in waves to eliminate waves
associated to rays that do not escape. We will also refer to such rays or waves that are non-escapable and
enter the directly transmitted region as bad rays, resp. bad waves. The previous definition of bad rays
are exactly the ones that create (through geometric optics concatenation) the bad non-escapable rays just
described.

In the final case, if the (±)-escapable connecting bicharacteristic is a reflection, then we require that there
are both P and S opposite bicharacteristics that escape. They must be there so that we can construct an
incoming wave parametrix, singular on such opposite rays, that eliminates a particular scattered wave. They
must also escape so that we obtain all the necessary information not just from the fast moving P -waves, but
the S-waves as well. This is because we must construct S waves in addition to P waves for the tail, even if
one is merely trying to eliminate a single P wave.

Remark C.2. The definition of escapability merely ensure that we obtain access in our measurement region
of all backscattered rays caused by the direct transmission. In addition, the recursive definition and the
notion of opposite rays ensures that for any new bad scattered waves created by an appropriate tail, one will
be able to eliminate them as well if they enter the direct transmission’s domain of influence. The conditions
should be compared to the linear problem of obtaining an observability inequality with partial data. There
as well, one needs access to all the relevant rays in the measurement region.

Remark C.3. Note that the definition of (±)-escapable rays can be made more general to deal with more
general geometries than our convex foliation case. Since we only need to eliminate waves associated to rays
that are not escapable, this only requires having the associated number of opposite escapable rays. Thus,
we need the number of opposite (∓)-escapable rays to equal the number of not (±)-escapable rays that are
reflecting or transmitting.

Let us recall S ⊂ T ∗Ω as the set of ξ such that every bad bicharacteristic through ξ is (+)-escapable. Note
that the definition of escapable ensures that the mode conversion are non-glancing as well. For example, if a
purely transmitted P bicharacteristic starts outside Ω and passes through ξ, then all the transmitted S, mode-
converted connecting rays are non-glancing. An analog holds for a purely transmitted S bicharacteristic.

We will also need the directly transmitted component of the forward elastic wave propagator R+
T .

Definition C.4 (The microlocal direct transmission). Fix (x, ξ) ∈ S and let γP/S be a purely transmitted P
or S ray, starting outside Ω at t = 0 and passing through (x, ξ) at some time t = T . Assume γP/S intersects
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Γ exactly k times. Define the directly transmitted wave constituent FIO

DT+
k,P/S =

{
rTΠP/SJC→S, k = 0,

rTΠP/SJ∂→SιMT (J∂→∂ΠP/SιMT )k−1JS→∂ΠP/SJC→S, k > 0
(C.1)

By construction, if h0 is a distribution of Cauchy data with WF(h0) = R+γP/S(0), then DT+
k,P/Sh0 will be

a distribution whose wavefront set is equal to (x,R+ξ). Moreover, it will be a polarized P/S wave.

(Motivation of the proof) In the proof we will define FIO’s Ξ± that will produce the correct tails (controls
outside Θ) associated to ±-escapable bicharacteristics to eliminate certain bad waves. Suppose y = y(t, x) is
a microlocal wave constituent (P or S wave) of some wavefield uh associated to a returning bicharacteristic
γ. It may be represented locally by an FIO analogous to (4.1). Let Γ be the next interface y hits. Let
y′ = ρΓy where ρΓ is the restriction operator. Now, y will produce P and S reflected waves determined by
MRy

′. If these waves will eventually interfere with the direct transmission, they must be eliminated (these
are waves associated to non-escapable rays connected to γ). Note that if both reflected and transmitted
waves from y don’t cause waves that interfere with the directly transmitted region, this is case (ii) in the
definition and nothing would need to be done. Otherwise, let γP/S be the two opposite rays from γ, thought
of as lying inside T ∗(R×Θ). Thus, we must send in a waves associated to the γP/S that will eliminate MRy

′.
That is, we want to produce an incoming wave z on the side of Γ−, such that z′ := ρΓz = −M−1

T MRy
′. The

outgoing waves on the side of Γ− are then MT y
′ and −MRM

−1
T MRy

′ while our construction ensures there
are no outgoing waves on the side of Γ+ that will pollute the directly transmitted region. Notice that the
outgoing waves MT y

′ and −MRM
−1
T MRy

′ might produce more bad waves later on (propagating forwards
(+)) so Ξ+ will need to take care of these. The new incoming wave −M−1

T MRy
′ might also produce bad

waves in the backward direction (−) so Ξ− will have to take care of those. Thus, Ξ+ needs to be defined
recursively at this step as

−Ξ−M
−1
T MRy

′ + Ξ+(MT −MRM
−1
T MR)y′.

Similarly, if the transmitted part MT y
′ would cause bad waves, then the definition would be

−Ξ−M
−1
R MT y

′ + Ξ+(MR −MTM
−1
R MT )y′.

In this case, we take care of all possible branches (and multi-branches) that may be associated with γ and
produce bad waves.

Lastly, before beginning the proof, we cannot construct our usual parametrices near glancing rays. For-
tunately, the convex foliation condition will guarantee that “most” (in a sense to be described soon) broken
bicharacteristics (that travel for a fixed finite time T say) will not glance at an interface.

Lemma C.5. Let G = GT ⊂ T ∗Θ be the set of (y, η) ∈ S∗Θ such that a broken bicharacteristic of length T
contains a glancing point. G is a manifold and under the convex foliation assumption, and has dimension at
most 2n− 2. Thus, the set of covectors (y, η) ∈ S∗Θ where all broken rays of length T passing through (y, η)
never glance is dense in S∗Θ.

We also have a series of lemmas to demonstrate that under the convex foliation condition, we have enough
covectors lying in S.

Lemma C.6. Let γ be a transmitted geodesic with respect to some wave speed c. Then ρ ◦ γ either mono-
tonically decreases, strictly monotonically increases, or strictly decreases then strictly increases.

Proof. Suppose, on the contrary, that ρ ◦ γ is nondecreasing on [a, b] then nonincreasing on [b, d] for some
a < b < d. Let τ = ρ(b). If c is smooth near γ(b) then there is a neighborhood (a′, d′) ⊂ [a, d] of b such that
ρ(γ(a′)) = ρ(γ(d′)) = τ ′ ≥ τ . Then γ|[a′,d′] is a geodesic between points on Στ ′ outside of Ωτ ′ , contradicting
the strict convexity of ∂Ωτ ′ . Conversely, if c is discontinuous at γ(b), then γ((a, b)) and γ((b, d)) are on
opposite sides of Γ, which is locally given by Στ , by the definition of a transmitted geodesic. This is a
contradiction as well. �

The next lemma states that upward-travelling geodesics are not trapped.

Lemma C.7. The set of (x, ξ) ∈ T ∗−Ω for which there exists a purely transmitted geodesic γ : [a, b] → Ω

with γ′(0)[ = (x, ξ) and γ(a), γ(b) ∈ ∂Ω is open and dense in T ∗−Ω.
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Proof. Our restriction to foliation upward covectors is needed to avoid total internal reflections, which would
prevent γ from reaching the boundary.

By symmetry, it suffices to show that we can find γ with one endpoint, say b, on ∂Ω. Let γ : T → T ∗R3

be the unique maximal purely transmitted bicharacteristic with γ(0) = (x, ξ), and let γ be its (continuous)
projection onto R3. If γ(b) ∈ ∂T ∗Ω we are done, so assume this does not hold, and let s = sup I.

If s < ∞, then γ(s) ∈ Γ since otherwise the geodesic could be continued. There are two possibilities: γ
glances off Γ (γ(s) ∈ T ∗Γ), or there is total internal reflection. In the first case, note that γ is in the flowout
of T ∗Γ\0 under Φ; this has measure zero in T ∗Ω because Φ is piecewise smooth and dimT ∗Γ = dimT ∗Ω−2.

In the second case, c is smaller on the side of Γ opposite γ(s−) by C.6 convexity of the interfaces, as noted
in the proof of Theorem 5.12. This rules out internal reflection, so γ can be continued past s, a contradiction.

Let us suppose now that s =∞. By lemma C.6, ρ◦γ is increasing on (0,∞). Let ρ∗ = infγ ρ, and choose
a sequence sj → ∞ such that ρ(γ(sj)) → ρ∗. By compactness, sj has a subsequence (which we may again
label sj) such that γ(sj) converges to some point (x, ξ) ∈ T ∗Ω, and by continuity (x, ξ) /∈ T ∗+Ω. However, by
strict convexity the geodesic starting at any (x, ξ) ∈ T ∗+Ω immediately leaves T ∗Ω \ T ∗Ωτ . This is true even
if x ∈ Γ. By continuity, this is true if we replace (x, ξ) by any sufficiently close covector and in particular
γ(sj) for sufficiently large j (as noted above, total internal reflection cannot occur). Hence ρ∗ cannot be the
infimum of ρ on γ, a contradiction. �

The density allows us to just recover the wavespeeds at points where all possible rays through the point
never glance.

Proof of Proposition 5.3 Because any broken ray intersects only finitely many interfaces in the time
interval t ∈ [0, 2T ], the condition of being (±)-escapable is open, and in particular S is open.

Construction of h0

Let us give a brief argument on one possible construction of the h0 described in the proof just after the
statement of Proposition 5.3. First define J−∂→∂ = vJ∂→∂v, which is like J∂→∂ but propagating backwards
in time. Let v be distribution with wavefront set R(x, ξ) and let d be the number of interfaces between x
and Ωc. Then define h0 = J−1

C→∂M
−1
T Πd

i=1(J−∂→∂M
−1
T )v|Γ. The wavefront set of h0 (viewed in the cosphere

bundle) will consists of up to 2d covectors (see Figure 2).

Construction of Ktail

We first define FIO’s ΞI±,Ξ
O
± : C∞(R× ∂Z)→ D′(Z) of order 0 producing tails outside Θ for (±)-escapable

bicharacteristics. The Ξ
I/O
+ -constructed tail for a singularity on a (+)-escapable bicharacteristic ensures

this singularity escapes Θ by time T + Ts, without generating any singularities in hMDT’s P/S-domain of

influence where hMDT is associated to a purely transmitted P/S-ray. The Ξ
I/O
− -constructed tail generates

a given singularity on a (−)-escapable bicharacteristic, again without causing any singularities in the P/S
domain of influence. The ΞO± are defined on outgoing boundary data while the ΞI± are defined on incoming
data, microlocally near the final, resp., initial covectors of (±)-escapable bicharacteristics.

Let γ : (t−, t+)→ T ∗Z be (±)-escapable bicharacteristic. Denote by βO the pullback to the boundary of
its finals point: βO = (dιΓ)∗γ(t±), where by abuse of notation we consider γ(t±) as a space-time covector

T ∗(R × Z). Define βI = (dιΓ)∗γ(t∓) similarly. We now define Ξ
I/O
± microlocally near βI/O, starting with

the incoming maps ΞI±.

• If t± ∈ (0, T + Ts): We simply follow the bicharacteristic and apply ΞO± at the other end. In the (+)
case define ΞI+ ≡ ΞO+J∂→∂ . In the (−) case, define ΞI− ≡ ΞO−J

−
∂→∂ near βI , where J−∂→∂ = vJ∂→∂v is

like J∂→∂ but propagating backwards in time.

• If γ escapes, t± /∈ [0, T + Ts]: This is the terminal case. In the (+) case, there is nothing to do: define
Ξ+ ≡ 0 near βI . For the (−) case, define ΞI− ≡ J−1

C→∂ near βI to obtain the necessary Cauchy data,

We now turn to ΞO±, considering each of the cases of in the definition of (±)-escapability.
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• if γ escapes: This case never arises: ΞI± is not defined in terms of ΞO± for such γ.

• If all outgoing bicharacteristics are (±)-escapable: Recursively apply ΞI± to the reflected and transmit-
ted (if any) bicharacteristics, defining ΞO± ≡ ΞI±M near βO.

• If all the reflecting bicharacteristics are (±)-escapable, and the opposite incoming P/S rays are (∓)-
escapable: This is the core case. In the (+) case, near βO let

ΞO+ ≡ −ΞI−M
−1
T MR + ΞI+(MT −MRM

−1
T MR),

The inverses here are all microlocal near the appropriate covector. The (−) case is slightly different:
near βO,

ΞO− ≡ −ΞI−M
−1
T + ΞI+MRM

−1
T .

Given η ∈ S ⊂ T ∗Θo, consider all the bad reflecting, +-escapable rays associated to η. Each is associated with
a distinct sequence of reflections and transmissions a = (a1, . . . , ak) ∈ {R, T}k for some k and corresponding
P/S wave microlocal mode projections Πλj , λ = (λ1, . . . , λk), and a corresponding propagation operator

Pa,λ,R = J∂→∂ΠλkMak · · · J∂→∂Πλ2Ma2J∂→∂Πλ1Ma1JC→∂ .

Notice the λ is here so that we are observing the wave (with possible reflection, transmission, and mode
conversions) associated to a single broken bicharacteristic consisting of a concatenation of P and S rays.
Likewise we can define Pa,λ,T for the transmitting, bad rays that are minus escapable. These transmitting
bad rays are new for the systems setting due to multiple wave speeds and were not present in the acoustic
setting of [7].

First define
Aη = ΞO+

∑

(a,λ)∈G
Pa,λ,R + ΞO−

∑

(a,λ)∈G−
Pa,λ,T ,

and then define A by patching together the Aη with a microlocal partition of unity as in [7]. Given an h0,
the tail is precisely

Ktail := Ah0

The rest of the proof follows simply by construction of ΞO+ and ΞI−. Recall our construction that inside
T ∗Ωτ , WF(RTh0) = WF(v) for some large enough T . One just needs T to be greater than the P or S
(depends on which case in the proposition we are considering) distance between (x, ξ) and S∗Ωc, and one
can increase T after that by adjusting h0. Set h∞ = h0 + Ktail, and we must verify that Fh∞|Ωτ ≡ v
for t ≥ Ts. Any other waves in this region may only come from Pa,λ,Th0 or RtΞ

O
±Pa,λ,R/Th0 for some

t and (a, λ) ∈ G±. But by construction of ΞO±, any such bad wave from Pa,λ,Th0 will get cancelled by

ΞO±Pa,λ,R/Th0. The recursive definition also ensures that any new bad wave created by ΞO±P
(l)
a,λh0 also gets

eliminated. Thus, neither of these constituents may produce waves whose singularities enter Ωτ microlocally
and that completes the proof. �
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